Animal Genetic Resources - Food and Agriculture Organization of

54
ANIMAL GENETIC
RESOURCES
an international journal
RESSOURCES
GÉNÉTIQUES ANIMALES
un journal international
RECURSOS
GENÉTICOS ANIMALES
una revista internacional
2014
ISSN 2078-6336
Animal Genetic Resources, 2014, 54, i. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000186
Editorial
Dear reader,
th
The 54 volume of our journal includes 20 papers describing different aspects of animal genetic resources and their
management in Africa, Asia, Europe and Latin America.
The current volume shows that our journal is truly international due to its international readership and authorship.
Furthermore the papers presented cover a range of topics
from characterization of breeds to the description of their
production systems. Similar to the 53rd issue, the high percentage of papers dealing with phenotypic and or genetic
characterisation indicates the continuing importance of
the first strategic priority area of the Global Plan of
Action for Animal Genetic Resources1.
Animal genetic resources represent an important part of
biodiversity. Therefore I would also like to draw your
attention to the next edition of the Global Biodiversity
Outlook, the flagship publication of the Convention on
Biological Diversity2. It is a periodic report that summarizes the latest data on the status and trends of biodiversity and draws conclusions relevant to the further
implementation of the Convention. The reports are based
on different types on information including national
reports, scientific literature, information from the
Biodiversity Indicators Partnership and supplementary
studies. The fourth edition of the Global Biodiversity
Outlook (GBO-4)3 will be prepared to provide a midterm
assessment towards the progress in the implementation
of the Strategic Plan for Biodiversity 2011–2020 and the
Aichi Biodiversity Targets.4 You might me be especially
interested in Aichi Target 13 which refers directly to the
genetic diversity of farmed and domesticated animals.
The Commission on Genetic Resources for Food and
Agriculture, at its Fourteenth Regular Session in April
2013, requested FAO to prepare The Second Report on
the State of the World’s Animal Genetic Resources for
Food and Agriculture, as an update to the first report published in 2007.5 By 25th of March 2014, 100 countries had
submitted country reports to FAO and another 30 countries
had indicated that they were in the final stages of preparing
their reports. International organizations and regional focal
points for the management of animal genetic resources6
have also been invited to report on their activities supporting the implementation of the Global Plan of Action for
Animal Genetic Resources.7
The Second Report will be made available to the Eighth
Session of the Intergovernmental Technical Working
Group on Animal Genetic Resources for Food and
Agriculture, which is scheduled to take place 26–28
November 2014 in Rome.8 The Working Group will also
advise the Commission on whether the Global Plan of
Action for Animal Genetic Resources needs to be updated.
Please encourage your country’s National Coordinator9 to
attend this important meeting. You might also consider
providing him/her with your comments on the Second
Report, which will be published online six weeks prior
to the meeting at our webpage10.
Yours sincerely,
Roswitha Baumung
5
www.fao.org/docrep/010/a1250e/a1250e00.htm
http://www.fao.org/Ag/AGAInfo/programmes/en/genetics/regional_collaboration.
html
7
http://www.fao.org/docrep/010/a1404e/a1404e00.htm
8
http://www.fao.org/Ag/AGAInfo/programmes/en/genetics/
Intergovernmental_process.html
9
http://dad.fao.org/cgi-bin/EfabisWeb.cgi?sid=-1,contacts
10
http://www.fao.org/ag/againfo/programmes/en/genetics/Intergovernmental_process.
html
6
1
http://www.fao.org/docrep/010/a1404e/a1404e00.htm
http://www.cbd.int/
http://www.cbd.int/en/gbo4
4
http://www.cbd.int/sp/targets/
2
3
i
Animal Genetic Resources, 2014, 54, iii. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000198
Éditorial
Cher lecteur,
Le 54ème volume de notre journal inclut 20 articles
décrivant différents aspects des ressources zoogénétiques
et leur gestion en Afrique, Asie, Europe et Amérique
Latine. Le présent volume fait ressortir le caractère vraiment international de notre journal vue l’internationalité
des lecteurs et des auteurs. En outre, les articles
présentés couvrent un large éventail de sujets allant de la
caractérisation des races à la description de leurs
systèmes de production. Comme dans le 53ème volume,
le haut pourcentage d’articles traitant de la caractérisation
phénotypique et génétique indique que le premier domaine
prioritaire du Plan d’Action Mondial pour les Ressources
Zoogénétiques1 demeure toujours important.
Les ressources zoogénétiques représentent une part importante de la biodiversité. Ainsi, je voudrais aussi attirer
votre attention sur la prochaine édition de Perspectives
Mondiales de la Diversité Biologique, publication phare
de la Convention sur la Diversité Biologique2. Il s’agit
d’un rapport périodique qui synthétise les plus récentes
données sur l’état et les tendances de la biodiversité et
qui tire des conclusions pertinentes pour poursuivre la
mise en œuvre de la Convention. Les rapports sont basés
sur différents types d’informations, y compris des rapports
nationaux, de la littérature scientifique, des informations
du Partenariat sur les Indicateurs de la Diversité
Biologique et des études complémentaires. La quatrième
édition de Perspectives Mondiales de la Diversité
Biologique (GBO-4)3 va être préparée dans le but de fournir une évaluation à moyen terme des progrès réalisés dans
la mise en œuvre du Plan Stratégique pour la Biodiversité
2011–2020 et des Objectifs d’Aichi pour la Biodiversité.4
Il se peut que le 13ème Objectif d’Aichi vous intéresse tout
particulièrement vu qu’il se rapporte directement à la
diversité génétique des animaux domestiques.
À sa Quatorzième Session Ordinaire en Avril 2013, la
Commission des Ressources Génétiques pour l’Alimentation
et l’Agriculture a demandé à la FAO d’élaborer Le
Deuxième Rapport sur l’État des Ressources Zoogénétiques
pour l’Alimentation et l’Agriculture dans le Monde, comme
une mise à jour du premier rapport publié en 2007.5 Vers le
25 Mars 2014, 100 pays avaient soumis leurs rapports nationaux à la FAO et 30 autres pays avaient indiqué qu’ils se trouvaient dans les dernières étapes de la préparation de leurs
rapports. Des organisations internationales et les centres de
coordination régionaux pour la gestion des ressources
zoogénétiques6 ont aussi été invités à informer sur leurs
activités de soutien à la mise en application du Plan
d’Action Mondial pour les Ressources Zoogénétiques.7
Le Deuxième Rapport sera mis à disposition à la Huitième
Session du Groupe de Travail Technique Intergouvernemental
sur les Ressources Zoogénétiques pour l’Alimentation et
l’Agriculture, programmée pour le 26 au 28 Novembre
2014 à Rome.8 Le Groupe de Travail fera aussi savoir à
la Commission si, à son avis, le Plan d’Action Mondial
pour les Ressources Zoogénétiques doit être mis à jour.
Veuillez encourager le Coordonnateur National de votre
pays9 à assister à cette importante réunion. Vous pourrez
également transmettre à votre Coordonnateur vos commentaires sur le Deuxième Rapport, qui sera publié sur
notre site web10 six semaines avant la réunion.
Cordialement,
Roswitha Baumung
5
http://www.fao.org/docrep/011/a1250f/a1250f00.htm
http://www.fao.org/Ag/AGAInfo/programmes/fr/genetics/regional_collaboration.
html
7
http://www.fao.org/docrep/010/a1404f/a1404f00.htm
8
http://www.fao.org/Ag/AGAInfo/programmes/fr/genetics/
Intergovernmental_process.html
9
http://dad.fao.org/cgi-bin/EfabisWeb.cgi?sid=d36ed91aa3283f227a3aeee1c3b28be6,contacts
10
http://www.fao.org/ag/againfo/programmes/fr/genetics/Intergovernmental_process.
html
6
1
http://www.fao.org/docrep/010/a1404f/a1404f00.htm
http://www.cbd.int/
http://www.cbd.int/en/gbo4
4
http://www.cbd.int/sp/targets/
2
3
iii
Animal Genetic Resources, 2014, 54, iv. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000204
Editorial
Estimado lector,
El 54° volumen de nuestra revista incluye 20 artículos que
describen diferentes aspectos de los recursos zoogenéticos
y su ordenación en África, Asia, Europa y América Latina.
El presente volumen da muestras del carácter verdaderamente internacional de nuestra revista dada la internacionalidad del público lector y de los autores. Asimismo, los
artículos presentados cubren una amplia variedad de
temas, desde la caracterización de las razas a la
descripción de sus sistemas de producción. Como ya
ocurrió en la 53ª entrega, el elevado porcentaje de
artículos que abordan la caracterización fenotípica y
genética da señas de que sigue revistiendo importancia la
primera área estratégica prioritaria del Plan de Acción
Mundial sobre los Recursos Zoogenéticos1.
Los recursos zoogenéticos representan una parte importante de la biodiversidad. Así, me gustaría también atraer
su atención hacia la próxima edición de la Perspectiva
Mundial sobre la Biodiversidad, publicación insignia del
Convenio sobre la Diversidad Biológica2. Se trata de un
informe periódico que resume la información más reciente
sobre el estado y las tendencias de la biodiversidad, y que
extrae conclusiones relevantes para seguir aplicando el
Convenio. Los informes están basados en distintos tipos
de información, entre los cuales informes nacionales,
bibliografía científica, información de la Asociación de
Indicadores de Biodiversidad y estudios complementarios.
La cuarta edición de la Perspectiva Mundial sobre la
Biodiversidad (GBO-4)3 va a ser preparada con el fin de
proporcionar una evaluación, en mitad de periodo, del
grado de avance en la aplicación del Plan Estratégico
para la Diversidad Biológica 2011–2020 y de las Metas
de Aichi para la Diversidad Biológica.4 Tal vez le pueda
resultar interesante la 13ª Meta de Aichi que alude directamente a la diversidad genética de los animales domésticos.
La Comisión de Recursos Genéticos para la Alimentación y
la Agricultura, en su Decimocuarta Reunión Ordinaria en
abril de 2013, solicitó a la FAO la preparación de El
Segundo Informe sobre la Situación de los Recursos
Zoogenéticos Mundiales para la Alimentación y la
Agricultura, como una actualización del primer informe publicado en 2007.5 Hacia el 25 de marzo de 2014, 100 países
habían enviado sus informes nacionales a la FAO y otros 30
países habían indicado que se encontraban en la fase final de
preparación de sus informes. También se ha invitado a organizaciones internacionales y a los centros de coordinación
regionales para la gestión de los recursos zoogenéticos6 a
informar sobre sus actividades de apoyo a la aplicación del
Plan de Acción Mundial sobre los Recursos Zoogenéticos.7
El Segundo Informe se hará disponible en la Octava
Reunión del Grupo de Trabajo Técnico Intergubernamental
sobre los Recursos Zoogenéticos para la Alimentación y la
Agricultura, programada para los días 26–28 de noviembre
de 2014 en Roma.8 El Grupo de Trabajo también
notificará a la Comisión si, en su opinión, el Plan de
Acción Mundial sobre los Recursos Zoogenéticos debe ser
actualizado. Anime por favor al Coordinador Nacional de
su país9 a asistir a este importante encuentro. También
podrá Usted hacer llegar a su Coordinador sus comentarios
sobre el Segundo Informe, que será publicado en nuestra
página web10 seis semanas antes del encuentro.
Atentamente,
Roswitha Baumung
5
http://www.fao.org/docrep/012/a1250s/a1250s00.htm
http://www.fao.org/Ag/AGAInfo/programmes/es/genetics/regional_collaboration.html
http://www.fao.org/docrep/010/a1404s/a1404s00.htm
8
http://www.fao.org/Ag/AGAInfo/programmes/es/genetics/
Intergovernmental_process.html
9
http://dad.fao.org/cgi-bin/EfabisWeb.cgi?sid=60d42d6f19e3c527970c5762b0aeecf1,contacts
10
http://www.fao.org/ag/againfo/programmes/es/genetics/Intergovernmental_process.
html
6
7
1
http://www.fao.org/docrep/010/a1404s/a1404s00.htm
http://www.cbd.int/
http://www.cbd.int/en/gbo4
4
http://www.cbd.int/sp/targets/
2
3
iv
Animal Genetic Resources, 2014, 54, 1–9. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S207863361400006X
Phenotypic and morphological characterization and
reproduction attributes of native pigs in Bangladesh
C.H. Ritchil, M.M. Hossain and A.K.F.H. Bhuiyan
Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
Summary
The study was undertaken for a period of 30 days to investigate the phenotypic, morphological and reproduction attributes of native pigs in 14
villages of Haluaghat, Durgapur and Nalitabari upazilas in Mymensingh, Netrokona and Sherpur districts, respectively. A total of 200 experimental animals were evaluated, of which 81 were male and 119 were female. Various parameters were evaluated separately at different age
groups in males and females. A pre-tested questionnaire was used to record various phenotypic information. Body weight, body length, chest
girth, length from ear to tail, height at withers, height at loin region, head length, width of head, ear length, hair length, tail length and number
of teats were the morphometric traits recorded. The predominant coat colour of the pigs was black, with 95 percent of them having dark skin
pigmentation. The majority of pigs possessed a long, straight head (75 percent) and the rest had a shape classified as a “wide face”. All of them
had erect ears with upward orientation, whereas 98.5 percent had thin, straight tails. The pigs with stocky body shape (27.5 percent) showed
larger body measurements than animals with angular body shape (72.5 percent). The mean values along with the Standard Error for traits
were statistically analysed. Three main independent variables (i.e. upazila, age and sex) were considered for an univariate analysis of variance
and the correlations among traits were measured. The average, minimum and maximum values for age at first farrowing, farrowing interval,
litter size, gestation period and weaning period were also measured.
Keywords: Dome pig, Wakmandi pig, phenotypic traits, morphometric traits, reproductive parameters
Résumé
L’étude s’est étendue sur une période de 30 jours dans le but de caractériser d’un point de vue phénotypique, morphologique et reproductif les porcs autochtones de 14 villages des upazilas de Haluaghat, Durgapur et Nalitabari, dans les districts de Mymensingh,
Netrokona et Sherpur, respectivement. Un total de 200 animaux expérimentaux (81 mâles et 119 femelles) a été évalué. Plusieurs
paramètres ont été évalués séparément, à différents âges, aussi bien pour les mâles que pour les femelles. Un questionnaire prétesté a été utilisé pour rassembler les informations phénotypiques. Les traits morphométriques retenus ont été le poids et la longueur
du corps, la circonférence thoracique, la distance des oreilles à la queue, la hauteur au garrot, la hauteur à la région lombaire, la longueur et la largeur de la tête, la longueur des oreilles, la longueur des poils, la longueur de la queue et le nombre de mamelles. La
couleur de robe prédominante a été le noir, avec 95 pour cent des porcs ayant une pigmentation cutanée foncée. La plupart des
porcs ont eu une tête longue à profil droit (75 pour cent) alors que pour le reste, la tête avait une forme connue sous le nom de “visage
large”. Dans tous les cas, les oreilles étaient dressées vers le haut et pour le 98,5 pour cent des porcs, la queue était mince et droite. Les
porcs au corps râblé (27,5 pour cent) ont présenté des mesures corporelles plus grandes que celles des animaux au corps anguleux (72,5
pour cent). Les valeurs moyennes, ainsi que l’erreur standard, ont été analysées statistiquement. Trois variables indépendantes principales (i.e. l’upazila, l’âge et le sexe) ont été considérées pour l’ANOVA et les corrélations entre les paramètres ont été mesurées. Les
valeurs moyenne, minimale et maximale pour l’âge à la première mise-bas, l’intervalle entre mises-bas, la taille de la portée et la durée
de la gestation et de la lactation ont aussi été déterminées.
Mots-clés: porc dome, porc wakmandi, traits phénotypiques, traits morphométriques, paramètres reproductifs
Resumen
El estudio se extendió sobre un periodo de 30 días con el fin de investigar los atributos fenotípicos, morfológicos y reproductivos de los
cerdos autóctonos de 14 pueblos de las upazilas de Haluaghat, Durgapur y Nalitabari, en los distritos de Mymensingh, Netrokona y
Sherpur, respectivamente. Se evaluó un total de 200 animales experimentales, de los cuales 81 eran machos y 119 eran hembras. Se
evaluaron varios parámetros de forma separada, a distintas edades, en los grupos de machos y hembras. Se utilizó un cuestionario
probado para recopilar la información fenotípica. Los rasgos morfométricos registrados fueron el peso y la longitud corporal, la circunferencia torácica, la distancia de las orejas a la cola, la altura a la cruz, la altura a la región lumbar, la longitud y la anchura de
la cabeza, la longitud de las orejas, la longitud del pelo, la longitud de la cola y el número de mamas. El color de capa predominante
de los cerdos fue el negro; el 95 por ciento de los ejemplares tenía pigmentación cutánea oscura. La mayoría de los cerdos tenía una
cabeza larga, con perfil recto (75 por ciento), y el resto presentaba una forma conocida como “cara ancha”. Todos los ejemplares tenían
orejas erectas en posición vertical y la cola era fina y recta en el 98,5 por ciento de los casos. Los cerdos con cuerpo fornido (27,5 por
ciento) presentaron medidas corporales mayores que las de los animales con cuerpo anguloso (72,5 por ciento). Se analizaron
estadísticamente los valores medios, junto con el error estándar, de los distintos parámetros. Se consideraron tres variables independientes principales (i.e. upazila, edad y sexo) para el ANOVA y se midieron las correlaciones entre los parámetros. También se
Correspondence to: C.H. Ritchil, Department of Animal Breeding and
Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh. email:
[email protected]
1
2
Ritchil et al.
determinaron los valores medio, mínimo y máximo para la edad al primer parto, el intervalo entre partos, el tamaño de la camada y la
duración de la gestación y la lactación.
Palabras clave: cerdo dome, cerdo wakmandi, rasgos fenotípicos, rasgos morfométricos, parámetros reproductivos
Submitted 25 March 2013; accepted 30 January 2014
Introduction
More than 45 different ethnic groups live in Bangladesh. As a
group, they are called the “indigenous people” and they raise
pigs for a contribution to their livelihoods and are the main
consumers of pork and rearers of pig (Sus crofa domesticus)
in Bangladesh. In addition, the Christians and some Hindus
also consume pork in large amounts. There is also a community of nomadic people called the “Dome”, who rear pigs and
sell piglets to the indigenous people. They are the main
source of pigs for those people. The pig bought from Dome
is called Dome’s pig. Another type of native pig is called
the “Wakmandi”. A distinctive trait of this pig is a drooping
mid-section, which differentiates it from the Dome. About 95
percent of the pigs in Bangladesh are of these native types
(Dome and Wakmandi) and the remaining 5 percent are exotic or crosses between native and exotic. There has been no
thorough investigation carried out to characterize these native
pigs in Bangladesh. In this context, this study was formulated
to evaluate the morphological, phenotypic and reproduction
attributes of native pigs, specifically in the rural areas of
Haluaghat, Durgapur and Nalitabari upazilas of Bangladesh.
Materials and methods
Study area
The study was undertaken at four randomly selected villages of the Haluaghat Upazila located at 25.1250°N and
90.3500°E in Mymensingh district (Figure 1), seven villages of the Durgapur Upazila located at 25.1250°N and
90.6875°E in Netrokona district (Figure 2) and three villages of the Nalitabari Upazila located at 25.0833°N and
90.1954°E in Sherpur district (Figure 3). The villages
were selected because they were known to have a
Figure 1. Map of field unit at Haluaghat upazila in Mymensingh district.
reasonably high density of pig populations. Before collection of data, a questionnaire (Appendix 1) was prepared in
accordance with objectives of the study. Later on, the questionnaire was validated against field conditions.
Study population
All the experimental animals were of the native type (i.e.
Dome or Wakmandi) pigs. All pigs were reared by the
Garo(s) the indigenous people in the studied areas. A
total of 200 household pig owners from the aforementioned sites were selected randomly and interviewed relevant for the study. A total of 200 experimental animals
were evaluated, of which 81 were male and 119 were
female pigs. One pig from each household was selected
randomly.
Data collection
The study was conducted from 1 September 2012 to 30
September 2012. The phenotypic traits such as coat colour,
skin pigmentation, head shape, ear direction, ear orientation, tail shape and body shape were recorded based on
subjective visual observation. Body weight of piglets
was recorded by using a weighing scale, whereas body
weights of boars and gilts were estimated by using the following formula:Chest girth2 (m) × length from ear to tail (m) × 69.3 = body
weight of the pig (kg)
where,
M
69.3
kg
=
=
=
meter
constant
kilogram
Source: The Old Farmer’s Almanac
Phenotypic and morphological characterization and reproduction attributes of native pigs in Bangladesh
Figure 2. Map of field unit at Durgapur upazila in Netrokona district.
Figure 3. Map of field unit in Nalitabari upazila in Sherpur district.
Body length was determined by measuring the distance
between points of shoulder to the pin bone. Chest girth
was considered as the largest circumference of the body
immediately behind the shoulder. The length from ear to
tail was measured from the base of the ear to the base of
the tail. Height at wither was considered as vertical distance between the ground and the point of wither. Height
at loin region was considered as vertical distance between
the surface and the loin region. Head length was measured
from the distance between snout and forehead of pig, while
head width was the distance between the eyes. The distance
between the base and the tip of the pinna was considered as
the ear length. Shoulder hairs were used to determine the
hair length. The distance between the base and the end of
the tail was constituted the tail length. The number of
pairs of teats was recorded by visual observation. The litter
size was based on the number born alive. Gestation and
weaning period were also estimated.
Statistical analysis
The accumulated data were arranged by using Microsoft
Excel 2007 and these data were compiled and analyzed
by using Statistical Package for Social Science (SPSS)
v.11.5. Univariate analysis of variance (ANOVA) was carried out with upazila, sex, age group and sex*age as
explanatory variables. The raw and residual correlations
among traits were also calculated.
Results and discussion
1. Phenotypic characterization
Coat characteristics
The observed combinations of coat colour of the native pigs
were black (95 percent), black and white (2.5 percent),
greyish-black (2 percent) and brownish (0.5 percent)
(Figure 4). The coat colour of native pig had been recorded
as black, white, black with white legs, white with black spot,
black with white belly and brown in a previous study conducted by Yaetsu et al. (1987) in Bangladesh, which is similar to the present study. Most of the native pigs in the study
areas had dark skin pigmentation (95 percent).
Head and ear characteristics
The shape of the head was long and straight in most of the
native pigs (75 percent) and the rest were classified as
“wide face” (25 percent) (Figure 5). Yaetsu et al. (1987)
conducted an experiment on native pigs in different
regions of Bangladesh and reported that a straight face
with a pointed snout and erect ears was common for native
pig. The present study showed that the native pigs had
erect ears that pointed backwards (100 percent) (Figure 5).
Body and tail shapes
Native pigs were found to have either angular or stocky
body shapes where 72.5 percent of them belonged to
3
4
Ritchil et al.
Figure 4. Coat characteristics of native pig.
angular body type and rest were stocky (Figure 6). Thin,
straight as well as curled tails were observed among the
native pigs. It was found that 98.5 percent of the pigs
had a thin, straight tail. The curled tails (1.5 percent)
were generally thin and showed an upward curl forming
Figure 5. Head and ear characteristics of native pig.
one circle. Yaetsu et al. (1987) conducted an experiment
on native pigs in different regions of Bangladesh and
reported that some pigs with somewhat concave back
and pendulous belly were found. They also reported that
the straight tail was common for all native pigs.
Phenotypic and morphological characterization and reproduction attributes of native pigs in Bangladesh
Figure 6. Body shape of the native pig.
2. Morphological characterization
For morphological characterization, body measurements of
81 male and 119 female pigs were taken. Means along
with standard errors of means (SEM) of different morphometric characters for pigs are presented in Tables 1–3.
Interactions between dependent and independent variables
are presented in Table 4. The raw and residual correlations
among the studied traits are presented at Table 5.
Not surprisingly, the morphological traits of native pigs
were found to increase (P < 0.001) with the advancement
Table 1. Morphological characteristic of pigs affected by age
(Mean ± SEM).
