Ig itio Cha acte isticsofSi gle Ignition Characteristics of Single Coal

1st Oxy-fuel Combustion Conference, Cottbus, Germany - 09 / 09/ 09
Ig itio Cha acte istics of Si gle
Ignition Characteristics of Single Coal Particles in Air (O2 /N2) and Oxy‐‐Fuel (O2 /CO
Oxy
/ 2) Environments
Zeenathul Farida Gani | T.F. Wall | Liza K. Elliot | Y.Liu | B.Moghtaderi
Department of Chemical Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia




Priority Research
Centre for Energy
gy
Outline
2
 Introduction
 Hypothesis and Objectives
 Experimental Details
 Single Particle Flame Sheet Model
 Results
 Conclusions




Priority Research
Centre for Energy
Oxy--fuel Combustion Technology
Oxy
3
Recirculated Flue Gas (RFG)
Steam to Turbine
Steam to Turbine
O2 from ASU
Secondary Air
Boiler
Coal +
Primary Air
N2, CO2 , H2O
Flue Gas
Water in
CO2 H2O
Secondary RFG
C l+
Coal
Primary RFG
Air Combustion
Boiler
Flue Gas
Water in
Oxy-fuel Combustion
 Combustion atmosphere –
O2 and RFG (primarily CO2)
 Thermo‐physical properties of N
Th
h i l
ti
f N2 and CO
d CO2
•
•
Specific heat capacity
1.6 times higher for CO2
Mass diffusivity
Mass diffusivity
20% lower in CO2
Molina and Shaddix, Proceedings of Combustion Institute (31) 2007




Priority Research
Centre for Energy
Coal Particle Ignition
g
- Theory
y
Ignition Mechanism
Volatile Flame
volatiles
homogeneous
combustion
CO2, H2O
O2
coal
coal particle
heterogeneous
combustion
O2
4
CO2, H2O
1. Homogeneous
Homogeneous Ignition
Ignition
‐ Gas Phase oxidation
2. Heterogeneous Ignition
‐ Surface Oxidation
S f
O id i
Devolatilization
O2
I iti
Ignition studies involve
t di i
l
 Measurement of minimum gas temperature (Tg) or time (ti) at which ignition occurs
 Tg and t
d ti are usually accompanied by a measurable indicator which could be ll
i db
bl i di t
hi h
ld b
1. a rapid mass loss ( TGA)
2. monitoring the exit gas composition
3 Visual changes Light flash (common indicator in single particle experiment)
3. Visual changes –
Light flash (common indicator in single particle experiment)




Priority Research
Centre for Energy
Hypothesis
yp
& Objective
j
5
Hypothesis
“The ignition and devolatilization of coal particles in oxy-fuel (O2/CO2) environment
are different from the conventional air (O2/N2)nenvironment. The differences in the
bulk gas (N2 and CO2) properties have a major contribution towards the difference in
ignition and devolatilization in O2/CO2 conditions.
conditions.”
Objectives
•
To develop a fundamental understanding on the ignition characteristics of To
develop a fundamental understanding on the ignition characteristics of
single coal particles in oxy‐fuel (O2/CO2) environment
•
To establish the differences in the ignition characteristics of single particles in air (O2/N2) and oxy‐fuel (O2/CO2) conditions
•
To measure and compare the particle temperatures under air (O2/N2) and oxy‐fuel (O2/CO2) conditions and to obtain the kinetic parameters
oxy‐fuel (O
) conditions and to obtain the kinetic parameters




Priority Research
Centre for Energy
Experimental SetupSetup- Entrained Flow
Reactor with
ith Optical diagnostics
6
Fibre Optic Cable
Fibre Optic Cable
Spectral Response 300‐ 800 nm
VIS/NIR High Voltage supply
High Voltage supply
Lens
US
SB 2000+
Spectrometer
Photo Multiplier Tube
Cooling water out
Cooling water in
Cooling water outCooling water in
Quartz Chimney
Quartz Chimney
y
Char Combustion Region
Char Combustion Region
Trigger
Amplifier
Oxidizer in
Oxidizer in
Pulse Fuel in Fuel in
Amplifier
Timer
Generator
Trigger
0.00.001
Computer with Computer with Data Aquisition
Data Aquisition
Lens
Volatile Combustion Region
g
Volatile Combustion Region
Heating Region
Heating Region
Fuel in Fuel in
Particle Detector
Particle Detector
CH4/H2
CH4/H2
O2/N2 or
O2/CO2
O2/N2 or
O2/CO2
P l i dC lP i l
Pulverised Coal Particles
Pulverised coal particles
from Fluidised Bed Feeder
from Fluidised Bed Feeder