Parameter
Body weight
(kg)
Body length
(cm)
Chest girth
(cm)
Ear to tail
length (cm)
Height at
wither (cm)
Height at loin
(cm)
Head length
(cm)
Head width
(cm)
Ear length
(cm)
Hair length
(cm)
Tail length
(cm)
Age
0–6
months
(n = 56)
7–12
months
(n = 105)
13–18
months
(n = 28)
19–24
months
(n = 11)
16.5a ± 0.9
35.3b ± 1.1
68.8c ± 2.5
89.4d ± 5.2
37.3a ± 0.9
46.9b ± 0.7
59.4c ± 1.8
65.7d ± 3.5
62.3a ± 1.3
81.9b ± 0.9
104.5c ± 1.5
113.6d ± 3.2
57.5a ± 1.2
73.3b ± 0.9
91.3c ± 1.3
98.6d ± 1.9
39.9a ± 0.9
49.5b ± 0.7
61.4c ± 1.1
63.0d ± 1.8
41.0a ± 0.9
51.5b ± 0.7
63.5c ± 1.1
65.2d ± 1.8
19.6a ± 0.4
22.9b ± 0.3
26.3c ± 0.7
28.5d ± .4
11.6a ± 0.2
13.8b ± 0.2
16.9c ± 0.5
19.0d ± .6
7.8a ± 0.2
8.9b ± 0.2
9.1c ± 0.2
10.3d ± .3
6.1a ± 0.2
7.5b ± 0.2
8.4c ± 0.4
8.5d ± .6
18.7a ± 0.6
24.0b ± 0.5
28.5c ± 0.8
29.5d ± 1.5
Different superscripts indicate that values are significantly different at
0.1% level of probability (P < 0.001);
n = number of animals.
of age (Table 1). In general, adult (18–24 months) males
tended to be larger than females, whereas no clear pattern
was observed at younger ages. Babu et al. (2004) conducted an experiment in the rural areas of India and
reported that the average body weight of Large White
pigs at puberty was 82.3 ± 1.8 kg (mean ± SE), which is
similar to the result of present study. The adult body length
(7–24 months) ranged from 47–67 cm for males and 46–
63 cm for females. Subalini, Silva and Demetawewa
(2010) reported that the average body length of Sri
Lankan village adult male and female pig was 75.1 ± 1.9
and 69.9 ± 2.4 cm, respectively, which is 15 cm greater
than in the present study. The average chest girth for the
adult male and female pigs was 82.8 ± 1.7 and 81.3 ±
1.1 cm, respectively. The average length from the base
of the ear to base of the tail was higher for females at 0–
6 and 13–18 months of age. The height at wither, height
at loin, head length, head width, ear length and tail length
were higher for females than males at 0–6 months of age.
A total of only 20 male and 36 female piglets were measured at 0–6 months of age. Hence, the small sample
size might be responsible for this result. Yaetsu et al.
(1987) conducted an experiment on native pigs in different
regions of Bangladesh and reported that the average
heights at wither at 13–18 months of age in males and
females were 56.0 ± 0.0 and 52.8 ± 4.8 cm, respectively,
which is lower than the present study. The average
pairs of teat of the female pig at 0–6, 7–12, 13–18 and
19–24 months of age was found to be 4.8 ± 0.1, 5.0 ± 0.0,
5.1 ± 0.1 and 6.0 ± 0.0 pairs, respectively. Yaetsu et al.
(1987) conducted an experiment on native pigs in different
regions of Bangladesh and reported that the teat pattern of
Bangladeshi pigs ranged from four to six pairs. A pattern of
five pairs was most frequent in all the populations examined, which is similar to the result of the present study.
The correlations among traits were also calculated
(Table 5). The correlations were all positive and were significant at the 0.01 level (two-tailed). However, the present
study failed to record a significant difference (P < 0.05)
between the two sexes (Table 2) except for chest girth
and ear length at 19–24 and 13–18 months of age group,
5
79.0a ± 8.7
63.2a ± 7.3
107.2b ± 4.9
96.4a ± 3.3
60.4a ± 3.6
63.0a ± 3.6
28.8a ± 0.5
19.2a ± 0.8
10.0a ± 0.4
8.8a ± 1.1
30.6a ± 2.8
6.0 ± 0.0
0.06
0.54
0.05
0.31
0.21
0.30
0.49
0.78
0.44
0.72
0.50
respectively. Subalini, Silva and Demetawewa. (2010) conducted an experiment on village pigs in Sri Lanka and
found no significant difference (P < 0.05) between two
sexes. Sudhakar and Gaur (2006) also found that effect
of sex was not significant on all body weights and measurements in Indian native pigs, except for weight at birth. The
diet for male and females was almost same though. At the
present study the differences between two populations
(Dome and Wakmandi) was not done for the characteristics
measured as the population of Wakmandi was very little.
Morphological characteristics of mature pigs affected by
upazila (area) are presented in Table 3. Area contributed
significant differences (P < 0.05) between males and
females in case of parameters such as wither height, loin
height, head length, ear length and tail length.
0.65
0.95
0.42
0.34
0.34
0.29
0.16
0.71
0.05
0.37
0.40
98.0a ± 3.9
67.8a ± 2.8
119.0a ± 2.9
100.5a ± 2.2
65.2a ± 1.3
67.0a ± 1.4
28.2a ± 0.7
18.8a ± 0.9
10.5a ± 0.4
8.3a ± 0.8
28.5a ± 1.5
At 19–24 months of age
3. Reproduction attributes
a,b
= Means from the same age group that differ significantly between sexes have different superscripts; n = number of animals.
69.6a ± 3.5
59.5a ± 2.4
105.4a ± 2.2
90.3a ± 1.5
60.7a ± 1.3
62.7a ± 1.3
25.6a ± 0.9
16.8a ± 0.6
9.4b ± 0.2
8.7a ± 0.5
28.0a ± 1.2
5.1 ± 0.0
67.2a ± 3.4
59.3a ± 2.4
102.8a ± 1.6
93.0a ± 2.6
62.8a ± 1.9
65.1a ± 1.9
27.7a ± 1.2
17.2a ± 0.7
8.6a ± 0.3
8.0a ± 0.5
29.4a ± 0.6
0.24
0.65
0.43
0.09
0.77
0.98
0.48
0.16
0.24
0.98
0.86
34.1a ± 1.4
46.7a ± 0.8
81.3a ± 1.1
72.1a ± 1.1
49.7a ± 0.9
51.5a ± 0.9
23.1a ± 0.5
13.5a ± 0.3
9.2a ± 0.4
7.5a ± 0.3
24.1a ± 0.7
5.0 ± 0.0
36.8a ± 1.9
47.3a ± 1.1
82.8a ± 1.7
74.9a ± 1.3
49.3a ± 1.1
51.5a ± 1.2
22.6a ± 0.5
14.2a ± 0.4
8.6a ± 0.2
7.5a ± 0.3
23.9a ± 0.7
0.73
0.08
0.75
0.43
0.70
0.70
0.45
0.28
0.13
0.44
0.09
16.7a ± 1.1
38.4a ± 1.2
62.6a ± 1.5
58.2a ± 1.3
40.1a ± 1.0
41.3a ± 1.1
19.9a ± 0.6
11.8a ± 0.3
8.0a ± 0.2
5.9a ± 0.3
19.4a ± 0.7
4.8 ± 0.1
Male
(n = 10)
At 13–18 months of age
At 7–12 months of age
At 0–6 months of age
16.1a ± 1.7
35.2a ± 1.2
61.8a ± 2.5
56.3a ± 2.4
39.4a ± 1.7
40.6a ± 1.7
19.2a ± 0.7
11.3a ± 0.4
7.5a ± 0.4
6.3a ± 0.4
17.5a ± 0.9
Body weight (kg)
Body length (cm)
Chest girth (cm)
Ear to tail length (cm)
Height at wither (cm)
Height at loin (cm)
Head length (cm)
Head width (cm)
Ear length (cm)
Hair length (cm)
Tail length (cm)
Pair of teat
Parameter
Male
(n = 20)
Female
(n = 36)
Significance
(P-value)
Male
(n = 45)
Female
(n = 60)
Significance
(P-value)
Sex
Female
(n = 18)
Significance
(P-value)
Male
(n = 6)
Female
(n = 5)
Significance
(P-value)
Ritchil et al.
Table 2. Morphological characteristics of pigs as a function of sex (Mean ± SEM).
6
In present study, the average age at first farrowing was
found to be 10.43 ± 0.08 months (Table 6). The study
conducted by Hossain et al. (2011) using surveyed data
on indigenous pigs in hilly areas of Chittagong in
Bangladesh, reported that the average ages at sexual maturity in Bangladeshi boar and sow were 8 and 6 months,
respectively. Naskar et al. (2007) conducted an experiment
on crossbred pigs under the hilly conditions of Meghalaya,
India and reported that the average age at first farrowing
of pig was 15.3 ± 1.2 months. Subalini, Silva and
Demetawewa (2010) conducted an experiment on village
pig in Sri Lanka and reported that the average age at first
farrowing was 9.50 ± 2.61 months.
The average farrowing interval of native pigs was found to
be 6.09 ± 0.02 months. Babu et al. (2004) conducted an
experiment in the rural areas of India on Large White
pig and reported that the average farrowing interval was
180.19 ± 1.03 days. Subalini, Silva and Demetawewa
(2010) conducted an experiment on village pig in Sri
Lanka and reported that the average farrowing interval
was 8.91 ± 2.49 months.
The average litter size of native pigs in this study was 6.71
± 0.15. Hossain et al. (2011) reported that the average litter
size of indigenous pig at hilly region of Bangladesh was
9.5 ± 0.28. Prakash et al. (2008) reported that the average
litter size of Indian indigenous pig was 6.78 ± 0.11. Nath
and Deka (2003), conducted an experiment on growth performance of large black pig in Assam, India and reported
that the average litter size at birth and weaning were 9.70 ±
0.29 and 8.40 ± 0.32, respectively.
The average gestation period and the average weaning
period of these native pigs were 115.35 ± 0.50 and
44.88 ± 0.37 days, respectively. Rajiv and Pandey (2000)
conducted an experiment on the economics of pig rearing
in Haryana, India and reported that the average gestation
period was 112–114 days. Hossain et al. (2011) reported
that the average weaning period of indigenous piglets in
Bangladesh was 42 days.
Phenotypic and morphological characterization and reproduction attributes of native pigs in Bangladesh
Table 3. Morphological characteristics of mature pigs as a function of upazila (Mean ± SEM).
Parameter
Upazila
Haluaghat
Body weight (kg)
Body length (cm)
Chest girth (cm)
Ear to tail length (cm)
Height at wither (cm)
Height at loin (cm)
Head length (cm)
Head width (cm)
Ear length (cm)
Hair length (cm)
Tail length (cm)
Pair of teat
a,b
Durgapur
Nalitabari
Male
(n = 15)
Female
(n = 26)
Significance
(P-value)
Male
(n = 34)
Female
(n = 19)
Significance
(P-value)
Male
(n = 12)
Female
(n = 38)
Significance
(P-value)
37.1a ± 2.8
48.5a ± 1.4
82.4a ± 1.9
77.0a ± 1.5
51.6a ± 1.2
53.8a ± 1.3
22.2a ± 0.6
14.5a ± 0.4
8.5a ± 0.2
7.6a ± 0.5
25.3a ± 1.2
39.9a ± 2.9
50.7a ± 1.1
85.0a ± 2.1
76.0a ± 1.8
49.6a ± 1.7
51.2a ± 1.8
25.5b ± 0.7
14.6a ± 0.5
9.0a ± 0.1
8.1a ± 0.4
25.4a ± 1.1
5.0 ± 0.0
0.53
0.24
0.41
0.71
0.43
0.34
0.00
0.88
0.07
0.43
0.94
49.10a ± 4.2
51.6a ± 1.7
90.8a ± 2.8
80.5a ± 2.2
51.3a ± 1.7
53.5a ± 1.7
24.2a ± 0.6
15.3a ± 0.5
8.7a ± 0.2
7.7a ± 0.3
24.1a ± 0.7
53.2a ± 5.1
52.7a ± 3.1
93.1a ± 3.5
83.8a ± 2.9
58.2b ± 1.5
60.2b ± 1.5
25.6a ± 0.8
16.4a ± 0.6
9.7b ± 0.2
8.8b ± 0.4
28.2b ± 0.9
5.2 ± 0.1
0.54
0.73
0.62
0.39
0.01
0.01
0.19
0.21
0.01
0.04
0.00
57.5a ± 7.9
53.6a ± 4.0
95.0a ± 5.3
84.2a ± 4.4
59.6a ± 2.8
61.6a ± 3.0
25.4a ± 1.3
15.3a ± 1.0
9.0a ± 0.4
7.5a ± 0.6
28.4a ± 1.0
43.3a ± 3.6
49.1a ± 1.6
87.5a ± 2.4
75.3b ± 2.0
52.0b ± 1.1
54.0b ± 1.2
22.1b ± 0.6
13.6a ± 0.4
9.1a ± 0.6
7.0a ± 0.2
23.7b ± 0.8
5.0 ± 0.0
0.07
0.22
0.16
0.04
0.00
0.00
0.01
0.08
0.95
0.40
0.00
= Means from the same age group that differ significantly between sexes have different superscripts; n = number of animals.
4. Management system of native pigs
Girth tethering was found to be the most popular and widely used housing system for pigs in this study. Pigs were fed
thrice a day. Pig owners used to supply boiled rice, rice
polish, rice bran, etc. as conventional feeds. Some unconventional feeds were also fed to them. Tube-well or natural
reservoir was the source of water for pigs.
According to Ritchil et al. (2013), pigs in Bangladesh are
reared mostly by poor and landless people (52 percent).
The majorities of farmers are housewife (55 percent) or
day labour (17 percent). The literacy level is satisfactory.
Rearing systems are different and the mean figure is 97
percent for girth tethering. The sanitation condition is
not satisfactory. The pig owners use to supply boiled
rice, rice polish, rice bran, rice husk, fermented rice, etc.
Table 4. Interactions between dependent and independent
variables.
Parameter
Body weight (kg)
Body length (cm)
Chest girth (cm)
Ear to tail length
(cm)
Height at wither
(cm)
Height at loin
(cm)
Head length (cm)
Head width (cm)
Ear length (cm)
Hair length (cm)
Tail length (cm)
Pair of teat
Significance (P-value)
Error (mean
square)
Area
Sex
Age
Sex*age
0.06
0.14
0.02
0.00
0.05
0.90
0.27
0.38
0.00
0.00
0.00
0.00
*(0.030)
NS (0.287)
NS (0.146)
NS (0.452)
118.69
54.48
89.18
68.19
0.19
0.35
0.00
NS (0.420)
45.56
0.21
0.38
0.00
NS (0.578)
50.97
0.00
0.00
0.69
0.00
0.06
0.01
0.76
0.68
0.34
0.43
0.33
0.00
0.00
0.00
0.01
0.00
0.00
0.00
NS (0.112)
NS (0.586)
NS (0.808)
NS (0.707)
NS (0.436)
***(0.000)
10.91
4.33
4.21
3.74
21.29
0.03
and some unconventional feeds such as cauliflowers,
boiled arum, grass or other vegetables for pigs. Pigs are
fed thrice a day. Most prevalent diseases are diarrhoea,
coccidiosis, pneumonia and haemorrhagic septicaemia.
Easy management, adaptability, cost-effectiveness and disease tolerance are the main advantages of native pig farming while malnutrition, lack of scientific knowledge, lack
of veterinary and extension services are the major
constraints.
Ritchil et al. (2013) also found that rearing native pig is very
easy for those people who rear and consume it. They believe
that it is very much cost effective, available, adaptable and
merely affected by diseases. The socio-economic status of
the pig rearers is appreciable. Although many constraints
are taking part in the management of pig, the meat from
pig is the main source of protein for those people who
rear and consume it. Therefore, according to Ritchil et al.
(2013) lack of mature breeding boars, technical knowhow
and preventive healthcare services were noticed which
need to be extended among the pig rearers for better livelihood and welfare of their keepers. Hence, the observed
body weight and reproduction attributes of the native pigs
may serve as a base for designing any pig improvement programme in Bangladesh.
Conclusion
Non-significant (NS) = P > 0.05; * = P < 0.05; *** = P < 0.001
Native pigs in Bangladesh showed diversity in their phenotype and morphology and positive reproductive performance, which indicates their potential for economic
sustainability through purebred genetic improvement.
However, these native pigs are usually raised in conditions
with less than optimal husbandry and hence, this aspect
needs immediate attention to ensure their conservation
through utilization for the food and livelihood of indigenous, Christian and some Hindu people in Bangladesh. This
7
8
Ritchil et al.
Table 5. Raw (on the diagonal) and residual (below the diagonal) correlations among traits.
Body
weight
Body
weight
Body
length
Chest
girth
Ear to tail
length
Height at
wither
Height at
loin
Head
length
Head
width
Ear
length
Hair
length
Tail
length
Body
length
Chest
girth
Ear to tail
length
Height at
wither
Height at
loin
Head
length
Head
width
Ear
length
Hair
length
Tail
length
1
0.82**
0.96**
0.92**
0.81**
0.81**
0.65**
0.75**
0.32**
0.50**
0.57**
0.03
1
0.80**
0.80**
0.69**
0.69**
0.59**
0.67**
0.22**
0.42**
0.49**
0.07
0.01
1
0.91**
0.83**
0.84**
0.66**
0.73**
0.35**
0.54**
0.60**
0.04
0.01
0.03
1
0.81**
0.82**
0.64**
0.71**
0.29**
0.54**
0.62**
−0.03
−0.05
−0.02
−0.02
1
0.99**
0.59**
0.69**
0.37**
0.43**
0.62**
−0.03
−0.06
−0.02
−0.02
0.18
1
0.59**
0.69**
0.42**
0.45**
0.63**
−0.06
−0.05
−0.06
−0.07
−0.11
−0.11
1
0.77**
0.30**
0.49**
0.63**
−0.04
−0.03
−0.06
−0.06
−0.06
−0.07
0.13
1
0.33**
0.40**
0.59**
−0.01
−0.07
−0.01
−0.03
−0.01
0.03
−0.08
−0.02
1
0.28**
0.38**
−0.05
−0.06
−0.01
0.00
−0.09
−0.09
0.02
−0.09
−0.03
1
0.41**
−0.08
−0.09
−0.07
−0.03
−0.02
−0.03
0.04
−0.005
−0.05
−0.04
1
**Correlation is significant at the 0.01 level (two-tailed).
Residuals are computed between observed and reproduced correlations. There are 30 (45.0%) non-redundant residuals with absolute values >0.05.
in the rural areas of Rangamati and Khagrachari districts of
Bangladesh. Bangladesh J. Anim. Sci., 40(1–2): 28–33.
Table 6. Reproductive performance of native pig.
Parameter
Age at first farrowing
(months)
Farrowing interval (months)
Litter size (Number)
Gestation period (months)
Weaning period (months)
Mean ±
SEM
10.43 ± 0.08
6.09 ± 0.02
6.71 ± 0.15
3.8 ± 0.0
1.5 ± 0.0
Minimum
Maximum
8
12
6
2
3.3
1
7
12
4
1.8
can be done through a well-designed national pig improvement programme, which may include training of the pig
rearers on general pig husbandry, supply of preventive
vaccines and production and dissemination of quality
(heavier but prolific) boars for use in the subsistence
farms by the government, non-government organization
or organized pig farmers of the country.
References
Babu, G.N., Naidu, K.V., Rao, A.S. & Vijay, S. 2004. Certain reproductive parameters in Large White pigs maintained with garbage feeding in rural areas. Indian J. Anim. Sci., 74(4): 438–440.
Hossain, M.E., Chakma, S., Khatun, M.M., Hasanuzzaman, M.,
Miah, M.Y. & Biswas, M.A.A. 2011. Production systems of swine
Naskar, S., Khan, M.H., Anubrata, D. & Bordoloi, R.K. 2007.
Performance of T & D (Tamworth × Desi) crossbred pigs under
hilly condition of Meghalaya. Environ. Ecol., 25(2): 308–311.
Nath, D.R. & Deka, D. 2003. Litter trait and preweaning growth performance of large black pig in Assam. Indian Vet. J., 80(3): 287–289.
Prakash, M.G., Ravi, A., Kumari, B.P. & Srinivas Rao, D. 2008.
Reproductive and productive performance of crossbred Pigs. Indian
J. Anim. Sci., 78: 1291–1297.
Rajiv, J. & Pandey, U.K. (2000). Economics of pig rearing in Haryana.
Indian J. Anim. Sci., 70(12): 1268–1271.
Ritchil, C.H., Faruque, M.O., Tabassum, F., Hossain, M.M. &
Bhuiyan, A.K.F.H. 2013. The socio-economic status of pig rearers
and the management system of native pigs in Bangladesh. Indian
J. Anim. Sci., 83(11): 1226–1228, November 2013.
Subalini, E., Silva, G.L.L.P. & Demetawewa, C.M.B. 2010. Phenotypic
characterization and production performance of village Pigs in Sri
Lanka. Trop. Agric. Res., 21(2): 198–208.
Sudhakar, K. & Gaur, K. 2006. Pre-weaning growth in indigenous pigs
of eastern region. Indian J. Anim. Sci., 3(4): 25–30.
Website: http://www.almanac.com/content/all-right-reasons-raise-pigs;
http://www.thepigsite.com/articles/541/weighing-a-pig-without-a-scale
Yaetsu, K., Takashi, A., Ikuo, O., Katuaki, O., Takao, N.,
Yoshizane, M., Hasnath, M.A., Mostofa, K.G., Faruque, O.M.
& Majid, M.A. 1987. Morphological studies of native pigs in
Bangladesh. Genet. Stud. Breed Differ. Native Domest. Anim.
Bangladesh, 2:47–58.
Phenotypic and morphological characterization and reproduction attributes of native pigs in Bangladesh
Appendix
4. Production & Reproduction
Appendix 1. An interview schedule for
baseline survey on native pig farming in
Bangladesh
Parameters
Time
Age at first farrowing
Farrowing interval
Litter size
Gestation period
Weaning period
Sl. No . . . . . . .
1. Primary Information
Name
Address
Father’s Name/Husband’s Name
Mother’s Name
Age
Household land
Land for cultivation
Experience in pig farming
Family Member
Primary Occupation
Secondary Occupation
Level of education
Mobile No.
Monthly Income (Family)
GPS Location
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
5. Pig morphology information
Piglet
Character
Alt.: Lat.:
2. Type of pig
Type
Breed and no.
Pure
breed
Crossbred
Age
Gilt
Boar
Sow
Body weight (kg)
Body length (cm)
Chest girth (cm)
Length from ear to tail (cm)
Height at withers (cm)
Height at loin region (cm)
Head length (cm)
Head width (cm)
Ear length (cm)
Hair length (cm)
Tail length (cm)
Pair of teats (number)
6. Phenotypic characters
Trait
Male
Female
Wakmandi
Coat colour
Skin pigmentation
Head shape
Ear direction
Ear orientation
Tail shape
Body shape
Milking
Pregnant
Sow
Gilt
Boar
(Castrated)
Boar (Not
Castrated)
Piglet (male/
female)
Date:
3. Feed
Boar
Gilt
Sow
Piglet
(male/
female)
Female
Native
Dome
Age class
Male
Feed
type
Purchased
feed
Amount feed
(kg/day)
Water
(litre/day)
Name & Signature of enumerator
9
Animal Genetic Resources, 2014, 54, 11–19. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633613000507
Caractéristiques phénotypiques de la chèvre du
sahel au Niger par analyse des indices de primarité
et des paramètres qualitatifs
M. Mani1, H. Marichatou1, M. Issa2, I. Chaïbou3, A. Sow4, M. Chaïbou1 and J.G. Sawadogo4
1
Faculté d’Agronomie, Université Abdou Moumouni, BP 10960, Niamey, Niger; 2Faculté des Sciences et Techniques, Université
Abdou Moumouni, BP 10662, Niamey, Niger; 3Faculté d’Agronomie, Université de Maradi, Niger; 4Ecole Inter-Etats des Sciences et
Médecines Vétérinaires, Dakar, Sénégal
Résumé
Au Niger, le troupeau caprin est composé de trois races dont deux majoritaires: la chèvre rousse de Maradi (17,5%) qui a fait l’objet de
nombreuses investigations et la chèvre du sahel (80%) qui est peu ou pas connue. Ainsi, afin d’établir les caractéristiques
phénotypiques de la chèvre du sahel au Niger, des investigations sur les paramètres qualitatifs (port des appendices et les patrons pigmentaires) par observation directe des animaux ont été conduites dans la partie Nord-Ouest du pays (régions de Tillabéry, Tahoua et
Niamey). Sur la base de l’adhésion volontaire des éleveurs, 443 caprins (77% de femelles, 39% ayant 4 paires d’incisives permanentes)
répartis dans 145 exploitations et 60 sites (7,38 ± 6,87 têtes/site) ont été caractérisés. L’analyse des indices de primarité et l’analyse
multivariée (ACM) font ressortir qu’il n’existe pas de différence significative (P < 0,05) entre sexe pour tous les paramètres qualitatifs
à l’exception de la présence de la barbiche (mâle 55%, femelle 41%). La distribution des paramètres est significativement différente
selon les régions à l’exception du type des cornes (majoritairement ibex dans toutes les régions). En effet, les oreilles sont majoritairement tombantes à Tillabéry, pédonculées à Tahoua et Niamey et les patrons pigmentaires sont dominés par eumélanique noir à Tahoua,
eumélanique chocolat à Niamey et phaeomélanique à Tillabéry. En définitif, les caprins des trois régions sont significativement
différents sur le plan phénotypique qualitatif. Mais, dans l’ensemble, cette population caprine présente les caractéristiques d’une population primaire, ce qui offre de grandes possibilités d’amélioration génétique.
Mots-clés: caractéristiques phénotypiques, qualitatifs, chèvre du sahel, Niger
Summary
In Niger, there are three goat breeds including two main ones: the Maradi red goat (17.5%) which has been the subject of numerous
investigations and the Sahel goat (80%) which is little studied or unknown. Thus, to establish the phenotypic characteristics of the Sahel
goat breed in Niger, investigations into qualitative parameters (appendices and pigmentation) by direct observation of animals were
conducted in the northwestern part of the country (Tillabery, Tahoua and Niamey regions). Based on the voluntary participation of
farmers, 443 goats (77% female, 39% with 4 pairs of permanent incisors and therefore considered adult) in 145 farms and 60 sites
(7,38 ± 6,87 animals/site) were characterized. Analysis of primarity indices and multivariate analysis (ACM) emphasizes that there
is no significant difference (P < 0.05) between sexes for all quality parameters except the carrying of a beard (male 55%, female
41%). The parameters distribution is significantly different between regions except the type of horn (mostly ibex in all regions).
Indeed, ears are mostly drooping in Tillabéry, stalked in Tahoua and Niamey and pigmentation is dominated by black eumélanique
in Tahoua, chocolate eumélanique in Niamey and phaeomélanique in Tillabéry. Goats of the three regions are significantly different
based on phenotypic qualitative parameters. But, generally, the goat study population has the characteristics of a primary population
which offers great opportunities for genetic improvement.
Keywords: phenotypical features, qualitative features, Sahel goat, Niger
Resumen
En Níger, la cabaña caprina se compone de tres razas, de las cuales dos son mayoritarias: la cabra roja de Maradi (17,5 por ciento), que
ha sido objeto de muchas investigaciones, y la cabra del Sahel (80 por ciento), de la cual se sabe poco o nada. Así, con el fin de caracterizar fenotípicamente la cabra del Sahel en Níger, se han investigado parámetros cualitativos (apéndices y patrones de
pigmentación), por observación directa de los animales, en la parte Noroeste del país (regiones de Tillabéry, Tahoua y Niamey).
Contando con la participación voluntaria de los ganaderos, se caracterizaron 443 ejemplares de ganado caprino (77 por ciento hembras,
39 por ciento con 4 pares de incisivos permanentes) repartidos entre 145 explotaciones y 60 emplazamientos (7,38 ± 6,87 cabezas/
emplazamiento). El análisis de los índices de primariedad y el análisis multivariante (ACM) muestran que no existen diferencias significativas (P < 0,05) entre los sexos para ninguno de los parámetros cualitativos, exceptuando la presencia de barba (machos 55 por
ciento, hembras 41 por ciento). Los parámetros estudiados, con la excepción del tipo de cornamenta (principalmente de tipo ibex
Faculté d’Agronomie, Université Abdou Moumouni, BP 10960, Niamey, Niger.
Tel: (00227) 93 91 65 31. Fax: (00227) 20 31 66 12. Email: [email protected] /
[email protected]
11
12
Mani et al.
en todas las regiones), se distribuyen de forma estadísticamente diferente según las regiones. Así, las orejas están mayoritariamente
caídas en Tillabéry, son pedunculadas en Tahoua y Niamey, y los patrones de pigmentación dominantes son de diseño eumelánico
negro en Tahoua, eumelánico chocolate en Niamey y feomelánico en Tillabéry. En definitiva, existen diferencias significativas, en
el plano fenotípico cualitativo, entre la ganadería caprina de las tres regiones. Sin embargo, esta población caprina presenta, en conjunto, características de una población primaria, lo cual ofrece grandes posibilidades de mejora genética.
Palabras clave: Palabras clave: características fenotípicas, cualitativo, cabra del Sahel, Níger
Soumis: 27 Le juin 2013; admis: 16 Le décembre 2013
Introduction
Au Niger, les caprins représentent 36% du cheptel (Niger,
2007) et occupent une place de choix dans la vie
socioéconomique et culturelle de la population. Ils constituent une spéculation importante en matière de commercialisation de bétail sur pied, mais aussi de production.
C’est également une source principale de protéines animales en milieu rural.
L’espèce caprine se présente sous trois races au Niger: la
chèvre du sahel (79,54%) qui est présente dans toutes les
régions du pays, la chèvre rousse (17,48%) prédominante
dans la bande sud du pays et la chèvre naine d’Afrique de
l’Ouest (chèvre Djallonké) dite localement chèvre « gourma
» (2,98%) qui est présente dans la partie ouest de la région
de Tillabéry à la frontière avec le Burkina Faso (Rhissa, 2010).
Comparativement à la chèvre rousse de Maradi qui a fait
l’objet de nombreuses investigations sur les plans ethnologique et zootechnique (Robinet, 1967; Marichatou et al.,2002;
Hamidou,1995; Saadou, 2005; Mani, 2009; etc.), il existe
peu ou pas de données scientifiques sur la chèvre du sahel,
Figure 1. Zone d’étude
malgré son importance numérique et son omniprésence
dans toutes les zones climatiques du Niger.
Cette étude vise à établir les caractéristiques phénotypiques
qualitatives de la chèvre du sahel au Niger. En effet, si la
caractérisation phénotypique vise à identifier et établir la
diversité inter et intra races à travers des traits physiques, les
paramètres qualitatifs, partie intégrante de cette
caractérisation phénotypique, renseignent autrement sur les
caractères d’adaptation des races à leur milieu d’élevage mais
aussi, peuvent traduire les préférences des acteurs (éleveurs et
consommateurs) ou des aspects culturels (FAO, 2012).
Matériel et Méthodes
Echantillon d’étude
L’étude a été conduite dans la partie Nord-Ouest du Niger,
notamment, les régions de Tahoua (départements de
Tahoua,
Abalak
et
Tchintabaraden),
Tillabéry
(département de Téra et Ouallam) et la Commune
Urbaine de Niamey (figure 1) de juillet 2011 à mai
Caractéristiques phénotypiques de la chèvre du sahel
Tableau 1. Nombre de sites et de caprins par région de
l’échantillon d’étude
Régions
N sites(*)
N caprins
Moyennes/site
Maximum/site
Minimum/site
Tahoua
Tillabéry
Niamey
Total
15
103
6,87 ± 2,92
10
2
18
238
13,22 ± 8,13
27
2
27
102
3,78 ± 4
16
1
60
443
7,38 ± 6,67
27
1
N = nombre
Site = village ou quartier
(*)
2012. Les échantillons de sites et d’individus ont été
calculés à partir de la formule de proportion suivante:
n = (Z/e)2 × p(1 − p)
– “n” est la taille de l’échantillon;
– “Z” est le niveau de confiance, en général, Z = 1,96 à un
intervalle de confiance de 95%;
– “P” est le niveau initial des indicateurs;
– “e” est la marge d’erreur.
Du fait de l’importance de la chèvre du sahel dans la zone
d’étude, les valeurs de “P” et “e” choisis pour les calculs
du nombre de sites et d’individus sont respectivement
de 80% et 10% et 50% et 5%. En outre, s’agissant de
l’échantillon d’individus, un forfait supplémentaire de
15% de la valeur calculée a été ajouté.
En raison du manque de données sur les effectifs caprins
au niveau villageois d’une part et en fonction du mode
d’élevage dans la zone échantillon d’autre part, le nombre
d’individus dans les sites n’a pas été pondéré en fonction de
la densité des caprins.
Au total 443 caprins (77% des femelles) appartenant à 145
exploitations sur 60 sites choisis au hasard en fonction de
l’adhésion volontaire des éleveurs ont été caractérisés. Le
tableau 1 présente le nombre de sites et de caprins par
région de l’échantillon d’étude. Selon l’âge, apprécié à
partir de l’échelle de dentition (Hamito, 2009),
l’échantillon est composé de 22,1% de caprins de 0 – 1
an; 16,5% de 1 – 2 ans; 22,3% de 2 – 3 ans; 18% de 3
– 4 ans et 20,3% de plus de 4 ans.
Indicateurs de caractérisation
Plusieurs critères de classification des races caprines africaines ont été relatés par Bouchel et Lauvergne (1996).
Les indicateurs de caractérisation considérés dans cette
étude, extraits de FA0 (1986), Lauvergne et al. (1993) et
FAO (2012) sont les ports des oreilles et des cornes, la
présence/absence de la barbiche et de pampilles (pendeloques), la structure (longueur et type) de pelage et les patrons
pigmentaires. Ces paramètres ont été appréciés par observation directe et les informations sont répertoriées sur une fiche
de caractérisation élaborée à cet effet. Cependant, pour la
détermination des patrons pigmentaires, l’échelle visuelle
présentée dans la note technique de Danchin-Burge (lien
électronique: idele.fr/?eID = cmis_download&oID = workspace://SpacesStore/415d632d-8485-495c-9e02-87c53ab30
fcc) a été utilisée. Cette échelle distingue neufs (9) patrons
pigmentaires dont:
➢ deux patrons unis: eumélanique (noir ou chocolat) et
phaeomélanique;
➢ cinq patrons présentant des variations de mélanine au
niveau dorsal, ventral et de la face: joue rouge,
eumélanique et feu, eumélanique uni et feu à ventre
clair, chamoisé (ou blaireau, ou badger face) et patron
sauvage;
➢ Deux patrons mantelés: mantelé antérieur et mantelé
postérieur.
Sur ces patrons, il peut y avoir des dépigmentations de la
phaeomélanine mais aussi, des panachures. Les
dépigmentations peuvent s’étendre sur le corps entier de
l’animal se traduisant par un mélange de poils blancs
soit sur un animal de couleur entièrement noir ce qui
donne le gris, soit sur un animal de couleur entièrement
rouge, ce qui donne le rouan ou au niveau de la tête (à
la base des oreilles, des yeux ou du nez) donnant l’impression des mouchetures, on parle de « frosting ».
Les panachures quant à elles sont des altérations pigmentaires qui, se caractérisent par la présence des tâches
blanches à contour irrégulier sur une ou plusieurs parties
du corps allant de la simple tâche (panachure localisée),
à la grande panachure étendue à la quasi-totalité du
corps (panachure généralisée), rendant souvent même
difficile la lecture du patron pigmentaire (patron illisible).
A partir des données des paramètres visuels, les indices de
primarité (ou de traditionalité) tels que définis par
Machado, Lauvergne et Souvenir zafindrajaona (1992) et
Lauvergne et al. (1993) ont été calculés.
➢ Indice de primarité «loci à effet visible en
ségrégation» (IPs): c’est la fréquence (ou pourcentage)
du nombre des loci à effet visible en ségrégation (ns)
rapporté au nombre total de loci à effet visible (Ns)
identifiés dans l’espèce.
IPs = ns/Ns
➢ Indice de primarité allèles au locus agouti (IPa): Soit
Na le nombre total d’allèles en agouti considéré dans
une population et na le nombre d’allèles identifiés
dans cette même population, l’indice de primarité
allèles au locus agouti se définit comme suit:
IPa = (na − 1)/(Na − 1)
Analyses statistiques
Les différents indicateurs étant codifiés, une maquette
élaborée au logiciel SPSS 17.0 a été utilisée pour enregistrer toutes les informations recueillies. Ces dernières
13
14
Mani et al.
ont fait l’objet d’une analyse descriptive préliminaire et de
test de comparaison (Test de Khi carré) au logiciel SPSS et
une analyse en composante multiple (ACM) au logiciel
XLSTAT 2012.
Résultats
Analyse descriptive des paramètres qualitatifs
étudiés
Le tableau 2 présente les fréquences observées selon le
sexe des paramètres qualitatifs étudiés. Il ressort de ce tableau que le port d’oreilles est tombant (60%) aussi bien
chez les mâles que chez les femelles, les cornes sont de
type ibex dans plus de 85% des cas (chez les deux
sexes). La barbiche et les pendeloques sont observées sur
les deux sexes en moyenne respectivement sur 44,2%
(54,9% des mâles et 41,1% des femelles) et 52,3%
(56,4% des mâles et 51% des femelles) des animaux. Le
pelage chez les deux sexes est entièrement court à ras
(plus de 97%) et lisse à 56,1 % (51% des mâles et
57,6% des femelles). Il ressort en outre que tous les
patrons pigmentaires ont été observés avec une
prédominance des patrons phaeomélanique (30% en moyenne avec 28% des mâles et 31% des femelles),
eumélanique chocolat (29% en moyenne dont 28% des
mâles et 29% des femelles) et eumélanique noir (27% en
moyenne dont 24,4% des mâles et 28% des femelles). Il
faut cependant noter que la majorité de patrons observés
(68,84%) est panachée (tache blanche) dont 65% panachure généralisée (64% des mâles et 67% des femelles);
le pourcentage de dépigmentation est de 11,5% dont les
plus dominantes sont le rouan avec en moyenne 45,5%
(11,1% des mâles et 52,2% des femelles) et le frosting
qui représente 40% (66,7% des mâles et 34,8% des
femelles). La figure 2 présente quelques patrons observés.
En considérant les variables (tableau 2) dont les modalités
ont des effectifs supérieurs à 5 (ports d’oreilles et de
cornes, présence/absence de barbiche et des pampilles,
types de poils), la répartition des fréquences selon le
sexe est statistiquement non significative (P > 0,0 5) à l’exception de la présence/absence de barbiche (P = 0,014).
S’agissant de la répartition selon les régions, le test de
Khi carré indique qu’elle est statistiquement significative
pour les paramètres présence/absence de barbiche et des
pampilles, port d’oreilles, type de poils et non significative
pour port de cornes (tableau 3).
Tableau 2. Répartition des fréquences des paramètres qualitatifs selon le sexe
Paramètres
Port d’oreilles
Port de cornes
Présence/absence de barbiche
Présence/absence de pendeloques
Longueur de poils
Types de poils
Patrons pigmentaires
Dépigmentation
Panachure
Modalités
Dressé
Pédonculé
Tombant
Ibex
Autre
Présence
Absence
Présence
Absence
Court à ras
Mi-long
Lisse
Non lisse
Eumélanique noir
Eumélanique chocolat
Phaeomélanique
Joue rouge
Eumélanique et feu
Eumélanique uni et feu ventre claire
Chamoisé ou blaireau
Sauvage
Mantelé antérieure
Mantelé postérieur
Invisible
Frosting
Rouan
Gris
Localisée
Générale
Mâle
Femelle
Tout sexe
N
%
N
%
N
%
7
34
61
87
14
56
46
57
44
99
3
50
52
20
23
23
2
0
0
4
1
5
1
3
6
1
2
26
46
6,9a
33,3a
59,8a
86,1a
13,9a
54,9a
45,1a
56,4a
43,6a
97,1
2,9
49,0a
51,0a
24,4
28,0
28,0
2,4
0,0
0,0
4,9
1,2
6,1
1,2
3,7
66,7
11,1
22,2
36,1
63,9
25
113
203
287
52
140
201
174
167
335
6
143
196
82
84
91
4
1
4
10
3
1
6
8
16
24
6
78
155
7,3a
33,1a
59,5a
84,7a
15,3a
41,1b
58,9b
51,0a
49,0a
98,2
1,8
42,1a
57,6a
27,9
28,6
31,0
1,4
0,3
1,4
3,4
1,0
0,3
2,0
2,7
34,8
52,2
13,0
33,5
66,5
32
147
264
374
66
196
247
231
211
434
9
193
248
102
107
114
6
1
4
14
4
6
7
11
22
25
8
104
201
7,2
33,2
59,6
85,0
15,0
44,2
55,8
52,3
47,7
98,0
2,0
43,7
56,1
27,1
28,5
30,3
1,6
0,3
1,1
3,7
1,1
1,6
1,9
2,9
40,0
45,5
14,5
34,1
65,9
Les fréquences selon le sexe portant des lettres différentes sur la même ligne sont statistiquement différentes.
Caractéristiques phénotypiques de la chèvre du sahel
Figure 2. Quelques patrons pigmentaires observés [eumélanique noir Téra (a), eumélanique noir Niamey (b), eumélanique chocolat Téra (c), phaeomélanique
Niamey (d ), patron illisible Niamey (e), patron illisible Téra (f), chamoisé Niamey (g et h), sauvage Niamey (i et j), mantelé postérieur Niamey (k), mantelé
antérieur Niamey (l ), grise Niamey (m), chèvre rouanée Téra (n), frosting Niamey (o), panachure Téra et Oullam ( p et q)].
Indices de primarité
Les tableaux 4 et 5 présentent respectivement les différents
loci à effet visible en ségrégation et les allèles au locus
agouti identifiés. Dans les départements d’Abalak et de
Tchintabaraden (1ers sites d’enquête), les données pour
les indices de primarité n’ont pas été abordées. Il ressort
(tableau 4) que sur la population totale, IPS = 0,92. En
effet, un seul locus à effet visible en ségrégation pressenti
notamment «polled» caractérisant les chèvres mottes n’a
pas été identifié. La valeur de l’IPS varie selon les
départements, elle est de 0,83 dans le département de
Tahoua et à Niamey et 0,67 dans les départements de
Téra et Ouallam (région de Tillabéry). Cependant, le tableau 5 indique que les allèles au locus agouti pressentis et
recherchés ont tous été identifiés dans la zone d’étude,
IPA = 1. Selon les départements, l’IPA varie de 0,57 à 0,86.
Analyse multi-variée des paramètres qualitatifs
Au-delà de l’étude de la traditionalité, une Analyse en
Composante Multiple (ACM) a été conduite afin de mieux
apprécier la dispersion des paramètres phénotypiques visibles. Les deux premiers axes factoriels F1 et F2 totalisent
51,47% de l’inertie cumulée (tableau 6). La proportion des
contributions élevées des modalités des différentes variables
est la plus importante sur ces axes, mais aussi, ces axes
représentent la plus grande proportion des cosinus carrés
élevés des modalités. Le premier plan factoriel (F1-F2)
peut cependant être utilisé pour l’interprétation. La carte factorielle des modalités (figure 3) indique que toutes les
modalités sont bien représentées. Il ressort que:
– le port d’oreilles est majoritairement pédonculé dans les
régions de Tahoua et Niamey et tombant dans la région
de Tillabéry; le port d’oreilles dressées bien que faiblement représenté dans les trois régions est majoritaire
dans la région de Tahoua;
– les cornes conformément au test de Khi carré, sont
majoritairement de type ibex dans les trois régions
avec une forte proportion dans la région de Tillabéry;
– la barbiche et les pampilles sont présentes sur la majorité
de chèvres de la région de Tillabéry et majoritairement
absentes dans les populations caprines de la région de
Niamey et Tahoua;
– les poils, de types majoritairement lisses dans la région
de Tahoua et non lisses dans les régions de Tillabéry
et Niamey, sont presque exclusivement courts à ras
dans les trois régions;
– S’agissant des patrons pigmentaires, la figure 3 montre
que le patron phaeomélanique est majoritairement
observé à Tillabéry (majorité des chèvres),
15
16
Mani et al.
Tableau 3. Paramètres qualitatifs selon les régions
Variables
Modalités
Tahoua
N
Port d’oreilles
Port des cornes
Barbiche
Pampille
Type de poils
Longueur de poils
Patrons pigmentaires
Dépigmentation
Panachure
Dressé
Pédonculé
Tombant
Ibex
Autre
Présence
Absence
Présence
Absence
Lisse
Non lisse
Mi-long
Cours à ras
Eumélanique noir
Eumélanique chocolat
Phaeomélanique
Joue rouge
Eumélanique et feu
Eumélanique uni et feu ventre claire
Chamoisé ou blaireau
Sauvage
Mantélé antérieure
Mantelé postérieure
Illisible
Frosting
Rouan
Gris
Localisée
Générale
21
44
37
83
18
46
56
32
69
90
12
8
94
22
3
7
1
1
2
2
0
4
4
5
1
1
1
11
23
Tillabéry
%
N
a
20,6
43,1a
36,3a
82,2a
17,8a
45,1a
54,9a
31,7a
68,3a
88,2a
11,8a
7,8
92,2
43,1
5,9
13,7
2,0
2,0
3,9
3,9
,0
7,8
7,8
9,8
33,3
33,3
33,3
32,4
67,6
2
24
212
208
28
123
115
168
70
92
144
1
237
47
58
98
0
0
2
8
2
0
1
6
7
13
4
64
135
Niamey
%
N
b
,8
10,1b
89,1b
88,1a
11,9a
51,7b
48,3b
70,6b
29,4b
38,8b
60,8b
,4
99,6
21,2
26,1
44,1
,0
,0
,9
3,6
,9
,0
,5
2,7
29,2
54,2
16,7
32,2
67,8
Total
%
9
79
15
83
20
27
76
31
72
11
92
0
103
33
46
9
5
0
0
4
2
2
2
0
14
11
3
29
43
c
8,7
76,7c
14,6c
80,6a
19,4a
26,2c
73,8c
30,1c
69,9c
10,7c
89,3c
,0
100,0
32,0
44,7
8,7
4,9
,0
,0
3,9
1,9
1,9
1,9
,0
50,0
39,3
10,7
40,3
59,7
N
%
32
147
264
374
66
196
247
231
211
193
248
9
434
102
107
114
6
1
4
14
4
6
7
11
22
25
8
104
201
7,2
33,2
59,6
85,0
15,0
44,2
55,8
52,3
47,7
43,7
56,1
2,0
98,0
27,1
28,5
30,3
1,6
,3
1,1
3,7
1,1
1,6
1,9
2,9
40,0
45,5
14,5
34,1
65,9
Les fréquences sur la même ligne, portant des lettres différentes sont significativement différentes selon les régions.
eumélanique noir est observé dans les trois régions avec
des proportions beaucoup plus importantes à Tahoua et
Niamey, eumélanique chocolat est majoritairement
observé à l’ouest (Niamey et Tillabéry), joue rouge est
majoritairement identifié à Niamey et absent dans la
région de Tillabéry, eumélanique et feu est exclusivement signalé dans la région de Tahoua, eumélanique et
Tableau 4. Indice de primarité «loci à effet visible en
ségrégation» (IPs)
Tableau 5. Indice de primarité allèles au locus agouti (IPa)
Loci à effet visible en
ségrégation identifiés
Allèles au locus
agouti identifiés
Agouti
Brown
Roan
Frosting
Beard
Ear Length
Ear Carriage
Ear Curling
Polled
Horn Reduction
Hair Length
Wattles
Spotting
ns
Ns
Ips
Départements
Total
Tahoua
52
Téra
81
Ouallam
157
Niamey
103
1
1
1
1
1
1
1
NR
0
1
0
1
1
10
12
0,83
1
1
1
1
1
0
1
NR
0
0
0
1
1
8
12
0,67
1
1
1
0
1
0
1
NR
0
0
1
1
1
8
12
0,67
1
1
1
1
1
1
1
NR
0
1
0
1
1
10
12
0,83
Départements
Tahoua
52
1
1
1
1
1
1
1
NR
0
1
1
1
1
11
12
0,92
NR = Non recherché Ns: nombre total de loci à effet visible identifiés, ns :
nombre des loci à effet visible en ségrégation rapporté.