Priority Research
Centre for Energy
Coal Properties & Experimental
conditions
7
Coals studied
Parameter
Condition
1. Sub‐Bituminous coal
Particle size
+180 ‐212 μm
2. Lignite
Furnace Temperature
1550 oK Furnace gas
CH4 ,H2 , O2 ,N2 / CO2
Carrier gas
g
N2 / CO2
Total flow rate
40 lpm
Oxygen concentration in N2/CO2
10% to 50% v/v basis
Coal Properties Wt % air dried basis
Sub‐Bitum
Lignite
Proximate Analysis
Moisture
8.0
11.1
A h
Ash
19 7
19.7
54
5.4
Volatile Matter
25.6
47.8
Fixed Carbon
46.5
35.7
Carbon
57.03
56.3
Hydrogen
3.25
4.16
Spectrometer experiments – Coal & Prepared Char
Temperature ‐ 1550 K
O2 level – 10, 21, 30, 50% in N2/ CO2
Nitrogen
0.84
0.55
Prepared char –
epa e c a
Char prepared in DTF at 1200 K
C
a p epa e i
a
00
Sulphur
0.17
0.96
Oxygen
10.81
21.43
Ultimate Analysis
Ultimate Analysis
PMT experiments ‐ Coal
Temperature ‐ 1550 K
O2 level – 10, 21, 30, 50% in N2/ CO2




Priority Research
Centre for Energy
Single
g Particle Flame Sheet Model
Heat of
Reaction
Gas (O2/N2) or (O2/CO2)
Conductive Conductive
Heat transfer
Combustion
Products
Coal Particle
rp
Tp
Radiative
Heat transfer
Particle heat up
Devolatilization
O2 volatiles
8
Char burnout
rf
εp =1
Schematic of flame sheet model
Flame Sheet




Priority Research
Centre for Energy
9
RESULTS




Priority Research
Centre for Energy
PMT Experiments
10
5
Intenssity
4
Volatile Combustion Time
Char Burnout Time
3
Sub‐bituminous 180‐212 um 21% O2(O2/N2)
2
1
0
0
50
100
150
200
250
300
350
400
Residence Time (ms)
Example of energy trace obtained using a Photomultiplier tube




Priority Research
Centre for Energy
PMT Experiments
4
11
Volatile Combustion Time
Char Burnout Time
Intensiity
3
2
Sub‐bituminous 180‐212 um 50% O2 (O2/N2)
1
0
250
275
300
325
350
Residence Time (ms)
Example of energy trace obtained using a Photomultiplier tube




Priority Research
Centre for Energy
160
80
40
80
Char Burnout Time (ms
Ai
Air
60
120
20
40
Lignite 180-212 um
Lignite 180-212 um
0
0
0
0
10
10
20
30
40
50
20
30
40
50
Oxygen Concentration (%)
Oxygen Concentration (%)
60
12
180
Air
Oxy
Oxy
Model - Air
Model - Oxy
Char Burrnout Time (mss)
Devolat ilization Time ((ms)
Devolatiilization Time (ms)
Devolatilization & Char Burnout
Time – Lignite
60
100
AirAir
Oxy
Oxy
13575
Model - Air
9050
Model - Oxy
4525
0 0
Lignite
180-212
Lignite
180-212
umum
0 0
20
30
40
1010 20
30
40 5050 60 60
Oxygen Concentration (%)
O
Oxygen
C
Concentration
t ti (%)
•Devolatilization and char burnout decreases with increasing O2 concentration. •Devolatilization and char burnout decreases with increasing O
concentration
• Devolatilization and char burnout takes longer in the presence of CO2




Priority Research
Centre for Energy
120
60
Char
out
Char burno
Burno
outTime
Time(ms)
(ms)
Devolatilizaation
Time (ms))
Devolatilizati
ion Time(ms)
Devolatilization & Char Burnout
Ti
Time
– Sub
S
Subb-Bituminous
Bit
i
Coal
C l
Air
Oxy Air
Oxy
ModelAir
90
40
Model- Oxy
60
20
30
Sub-Bitum
180-212
Sub-Bitum
180-212umum
0
0
0 0
1010
2020
30
30
40
40
Oxygen
OxygenConcentration
Concentration(%)
(%)
50
50
60
60
13
150
300
120
Air
Oxy Oxy
90
200
Model - Air
M d l - Oxy
Model
O
60
100
30
00
Air
Sub-Bitum180-212
180-212um
um
Sub-Bitum
00
10
10
20
20
30
40
50
30
40
50
Oxygen Concentration (%)
60
60
•Devolatilization and char burnout decreases with increasing O2 concentration. • Devolatilization and char burnout takes longer in the presence of CO2




Priority Research
Centre for Energy
Spectrometer Experiment –
Coal Particle Spectra
14
1250
1250
Intens
sity
Inten
nsity
Volatile combustion
1150
1150
Char combustion
1050
1050
Sub bituminous 180
Sub-bituminous
180-212
212 um in 21% O2
950
950
400
400
500
500
600
700
800
600
700
800
Wavelength
g ((nm)
Wavelength
(nm))
900
900
1000
1000
Spectra collection of a burning coal particle




Priority Research
Centre for Energy
Spectrometer Experiment –
Intensity Profile
15
Inteensity
100
75
800 nm
700 nm
50
25
0
100
150
200
250
Residence Time (ms)
Intensity profile (wavelength 700 nm & 800 nm)
yp
(
g
)




Priority Research
Centre for Energy
Temperature
p
measurement
Energy emitted by a grey body
Energy emitted by a grey body
λ
 ε
λ λ 5 [ exp ( C
I λ1  ε λ1 

I λ 2  ε λ2 
 ε λ1

 ελ
 2

 1


1
2
/ λT )1 ]
 e ( C2 / λ2 T )  1   λ2 
 ( C / λ T )   
2 1
 1   λ1 
e
5
16
3500
Tempeerature (K)
I
C
(grey
(g
y body
y assumption)
p
)
3000
2500
550/700
2000
600/700
650/750
1500
700/800
1000
100
120
140
160
180
200
Residence Time (ms)
Calculated two color temperature (grey body assumption) Grey body assumption ‐ wide variation in temperature with different
wavelength combination




Priority Research
Centre for Energy
Comparison – Coal & Prepared Char
Spectra
1200
1150
1150
1100
1100
1200
Sub-bitum
Sub-bitum coal
coal180-212
180-212 um
um
Char spectra
Intennsity
In
ntensity
In
ntensity
1250
1200
1050
1050
1000
1000
400
400
17
Sub-bitum prepared char 180-212 um
Sub-bituminous 180-212 um
Prepared char 21% O2
1150
1100
1050
500
500
600
700
800
600
700
800
Wavelength
Wavelength (nm)
(nm)
Coal 900
900
1000
400
500
600
700
Wavelength (nm)
800
900
Prepared Char  Emission intensity during char oxidation is higher for coal than prepared char
E i i i
i d i
h
id i i hi h f
l h
d h




Priority Research
Centre for Energy
Volatile burning
g intensity
y
Inteensity
6
18
Sub-bituminous coal 180-212 micron in 21% O2
Air (O2/N2)
Oxy (O2/CO2)
4
2
0
0
10
20
30
40
Residence Time (ms)
50
Volatile burning intensity
 Emission intensity during volatile combustion is higher in air (O2/N2) than in oxy(O2/CO2)




Priority Research
Centre for Energy
Char burning
g intensity
y
Sub-bituminous 180-212 um 21% O2
3
Sub-bituminous 180-212 um 21% O2
3
Air (O2/N2)
Oxy (O2/CO2)
2
IIntensity
IIntensity
Air (O2/N2)
19
1
Oxy (O2/CO2)
2
1
`
0
0
50
100
150
R id
Residence
Time
Ti (ms)
( )
Char burning intensity of coal
200
50
100
150
200
Residence Time (ms)
Char burning intensity of prepared Char
 Emission intensity during char oxidation is higher in air (O
E i i i
i d i
h
id i i hi h i i (O2/N2) than in oxy(O
) h i
(O2/CO2)
 Emission intensity during char oxidation is higher for coal than prepared char




Priority Research
Centre for Energy
Conclusion
20
 Devolatilization occurs faster with higher oxygen concentration in both air (O2/N2) and oxy‐fuel (O2/CO2)conditions. This is attributed to higher oxygen flux
 Devolatilization and char burnout times are longer in (O2/CO2) environment than in (O2/N2) . This can be explained by the the higher heat capacity of CO2 and lower mass diffusivity in CO
y
2
 The predicted trends using the single particle model are in good agreement with the measured combustion time data
 The measured emission intensities during volatile oxidation are higher in air (O2/N2)
than oxy‐fuel (O2/CO2) conditions
 The measured emission intensities during char oxidation are higher for coal The measured emission intensities during char oxidation are higher for coal
compared to prepared char in both air and oxy conditions