Eumélanique (noir,
non agouti)
Chamoisé
Eumélanique et feu
ventre clair
Eumélanique et feu
ventre coloré
Joue rouge
Mantelé antérieur
Mantelé postérieur
Phaeomélanique
(fauve)
Sauvage fauve
Na
NA
IPa = (na – 1)/(Na – 1)
Téra
81
Ouallam
157
Total
Niamey
103
1
1
1
1
1
1
0
1
1
1
0
1
0
1
1
NR
NR
NR
NR
NR
1
1
1
1
0
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
0
6
8
0,71
1
5
8
0,57
1
5
8
0,57
1
7
8
0,86
1
8
8
1
NR = Non recherché; NA: nombre total d’allèles en agouti considéré dans
une population; na : na le nombre d’allèles identifié.
Caractéristiques phénotypiques de la chèvre du sahel
Tableau 6. Valeurs propres et pourcentages d’inertie selon les axes
Valeur propre
Inertie (%)
% cumulé
Inertie ajustée
Inertie ajustée (%)
% cumulé
F1
F2
F3
F4
F5
F6
F7
F8
F9
0,242
9,413
9,413
0,013
38,459
38,459
0,201
7,799
17,212
0,005
13,006
51,466
0,185
7,206
24,419
0,002
7,042
58,508
0,176
6,848
31,267
0,002
4,319
62,827
0,153
5,965
37,232
0,000
0,433
63,261
0,152
5,906
43,138
0,000
0,317
63,578
0,147
5,718
48,856
0,000
0,068
63,646
0,146
5,684
54,539
0,000
0,042
63,688
0,143
5,556
60,095
0,000
0,000
63,688
feu ventre clair est observé à Tahoua et Tillabéry,
chamoisé est indiqué dans les trois régions et majoritairement dans la région de Tillabéry, sauvage à
Niamey et Tillabéry, mantélé antérieur et postérieur
majoritairement à Tahoua et les chèvres totalement
panachées (patron invisible) sont identifiées dans les
trois régions.
Traoré et al., 2008; Hamito, 2009; Yakubu, 2010;
Halima et al., 2012).
Discussion
Le port d’oreilles est à environ 60% tombant et 33%
pédonculé. Pareils constats ont été rapportés sur la
chèvre du sahel au Burkina et au Tchad (Traoré et al.,
2008; Dumas, 1980). En effet, selon Dumas (1980), les
oreilles de la chèvre du sahel tchadienne sont longues,
larges, pendantes sur les joues, dépassant le museau lorsqu’elles sont rabattues vers l’avant.
Seuls ou associés à d’autres, les indicateurs choisis dans
cette étude sont classiques pour la caractérisation des petits
ruminants en Afrique et à travers le monde (Lauvergne
et al., 1993; Lanari et al., 2003; Traoré et al., 2006;
Tous les animaux (100%) sont cornus (aucun animal
motte a été rencontré). Cela est conforme aux résultats
rapportés par Yakubu, Raji et Omeje (2010) sur les
chèvres locales du Nigéria, Lauvergne et al. (1993) au
Figure 3. Carte factorielle des modalités des paramètres phénotypiques qualitatifs
17
18
Mani et al.
Nord Cameroun. Les cornes sont l’un des appendices
importants en milieu tropical car intervenant dans le
mécanisme de thermorégulation (Robertshow, 2006;
FAO, 2012). Dans le cadre de cette étude, les dimensions des cornes varient en fonction de l’âge et du
sexe. Elles sont longues chez les animaux adultes,
fines chez les femelles et épaisses et souvent torsadées
chez les mâles. Les cornes sont de type ibex (plus de
84% chez les deux sexes), conformément aux résultats
de Traoré et al. (2008) chez les chèvres locales du
Burkina en général et particulièrement sur la chèvre du
sahel, et de Dumas (1980) qui précise pour la chèvre
du sahel tchadienne «les cornes sont assez longues
chez le mâle, elles sont dirigées en arrière et en haut
en divergeant». Par contre ces résultats diffèrent de
ceux rapportés par Lauvergne et al. (1993) au Nord
Cameroun (11,7% type ibex).
La présence de la barbiche a été identifiée chez les animaux des deux sexes (mâles 55% et femelles 41%). La
présence/absence de la barbiche est le seul paramètre qualitatif dont la différence entre sexe a été statistiquement
significative. Ce dimorphisme sexuel quant au port de la
barbe a été rapporté par plusieurs auteurs avec des proportions variables selon le sexe: Wilson (1991) sur la chèvre
West African Long-Legged (chèvre du sahel), Traoré
et al. (2006) sur la chèvre locale mossi du Burkina Faso,
Yakubu, Raji et Omeje (2010) sur les races caprines
locales du Nigéria. Traoré et al. (2008) ont constaté un
taux d’absence de barbe de plus de 75% sur les chèvres
locales du Burkina. La présence de la barbe chez les
deux sexes avec précellence chez le mâle tient d’une
part, du fait que la barbe constitue un caractère sexuel secondaire chez le mâle et d’autre part, le gène codant pour la
barbe existe à l’état récessif chez les femelles et dominant
chez les mâles (Yakubu, Raji et Omeje, 2010).
Comme autre appendice, la présence de pendeloques a été
observée sur plus de 50% chez les deux sexes. Ces
résultats se rapprochent de ceux de Traoré et al. (2008)
qui rapportent que bien que la fréquence du port de pendeloques dans la population caprine locale soit relativement
faible (30%), la chèvre du sahel spécifiquement recouvre
plus de 75%. Cependant, des fréquences inférieures ont
été rapportées par Yakubu, Raji et Omeje (2010) au
Nigéria sur les chèvres de races West Africain Dwarf
Goat (mâle 31,64% et femelle 5,78%) et Red Sokoto
Goat (mâle 1,69% et femelle 3,78%). Selon Ricordeau et
Bouillon (1967), dans l’espèce caprine, les pendeloques
sont présentes avec une fréquence variable dans les
différentes races et il est bien difficile de dire si c’est la
présence ou l’absence de pendeloques qui constitue le
caractère normal ou sauvage.
Le pelage est presque entièrement court à ras, les animaux
à poils mi-longs sont rarement rencontrés (2%) et cela
conformément aux races caprines locales de la sous
région, notamment la chèvre rousse (red sokoto goat), la
chèvre Djallonké (WAD goat), la chèvre du sahel (West
African Long-Legged) et la chèvre mossi (Wilson, 1991;
Meyer, 2001; Traoré et al., 2006; Traoré et al., 2008;
Yakubu, Raji et Omeje, 2010).
La robe est multicolorée, tous les patrons pigmentaires
identifiés chez l’espèce caprine ont été observés avec dominance chez les deux sexes des patrons Phaeomélanique
(Brown), Eumélanique chocolat et Eumélanique noire
(30,3%, 28,5% et 27,1% respectivement). Cependant,
dans la plupart des cas (plus de 68%) la robe est panachée
et le pourcentage de dépigmentation est non négligeable
(11,5%). Ces résultats sont comparables à ceux de
Lauvergne et al. (1993) au Nord Cameroun (tous les patrons
observés avec prédominance des patrons phaeomélanique,
sauvage et eumélanique respectivement) et de Traoré
et al. (2008) chez la chèvre du sahel. En outre, ces
résultats se distinguent de ceux de Yakubu, Raji et Omeje
(2010) sur les races WAD et Red Sokoto goats au Nigéria
avec prédominance respective de eumélanique noir et
phaeomélanique (red). L’importance des panachures
d’une part et le pourcentage non négligeable de
dépigmentation d’autre part peuvent trouver une explication
dans le cadre de la thermorégulation. En effet selon Acharya
et al. (1995), les caprins à poils courts sont peu résistants
aux radiations solaires et consomment moins que ceux à
poils longs. De même, les caprins noirs sont moins
résistants que les rouges, à leur tour moins résistants que
les blancs. L’émergence de la panachure et de
dépigmentation sur les autres patrons, autrement dit la
présence des taches blanches d’une part et le mélange des
poils blancs aux poils rouges et noirs d’autre part, rehaussera probablement la résistance aux radiations solaires et
peut donc traduire une certaine adaptation au milieu.
L’ACM indique que tous les paramètres qualitatifs étudiés
sont régulièrement répartis dans toutes les régions de la
zone d’étude. Cependant, elle fait ressortir que les caprins
dans les trois régions se distinguent par le port des oreilles
(majoritairement tombant dans la région de Tillabéry,
pédonculé à Niamey et pédonculé et dressé dans la
région de Tahoua), la présence de la barbe et des pendeloques (majoritairement présents dans la région de Tillabéry
et absents dans la région de Tahoua et Niamey) et le patron
pigmentaire (majoritairement eumélanique noir à Tahoua,
eumélanique chocolat à Niamey et phaeomélanique à
Tillabéry). Cette hétérogénéité selon les régions reflète
l’originalité de la race caractérisée par une diversité de
forme dans sa zone d’expansion (Wilson, 1991; Meyer,
2001).
Conclusion
Ces résultats font ressortir une hétérogénéité sur le plan
phénotypique qualitatif des caprins dans la zone d’étude.
En effet, selon les régions, la répartition des paramètres
visuels étudiés a été statistiquement différente à l’exception du type des cornes. Visiblement la chèvre dans la
zone d’étude est multicolorée. La fréquence des
Caractéristiques phénotypiques de la chèvre du sahel
panachures est élevée (plus de 68%) d’où une proportion
importante des robes pies (pie rouge dans la région de
Tillabéry et la CUN et pie noire dans la région de
Tahoua). Les animaux des deux sexes portent des cornes
(majoritairement de type ibex), une proportion importante
tous sexes confondus porte la barbiche (proportion statistiquement plus élevée chez le mâle) et des pendeloques. Le
pelage est court à ras et les oreilles sont majoritairement
tombantes. L’analyse des indices de primarité indique
que cette population présente globalement, les
caractéristiques d’une population primaire. Cependant,
l’analyse multivariée fait ressortir quelques spécificités
selon les régions.
Ces résultats doivent être complétés par des données
biométriques afin d’affiner l’image phénotypique type de
la chèvre du sahel dans la zone d’étude.
Remerciements
Les auteurs remercient le partenaire financier qui est
l’Agence Universitaire de la Francophonie (AUF),
précisément son Bureau Afrique de l’Ouest et le CNF de
Niamey. Ils remercient également le Programme de
Productivité Agricole en Afrique de l’Ouest (PPAAO)
qui a contribué matériellement et financièrement aux
activités sur les caprins du Sahel.
Hamito, D. 2009. Goat breeds of Ethiopia: A guide for identification and
utilization. Ethiopia Sheep and Goat Productivity Improvement
Program (ESGPIP).Technical Bulletin 23: 11.
Lanari, M.R., Taddeo, H., Domingo, E., Perez-Centeno, M. and
Gallo, L. 2003. Phenotypic differentiation of exterior traits in local
Criollo Goat Population in Patagonia (Argentina). Archiv fur
Tierzucht Dummerstorf 46 (4): 347–356.
Lauvergne, J.J., Bourzat, D., Souvenir, Z.P., Zeuh, V. et Ngo Tama,
A.C. 1993. Indices de primarité de chèvres au Nord Cameroun et au
Tchad. Revue d’Elevage et de Médecine Vétérinaire des Pays
Tropicaux 46 (4): 651–665.
Machado, T.M., Lauvergne, J.J. et Souvenir Zafindrajaona, P.
1992. Peuplement caprin du Brésil: Scénario du peuplement caprin
du Brésil depuis la découverte. Archivos de Zootecnia 41 (extra):
455–466.
Mani, M. 2009. Le cycle sexuel de la chèvre rousse de Maradi: Etude descriptive et progestéronomie. Mémoire de Master II. EISMV Dakar 5: 31.
Marichatou, H., Mamane, L., Banoin, M. et Baril, G. 2002.
Performances zootechniques des caprins au Niger: étude comparative
de la chèvre rousse de Maradi et de la chèvre à robe noire dans la zone
de Maradi. Revue d’Elevage et de Médecine Vétérinaire des Pays
Tropicaux 55 (1): 79–84.
Meyer, C. 2001. Races d’animaux d’élevage en Afrique intertropicale et
méditerranéenne: Les caprins. Mémento de l’Agronome.
CIRAD-EMVT. France, 22.
NIGER. Recensement Général de l’Agriculture et du Cheptel
(RGAC). 2007. Résultats définitifs (Volet cheptel) (2): 170.
Rhissa, Z. 2010. Revue du secteur de l’élevage au Niger. Ministère de
l’Elevage, des Pêches et des Industries Animales. Niger, 115.
Références bibliographiques
Acharya, R.M., Gupta, U.D., Sehgal, J.P. et Singh, M. 1995. Coat
characteristics of goats in relation to heat tolerance in the hot tropics.
Small Ruminant Research. 18: 245–248.
Bouchel, D. et Lauvergne, J.J. 1996. Le peuplement de l’Afrique par la
chèvre domestique. Revue d’Elevage et de Médecine Vétérinaire des
Pays Tropicaux 49 (1): 80–90.
Danchin-Burge, C. [en ligne]. La couleur chez les caprins. Institut de
l’Elevage Dept. Génétique. (Disponible à l’adresse électronique:
idele.fr/?eID = cmis_download&oID = workspace://SpacesStore/
415d632d-8485–495c-9e02–87c53ab30fcc).
Dumas, R. 1980. Contribution à l’étude des petits ruminants du Tchad.
Revue d’Elevage et de Médecine Vétérinaire des Pays Tropicaux 33
(2): 215–233.
FAO. 1986. Animal genetic resources data banks. 2. Descriptor lists for
cattle, buffalo, pigs, sheep and goat. FAO. Rome, Italia. Animal
Production and Health 59 (2): 151. (available at http://www.fao.
org/docrep/009/ah760e/ah760e00.HTM)
FAO. 2012. Phenotypic characterization of animal genetic resources.
Food and Agriculture Organization of the United Nations. Rome,
Italia. Animal Production and Health Guidelines 11: 144. (available
at http://www.fao.org/docrep/015/i2686e/i2686e00.htm)
Halima, H., Michael, B., Barbara, R. and Markos, T. 2012.
Phenotypic characterization of Ethiopian indigenous goat populations.
African Journal of Biotechnology 11 (73): 13838–13846.
Hamidou, I. 1995. Contribution à l’analyse des paramètres de reproduction de la chèvre Rousse de Maradi. Thèse de Médecine Vétérinaire
Dakar 11: 83.
Ricordeau, G. et Bouillon, J. 1967. Hérédité des pendeloques en race
saanen: différences de fécondité entre les génotypes avec et sans pendeloques. Annales de Zootechnie 16 (3): 263–270.
Robertshaw, D. 2006. Mechanisms for the control of respiratory evaporative heat loss in panting animals. Journal of Applied Physiology
101: 664–668.
Robinet, A.H. 1967. La chèvre rousse de Maradi son exploitation et sa
place dans l’économie et l’élevage de la République du Niger.
Revue d’Elevage et de Médecine Vétérinaire des Pays Tropicaux 20
(1): 129–186.
Saadou, M. 2005. Performance de reproduction et de production de la
chèvre rousse de Maradi en milieu rural au Niger. Thèse de
Médecine Vétérinaire Dakar 16: 82.
Traoré, A., Hamidou, H.T., Adama, K., Luis, J.R., Ivan, F., Isabel,
A., Sangaré, M., Bouchel, D., Jean Paul, P., Dominique, F.,
Sawadogo, L. and Goyache, F. 2008. Multivariate analyses on morphological traits of goats in Burkina Faso. Archiv fur Tierzucht
Dummerstorf 51 (6): 588–600.
Traoré, A., Tamboura, H.H., Kaboré, A., Yaméogo, N., Bayala, B. et
Zaré, I. 2006. Caractérisation morphologique des petits ruminants
(ovins et caprins) de race locale “Mossi” au Burkina Faso. GRI
2006 39: 39–50.
Wilson, T.R. 1991. Small ruminant production and the small ruminant
genetic resource in tropical Africa. FAO. Rome. Animal Production
and Health Paper, 194.
Yakubu, A., Raji, A.O. and Omeje, J.N. 2010. Genetic and phenotypic
differentiation of qualitative traits in Nigerian indigenous goat and
sheep populations. ARPN Journal of Agricultural and Biological
Science 5 (2): 58–66.
19
Animal Genetic Resources, 2014, 54, 21–32. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000046
Caractérisation de la chèvre du sahel au Niger par
analyse des indices biométriques et des paramètres
phénotypiques quantitatifs
M. Mani1, H. Marichatou1, M.M.M. Mouiche2, M. Issa3, I. Chaïbou4, A. Sow5, M. Chaïbou1 and
J.G. Sawadogo5
1
Faculté d’Agronomie, Université Abdou Moumouni, BP 10960, Niamey, Niger; 2ESMV de Ngaoundéré, Cameroun; 3Faculté des
Sciences et Techniques, Université Abdou Moumouni, BP 10960, Niamey, Niger; 4Faculté d’Agronomie de l’Université de Maradi,
Niger; 5Ecole Inter-Etats des Sciences et Médecines Vétérinaires, Dakar, Sénégal
Résumé
Très répandue en Afrique sèche, la chèvre du sahel représente environ 80% du troupeau caprin Nigérien. Conformément aux orientations nationales au Niger et dans la perspective d’une meilleure gestion de cette ressource génétique aux niveaux local et national des
travaux de caractérisation phénotypique de la race ont été conduits au Nord-Ouest du pays de juillet 2011 à mai 2012. Sur la base de
l’adhésion volontaire des éleveurs, des investigations de caractérisation des paramètres quantitatifs (hauteur au garrot et à la croupe,
tour de poitrine, profondeur du thorax, largeur du bassin et longueurs du corps, des cornes et des oreilles) ont concerné 443 caprins
(77% de femelle, 39% ayant 4 paires d’incisives permanentes) repartis dans 145 exploitations, 60 sites (7,38 ± 6,87 têtes/site), dans les
régions de Tillabéri, Tahoua et Niamey. L’analyse des indices biométriques couplée à l’analyse des variances (ANOVA) et des analyses
multivariées (ACP, AFD) ont fait ressortir que le cheptel caprin dans cette zone comporte quatre sous types morphologiques (Tillabéri,
Tahoua, Niamey et un sous type intermédiaire Niamey-Tillabéri). Du fait de la coexistence à Niamey de plusieurs races (locales et
exotiques) et son corolaire le brassage génétique, la chèvre du sahel correspondrait à deux sous types: celui de Tillabéri de grande taille
(64,98 ± 6,77 cm au garrot et 68,27 ± 5,91 cm à la croupe) à oreilles et cornes longues (20,3 ± 3,08 et 14,75 ± 4,43 cm respectivement)
et de Tahoua également de grande taille (60,71 ± 10,81 cm au garrot et 62,46 ± 10,65 cm à la croupe) à oreilles et cornes courtes (12,32
± 3,62 cm et 9,95 ± 4,01 cm respectivement).
Mots-clés: caractéristiques phénotypiques, quantitatifs, chèvre du sahel, Niger
Summary
Found throughout the dry regions of Africa, the Sahel goat represents about 80% of Niger’s goats. In accordance with national breeding
policy in Niger and with a view to better planning management of that genetic resource at local and national levels, its phenotypic
characterization has been conducted in the northwestern part of the country from July 2011 to May 2012. Based on the voluntary participation of farmers, investigations to characterize the quantitative parameters (height at withers and rump, body length, chest girth,
chest depth, hip width and length of horns and ears) focused on 443 goats (77% female, 39% adult) distributed in 145 farms and 60
sites (7,38 ± 6,87 animals/site) in the Tillabéri, Tahoua and Niamey regions. Biometric indexes analysis coupled with analysis of variance and multivariate analysis (ACP, AFD) showed that the study area goat has four morphological subtypes (Tillabéri, Tahoua,
Niamey and an intermediate Niamey-Tillabéri). Due to the coexistence of several breeds (local and exotic) in Niamey and consequences like genetic mixing, the Sahel goat can correspond to two subtypes: a large one (64.98 ± 6.77 and 68.27 ± 5.91 cm at withers
and rump respectively), long ears and horns (20.3 ± 3.08 and 14.75 ± 4.43 cm) in Tillabéri and another large one (60.71 ± 10.81 and
62.46 ± 10.65 cm at wither and rump), shorter ears and horns (12.32 ± 3.62 and 9.95 ± 4.01 cm) in Tahoua.
Keywords: Phenotypic characteristics, Niger, Sahel goat, quantitative features
Soumis: 27 Le juin 2013; admis: 7 Le janvier 2014
Introduction
Ressource animale caractéristique des zones sèches, la
chèvre du sahel est très répandue dans tous les pays du
Correspondence à envoyer à: H. Marichatou Faculté d’Agronomie, Université
Abdou Moumouni, BP 10960, Niamey, Niger. Tel: (00227) 93 91 65 31,. Fax:
(00227) 20 31 66 12,. Adresse électronique: [email protected] / marimani_m@
yahoo.fr
sahel, au Sénégal, Mauritanie, Mali, Burkina Faso,
Niger, Tchad, Nigéria (Dumas, 1980; Wilson, 1991;
Meyer, 2001). Sa présence est également signalée dans
les régions humides d’Afrique occidentale et centrale au
Togo, en Côte d’Ivoire, au Cameroun (Lauvergne et al.,
1993; Meyer, 2001).
Au Niger, la chèvre du Sahel représente environ 80% du
cheptel caprin (Rhissa, 2010) et est élevée dans toutes les
21
22
H. Marichatou et al.
régions du pays. Cependant, à l’image des autres pays voisins
tels que le Tchad, le Burkina Faso (Dumas, 1980; Lauvergne
et al., 1993; Gnanda, 2008; Traoré, 2010), la chèvre du sahel
est peu connue au Niger. L’objectif visé dans ce travail est
d’établir les caractéristiques phénotypiques quantitatives de
la chèvre du sahel au Niger. En effet, une étape importante
dans la connaissance des ressources génétiques animales, la
caractérisation phénotypique est selon FAO (2012), essentielle pour la planification de la gestion des ressources
zoogénétiques aux niveaux local, national, régional et
mondial. Les paramètres phénotypiques quantitatifs étant
directement corrélés aux paramètres de production
(FAO, 2012), leur connaissance est importante pour la
maîtrise et l’amélioration des performances de production
des animaux.
(département de Téra et Ouallam) et la Commune Urbaine
de Niamey (Figure 1).
Les travaux étant conduits en milieu réel, l’adhésion des
éleveurs a constitué un facteur déterminant pour la collecte
des données. Ainsi, au niveau des exploitations où l’accord
de principe a été acquis, un certain nombre de têtes est
aléatoirement isolé pour les mensurations nécessaires. Au
total, 145 exploitations et 443 caprins (dont 77% de
femelles, 22,1% âgés de 0 à 1 an, 16,5% de 1 à 2 ans,
22,3% de 2 à 3 ans, 18% de 3 à 4 ans et 20,3% de plus
de 4 ans) répartis en 60 sites, ont constitué l’échantillon
de caractérisation. Le Tableau 1 présente le nombre de
sites et de caprins par région de l’échantillon de l’étude
et le Tableau 2 la répartition selon les tranches d’âge de
l’échantillon d’étude.
Indicateurs de caractérisation
Matériel et Méthodes
Echantillon d’étude
Inscrite dans le cadre des investigations de caractérisation
phénotypique de la chèvre du sahel au Niger, l’étude a
été conduite cumulativement à celle de la caractérisation
phénotypique qualitative (Mani et al., sous presse), de
juillet 2011 à mai 2012 dans la partie nord-ouest du
Niger, notamment, les régions de Tahoua (départements
de Tahoua, Abalak et Tchintabaraden), Tillabéri
Figure 1. Zone d’étude.
En Afrique, la classification des races caprines a été évolutive,
plusieurs combinaisons de critères, généralement adoptées
chez les bovins, ont été utilisées, une bibliographie
conséquente en ce sens a été établie par Bouchel et
Lauvergne (1986). Pour atteindre les objectifs assignés à
notre étude, les indicateurs quantitatifs retenus de la FAO
(FAO, 1986; FAO, 2012) sont: la hauteur au garrot (HG),
la longueur du corps (LC), le tour de poitrine (TP), la largeur
du bassin (LB), la hauteur à la croupe (HC), la profondeur du
thorax (PT), la longueur des oreilles (LO) et la longueur des
Caractérisation de la chèvre du sahel au Niger
Tableau 1. Nombre de sites et de caprins par région de
l’échantillon d’étude.
Régions
Niamey
Tillabéri
Niamey
Total
Nombre de sites(*)
Nombre de caprins
Moyennes/site
Maximum/site
Minimum/site
15
103
6,9 ± 2,9
10
2
18
238
13,2 ± 8,1
27
2
27
102
3,78 ± 4
16
1
60
443
7,38 ± 6,67
27
1
(*)
Site = village ou quartier.
L’ACP vise à représenter graphiquement les relations entre
individus par l’évaluation de leurs ressemblances, ainsi
que les relations entre variables par l’évaluation de leurs
liaisons (Martin, 2004). Ces principes sont également
pris en compte en AFD (Baccini et Besse, 2007). Selon
Martin (2004), deux individus se ressemblent, ou sont
proches, s’ils possèdent des valeurs proches pour l’ensemble des variables. Cette définition sous entend une notion
de proximité qui se traduit par une distance. Ainsi, la distance entre deux individus Xi et Yj est définie par:
d 2 (Xi , Yj ) =
cornes (Lc). Les mensurations (Figure 2) sont effectuées à
l’aide d’une règle, d’un mètre ruban et d’un compas.
L’âge des animaux est déterminé par examen de la dentition, l’échelle présentée par Hamito (2009) a été utilisée
à cet effet tout en considérant que chez l’espèce caprine,
l’animal atteint l’âge adulte à partir de 4 paires d’incisives
(Bouchel et al., 2006).
Les données morpho-biométriques ont permis d’établir les
indices biométriques tels que définis par Lauvergne et al.
(1993) et Bourzat et al. (1993).
➢ Indice de gracilité sous-sternal (IGS): rapport du vide
sous-sternal [différence entre hauteur au garrot (HG) et
profondeur du thorax (PT)] sur la profondeur du thorax
(PT).
IGS = (HG − PT)/PT
➢ Indice auriculaire thorax (IAT): longueur de l’oreille
(LO) sur la profondeur du thorax (PT).
IAT = LO/PT
Analyses statistiques
Les données recueillies ont fait l’objet d’analyse descriptive
et d’une comparaison des moyennes (ANOVA) au logiciel
SPSS (version 17.0). Des analyses multivariées notamment
l’Analyse en Composante Principale (ACP) et l’Analyse
Factorielle Discriminante (AFD) ont été effectuées au logiciel XLSTAT 2012. Il faut cependant noter que la
synthèse des informations de l’analyse descriptive sous
forme de tableaux et figures a été faite au tableur Excel.
p
(Xik − Y jk )2
k=1
Par ailleurs, deux variables sont liées si elles ont un
fort coefficient de corrélation linéaire. Sur un échantillon
de taille n, le coefficient de corrélation linéaire (dit
de Bravais-Pearson ou de Pearson) entre deux variables
X (x1, x2, . . . .xi) et Y (y1, y2, . . . yi) est donné par
l’équation suivante rapportée par Martin (2004) et
Rakotomalala (2012).
n
x) . (yi − y)
i=1 (xi − r = n
2 n
y)2
i=1 (xi − x)
i=1 (yi − Plus le coefficient de corrélation est proche de 1 (en valeur
absolue), plus la relation est forte (négativement si r < 0 et
positivement si r > 0). Si r = 0, il ya absence de corrélation.
Graphiquement, les variables sont représentées dans l’espace
(de dimension n) par des vecteurs. On considère les données
centrées réduites par ligne afin de faciliter l’analyse du nuage
d’individu car permettant de ramener l’origine des axes au
centre de gravité G correspondant à l’individu moyen de
la population (Martin, 2004).
X (x1 − x, . . . . . . . . . , xn − x);
Y (y1 − y, . . . . . . . . . , yn − y);
Le cosinus de l’angle α entre ces vecteurs n’est autre que le
coefficient de corrélation, Cos(α) = r (formule ci-haut).
Résultats
Tableau 2. Configuration selon l’âge et le sexe de l’échantillon
d’étude.
Tranches d’âge
0–1 an
1–2 ans
2–3 ans
3–4 ans
>4 ans
Total
Mâle
Femelle
Total
N
%
N
%
N
%
52
20
19
6
5
102
11,7%
4,5%
4,3%
1,4%
1,1%
23,0%
46
53
80
77
85
341
10,4%
12,0%
18,1%
17,4%
19,2%
77,0%
98
73
99
83
90
443
22,1%
16,5%
22,3%
18,7%
20,3%
100,0%
N = Nombre de caprins caractérisé par tranche d’âge.
Analyse descriptive des données
Paramètres biométriques selon la région, le sexe et les
tranches d’âges
Le Tableau 3 présente les moyennes et écarts types des
différents paramètres biométriques étudiés selon les
régions et le sexe. Il ressort trois classements
décroissants selon les régions:
– Tillabéri, Tahoua, Niamey pour HG et HC;
– Tillabéri, Niamey, Tahoua pour TP, PT, LO et Lc;
– Tahoua, Tillabéri, Niamey pour LC et LB.
23
24
H. Marichatou et al.
Figure 2. Mensurations réalisées [hauteur au garrot (a), hauteur à la croupe (b), profondeur du thorax (c), tour de poitrine (d), largeur du bassin (e), longueur des
cornes (f)].
Cependant, l’analyse des variances suivie de test post hoc,
ont montré que les différences entre les populations
caprines des trois régions sont statistiquement significatives
(P < 0,05) pour HG, LC, LB, HC et LO. En outre, les
chèvres de Tahoua se distinguent statistiquement de celles
de Tillabéri par le TP et de plus de celles de Niamey par la
PT et les chèvres de Tillabéri se distinguent statistiquement
de celles de Tahoua et Niamey par la LC.
Le Tableau 4 présente les moyennes et écarts types des
différents paramètres biométriques selon les tranches
Moyennes générales
Niamey
Tillabéri
HG: hauteur au garrot, TP: tour de poitrine, LC: longueur du corps, LB: largeur du bassin, HC: hauteur à la croupe, PT: profondeur du thorax, LO: Longueur des oreilles, Lc: Longueur des cornes.
Les moyennes des régions portant des lettres différentes (a, b ou c) sur la même colonne sont statistiquement dfférentes (P < 0,05).
9,3552
10,18 ±
9,95a ±
14,02 ±
14,94 ±
14,75b ±
8,67 ±
11,56 ±
10,85a ±
11,4x ±
13,18y ±
12,77 ±
13,02 ±
12,05 ±
12,32a ±
19,46 ±
20,51 ±
20,3b ±
13,8 ±
14,91 ±
14,64c ±
16,34x ±
17,46y ±
17,2 ±
23,99 ± 3,23
24,15 ± 5,26
24,10a ± 4,77
29 ± 3,25
30,37 ± 5,05
30,09b ± 4,76
26,64 ± 3,83
30,55 ± 4,66
29,60b ± 4,76
27,05x ± 3,97
29,08y ± 5,62
28,61 ± 5,35
60,45 ±
63,22 ±
62,46a ±
65,78 ±
68,92 ±
68,27b ±
54,64 ±
60,81 ±
59,32c ±
61,58x ±
65,83y ±
64,85 ±
± 5,67
± 5,25
± 5,36
± 2,27
± 4,71
± 4,34
± 1,71
± 2,67
± 2,76
± 5,06
± 5,34
± 5,29
20,13
21,05
20,8a
13,21
14,32
14,09b
10,12
12,98
12,29c
14,3x
15,43x
15,17
67,95 ± 18,16
70,10 ± 17,29
69,51a ± 17,47
58,18 ± 7,23
62,76 ± 8,17
61,82b ± 8,18
42,16 ± 5,63
50,10 ± 9,31
48,17c ± 9,2
56,94x ±14,46
61,46y ± 12,94
60,42 ± 13,42
59,34 ±
61,22 ±
60,71a ±
61,9 ±
65,78 ±
64,98b ±
52,08 ±
58,65 ±
57,05c ±
58,79x ±
63,16y ±
62,15 ±
Tahoua
M
F
Total
M
F
Total
M
F
Total
M
F
Tout sexe
28
74
102
49
189
238
25
78
103
102
341
443
13,17
9,83
10,81
8,27
6,1
6,77
8,41
8,62
8,98
10,56
8,21
8,99
61,15 ±
62,59 ±
62,2a ±
62,73 ±
68,54 ±
67,34b ±
57,56 ±
68,58 ±
65,90ab ±
61,03x ±
67,26y ±
65,82 ±
14,38
15,10
14,85
9,24
8,69
9,1
7,03
9,59
10,18
10,58
10,85
11,09
LC
TP
HG
N
Sexes
Régions
Tableau 3. Moyennes et écarts types moyens (cm) des paramètres biométriques selon les régions
LB
HC
12,82
9,69
10,65
7,38
5,3
5,91
8,18
7,72
8,23
10,32
7,86
8,66
PT
LO
2,94
3,83
3,62
3,57
2,91
3,08
2,31
2,4
2,42
4,36
4,68
4,63
Lc
3,69
4,01
5,31
4,17
4,43
4,35
5,02
4,1
5,49
4,75
4,98
Caractérisation de la chèvre du sahel au Niger
d’âge. Il résulte que tous les paramètres varient avec l’âge.
L’analyse des variances fait ressortir des différences statistiquement significatives à certaines tranches d’âges. Les variations d’HG, HC LC, TP et Lc d’une part et LO et LB
d’autre part sont apparues statistiquement semblables. En
effet, les différences sont significatives entre les tranches
d’âge à l’exception des tranches d’âge successives à partir
de 2 ans pour HG et Lc. Comparativement à ces derniers,
les variations sont significatives pour TP entre 2–3 ans et
3–4 ans et non significatives pour LC entre 1–2 ans et
3–4 ans puis, 2–3 ans et > 4 ans et pour HC entre 2–3
ans et > 4 ans. S’agissant de LB et LO cependant, les variations sont non significatives à l’exception de la tranche
d’âge 0–1 an et les tranches > 3 ans pour LB et en plus
entre 1–2 ans et > 4 ans pour LO.
La Figure 3 présente l’évolution des différents paramètres
biométriques selon le sexe et les tranches d’âge. Il ressort
que chez le mâle, les valeurs maximales sont atteintes à
l’âge de 2–3 ans pour les paramètres tels que HG, LC,
LB, HC, et la PT, les autres paramètres (TP, LO et Lc) continuant leur croissance jusqu’à l’âge de quatre ans et au
delà. Chez la femelle par contre, tous les paramètres
étudiés augmentent selon l’âge jusqu’au-delà de 4 ans.
En termes de comparaison selon le sexe, la Figure 3 permet de noter selon les tranches d’âge:
– les mâles sont supérieurs aux femelles à toutes les
tranches d’âge pour la Lc;
– les mâles sont supérieurs aux femelles pour HG, TP, LC,
HC, PT, et inférieurs aux femelles pour LO pour la
tranche d’âge 0–1 an et inversement pour la tranche
d’âge 1–2 ans;
– à 2–3 ans, au moment où les paramètres sont globalement à leur optimum chez les mâles, ces derniers sont
supérieurs aux femelles pour tous les paramètres;
– au-delà de trois ans, les mâles sont supérieurs aux
femelles pour HG et LO et inférieurs pour TP, LC et PT.
Afin de mieux apprécier la répartition selon les régions
d’une part et les paramètres directeurs de cette répartition
d’autre part, il a été abordé l’analyse des indices
biométriques mettant en exergue la hauteur au garrot, la
profondeur de la poitrine et la longueur des oreilles et
l’analyse multivariée mettant en jeux tous les paramètres
morpho-biométriques en relation avec les paramètres qualitatifs dont la région et le sexe.
Indices biométriques
Les indices biométriques moyens sont:
➢ Indice de gracilité sous sternal
➢ Indice Auriculo-thorax
IGS = 1,21 ± 0,34
IAT = 0,44 ± 0,14
Les valeurs moyennes indiquent que les caprins dans la zone
d’étude sont globalement de type longipes (IGS > 1), aux
oreilles longues. Cependant, ces moyennes cachent de
grandes disparités. La Figure 4, présente les valeurs
moyennes de ces indices selon les départements de la zone
de l’étude. Il ressort que ces indices varient selon les
départements. L’IGS varie approximativement avec la
25
Lc
9,18 ± 4,53(a)
11,66 ± 3,38(bc)
12,78 ± 4,48(cd)
14,57 ± 4,41(de)
16,1 ± 4,68(e)
12,77 ± 4,98
LO
15,63 ± 3,84(a)
16,14 ± 4,3(ab)
17,33 ± 4,69(ac)
18,40 ± 5,18(bc)
18,54 ± 4,44(c)
17,2 ± 4,63
H. Marichatou et al.
longueur des pattes (HG – PT) alors que les variations de
l’IAT sont imputables à l’évolution des deux facteurs (LO
et PT). Ainsi, dans la zone d’étude, les chèvres sont de
type brèvipes à oreilles moyennes dans la région de
Niamey, longipes à oreilles longues dans la région de
Tillabéri (Téra et Ouallam) et longipes à oreille relativement
courtes dans la région de Tahoua (Tahoua, Abalak).
Analyse multi-variée des paramètres
biométriques
Sur la même colonne, une moyenne portant au moins une lettre (a, b, c ou d) portée par une autre, ne lui est pas statistiquement différente (P < 0,05).
25,57 ± 4,54(a)
27,91 ± 3,49(ab)
28,77 ± 4,89(b)
29,75 ± 4,87(bc)
31,27 ± 6,54(c)
28,61 ± 5,35
57,14 ± 8,94(a)
63,24 ± 5,95(bc)
66,60 ± 7,49(cd)
68,39 ± 7,78(d)
69,37 ± 5,99(d)
64,85 ± 8,66
13,32 ± 5,42(a)
15,09 ± 4,82(ab)
15,62 ± 4,37(ab)
15,93 ± 4,39(b)
16,09 ± 6,65(b)
15,17 ± 5,29
50,87 ± 14,08(a)
59,23 ± 9,08(b)
62,47 ± 12,04(bd)
64,39 ± 12,77(bd)
65,85 ± 12,31(d)
60,42 ± 13,42
57,16 ± 8,72(a)
61,93 ± 7,9(bc)
66,11 ± 10,73(c)
70,63 ± 9,81(d)
73,66 ± 9,11(d)
65,82 ± 11,09
53,79 ± 9,2(a)
60,21 ± 5,82(bc)
63,66 ± 7,43(cd)
66,21 ± 7,62(de)
67,44 ± 6,42(e)
62,15 ± 8,99
98
73
99
83
90
443
0–1 an
1–2 ans
2–3 ans
3–4 ans
> 4 ans
Total
LB
TP
HG
N
Ages
LC
HC
PT
Analyse en composante principale
Tableau 4. : Tableau 4: Variation selon l’âge des paramètres biométriques
26
L’ACP fait ressortir (Tableau 5), les corrélations entre les
paramètres morpho-biométriques étudiés en variables principales mais aussi entre eux et la région et le sexe en variables supplémentaires. Conformément au principe de
Kaiser (1960), les deux premiers axes F1 et F2 de l’ACP
sont les seuls dont les valeurs propres sont supérieures à
1, ils résument en outre environ 67,8% des observations.
Pour cela, et du fait que l’essentiel des variables principales mais aussi supplémentaires ont leurs cosinus carrés
élevés sur ces axes, le premier plan factoriel (F1xF2)
s’adapte bien pour l’interprétation des résultats de l’analyse. Il ressort sur ce plan factoriel (Figure 5) que toutes
les variables (principales et supplémentaires) sont bien
représentées. Cette figure permet en outre de constater
une forte corrélation positive entre HG, HC, Lc, TP, LC,
PT et LO. Ce groupe de variable fortement corrélé est en
corrélation approximativement nulle avec LB. Il ressort
que ce groupe de variable est bien caractéristique des
chèvres de la région de Tillabéri alors que celles de
Tahoua sont bien caractérisées par LB, LC, HG, HC et
celles de Niamey par PT, LO, Lc et TP. En outre, cette
figure permet de lire que globalement à tout âge compris
tous les paramètres sont en corrélation positive avec le
sexe femelle et négative avec le sexe mâle.
Analyse Factorielle Discriminante
L’Analyse Factorielle Discriminante (AFD) contribue à
affiner les résultats de l’ACP. En considérant comme variables dépendantes la région et le sexe et comme variables
explicatives l’âge et les huit paramètres morphobiométriques, les deux premiers axes factoriels expliquent
100% de la variabilité. Il ressort de cette analyse
(Figure 6), que les facteurs les plus discriminants mieux
représentés sur les deux axes, autrement dit qui permettent
de mieux caractériser les chèvres, sont HG, HC, LC, Lc,
LO, LB et PT. La matrice de confusion (Tableau 6) montre
que les individus sont bien classés en moyenne dans 92,55%,
trente trois (33) individus soit 7,45% étant reclassés. Il ressort
de la répartition des individus dans le plan factoriel (Figure 7)
que dans les régions de Tahoua et Tillabéri, les individus
sont bien discriminés sur les deux axes contrairement à la
région de Niamey où les individus sont représentés principalement sur l’axe F1. Cette répartition fait également ressortir
que les populations de chèvres dans les trois régions ne sont
pas totalement distinctes. Il existe en faible proportion des
Caractérisation de la chèvre du sahel au Niger
Figure 3. Evolution selon l’âge et le sexe des paramètres morpho – biométriques étudiés ( M: mâle; F: femelle).
sous groupes intermédiaires entre les régions. Cependant,
conformément à l’ACP, l’AFD (Figures 6 et 7) montre que
dans la majorité, les populations caprines se distinguent
d’une région à une autre, les chèvres dans la régions de
Tahoua bien discriminées par l’importance de LC et LB,
celles de la région de Tillabéri par l’importance de HG et
HC, PT, Lc et LO, tandis que celles de Niamey sont
mieux représentées par TP et PT.
Figure 4. Répartition des indices biométriques selon les départements de la zone d’étude.
27
28
H. Marichatou et al.
Tableau 5. Matrice de corrélation (Pearson (n))
Variables
Âges
HG
TP
LC
HC
PT
LB
L0
Lc
Tah
Til
Ny
F
M
Âges
HG
TP
LC
HC
PP
lB
LO
Lc
Tah
Til
Ny
F
M
1
0,48
0,52
0,36
0,44
0,33
0,16
0,22
0,47
−0,07
0,09
−0,03
0,35
−0,35
1
0,72
0,62
0,94
0,48
0,18
0,52
0,63
−0,09
0,34
−0,31
0,20
−0,20
1
0,56
0,75
0,49
−0,10
0,37
0,53
−0,18
0,15
0,00
0,24
−0,24
1
0,66
0,17
0,41
0,22
0,40
0,37
0,11
−0,50
0,14
−0,14
1
0,50
0,12
0,58
0,65
−0,15
0,43
−0,35
0,21
−0,21
1
−0,05
0,42
0,58
−0,46
0,30
0,10
0,16
−0,16
1
−0,23
0,13
0,56
−0,22
−0,30
0,09
−0,09
1
0,54
−0,55
0,73
−0,30
0,10
−0,10
1
−0,31
0,44
−0,21
0,15
−0,15
1
−0,59
−0,30
−0,06
0,06
1
−0,59
0,06
−0,06
1
−0,02
0,02
1
−1,00
1
Les valeurs en gras sont différentes de 0 à un niveau de signification alpha = 0,05.
Figure 5. Cercle de corrélation ACP.
Caractérisation de la chèvre du sahel au Niger
Figure 6. Cercle de corrélation AFD.
Discussion
Plusieurs études de caractérisation des caprins (Lauvergne
et al., 1993; Zeuh et al., 1997; Lanari et al., 2003; Traoré
et al., 2006; Bouchel et al., 2006; Traoré et al., 2008;
Verma et al., 2010; Ebegbulem et al., 2011; Halima
et al., 2012) ont fait usage seuls ou associés à d’autres,
des indicateurs utilisés dans le cadre de cette étude.
L’échantillon étudié est composé majoritairement des
Tableau 6. Matrice de confusion pour l’échantillon d’estimation
(région)
de \ Vers
Niamey
Tahoua
Tillabéri
Total
% correct
Niamey
Tahoua
Tillabéri
Total
87
4
5
96
0
93
3
96
16
5
230
251
103
102
238
443
84,47%
91,18%
96,64%
92,55%
femelles (77%) conformément à l’image générale des
troupeaux enquêtés (les mâles sont minoritaires et
généralement jeunes), mais aussi traduit l’importance
socioéconomique de l’élevage caprin dans la zone
d’étude. En effet, les mâles sont abattus à bas âges pour
des circonstances de cérémonies (mariage, baptême,
tabaski ou autres fêtes) mais aussi de sacrifice. Ils constituent également une épargne facilement mobilisable en cas
de besoin pécuniaire et les femelles sauf en cas de forces
majeures sont gardées pour le renouvellement du troupeau.
Ce constat a été relaté au Nigéria, au Burkina, au
Botswana, en Ouganda (Samuel et Salako, 2008; Traoré
et al., 2006; Katongole et al., 1996; Semakula et al.,
2010).
Les moyennes des données biométriques obtenues sont
inférieures à celles présentées par Wilson (1991) pour la
chèvre « Arabe » du Tchad et les chèvres « Maure » du
Mali pour HG, PT, LO et Lc, les chèvres « Toureg » et
29
30
H. Marichatou et al.
Figure 7. Répartition des individus dans le plan factoriel (F1-F2).
« Sahel » du Mali pour HG et PT, mais semblable à la
chèvre « Sahel » du Mali pour la LO. Par ailleurs, ces
moyennes biométriques obtenus sont supérieures à celles
des chèvres sahéliennes, soudanienne (chèvre Djallonké)
et sahélo-soudanienne (Mossi) pour les paramètres HG,
PT, LC, LO, Lc et HC (Traoré et al., 2008; Samuel
et al., 2008; Abdulmojeed, Adebowale et Ikhide, 2010;
Ebegbulem et al., 2011) mais se rapprochent des
données de la chèvre « Red Sokoto Goat » obtenues par
Abdulmojeed et al. (2010).
Les indices biométriques varient selon les localités
(régions et départements), l’IGS variant de 0,94 à 1,67 et
l’IAT de 0,35 à 0,52. Etant donné que l’IGS évolue avec
la longueur des pattes et l’IAT dépend des deux grandeurs
conjugués, LO et PT, les variations des indices
biométriques indiquent des distinctions entre les populations caprines des trois régions étudiées par la longueur
des pattes et des oreilles et la profondeur du thorax.
Les variations de l’IGS observées sont semblables aux variations rapportées sur les populations caprines du Sénégal
(Bouchel et al., 2006). Cependant, l’IGS moyen obtenu est
semblable a l’IGS des populations caprines du Nord
Cameroun mais inférieur à celui des populations caprines
du Nord Tchad (Bourzat et al., 1993) et intermédiaire
entre les deux sous populations du sud Tchad (Zeuh et al.,
1997). Egalement, cet IGS moyen se rapproche de celui
de la population caprine toutes races confondues du
Burkina Faso (Traoré et al., 2008), mais spécifiquement
inférieur à celui de la chèvre sahélienne et supérieur à
ceux des chèvres sahélo-soudanienne et soudanienne. Cela
suppose que la population caprine de la zone d’étude se
rapproche du point de vue longueur des pattes à celles du
Burkina Faso et du Nord Cameroun. L’IAT quant à lui, est
inférieur à ceux des populations caprines de ces deux
entités. Cette faiblesse de l’IAT ne traduit pas que la LO
et PT sont inférieures bien au contraire, mais tient au
fait que l’évolution de l’IAT est apparue indépendante
d’un seul des deux facteurs du fait des écarts entre les
valeurs des deux paramètres (LO approximativement
moitié de PT).
Les résultats de l’analyse en composante principales font
ressortir qu’indépendamment de l’âge, le sexe femelle
est en corrélation positive avec tous les paramètres
biométriques étudiés. Cela peut être inhérent aux écarts
d’effectifs (femelle 77%). L’analyse des variances a
indiqué que les paramètres biométriques varient statistiquement selon l’âge et l’analyse selon les tranches
d’âges a fait ressortir globalement que les mâles sont
Caractérisation de la chèvre du sahel au Niger
supérieurs aux femelles avec quelques exceptions selon les
tranches d’âges et les paramètres. En effet, selon Vigne,
Peters et Helmer (2002), le sexe est le facteur le plus
influant sur les dimensions chez les chèvres, les mâles
âgés de plus de 12 mois sont toujours plus grands que
les femelles; ensuite vient l’environnement se traduisant
par une diminution des dimensions des chèvres des
zones froides et humides vers les zones arides, alors que
l’âge semble avoir peu d’impact sur les dimensions des
chèvres. Samuel et Salako (2008) et Semakula et al.