Priority Research
Centre for Energy
Acknowledgements
g
21

Dr. Ron Roberts – University of Newcastle 
MS. Jennifer Martin, Dr. Jianglong Yu, Mr. Renu Kumar, Mr.Rohan

Dr. Christopher Shaddix – Sandia National Laboratory

Dr. Alejandro Molina –
j
Universidad National De Colombia

Dr. Yiannis A. Levendis – North‐eastern University

Dr Carlos Romera Lehigh University
Dr. Carlos Romera ‐
Lehigh University




Priority Research
Centre for Energy
22
THANK YOU
THANK YOU




Priority Research
Centre for Energy
Char burning
g intensity
y
3
23
Sub-bituminous 180-212 micron in 21% O2
Inten
nsity
Coal
2
P
Prepared
d char
h
1
0
30
50
70
90
110
Residence Time (ms)
130




Priority Research
Centre for Energy
24
3000
3000
T e m p e ra tu r e ( K )
T e m p e ra tu r e ( K )
3500
550/700
2500
600/700
650/750
2000
700/800
1500
2500
550/700
2000
600/700
650/750
700/800
1000
1500
120
130
140
Residence Time (ms)
150
160
140
150
160
170
180
190
200
Residence Time (ms)




Priority Research
Centre for Energy
25
2700
Temperature (K))
T
Temperature (K))
T
2900
2800
550/700
2700
2600
2550
600/700
2500
150
160
170
180
190
Residence Time (ms)
200
150
160
170
180
190
Residence Time (ms)
200
2400
Temperrature (K)
2300
Temperaature (K)
2650
2250
650/750
2350
2300
700/800
2250
2200
2200
150
160
170
180
190
Residence Time (ms)
200
150
160
170
180
190
Residence
R
id
Time
Ti (ms)
( )




200
Priority Research
Centre for Energy
26
3000
Te
emperature (K
K)
2500
2000
1500
1000
550/700
500
615/715
700/800
800/900
850/950
0
320
330
340
350
360
370
380
390
Time (ms)




Priority Research
Centre for Energy
27
Energy trace obtained using a Photomultiplier tube




Priority Research
Centre for Energy
PMT Experiments
p
28
Energ
gy Intensiity (a.u)
6
4
2
0
0
50
100
150
200
250
300
350
400
Residence Time (ms)
Energy trace obtained using a Photomultiplier tube




Priority Research
Centre for Energy
900
800
800
700
700
600
600
Intensity Counts
900
500
400
300
Lignite 180‐212 um‐ Air 10
200
500
400
300
Lignite 180‐212 um‐ Air20
Lignite 180‐212 um‐
200
100
100
0
0
0
200
400
600
800
1000
1200
0
200
400
Wavelength (nm)
600
800
1000
1200
Wavelength (nm)
1000
1400
900
1200
800
1000
Intensity Counts
700
Intensity Counts
Intensity Counts
29
600
500
400
300
800
600
400
Lignite 180‐212 um‐ Air 30
200
Lignite 180‐212 um‐ Air 50
200
100
0
0
200
400
600
Wavelength (nm)
800
1000
1200
0
0
200
400
600
800
1000
1200
Wavelength (nm)




Priority Research
Centre for Energy
Single Particle Flame Sheet Model
Governing Equations
30
1. Devolatilization rate equation
dV
 k (V *  V )
dt
where
 E 

k  A exp 
 RT 
 p
2. Flame Sheet Radius
.
rf  m v
(n  s )
 (n  s ) y O2 ,  

4  C DO2 ln1 

s


3. Energy Balance for flame sheet
.
m v H  Qc
Q out  Qc
Q in  Qrad
Q d f  w  Qrad
Q d f p




Priority Research
Centre for Energy
Single Particle Flame Sheet Model
Governing Equations
31
4. Energy Balance for a single coal particle - Devolatilization
4.1 Without flame sheet (attached flame condition)
m pC
dT p
pp dt
 Qcon g  p  Qrad w p  Q
Q
endo
dev
4 2 With fl
4.2
flame sheet
h t (flame
(fl
lift-off
lift ff condition)
diti )
m pC
dT p
pp dt
 Qcon
f p
 Qrad w p  Qrad
f p
Q
endo
5. Energy Balance for a single coal particle (during char combustion)
m pC
dT p
pp dt
 Qcong  p  Qrad w p  Q
comb