(2010), étudiant respectivement les caractéristiques
biométriques de la chèvre Djallonké (West African
Dwarf Goat) au Nigéria et la chèvre Mubende en
Ouganda, arguent que l’âge et le sexe sont des facteurs
influençant significativement le poids corporel et les
paramètres biométriques. Les femelles chez la chèvre
Djallonké sont trouvées supérieures aux mâles dans les
tranches d’âge de 0 à 2 ans selon les résultats de Samuel
et Salako (2008) et inversement pour toutes les tranches
d’âge chez la chèvre Mubende selon les résultats de
Semakula et al. (2010). Cependant, les résultats
d’Ebegbulem et al. (2011) indiquent chez la chèvre
Djallonké au Nigeria que les mâles sont supérieurs aux
femelles pour HG, HC, TP, LO, LC et LB.
L’AFD et l’ACP, confirment les résultats des tests statistiques et de l’analyse des indices biométriques, autrement
dit la distinction entre les populations caprines de trois
régions. L’AFD révèle une quasi distinction et
homogénéisation respectivement inter et intra région
pour les populations caprines étudiées.
Les tests statistiques et les analyses multivariées (ACP et
AFD) permettent de distinguer dans la zone d’étude quatre
(4) sous populations distinctes de chèvres en fonctions des
paramètres morpho-biométriques étudiés. Une sous population de Tillabéri caractérisée par de HG, HC, LO, TP,
et Lc élevés mais LB et LC faibles par rapport aux autres
sous populations, une sous population de Tahoua avec LB
et LC élevées, HG et HC intermédiaires et TP, PT, LO,
Lc faibles par rapport aux autres, une sous population
de Niamey avec PT, LO moyens et des valeurs faibles
pour les autres paramètres et une sous population
intermédiaire entre la sous population de Tahoua et celle
des Niamey avec TP et Lc moyens. Des différences statistiquement significatives sur le plan phénotypique qualitatif
ont également été rapportées (Mani et al., sous presse)
entre les populations des trois régions.
Les valeurs moyennes à faibles observées pour les chèvres
de Niamey sont inhérentes au caractère urbain de son
élevage, qui fait d’elle un melting-pot où est rencontré
une diversité de races notamment, les races locales
(chèvre Rousse, chèvre du sahel), sous régionale (chèvre
Djallonké, chèvre Mossi) et leurs croisés. Les individus
intermédiaires peuvent être inhérents à la proximité, en
effet, Niamey est circonscrite dans la région de Tillabéri
qui, elle-même partage une longue frontière avec la
région de Tahoua.
Conclusion
Aux termes de cette étude, il ressort que l’espèce caprine
dans la zone d’étude est diversement repartie selon les
régions en fonction des paramètres quantitatifs étudiés.
Trois écotypes spécifiques aux trois régions et un type
intermédiaire Niamey-Tillabéri ont été distingués. Les
valeurs moyennes à faibles des paramètres morphobiométriques des caprins de Niamey est la résultante de
l’hétérogénéité zoo-génétique de ce troupeau avec la
présence de la diversité génétique de la sous région et
son corolaire le brassage génétique. De ce fait, mise à
part la population hétéro-génétique de Niamey, l’on retiendra que la chèvre du sahel se présente sous deux types
phénotypiques dans la zone d’étude. Une population type
de la région de Tillabéri et celle type de la région de
Tahoua. Les caractéristiques sur le plan morphobiométrique sont: grande taille (en moyenne 64,98 ±
6,77 cm et 60,71 ± 10,81 cm au garrot et 68,27 ± 5,91 cm
et 62,46 ± 10,65 cm à la croupe respectivement à
Tillabéri et Tahoua), oreilles et cornes longues dans la
région de Tillabéri (en moyenne respectivement environ
20,3 ± 3,08 cm et 14,75 ± 4,43 cm) et courtes dans la
région de Tahoua (environ respectivement 12,32 ±
3,62 cm et 9,95 ± 4,01 cm en moyenne). Le tour de poitrine, la longueur du corps, la largeur du bassin et la profondeur du thorax sont en moyenne respectivement 62,2 ±
14,85 et 67,34 ± 9,1 cm; 69,51 ± 17,47 et 61,82 ± 8,18 cm;
20,8 ± 5,36 et 14,09 ± 4,34 cm et 24,10 ± 4,77 et 30,09 ±
4,76 cm respectivement à Tahoua et Tillabéri.
Cependant, afin d’affiner la caractérisation, il est fondamental de savoir qu’en est-il sur les plans génétiques et
zootechniques entre ces deux sous types? En outre, eu
égard à l’omniprésence de la chèvre du sahel dans toutes
les Régions du Niger, il s’avère important d’étendre les travaux de caractérisation sur les autres régions du pays.
Remerciements
Les auteurs remercient le partenaire financier qui est
l’Agence Universitaire de la Francophonie (AUF),
précisément son Bureau Afrique de l’Ouest et le CNF de
Niamey. Ils remercient également le Programme de
Productivité Agricole en Afrique de l’Ouest (PPAAO)
qui a contribué matériellement et financièrement aux
activités sur les caprins du Sahel.
Références bibliographiques
Abdulmojeed, Y., Adebowale, E.S. and Ikhide, G.I. 2010. Comparative
multivariate analysis of biometric traits of West African Dwarf and
Red Sokoto goats. Tropical Animal Health and Production, Springer.
Baccini, A., et Besse, P. 2007. Exploration Statistique. Institut de
Mathématiques de Toulouse—UMR CNRS C5219. Laboratoire de
Statistique et Probabilités. Institut National des Sciences Appliquées
de Toulouse—31077 – Toulouse cedex 4., 122.
31
32
H. Marichatou et al.
Bouchel, D., Lauvergne, J.J. 1996. Le peuplement de l’Afrique par la
chèvre domestique. Revue d’Elevage et de Médecine Vétérinaire des
Pays Tropicaux 49 (1): 80–90.
Bouchel, D., Sow, R.S., Bibe, B., Tixier-Boichard, M., Lauvergne,
J.J., Poivey, J.P., Rognon, X. 2006. Caractérisation et cartographie
des ressources génétiques caprines du Sénégal à l’aide d’indices
phanéroptiques, d’indices morphobiométriques et de marqueurs
moléculaires: méthodologie et résultats préliminaires. Rencontres
Recherches Ruminants 13: 257.
Mani, M., Marichatou, H., Issa, M., Chaïbou, I., Sow, A., Chaïbou,
M., Sawadogo, J.G. Caractéristiques phénotypiques de la chèvre du
sahel au Niger par analyse des indices de primarité et des
paramètres qualitatifs., Animal Genetic Resources. (sous presse).
Martin, A., 2004. L’analyse de données. ENSIETA – Réf.: 1463. (En ligne)
Accès internet: http://www.arnaud.martin.free.fr/Doc/polyAD.pdf.
Meyer, C. 2001. Races d’animaux d’élevage en Afrique intertropicale
et méditerranéenne: Les caprins. Mémento de l’Agronome.
CIRAD-EMVT, France, 22.
Bourzat, D., Souvenir, P.Z., Lauvergne, J.J. et Zeuh, V. 1993.
Comparaison morpho-biométrique de chèvres au Nord Cameroun et
au Tchad. Revue d’Elevage et de Médecine Vétérinaire des Pays
Tropicaux 46 (4): 667–674.
Rakotomalala, R. 2012. Analyse de corrélation: Étude des dépendances Variables quantitatives. Version 1.0. Université Lumière Lyon 2. (En
ligne) Accès internet: http://eric.univ-lyon2.fr/~ricco/cours/cours/
Analyse_de_Correlation.pdf.
Dumas, R. 1980. Contribution à l’étude des petits ruminants du Tchad.
Revue d’Elevage et de Médecine Vétérinaire des Pays Tropicaux 33
(2): 215–233.
Rhissa, Z. 2010. Revue du secteur de l’élevage au Niger. Ministère de
l’Elevage, des Pêches et des Industries Animales, Niger, 115.
Ebegbulem, V.N., Ibe, S.N., Ozung, P.O. and Ubua, J.A. 2011.
Morphometric trait characteristics of West African dwarf goats in
Abia state, south east Nigeria. Continental Journal of Agricultural
Science 5 (2): 1–6.
FAO. 1986. Animal genetic resources data banks. Descriptor lists for cattle, buffalo, pigs, sheep and goat. FAO. Rome, Italia. Animal
Production and health. 59 (2): 151.
FAO. 2012. Phenotypic characterization of animal genetic resources.
Food and Agriculture Organization of the United Nations. Rome,
Italia. Animal Production and Health Guidelines 11: 142. (accessible
at http://www.fao.org/docrep/015/i2686e/i2686e00.htm).
Gnanda, I.B. 2008. Importance socio-économique de la chèvre du Sahel
burkinabé et amélioration de sa productivité par l’alimentation. Thèse
de Doctorat Unique. Université Polytechnique de Bobo-Dioulasso,
Burkina Faso, 198.
Halima, H., Michael, B., Barbara, R. and Markos, T. 2012.
Phenotypic characterization of Ethiopian indigenous goat populations.
African Journal of Biotechnology 11 (73): 13838–13846.
Hamito, D. 2009. Goat breeds of Ethiopia: A guide for identification and
utilization. Ethiopia Sheep and Goat Productivity Improvement
Program (ESGPIP). Technical Bulletin 23: 11.
Kaiser, H.F. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement 20, 141–151.
Katongole, J.B.D., Sebolai, B. and Madimabe, M.J. 1996.
Morphological Characterization of the Tswana goat. In: S.H.B. Lebbie
and E. Kagwini (eds.), Small Ruminant Research and Development in
Africa. Proceedings of 3rd Biennial Conference of the African Small
Ruminant Research Network, UICC, Kampala, Uganda, 5–9.
Lanari, M.R., Taddeo, H., Domingo, E., Perez-Centeno, M. and
Gallo, L. 2003. Phenotypic differentiation of exterior traits in local
Criollo Goat Population in Patagonia, Argentina. Archiv fur
Tierzucht Dummerstorf 46 (4): 347–356.
Lauvergne, J.J., Bourzat, D., Souvenir, Z.P., Zeuh, V. et Ngo Tama,
A.C. 1993. Indices de primarité de chèvres au Nord Cameroun et au
Tchad. Revue d’Elevage et de Médecine Vétérinaire des Pays
Tropicaux 46 (4): 651–665.
Samuel, F.O.K. and Salako, A.E. 2008. Body measurement characteristics of the West African Dwarf (WAD) Goat in deciduous forest
zone of Southwestern Nigeria. African Journal of Biotechnology 7
(14): 2521–2526.
Semakula, J., Mutetikka, D., Kugonza, R.D. and Mpairwe, D. 2010.
Variability in Body Morphometric Measurements and Their
Application in Predicting Live Body Weight of Mubende and Small
East African Goat Breeds in Uganda. Middle-East Journal of
Scientific Research 5 (2): 98–105.
Traoré, A. 2010. Caractérisation des ressources génétiques caprines du
Burkina Faso a l’aide d’indices morpho-biométriques et de marqueurs
moléculaires. Thèse de Doctorat Unique. Université de Ouagadougou,
Burkina Faso, 110.
Traoré, A., Hamidou, H.T., Adama, K., Luis, J.R., Ivan, F., Isabel,
A., Sangaré, M., Bouchel, D., Jean Paul, P., Dominique, F.,
Sawadogo, L. and Goyache, F. 2008. Multivariate analyses on morphological traits of goats in Burkina Faso. Arch. Tierz, Dummerstorf
51 (6): 588–600.
Traoré, A., Tamboura, H.H., Kaboré, A., Yaméogo, N., Bayala, B. et
Zaré, I. 2006. Caractérisation morphologique des petits ruminants
(ovins et caprins) de race locale “Mossi” au Burkina Faso. GRI
2006 39: 39–50.
Verma, N.K., Dixit, S.P., Aggarwal, R.A.K., Dangi, P.S. and
Joshi, B.K. 2010. Phenotypic and genetic characterization of
Sangamneri goat breed. Indian Journal of Animal Sciences 80
(11): 1109–1114.
Vigne, J-D., Peters, J. and Helmer, D. 2002. First Steps of
Animal Domestication: New archaeozoological approaches. 9th
ICAZ Conference, Durham 2002. The First Steps of Animal
Domestication (eds J-D Vigne, J. Peters and D. Helmer), 125–146.
Wilson, T.R. 1991. Small ruminant production and the small ruminant
genetic resource in tropical Africa. FAO. Rome. Animal Production
and Health Paper, 194.
Zeuh, V., Lauvergne, J.J., Bourzat, D. et Minvielle, F. 1997.
Cartographie des ressources génétiques caprines du Tchad du
Sud-Ouest: Hauteur au garrot (HG), profondeur de thorax (PT) et
indice de gracilité sous-sternale (IGs). Revue d’Elevage et de
Médecine Vétérinaire des Pays Tropicaux 50 (3): 250–260.
Animal Genetic Resources, 2014, 54, 33–41. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000137
Morphological, reproductive and productive
characteristics of Sudanese native chicken
C.E. Wani1, I.A. Yousif2, M.E. Ibrahim3, H.H. Musa4 and K.M. Elamin5
1
Department of Animal Production, Faculty of Veterinary Science, University of Bahr Elgazal, Wau, South Sudan; 2Department of
Genetics and Animal Breeding, Faculty of Animal Production, Khartoum North, University of Khartoum, Sudan; 3Institute of Endemic
Diseases, University of Khartoum, Sudan, Khartoum; 4Department of Microbiology, Faculty of Medical Laboratories, University of
Khartoum, Sudan, Khartoum; 5Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Sudan,
Khartoum North
Summary
A structured questionnaire was administered to 40 households in each of the three localities (Bahri, Dilling and Abu-neama).
Morphological characteristics of 900 chickens were physically examined. Data analysis showed that the average flock size per household was 16.7 and that it varied significantly among localities. The flock structure study showed that 46.1 percent were chicks and
growers, 34.6 percent hens and 19.35 percent cocks. Regarding the ecotypes, the flock was composed of 75.7, 8.8 and 15.5 percent
large Beladi (LB), bare neck (BN) and Betwil (BT) dwarf, respectively. The Sudanese indigenous chicken are characterized by wide
phenotypic variation. The plumage colour frequencies were mixed colour (37.8 percent), light brown (16.5 percent), black (13.1 percent), grey (3.5 percent) and white (6.2 percent). Feathering did not show a well-defined pattern; however, the few birds whose feathering pattern could be identified were crown feather (7.0 percent), partridge (3.5 percent), barred (3.5 percent), laced (3.1 percent) and
frizzled (0.01 percent). The average adult body weight was 1 650.5 ± 125 g in males and 1 187 ± 70 g in females. Hens reached sexual
maturity at 6.5 months and layed 13.2 eggs/clutch in 3–3.5 clutches per year. The average egg weight was 40.8 ± 1.6 g and the hatchability rate under natural incubation was 71.8 percent. The BN ecotype had significantly (P < 0.01) poorer maternal care (57.7 percent
hatchability) compared with the other types (LB and BT).
Keywords: Sudan, indigenous chickens, morphological variation, phenotypic characteristics
Résumé
Se facilitó un cuestionario estructurado a 40 hogares en cada uno de los siguientes tres municipios: Bahri, Dilling y Abu-neama. Se
examinaron las características morfológicas de 900 aves. El análisis de los datos mostró que el número medio de aves por hogar fue de
16.7, aunque varió de manera significativa entre localidades. El estudio de la estructura de los gallineros reveló que el 46.1 por ciento
eran pollitos y pollos en crecimiento, el 34.6 por ciento gallinas y el 19.35 por ciento gallos. En lo que concierne a los ecotipos, los
gallineros se componían en un 75.7 por ciento, en un 8.8 por ciento y en un 15.5 por ciento de Gran Beladi, Cuello Pelado y Betwil
Enana, respectivamente. Las gallinas autóctonas sudanesas se caracterizan por una amplia variación fenotípica. En el plumaje, se dieron
los siguientes colores: color mixto (37.8 por ciento), marrón claro (16.5 por ciento), negro (13.1 por ciento), gris (3.5 por ciento) y
blanco (6.2 por ciento). El plumaje no presentó un patrón bien definido; no obstante, en las pocas aves en que se pudo identificar
un patrón para el plumaje, éste era con copete en un 7.0 por ciento, perdiz en un 3.5 por ciento, barrado en un 3.5 por ciento, ribeteado
en un 3.1 por ciento y rizado en un 0.01 por ciento. El peso corporal medio de los adultos fue de 1650.5 ± 125 g en los machos y de
1187 ± 70 g en las hembras. Las gallinas alcanzaron la madurez sexual a los 6.5 meses y pusieron 13.2 huevos por nidada, con 3 a 3.5
nidadas por año. El peso medio de los huevos fue de 40.8 ± 1.6 g y la tasa de incubabilidad en incubación natural fue de un 71.8 por
ciento. El ecotipo Cuello Pelado mostró un instinto materno significativamente menor (57.7 por ciento de incubabilidad, P < 0.01) que
el de los otros ecotipos (Gran Beladi y Betwil).
Mots-clés: Soudan, poules autochtones, variation morphologique, caractéristiques phénotypiques
Resumen
Un questionnaire structuré a été fourni à 40 foyers dans chacune des trois localités suivantes: Bahri, Dilling et Abu-neama. Les
caractéristiques morphologiques de 900 volailles y ont été examinées. D’après l’analyse des données, le nombre moyen d’oiseaux
par foyer a été de 16.7, avec une variation significative entre localités. L’étude de la structure des poulaillers a mis en évidence
que le 46.1 pour cent des oiseaux étaient des poussins et des poulets en croissance, le 34.6 pour cent des poules et le 19.35 pour
cent des coqs. Pour ce qui est des écotypes, les poulaillers se composaient à 75.7 pour cent, 8.8 pour cent et 15.5 pour cent de
Grand Beladi, Cou Nu et Betwil Naine, respectivement. Les poules autochtones du Soudan se caractérisent par une grande variation
phénotypique. Les suivantes couleurs ont été observées dans le plumage: mélange de couleurs (37.8 pour cent), marron clair (16.5 pour
cent), noir (13.1 pour cent), gris (3.5 pour cent) et blanc (6.2 pour cent). Bien que le plumage n’ait pas présenté un motif bien défini, les
Correspondence to: C.E. Wani, Department of Animal Production, Faculty of
Veterinary Science, University of Bahr Elgazal, South Sudan. email:
yousifi[email protected]; tel.: + 249912390684
33
34
C.E. Wani et al.
motifs suivants ont été reconnus sur le plumage d’un petit nombre d’oiseaux: à huppe (7.0 pour cent), perdrix (3.5 pour cent), barré (3.5
pour cent), dentelé (3.1 pour cent) et frisé (0.01 pour cent). Le poids corporel moyen des adultes a été de 1650.5 ± 125 g chez les mâles
et de 1187 ± 70 g chez les femelles. Les poules ont atteint la maturité sexuelle aux 6.5 mois et elles ont pondu 13.2 œufs par couvée,
avec 3 à 3.5 couvées par an. Le poids moyen de l’œuf a été de 40.8 ± 1.6 g et le taux d’éclosion, sous conditions naturelles d’incubation, a été de 71.8 pour cent. Compte tenu d’un taux d’éclosion plus bas (57.7 pour cent, P < 0.01) par rapport aux autres écotypes
(Grand Beladi et Betwil), les poules de l’écotype Cou Nu sembleraient avoir un plus faible instinct maternel.
Palabras clave: Sudán, gallinas autóctonas, variación morfológica, características fenotípicas
Submitted 5 September 2013; accepted 11 March 2014
Introduction
Poultry meat and egg production accounted for more than
28 percent of the total animal protein produced worldwide
in 1997 (Tadelle et al (2003)). It is estimated that by the
year 2020, the proportional contribution of poultry to the
total animal protein will rise to 40 percent with the
major increase being in the developing world (Delgado
et al., 1999). About 1.3 billion chickens are found in
Africa producing approximately 1.7 and 2.1 million metric
tonnes of egg and meat respectively of which 80 percent
came from indigenous stock (FAO, 2006). In Sudan,
there are no reliable statistics regarding the contribution
of the conventional poultry sector. However, it was estimated to constitute about 70 percent of the total production
(Suleiman, 1996). Conventional poultry plays an important
role in the socio-economic life of the rural community in
Africa as well as in Sudan; generating incomes and contributing to food security (Gueye, 2002). Moreover, poultry raising is preferred by small holders because of the low
input costs, high adaptability and resistance to diseases
(Wimmers et al., 2000). Information about the flock structure of the Sudanese indigenous chicken is lacking. The
average flock size of local Malawi chickens was reported
to be 12.9 ± 5 birds per household (HH) (Gondwe and
Wollny, 2004). In comparison, large flocks per HH
(26 and 22 birds/HH) were reported for Pakistan and
Senegal native chickens, respectively (Missohou, Dieye
and Talaki, 2002; Javed et al., 2003).
The Sudanese indigenous chicken breed was classified into
three types as described by Desai (1962). The large Beladi
(LB) type is the most common, available in Northern,
Central, Western and Southern Sudan. The birds are of
good size (adult weighing 2½–3.0 Ibs) with a small
crushed comb, plenty of plumage of many colour variations. The bare neck (BN) type is smaller than the LB,
characterized by its featherless neck and many colours in
plumage. The home land of BN type is Southern Sudan
and it was reported to be more resistant to endemic diseases compared with other types (Wimmers et al., 2000).
The Betwil (BT) type is a small dwarf bird, mainly
found in the Nuba Mountains region of South Kordofan
State, Sudan. It has a small compact body (adult bird
weighing 1½–2.0 Ibs) with tiny black legs. Recently in
Sudan, the expansion of modern poultry farming in the
home lands of indigenous chickens threatened their existence. Therefore characterization of these valuable indigenous animal resources using genetic and phenotypic
methods for the purpose of conservation has become very
crucial. However, limited research has been conducted to
characterize the local fowl of Sudan. In the present study,
morphological, productive and reproductive characteristics
of Sudanese indigenous chickens were investigated.
Materials and methods
Study sites
This study was conducted in three different localities in the
Sudan, namely El Dilling, Abu-Neama and Khartoum
North (Bahri). El Dilling locality is situated in South
Kordofan State an area which lies 800 km south west of
Khartoum (Capital of Sudan) at latitude 12°20′N and longitude 29°28′E with rainfall of 500–800 mm. The area of
South Kordofan State is covered by the Nuba Mountains
that occur as a series of isolated ranges covering an area
of about 48 000 km2.
Abu-Naema locality in Sinnar State (Central Sudan) is
an area located 400 km South of Khartoum at latitude
12°44′N, longitude 34°08′E and altitude 445 m above
sea level. Bahri locality is in Khartoum State and includes
a group of villages situated east of the River Nile. The
area is semi desert or poor Savannah. Most of the people
in these three localities are either farmers or livestock
herders.
Questionnaire administration
A structured questionnaire was administered to 120 HHs
from the three localities, 40 for each locality. Data captured
in the questionnaires were on chicken management practices such as flock structure, housing, feeding and marketing. Production data included age at start of laying, clutch
size, hatchability as well as live weights and egg weight. A
total of 900 chickens were characterized through physical
examinations that covered plumage colour and pattern,
skin colour, shank length, comb colour and shape. The
questionnaire and phenotypic characterization were supported by group discussions among villagers.
Characteristics of Sudanese native chicken
Table 1. Flock size in different localities.
Locality/district
Number of HHs
El-Dilling
Abu-Neama
Bahri
Total
40
40
40
120
Mean ± S.E.
Range (birds)
b
15.74 ± 1.3
14.61b ± 1.24
19.87a ± 1.29
16.74
2–36
3–30
6–36
2–36
Means with the same letter are not significantly different (P < 0.05).
HH, hens per household.
Table 2. Flock size and structure of Sudanese indigenous chicken
ecotypes.
Flock by age
LB
(n = 681)
BN
(n = 80)
BT
(n = 139)
Total
(n = 900)
75.7
1:2
45.1
36.7
18.2
8.9
1:1.2
47.9
29.2
22.9
15.4
1:1.2
50
27.4
22.6
100
1:1.8
46.1
34.6
19.3
Plate 1. Mix colour feather LB chicken.
Percentage kept by HH
Cock to hen ratio
Chicks and growers (%)
Hens (%)
Cocks (%)
LB, large Beladi; BN, bare neck; BT, Betwil; HH, hens per household.
Data analysis
Descriptive statistics were used to analyse phenotypic characterization data. The frequencies of phenotypic characteristics among the chicken ecotypes were calculated by
dividing the number of birds having the trait by the total number of the birds examined. Percentages were used to calculate
the prevalence of a trait within each ecotype. The degree of
association between prevalence of the trait and chicken ecotypes was tested using Chi-square at the 95 percent confidence level. SPSS Version 10 statistical package (SPSS
Inc., Chicago, and III, USA) was used for data analysis.
Results
Flock size and structure
The average flock size per HH was 16.74 ranging from 2
to 36 chickens/HH, the average varied significantly (P <
0.05) according to locality. Bahri locality scored the highest number of chickens per HH with an average of 19.87 ±
1.29, followed by El Dilling (15.74 ± 1.3) then AbuNeama locality (14.61 ± 1.24) (Table 1). The data collected
on the Sudanese indigenous chicken flock structure
Figure 1. Chicken house provision.
showed that 46.1 percent were chicks and growers, 34.6
percent hens and 19.3 percent cocks. On the basis of ecotype, the flock was composed of 75.7, 8.8 and 15.5 percent
LB, BN and BT, respectively, and the average cock–hen
ratio was 1:1.8. Most of the HHs tend to keep more
females than males and in all ecotypes surveyed, the chicks
and growers formed the majority of the flocks (Table 2).
Flock management practice
The results revealed that 70 percent of the HHs provide
night shelters to the chicken flocks they are keeping and
it was observed that housing structures were made from
wood or bamboo poles. The non-housed chicken mostly
perched around farmer’s houses (2 percent) or on the
trees near the farmer’s homesteads (3 percent) and laid
eggs in nests placed around the vicinity or in the kitchen
(20 percent) or store (5 percent) (Figure 1). Chicken
were found to be scavengers for a variety of feed stuffs
that included cereals, weeds, seeds, insects, worms and
various herbs. Some farmers usually supplement their
chicken with whole cereals once every morning. In all
the areas surveyed, HHs do not keep records on feed supplement, survival and mortality of chickens. They also do
not vaccinate their chickens nor use veterinary drugs for
treatment or prophylaxis. The majority of the interviewed
HHs (98.2 percent) declared that women were the owners
of chicken with their children assisting them for management (cleaning chicken house, providing supplementary
35
36
C.E. Wani et al.
Plate 2. Crown feather Large beladi chicken. (Source: Faculty of Animal
Production, U of K, Sudan, 2011)
food and water and selling eggs and chickens). However,
men were responsible for decision-making (95 percent),
giving permission for selling of chicken or eggs as well
as home consumption or slaughter for special ceremonies.
Morphological characteristics
Approximately, 37.8 percent of chickens had mixed colour
plumage (Plates 1, 4 and 7), with the highest percentage
Plate 4. Mix colour feather Bare Neck chicken. (Source: Faculty of Animal
Production, U of K, Sudan, 2011)
(40.3 percent) in LB (Plate 1) and the lowest (33.5 percent)
in BN (Plate 4), followed by 16.5 percent light brown
(Plate 3) and 13.1 percent black (Plate 5) plumage.
Feathering did not have a well-defined pattern in the
majority of chicken sampled (89.9 percent). Of the patterns
that could be described was partridge 3.5 percent, barred
3.5 percent, laced 3.1 percent and frizzle feather (Plate
9) 0.01 percent (Table 3). The majority of chickens (91.1
percent) that include most of the BT (Plates 6, 7 and 8)
and LB (Plates 1 and 2) were well covered with feather
over all the body, while 8.9 percent were BN chickens
without feather in the neck region (Plates 3, 4 and 5).
There were four shank colours including black 38.5 percent, white 29.6 percent, yellow 20.4 percent and greenish
11.4 percent. On the other hand, four types of combs were
observed and the most frequent was single comb (48.6 percent), crush or rudimentary comb (42.3 percent), strawberry comb (5.9 percent) and rose comb (3.2 percent).
Plate 3. Brown colour feather Bare Neck chicken. (Source: Faculty of Animal
Production, U of K, Sudan, 2011)
Plate 5. Black colour feather Bare Neck chicken. (Source: Faculty of Animal
Production, U of K, Sudan, 2011)
Characteristics of Sudanese native chicken
Plate 6. Red colour feather Betwill cock. (Source: Faculty of Animal
Production, U of K, Sudan, 2011)
Plate 9. Frizzle Sudanese chicken. (Source: Faculty of Animal Production,
U of K, Sudan, 2011)
The majority of the chickens possessed combs with red
colour (88.0 percent) and the rest had pale red combs
(12.0 percent). The results revealed that Sudanese chicken
had a high frequency of white skin colour (91.4 percent)
while yellow skin colour constituted a small percentage
(8.6 percent). On the other hand, a well grown wattle
was common in the majority of chickens (89.9 percent),
whereas few lacked wattles or had rudimentary wattles
(10.1 percent). However, it was observed that mainly
males had projected wattles. Similarly, 70.7 percent of
the sampled chickens had rudimentary spur while 29.3 percent (mainly males) had large spurs. The ear lobes were
Plate 7. Mix colour feather Betwill cock. (Source: Faculty of Animal
Production, U of K, Sudan, 2011)
Table 3. Plumage pattern and colour characteristics in percent for
different Sudanese indigenous chicken ecotypes.
Morphology
Plumage
colour
Plumage
pattern
Trait
Mix
colour
Black
Red
Brown
Light
brown
White
Grey
Total
Partridge
Barred
Laced
Frizzle
feather
Undefined
Total
Plate 8. Light brown feather betwill. (Source: Faculty of Animal Production,
U of K, Sudan, 2011)
LB
BN
BT
Overall
(n = 681) (n = 80) (n = 139) (n = 900)
40.3
33.5
39.5
37.8
18.5
12.1
13.4
6.3
15.5
12
13
14
5.2
7.3
10.9
29.3
13.1
10.5
12.4
16.5
4.1
5.3
100
3.5
12
0.0
100
0.0
2.6
5.2
100
7.1
6.2
3.5
100
3.5
2.6
1.3
0.4
8.0
4.0
0.0
0.0
5.0
0.0
92.2
100
88.0
100
87.9
100
LB, large Beladi; BN, bare neck; BT, Betwil.
3.5
3.1
0.01
89.9
100
37
38
C.E. Wani et al.
Table 4. Morphological characteristics in percent for different
Sudanese indigenous chicken ecotypes.
Table 5. Reproductive performances of the Sudanese indigenous
chicken ecotypes.
Morphology
Ecotypes
Comb
pattern
Comb colour
Skin colour
Shank colour
Earlobe
colour
Head feather
Wattle
Spur
Trait
LB
BN
BT
Overall
(n = 681) (n = 80) (n = 139) (n = 900)
Crush
32.6
30.8
63.4
42.3
Single
Strawberry
Rose
Red
Pale
White
Yellow
White
Black
Yellow
Greenish
White
55.8
7.0
4.6
91.3
8.7
95.3
4.7
44.2
18.6
23.3
13.9
34.6
60.6
5.8
2.8
87.5
12.5
86.1
13.9
27.8
36.1
30.5
5.6
30.6
29.3
4.9
2.4
85.3
14.7
92.7
7.3
17.1
61.0
07.3
14.6
41.5
48.6
5.9
3.2
88.0
12.0
91.4
8.6
29.7
38.5
20.4
11.4
35.6
Red
Crown
feather
Normal
Presence
Rudimentary
Large
Rudimentary
65.4
12.3
69.4
2.5
58.5
05.8
64.4
6.9
87.7
91.5
8.5
97.5
94.9
5.1
94.2
83.2
16.8
93.1
89.9
10.1
29.3
70.7
Age at maturity (month)
No. of eggs laid/clutch
No. of clutches/year
Inter-clutch interval (month)
No. of eggs incubated
No. of chicks hatched
No. of eggs wasted
Hatchability (%)
No. of chicks weaned
Hatch to wean period (months)
LB
BN
BT
Total
6b
13.2b
3.0
2–3.5
9.87a
7.7a
2.17b
78.34a
5b
2.5
6b
14.0a
3.5
2–3.5
9.9a
5.2b
4.7a
57.7b
2c
2.0
7a
13.0b
3.0
2–3.5
9.27a
7.27a
2.0b
79.2a
6a
3.0
6.3
13.42
3.2
2–3.5
9.68
6.72
2.96
71.8
4.3
2.5
Means with the same letter are not significantly different (P < 0.05).
LB, large Beladi; BN, bare neck; BT, Betwil.
hatchability was 78.34, 57.7 and 79.2 percent in LB, BN
and BT, respectively, with BN being significantly lower
(P < 0.01) than the other two types. Hatch to rearing period
averaged 2.5 months. These results indicated that there
were highly significant differences (P < 0.01) among the
chicks reared by the respective ecotype hens up to weaning, with the LB exhibiting excellent maternal care and
the BN being the poorest in that respect (Table 5).
LB, large Beladi; BN, bare neck; BT, Betwil.
mostly not prominent and they were mainly red (64.4 percent) and white (35.6 percent) in colour. Crown head feather chicken is known in Sudanese colloquial language as
(Abu-Guja). These had a relatively low frequency among
the Sudanese indigenous chickens sampled (6.9 percent),
while the rest had normal feather on the head (Table 4).
The results revealed that the BT chicken ecotype possessed
the shortest shank length (4.5 ± 0.47 cm), showing a significant difference (P < 0.05) when compared with LB (7.9
± 1.0 cm) and BN (7.7 ± 0.93 cm).
Reproductive performance
Results revealed that LB and BN pullets reached sexual
maturity at 6 months of age, whereas BT pullets reached
sexual maturity at 7 months of age (Table 5). Moreover,
most of the hens laid on average 13.42 eggs/hen/clutch,
with BN being (14.0 eggs/hen/clutch) significantly different (P < 0.01) from LB and BT. The majority of hens produced 3–3.2 clutches of eggs per year with the inter-clutch
interval ranging from 2.0 to 3.5 months. On the other hand
Body weight
The average male body weights of LB, BN and BT chicken were 1 720.7 ± 312.0, 1 670.4 ± 175.9 and 1 560.3 ±
155.3 g, respectively, with an overall average of 1 650.3
± 125 g. While females’ corresponding body weights
were 1 350.1 ± 53.5, 1 305.1 ± 98.7 and 906.5 ± 113.6 g
with an overall average of 1 187.6 ± 45 g. Sexual dimorphism was evident among Sudanese chicken types with
males being significantly (P < 0.05) heavier than the
females in the three ecotypes. However, comparisons
among ecotypes revealed that the BT ecotype was significantly lighter (P < 0.05) than the other two ecotypes which
were almost similar in their body weight (Table 6).
Egg characteristics
Average egg weights of LB, BN and BT chickens were
41.3 ± 3.1, 42.4 ± 1.5 and 38.8 ± 5.1 g, respectively. BT
eggs were significantly (P < 0.05) smaller than the eggs
of the other two ecotypes, LB and BN. The majority (95
percent) of the Sudanese chicken lay white eggs and the
Table 6. Average body weights (g) for the mature Sudanese indigenous chicken ecotypes.
Types
No.
Male body weight
Female body weight
LB
BN
BT
Total
374
1 720.7a ± 312.0
1 350.1a ± 53.5
42
1 670.4a ± 175.9
1 305.1a ± 98.7
69
1 560.3b ± 155.3
906.5b ± 113.6
485
1 650.5 ± 125
1 187.6 ± 45
Means with the same letter are not significantly different (P > 0.05).
LB, large Beladi; BN, bare neck; BT, Betwil.
Characteristics of Sudanese native chicken
Table 7. Egg characteristics of the Sudanese indigenous chicken ecotypes.
Trait
Egg weight (g)
Egg shell colour (%)
Yolk colour (%)
White
Light brown
Yellow
White
LB (n = 60)
BN (n = 60)
BT (n = 60)
Total (n = 180)
a
a
b
40.8 ± 1.6
95
5
100
0.0
41.3 ± 3.1
95.8
4.6
100
0.0
42.4 ± 1.5
93.1
6.9
100
0.0
38.8 ± 5.1
96.3
4.7
100
0.0
LB, BN, BT, large Beladi, bare neck and Betwil, respectively.
Means with the same letter are not significantly difference (P > 0.05).
rest 5 percent lay light brown eggs. Yolk was 100 percent
yellow in all the ecotypes (Table 7).
Discussion
The flock structure of Sudanese indigenous chicken observed in this study was 46.1 percent chicks and growers,
34.8 percent hens and 19.3 percent cocks. Obviously, the
HHs tend to keep females more than males. Males are
usually sold and are slaughtered in social and traditional
functions. The average flock size of Sudanese indigenous
chickens was 16.74 birds/HH which was higher than that
of Malawian indigenous chicken flock size of 12.9 birds/
HH (Gondwe and Wollny, 2004), but lower than that of
Pakistan indigenous chickens which amounted to 26
birds/HH (Javed et al., 2003) and Senegal indigenous
chickens, 22 birds/HHs (Missohou, Dieye and Talaki,
2002). About 91 percent of village chicken in Sudan are
kept by women suggesting gender bias in raising chicken
at the village level and that they are a source of women
empowerment. This finding is in agreement with that of
Kitalyi (1998) and McAinsh et al. (2004). In the surveyed
areas, chicken are mainly used for HH consumption, as
well as for the purpose of generating income. This observation is in agreement with the conclusion drawn by
Gueye (2002).
The observation that all chickens scavenged for a variety
of feeds is similar to the results reported by Maphosa
et al. (2004) and Muchadeyi et al. (2004). However, this
method of feeding does not optimize the utilization of
the limited feed resources since younger and weaker
birds have to compete with mature birds and other scavenging farm animals. This could be one of the reasons for the
observed reduced number of weaned chicks coupled with
other factors such as predators and the lack of proper
housing structures for the birds. Seventy percent of the
HHs construct night shelters only and the non-housed
birds are either perched on trees or elsewhere around
the farmer’s homestead. No records were kept for production activities and disease management, which makes
the village chicken more vulnerable to diseases and
predators.
The inheritance of qualitative traits, such as plumage colour, plumage pattern, skin colour, egg colour, shank length
and comb type, is controlled by a single/few pairs of major
genes. Such traits usually influence the preferences of consumers. In the present study, we found a high variability in
plumage colour within and between the three identified
Sudanese indigenous chicken ecotypes; these variable colourations provide aid for camouflage against predators particularly in the rural areas. However, with the modern
trends of poultry production the importance of plumage
colour goes beyond the need for camouflage. White feathering has become a desirable characteristic in poultry
breeding particularly in broilers because it eliminates
dark feather pigment deposits in the skin and is consequently preferred for the clean appearance of carcass and
cut-up parts. Some important alleles such as frizzle and
BN genes which are genetically conserved for their special
utility in tropical environments were found to exist among
the Sudanese indigenous chickens even though they are at
low frequencies. There was a high diversity in colour and
type of combs and earlobes observed between and within
the Sudanese indigenous ecotypes. The most frequent
comb type was single comb, it was more common
among LB and BN chickens, followed by crush comb
type which was more common among BT chickens.
According to Nesheim, Austic and Card (1979), the size
and colours of combs and wattles are associated with
gonad development and secretion of sex hormones.
Large wattle and long legs are important morphological
traits that allow better heat dissipation in the hot tropical
environment. On the other hand, the short tiny legs and
the crush combs of BT chickens may be important for
adaptation to the mountainous nature of their home land
in the Nuba region of South Kordofan State.
Generally, the Sudanese indigenous chickens are characterized by small body size. However, the sub normal
body size of the BT chicken is an indication to the
presence of dwarfism, which is due to a sex-linked recessive gene that tends to reduce body and egg size. This
trait is promising in the sense that feed requirements for
maintenance are lowered and thereby the efficiency of
feed utilization is increased (Bordas and Merat, 1984;
Merat, 1990).
The age at the start of laying for Sudanese indigenous
chicken varied from 180 to 210 days, it is higher than
that of Egyptian indigenous chicken (Hanafi and Labban,
1984) and higher than that of the modern strains, such as
39
40
C.E. Wani et al.
Rhode Island Red and Rhode Island White (Simeonovova
et al., 1989). This late age of sexual maturity may be
due to variation in management practices, environmental
conditions and genetic potential (El-Zubeir, Salih and
El-Amin, 1991; Aganga et al., 2000). The number of
eggs per clutch in the present study is very close to that
reported for native chickens from other areas such as
South Darfur region (Beladi chicken) (9–13 eggs/clutch),
Morocco (12 eggs/clutch) and Bangladesh (10–16 eggs/
clutch) (Wilson, 1979; Sazzad, 1986; Benabdeljelil and
Arfaoui, 2001). However, the low rate of egg production
in the indigenous chickens may be associated in part
with the behaviour of broodiness. Hatchability in BN
chicken was found to be lower than that of the other ecotypes, and this might possibly be due to the presence of the
Na allele in the genotype of the embryos. Horst (1980)
mentioned that there was a 13 percent reduction of embryonic survival associated with the Na allele. In addition, it
might also be due to poor hatchability. BN hens also
seem to have low numbers of weaned chicks, although it
was proved by Horst (1980) that there was no difference
in post embryonic mortality of naked neck chicken compared with normally feathered birds at different ages. All
these aspects of poor performance of BN chickens classify
them as poor mothers. The hatchability of the indigenous
Sudanese chicken under natural incubation was moderately
low when compared with that of White and Brown
Hisex eggs hatched under artificial incubation in Sudan
(El-Agraa, 1988).
In general, a rural-oriented breeding strategy to produce a
dual purpose chicken seems to be vital in improving the
productive and reproductive potential of the indigenous
chickens for the benefit of rural communities. This could
be achieved through implementing a selective breeding
programme for several generations, to be followed by
limited cross-breeding involving improved tropical or
exotic breeds that proved to be adaptive to tropical
environmental conditions. The newly improved genotypes
can be tested, propagated and disseminated to rural HHs
accompanied with concomitant withdrawal of the existing
unimproved flocks. This strategy must be supported by
conducting an active extension programme to increase
the awareness of HH members of the importance of raising
these genetically improved flocks under relatively improved management.
Conclusions
The Sudanese indigenous chicken ecotypes exhibited wide
phenotypic variation. Characterization information is
important for implementing conservation and improvement programmes for sustainable utilization. Estimates of
production performance obtained from the extensive
rural systems were significantly lower than those obtained
under relatively improved managerial conditions. This
necessitates exerting efforts to improve management
systems, particularly feeding and health care in rural
areas. Several qualitative traits of economic value were
reported for the Sudanese indigenous chicken populations
which can be helpful for preservation and future commercial exploitation. The field survey in this study revealed
that the local chickens of Sudan are available in abundance
in their homelands with the exception of the BT ecotype in
the Nuba Mountains which seemed to be endangered as a
result of conflicts in the region and the ensuing displacement of communities. This ecotype requires special consideration for propagation and conservation.
Acknowledgements
Authors would like to acknowledge the financial support
from the University of Bahr Elgazal, South Sudan and
the Ministry of Higher Education and Scientific
Research, Sudan. Thanks are also extended to the staff,
technicians and postgraduate students of the Faculty of
Animal Production, University of Khartoum and Faculty
of Veterinary Science, University of Bahr Elgazal who
offered us technical assistance to conduct this research.
References
Aganga, A.A., Omphile, U.J., Malope, P., Chabanga, C.H. &
Motsamai, L.G. 2000. Traditional poultry production and commercial broiler alternative for small-holder farmer in Botswana. Livest.
Res. Rural Dev., 12(4): 1–8.
Benabdeljelil, K. & Arfaoui, T. 2001. Characterization of Beladi chicken and turkey in rural poultry flocks of Morocco: current state and
future outlook. Anim. Genet. Resour. Inf., 31: 87–95.
Bordas, A. & Merat, P. 1984. Correlated responses in a selection experiment on residual feed intake of adult Rhode-Island Red cocks and
hens. Ann. Agric. Fenn., 23: 233–237.
Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courbois, C.
1999. Livestock to 2020: the next revolution. Food Agriculture and
the Environment Discussion Paper 28. Rome, FAO.
Desai, D.K. 1962. The status importance and development of poultry
keeping in the Sudan. Sudan J. Vet. Sci. Anim. Husb., 3: 140–143.
El-Agraa, S.M. 1988. Fertility and hatchability of Hisex brown parent
layers under control environment in Sudan. In Symposium of Exotic
White and Brown Breeds Under Sudan Condition, League of Arab
States, Arab Organization for Agricultural Development (AOAD),
Khartoum, 16–17 October 1988, pp. 72–77.
El-Zubeir, E.A., Salih, M.E. & El-Amin, H. 1991. Early reproductive
characteristics for Leghorn pullets reared on diet containing sorghum
gluten feed. Sudan J. Anim. Prod., 4: 45–51.
FAO. 2006. Statistical year book 2005–2006. Vol. 2. Rome, FAO.
Gondwe, T.N. & Wollny, C.B.A. 2004. With Globalization will low
input production system prevail in Malawi? The case study of rural
chicken. In Book of Abstract of the 55th Annual Meeting of the
European Association for Animal Production. 5–9 September 2004,
Bled, Slovenia. Wageningen, Wageningen Academic Publishers,
The Netherlands.
Characteristics of Sudanese native chicken
Gueye, F.H.E. 2002. Employment and income generation through family
poultry in low income food-deficit countries. World Poult. Sci. J., 58:
541–555.
Hanafi, M.S. & El-Labban, A.F.M. 1984. On estimating genetic parameters of partial egg production records and other related traits in pullets of Dokki-4 chicken produced from triallel mating. Egypt. J. Anim.
Prod., 24: 51–67.
Horst, P. 1980. Genetically perspectives for poultry breeding on
improved productive ability to tropical conditions. In 2nd World
Congress of Genetics Applied to Animal Production, Vol. 8,
pp. 887–892.
Missohou, M., Dieye, P.N. & Talaki, E. 2002. Rural poultry production
and productivity southern Senegal. Livest. Res. Rural Dev., 14(2): 1–8.
Muchadeyi, F.C., Sibanda, S., Kusina, N.T., Kusina, J. & Makuza,
S.M. 2004. The village chicken production system in Rushinga
District of Zimbabwe. Livest. Res. Rural Dev., 16(6): 1–12.
Nesheim, C.M., Austic, E.R. & Card, E.L. 1979. Poultry production.
12th edn, Philadelphia, PA, Lea & Febiger, pp. 58–92.
Sazzad, M.H. 1986. Reproductive performance of Desi (indigenous) hens
under scavenging and intensive system of rearing. In Proceedings of
the First Annual Livestock Research Workshop. Savar, Dhaka,
Bangladesh, Bangladesh Livestock Research Institute, pp. 63–67.
Javed, K., Farooq, M., Mian, M.A., Durrani, F.R. and Mussawar, S.
2003. Flock size and egg production performance of backyard chicken
reared by rural women in Peshawar, Pakistan. Livest. Res. Dev.,
15(11).
Simeonovova, J., Ingr, I., Jerabek, S., Wnterova, J. & Dvorakova, V.
1989. An evaluation of eggs laid by Rhode Island Red (RIR) and
Rhode Island White (RIW) hens. Poult. Abstr., 16(7): 203.
Kitalyi, A.J. 1998. Village chicken production system in rural Africa:
Household security and gender issues. Animal Production and
Health Paper 142. Rome, FAO.
Suleiman, M.E.F. 1996. Egg characteristics, genetic and phenotypic
relationships of body weight at various ages in indigenous chicken.
University of Khartoum (MSc thesis).
McAinsh, C.V., Kusina, J., Madsen, J. & Nyoni, O. 2004.
Traditional chicken production in Zimbabwe. World Poult. Sci. J.,
60: 233–246.
Tadelle, D., Millon, T., Alemu, Y. & Peters, K. J. 2003. Village
Chicken Production System in Ethiopia: 2. Use Patterns and
Performance valuation and Chicken Products and socio-economic
Functions of Chickens. Livestock Research for rural.
Maphosa, T., Kusina, J., Makuz, N.T.S. & Sibanda, S. 2004. A monitoring study comparing production of village chickens between communal (Nharira) and small-scale commercial (Lancashire) farming
areas in Zimbabwe. Livest. Res. Rural Dev., 16(7).