Priority Research
Centre for Energy
32
A- Frequency factor (s-1)
C -Total molar concentration (moles/m3)
Cpp- Specific heat capacity of coal particle (J/kg/K)
DO2 -Diffusivityy of O2 in the bulk g
gas ((m2 / s))
E -Activation Energy (J/kg)
FC -Fixed carbon as measured by Proximate analysis (kg/kg)
H -Heat of volatile combustion (J/kg)
K -Rate constant (s-1)
Mp-Particle mass (kg)
mv -Volatile release rate (kg/s)
n -kmoles of oxygen required per kg of volatiles on the flame sheet
or on the particle surface (kmoles/kg)
Q -Ratio of total volatile yield to the proximate volatile matter No unit




Priority Research
Centre for Energy
33
Q endo- Heat of Pyrolysis (J)
QCin -Convective heat transfer from the flame to the particle (J)
Qcomb -Heat of char combustion (J)
( )
Qconf-p- Conductive heat transfer between the flame and the particle (J)
Qcong-p -Conductive heat transfer between the gas and the particle (J)
QCout -Convective heat transfer from the flame to the gas (J)
Qdev -Heat of volatile combustion (J)
Qgasf -Heat absorbed during gasification reaction (J)
Q df Radiative
Qradf-pR di ti h
heatt ttransfer
f b
between
t
th
the fl
flame and
d th
the particle
ti l (J)
Qradf-w -Radiative heat transfer between the flame and the wall (J)
Qradw-p -Radiative heat transfer between the wall and the particle (J)
R -Universal gas constant (J/kg/K)
r f -Flame sheet radius from the centre of the particle (m)
rp -Particle
Particle diameter (m)
S-kmoles of product generated per kg of volatiles on the flame sheet
or the particle surface (kmoles/kg)
Tf -Temperature of the flame front (K)
Tg- Temperature of the ambient gas (K)
Tp- Partice Temperature (K)
Tw- Wall temperature (K)
V* -Ultimate volatile yield (kg/kg)
VM -Volatile matter content as measured by Proximate analysis (kg/kg)
yO2, α- Mole fraction of oxygen in the ambient gas No unit




Priority Research
Centre for Energy
Coal particle Spectra
4000
3000
2000
1000
400
500
600
700
800
900
Energy Inteensity
(Raw
w)
Energy In
ntensity
(Raw
w)
34
1500
1250
1000
400
Wavelength (nm)
600
800
200
Energy
yIntensity (Corrrected)
Energyy Intensity
(Corrrected)
Wavelength (nm)
150
100
50
0
400
600
800
Wavelength (nm)
Spectra obtained for a sub‐bituminous coal particle (180‐212 um)
50
25
0
500
600
700
800
Wavelength (nm)




Priority Research
Centre for Energy
35




Priority Research
Centre for Energy
Spectrometer
p
– USB 2000+
36
 Multi wavelength Pyrometer
 Microcontroller based Spectrometer
 Spectral Range ‐ 300 ‐ 1100 nm (VIS/NIR)
 Resolution ‐ 0.35 nm
 Response Time ‐ 1ms ‐ 60 sec
 Detector ‐ CCD array
 Grating – 600 lines/mm 



Priority Research
Centre for Energy
Spectrometer
p
calibration
37
80000
Lamp file data
60000
Measured
8
40000
4
20000
0
0
0
Tungsten Halogen Lamp
(radiometrically calibrated)
12
Spectral Outp
put
(uw/cm2/mm
m)
Intensity C
Count
Lamp Spectrum
200
400
600
800
1000
1200
Wavelength (nm)
Intensity from calibration lamp file at λ
CorrectionFactor (A ) 
λ
Actual int ensity measured from the lamp by the spectrometer at λ
I c  I m X A 
Iλc
-Corrected Intensity
I λm - Measured Intensity
Aλ
Relative Grating Efficiency
- Correction Factor
Corrected Intensity (Iλc) = Measured Intensity (Iλm) X
Correction
Fact
Priority
Research

Centre
for
Energy



38
Composition % N2
10
N2
21
N2
30
N2
50
CO2
10
CO2
21
CO2
30
CO2
50
CO2
2. 8
2. 8
2. 8
2. 8
70.5
59.8
51.4
31.5
H2O
14 3
14. 3
14 3
14. 3
14 3
14. 3
14 3
14. 3
19 4
19.4
19 2
19.2
18 5
18.5
18 5
18.5
N2
72. 9
62. 0
52. 8
32. 8
‐‐
‐‐
‐‐
‐‐
O2
10. 0
20. 9
30. 1
50. 1
10.1
21.0
30.1
50.0




Priority Research
Centre for Energy