Merat, P. 1990. Pleotropic and associated effects of major genes. In
R.D. Crawford, ed. Poultry breeding and genetics, pp. 429–467.
Amsterdam, Elsevier.
Wilson, R.T. 1979. Studies on the livestock of Southern Darfur, Sudan
VII. Production of poultry under simulated traditional conditions.
Trop. Anim. Health Prod., 11: 143–140.
Wimmers, K., Ponsuksili, S., Hardge, T., Valle-Zarate, A., Mathur, P.
K. & Horst, P. 2000. Genetic distinctness of Africa, Asian and South
American Local chickens. Anim. Genet., 31: 159–165.
41
Animal Genetic Resources, 2014, 54, 43–51. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000113
Phenotypic characterization of indigenous chicken
ecotypes in the north Gondar zone, Ethiopia
Addis Getu1, Kefyalew Alemayehu2 and Zewdu Wuletaw3
1
Department of Animal Production and Technology, Faculty of Agriculture, Woldia University; 2Department of Animal Production
and Technology, College of Agriculture and Environmental Sciences, Bahir Dar University; 3Sustainable Land Management
Organization (SLM), Bahir Dar, Ethiopia
Summary
An exploratory field survey was conducted in north Gondar zone, Ethiopia to identify and characterize the local chicken ecotypes.
Seven qualitative and 12 quantitative traits from 450 chickens were considered. Chicken ecotypes such as Naked neck, Gasgie and
Gugut from Quara, Alefa and Tache Armacheho districts were identified, respectively. Morphometric measurements indicated that
the body weight and body length of the Naked neck and the Gasgie ecotypes were significantly (P < 0.01) higher than the Gugut ecotypes except in shank circumstances (circumference). Sex and ecotypes were significant (P < 0.01) sources of variation for both body
weights and linear body measurements. The relationship of body weight with other body measurements for all ecotypes in both sexes
was highly significant (r = 0.67, P < 0.01). Some traits like the spur length (r = 0.64, P < 0.01) for males and (r = 0.59, P < 0.01) for
females of the Naked neck chickens are significantly correlated with body weight. Therefore, highly correlated traits are the basic indicators for the estimation of the continuous prediction of body weight of chicken. Identification and characterization of new genetic
resources should be employed routinely to validate and investigate the resources in the country.
Keywords: chicken ecotypes, (Naked Neck), Gasgie, Gugut, north Gondar zone
Résumé
En la zona Norte del distrito de Gondar (Etiopía), se llevó a cabo un estudio exploratorio de campo con el que se pretendía identificar y
caracterizar los ecotipos locales de gallina. Se consideraron siete parámetros cualitativos y doce cuantitativos en una muestra de 450 gallinas. Se identificaron ecotipos de gallina tales como Cuello Pelado, Gasgie y Gugut en los distritos de Quara, Alefa y Tache Armacheho,
respectivamente. Las medidas morfométricas indicaron que el peso y la longitud corporal de los ecotipos Cuello Pelado y Gasgie eran
significativamente (P < 0.01) mayores que los del ecotipo Gugut, con la excepción de la circunferencia de los tarsos. El sexo y el ecotipo
resultaron ser fuentes significativas (P < 0.01) de variación, tanto para el peso corporal como para las medidas lineales del cuerpo. Para
todos los ecotipos y en ambos sexos, el peso corporal estuvo relacionado, de manera muy significativa (r = 0.67, P < 0.01), con el resto de
medidas corporales. En las gallinas de Cuello Pelado, algunos rasgos, como la longitud de los espolones (r = 0.64, P < 0.01 en los machos
y r = 0.59, P < 0.01 en las hembras), presentaron una correlación significativa con el peso corporal. Por tanto, los parámetros altamente
correlacionados son indicadores básicos para estimar la evolución del peso corporal de las gallinas. La identificación y caracterización de
nuevos recursos genéticos debería realizarse de manera rutinaria para validar y conocer los recursos presentes en el país.
Mots-clés: ecotipos de gallina, Cuello Pelado, Gasgie, Gugut, Norte del distrito de Gondar
Resumen
Dans la zone Nord du district de Gondar (Éthiopie), une étude d’exploration a été menée sur le terrain pour identifier et caractériser les
écotypes locaux de poule. Sept traits qualitatifs et douze quantitatifs ont été évalués sur un total de 450 poules. Des écotypes tels que
Cou Nu, Gasgie et Gugut ont été identifiés dans les districts de Quara, Alefa et Tache Armacheho, respectivement. Les mesures
morphométriques ont indiqué que le poids corporel et la longueur du corps étaient significativement (P < 0.01) plus élevés chez
les écotypes Cou Nu et Gasgie que chez l’écotype Gugut, exception faite du tour des tarses. Le sexe et l’écotype ont été des sources
de variation significatives (P < 0.01) aussi bien pour le poids corporel que pour les mesures linéaires du corps. Pour tous les écotypes et
chez les deux sexes, des corrélations hautement significatives (r = 0.67, P < 0.01) ont été mises en évidence entre le poids du corps et
les autres mesures corporelles. Chez l’écotype Cou Nu, certains traits, tels que la longueur des ergots, ont été significativement corrélés
avec le poids corporel, tant pour les mâles (r = 0.64, P < 0.01) que pour les femelles (r = 0.59, P < 0.01). Ainsi, les traits hautement
corrélés sont des indicateurs de base pour estimer l’évolution du poids corporel des poules. L’identification et la caractérisation de nouvelles ressources génétiques devraient se faire systématiquement pour valider et connaître les ressources présentes dans le pays.
Palabras clave: écotypes de poule, Cou Nu, Gasgie, Gugut, Nord du district de Gondar
Submitted 6 September 2013; accepted 27 February 2014
Correspondence to: Addis Getu, Department of Animal Production and Technology,
Faculty of Agriculture, Woldia University. email: [email protected]
43
44
A. Getu et al.
Introduction
Ethiopia takes the lead in livestock population and is a gateway of domestic animal migration from Asia to Africa, thus
rolled for widespread distribution and huge population size
in the country (Halima, 2007). Poultry contribute socioeconomic roles in food (security), generation of additional
cash and income, etc. (Kondombo, 2005; Salam, 2005).
Therefore, almost all rural and many peri-urban families
keep a small flock of scavenging chickens (Jens et al.,
2004). In Ethiopia, the population of chickens is estimated
at about 49.3 million of which 97.3, 0.38 and 2.32 percent
are indigenous, hybrid and exotic breeds, respectively
(CSA, 2011). Indigenous chickens have a good potential
to adapt in different agro-ecological conditions throughout
their habitual management system (Tadelle and Alemu,
1997). Local chickens are non-descriptive type and show
a large variation, which might be attributed to their widespread distribution (Tadelle, Alemu and Peters, 2003;
Halima, 2007; Fisseha, Abera and Tadelle, 2010).
Indigenous chickens are underestimated because of their
poor performance. To this effect they have been neglected
and little attention has been given to them by researchers,
development workers and policy-makers (Tadelle, 2003).
Some researchers (Tadelle, 2003; Halima, 2007; Dana
et al., 2009) have made phenotypic and genetic characterization of indigenous chicken in some parts of Ethiopia.
Poultry production and market system were studied in
Southern Ethiopia by Mekonnen (2007); characterization
of poultry productivity and market system by Bogale
(2008) and genetic parameters on Horro chickens for
weights and egg production traits was conducted by
Dana, van der Waaji and Johan (2010). However, comprehensive genetic resources identification in the remote
districts of Northern Gondar zone in general and identification, and characterization of new local chicken ecotypes in
particular were not studied. Therefore, the objective of this
study was to identify and characterize the new local chicken ecotypes in the north Gondar zone of Ethiopia.
Materials and methods
Description of the study area
The study was conducted in three districts of the north
Gondar zone (Quara, Alefa and Tache Armacheho) of
Ethiopia (Figure 1). The altitude of the north Gondar
zone ranges from 528 to 4620 m mean sea level (MSL)
with annual rainfall of 880–1772 mm and temperature ranging from 44.5 to –10 °C. Quara district is located in the
western part of the north Gondar zone between 11°47′
and 12°21N latitude and between 35°16′ and 35°47′E longitude. It is 1123 km from Addis Ababa and 324 km from
Gondar town and at an altitude between 528 and 654 m
above MSL. The annual temperature ranges from 25 to
44 °C with annual rainfall range of 600–1000 mm (CSA,
2011). Alefa district is located in the southwest of
Gondar town and 909 km from Addis Ababa with the temperature of 25–30 °C and annual rainfall of 900–1400 mm.
Armacheho district is located 814 km northwest of Addis
Ababa and 65 km northwest of Gondar town at an altitude
of 600–2000 m above MSL with the temperature of 25–42
°C and annual rainfall of 800–1800 mm (CSA, 2011).
Data collection methods
In addition to exploratory field survey, semi-structured questionnaires and participatory rural appraisal, focus group
discussion, field observation, trait characterization and
body measurements were employed to derive the required
information. For the morphological and biometrical measurements, all matured chicken ecotypes n = 450, 150
males and 300 females, were measured. Qualitative traits
such as plumage size, body shape, comb type, shank colour,
skin colour, head shape and eye colour were documented
through direct visualization. Whereas measurable traits
like body weight (kg), body length, wing span, shank length
and circumference, wattle length and width, keel length,
spur length, beak length, comb length and width were measured using a spring balance and a measuring tape in cm,
measuring to the nearest two digits (FAO, 2011).
Data management and statistical technique
Data from personal observation and focus group discussions
were summarized and synthesized by researchers, whereas,
the other quantitative and qualitative data were analysed
using SAS software version 9, 2002. Particularly, general
linear model was used to analyse quantitative traits (SAS,
2002). Tukey’s comparison test was used to compare the
sub factor brought significant difference. The model was
used for body weight and linear body measurement of chickens’ ecotypes by considering the fixed effects of sex and
ecotype.
Yijk = m + Ai + Dj + ADij + eijk ,
(1)
where Yijk is the observed body weight and linear body
measurement of chickens; μ is the overall mean; Ai is the
fixed effect of ith eco-type (i = 1, 2 and 3); Dj is the effect
of kth sex ( j = male and i = female); ADji is the fixed effect
interaction of ith eco-type with jth sex; and Eijk is the random
residual error.
Multiple liner regression analysis was performed to predict
the body weight of matured cocks and hens using 11 linear
body measurements (independent variables) in each ecotype
Yj = b0 + b1 X1 + b2 X2 + b3 X3 + b4 X4 + b5 X5 + b6 X6
+ b7 X7 + b8 X8 + b9 X9 + b10 X10 + b11 X11 + eijk ,
(2)
where Yj is the dependent variable or predicted mean body
weight of chickens; β0 is the intercept; X1, X2, X3, X4, X5,
Chicken ecotypes in Ethiopia
Figure 1. Map of the study area (Amhara region), and the three districts where the ecotypes identified are indicated in rectangular shape.
X6, X7, X8, X9, X10 and X11 are the independent variables
for wing span, body length, shank length, shank circumference, keel length, spur length, beak length, wattle length,
wattle width, comb length and comb width, respectively.
β1, β2, β3, β4, β5, β6, β7, β8, β9, β10 and β11 are partial
regression coefficients of the variables X1, X2, X3, X4, X5,
X6, X7, X8, X9, X10 and X11 and eijk is the residual error.
Results
Naked neck chicken
Naked neck chickens are found in a very hot ecological
zone of the Quara district (Figure 2) and are maintained
under scavenging system with small feed supplementation
and sheltered outside the family house (perch). These
chickens having predominantly white (28 percent) and
red (20 percent) body plumage colours. However, they
have heterogeneity and diverse additional plumage colour
like red-brownish (0.7 percent), white with red tips (5.3
percent), black with white tips (10.7 percent), black (7.3
percent), multicolour (5.3 percent) and white black red
tips (13.3 percent). About 53 percent of the birds have
white skin colour, 66 percent have single combs, 34 percent have rose combs and 70 percent have plain headed
facial appearance (Table 1 and Figure 2). The other peculiar features of this ecotype include aggressive behaviour,
higher feed intake, good productive and reproductive
performance, tolerance to common diseases and higher
dressing percentage.
Gasgie chicken ecotype
Gasgie chicken ecotype is distributed in the Alefa district
and (Figure 3) most households keep this chicken sheltered
in the family house during the night, while they spend the
day scavenging in the backyards supplemented with grains
and food leftovers. The chicken have a predominantly red
(32 percent) body plumage colour though have other
diverse plumage colours such as white (9.3 percent), redbrownish (9 percent), white with red tips (9 percent),
black with white tips (9 percent), black (5.3 percent),
multicolour (4 percent) and white black red tips (1.3 percent). About 60.7 percent of the ecotypes are rose combed
(Figure 3 and Table 1). Long neck (especially males), short
45
46
A. Getu et al.
Figure 2. Typical Naked neck male (right) and female (left) chicken ecotypes.
Table 1. Description of dominant body plumage colours, head shape, comb type and skin colour of newly reported indigenous chicken
ecotypes (N = 450).
Character
Plumage
colours
Head shape
Comb type
Skin colour
Eye colour
Body shape
Shank colour
Attributes
White black and redns tips (Kiy Tikur
Teterma)
Black with white tips (Tikur Teterma)ns
White with red tips (Kiy Teterma)ns
Grayish mixture (Gebsema)***
Red-brownish (Kokima)**
Multicolour (Ambesa)*
Black (Tikur)***
White (Nech)***
Red (Kiy)***
Plain (Ebaberas)ns
Crest (Gutya)ns
Doublex (V-shape)*
Single***
Rose***
Peans
Yellow***
White***
Black*
Green*
Red*
Orangens
Blackns
Purl***
Red***
Triangular***
Blocky***
Wedge***
Yellow***
White***
Blackns
Greenns
Red*
P-value
Ecotypes by proportions and their associations
Naked neck =
150
Gasgie
N = 150
(0.67) 1.3
2
0.22
(10.70)
(5.33)
(10.70)b
(13.30)a
(5.33)a,b
(7.33)b
(28.00)a
(18.70)b
(70.00)a
(30.00)
NA
(66.00)a
(34.00)b
NA
(66.00)a
(23.30)b
(4.00)a,b
(6.00)a
(0.67)a
(0.67)a
(6.00)a
(1.33)b
(92)b
(40.7)a
(58.00)a
(1.30)b
(68.00)b
(16.70)a,b
(7.33)a
(7.33)
(0.67)b
(1.34)
(8.67)
(8.67)
(22.00)a
(8.67)a
(4.00)b
(5.33)b
(9.33)b
(32.00)a
(65.33)a
(34.67)
(9.33)b
(27.33)b
(60.70)a
(2.67)a
(24.70)b
(66.00)a
(0.67)a
NA
(8.67)b
(4.67)a
NA
NA
(95.30)a
(15.30)b
(31.30)b
(5.33)b
(66.00)a,b
(14.00)b
(9.30)a
(10.00)
(0.67)b
Gugut
N = 150
Overall (%)
(2.67)
(6.00) 0.22
(8.00)
(10.00)b
(2.00)b
(10.00)a
(22.00)a
(9.33)b
(30.00)a
(76.00)a
(24.00)
(24.00)a
(30.00)b
(38.70)b
(7.33)a
(67.30)a
(20.70)b
(8.00)b
(1.33)b
(3.33)a
(4.67)a
(3.33)a
(3.33)a
(88.70)b
(30.70)a
(49.30)a
(20.00)a
(51.30)a
(26.00)a
(8.00)a
(8.00)
(5.33)a
NA, not available and different superscripts within a row indicate significantly different means (P < 0.05).
Overall
N = 450
Cramer’s V
1.56
0.13
0.323
8.44
7.33
14.20
8.00
6.44
11.50
15.60
26.90
70.40
29.60
32.70
38.90
44.40
3.33
53.10
42.90
4.22
1.56
4.22
3.33
3.11
1.56
92
29.00
46.20
24.90
62.00
19.10
8.00
8.22
2.67
0.13
0.11
0.33
0.34
0.22
0.52
0.66
0.60
0.10
0.08
0.21
0.42
0.33
0.03
0.55
0.75
0.20
0.18
0.09
0.10
0.16
0.13
0.42
0.32
0.36
0.32
0.19
0.20
0.07
0.03
0.17
0.286
0.465
0.005
0.003
0.037
0.001
0.001
0.001
0.19
0.23
0.024
0.001
0.001
0.045
0.001
0.001
0.001
0.004
0.05
0.088
0.058
0.021
0.001
0.001
0.001
0.001
0.002
0.001
0.285
0.814
0.012
Chicken ecotypes in Ethiopia
Figure 3. Typical Gasgie male (left) and female (right) chicken types.
weaning time, docile and good productive and reproductive performances are the unique features of this ecotype.
Gugut chicken ecotype
Gugut chickens (Figure 4) are distributed in the Debresina
area of Tache Armacheho district. Most of the households
keeping these chickens provide separate hanging shelters
during night time to protect them from hyperthermia.
Dense feathers from the neck, absence of wattle in female,
Figure 4. Typical Gugut male and female chicken types.
low performance, short beak length, ability to resist endemic
disease, small body size, passive and easily exposed to predators are the unique behaviours of the ecotype. These
chicken are dominated by white (22 percent) body plumage
colour and other diverse plumage colour such as multicolour
(10 percent), red (9.3 percent), black (9.3 percent), white
with red tips (8 percent), red-brownish (2 percent), black
with white tips (2 percent) and white black red tips (2 percent). The investigated chicken ecotype showed additional
heterogeneity in quantitative traits (Table 1).
47
48
A. Getu et al.
The results indicated that the dominant average plumage
colour of newly identified average three local chicken ecotypes were 26.90 percent red followed by 15.60 percent
white and 14.20 percent greyish mixture. About 44.4 percent are rose comb type, 42.90 percent have white skin colour, 46.20 percent have blocky body shape and 70.40
percent are plain headed and are the most dominant
observable traits of Gugut chickens ecotypes. About 34,
60.7 and 38.7 percent of chicken from Naked neck,
Gasgie and Gugut ecotype, respectively, were characterized by rose comb type. The proportion of plain head
shape in chicken populations of Naked neck, Gasgie and
Gugut was comparable with 70, 65.3 and 76 percent,
respectively (Table 1 and Figure 3). This variation could
be adaptation fitness to their environment (Dana, 2011).
Quantitative traits of (Naked neck, Gasgie
and Gugut) chickens
A total of 450 adult hens and cocks with 12 measurable
parameters such as wing span (WS), shank length (SL),
shank circumference (SC), body length (BL), comb length
(CL), comb width (CW), wattle length (WL), wattle width
(WW), beak length (bl), spur length (sl), keel length (KL)
(cm) and body weight (Wt) (kg) for different sexes were
considered. The least-squares mean of body weight and
body measurements of Naked neck, Gasgie and Gugut
chickens with Honestead significant difference comparison
tests are presented in Table 2. The overall least-squares
mean of wing span, shank length, shank circumference,
body length, comb length, comb width, wattle length,
wattle width, beak length, spur length, keel length (in cm)
and body weight (in kg) were (37.04 ± 0.13), (7.79 ± 0.15),
(3.78 ± 0.07), (35.79 ± 0.09), (2.76 ± 0.09), (1.68 ± 0.04),
(1.76 ± 0.06), (1.51 ± 0.06), (2.03 ± 0.02), (0.18 ± 0.02),
(8.24 ± 0.09) and (1.46 ± 0.01), respectively.
Overall sex effect body weight mean squares of male and
female chickens were 1.63 ± 0.03 and 1.37 ± 0.02 kg,
respectively. Naked neck chicken male body weight
(1.78 ± 0.31 kg) is significantly (P < 0.01) higher than the
Gugut male chicken 1.40 ± 0.04 kg but not body weight
of Gasgie 1.71 ± 0.05 kg. Further, the Naked neck cocks
and hens were found to have significantly taller shank
length of 9.61 ± 1.03 and 9.043 ± 1.10 (cm), respectively,
than the Gugut. However, shank circumference of Gugut
cocks and hens are inversely superior in shank circumferences than Naked neck and Gasgie male and female
Table 2. Comparison (LSM ± SE) of body weight (kg) and linear body measurements (cm) and extraction effect of independent variables
of the three indigenous chickens.
Parameters
Sex
Naked neck
Gasgie
Gugut type
Sample size
M
50
50
F
100
Effects and levels
WS
SL
BL
CL
CW
WL
WW
bl
sl
SC
KL
Wt
LSM ± SE
M
F
M
F
M
F
M
F
M
F
M
F
M
F
M
F
M
F
M
F
M
F
M
F
38.70 ± 2.6a
37.17 ± 2.36a
9.61 ± 1.03a
9.043 ± 1.10a
38.12 ± 2.14a
36.90 ± 2.61a
3.25 ± 0.87a
2.99 ± 3.68a
2.11 ± 0.82a
1.78 ± 0.85a
2.76 ± 0.69a
2.44 ± 0.80a
2.76 ± 1.01a
2.34 ± 1.03a
2.42 ± 0.45a
2.28 ± 0.60a
0.66 ± 0.8a
0.09 ± 0.32a
3.58 ± 0.50b
3.31 ± 0.59a
9.11 ± 1.02a
8.56 ± 0.87b
1.78 ± 0.31a
1.52 ± 0.26a
CV%
P-value
Overall mean
Grand mean
50
150
450
100
100
300
LSM ± SE
LSM ± SE
LSM ± SE
39.61 ± 0.42a
37.36 ± 0.26a
7.25 ± 0.10b
6.80 ± 0.06c
36.10 ± 0.34a
34.60 ± 0.26b
3.16 ± 0.12a
2.28 ± 0.07b
1.93 ± 0.13a
1.07 ± 0.06b
2.70 ± 0.14a
1.84 ± 0.04b
2.32 ± 0.16b
1.19 ± 0.05b
2.00 ± 0.02b
1.93 ± 0.0b
0.49 ± 0.10a
0.08 ± 0.02a
3.25 ± 0.07b
3.11 ± 0.03b
9.55 ± 0.15a
9.27 ± 0.08a
1.71 ± 0.05a
1.36 ± 0.03b
35.97 ± 0.23b
35.03 ± 0.18b
7.37 ± 0.73b
7.08 ± 0.05b
35.2 ± 0.09b
34.37 ± 0.21b
3.08 ± 0.09a
2.40 ± 0.06a,b
2.19 ± 0.05a
1.59 ± 0.06a
1.83 ± 0.23b
NA
1.45 ± 0.09c
NA
1.85 ± 0.10c
1.78 ± 0.02c
0.17 ± 0.09b
NA
3.85 ± 0.03a
3.38 ± 0.07a
7.62 ± 0.23b
7.98 ± 0.07c
1.40 ± 0.04b
1.23 ± 0.02c
6.51
6.19
10.05
9.10
9.49
6.93
26.24
35.61
38.36
45.55
32.19
37.23
44.53
56.29
14.12
18.67
46.35
48.83
20.78
17.23
16.81
9.08
18.15
17.50
0.0001**
0.0001**
0.0001**
0.0001**
0.0002**
0.0001**
0.594ns
0.0482*
0.255ns
0.0001**
0.0001**
0.0001**
0.0001**
0.0001**
0.0001**
0.0001**
0.0009**
0.0172*
0.0001**
0.0027**
0.0001**
0.0001**
0.0001**
0.0001**
38.09 ± 0.24a
36.52 ± 0.14b
8.08 ± 0.11a
7.64 ± 0.07b
36.77 ± 03a
35.29 ± 0.16b
3.16 ± 0.07a
2.55 ± 0.13b
2.08 ± 0.07a
1.48 ± 0.04b
2.43 ± 0.07a
1.42 ± 0.07b
2.17 ± 0.09a
1.18 ± 0.07b
2.09 ± 0.03a
1.99 ± 0.02b
0.44 ± 0.05a
0.011 ± 0.18a
4.81 ± 0.18a
3.27 ± 0.03b
7.51 ± 0.24b
8.60 ± 0.05a
1.63 ± 0.03a
1.37 ± 0.02b
LSM ± SE
37.04 ± .13
7.79 ± 0.15
35.79 ± 0.09
2.76 ± 0.09
1.68 ± 0.04
1.76 ± 0.06
1.51 ± 0 0.06
2.03 ± 0.02
0.18 ± 0.02
3.78 ± 0.07
8.24 ± 0.09
1.46 ± 0.01
WS, wing span; SL, shank length; BL, body length; CL, comb length; CW, comb width; WW, wattle width; WL, wattle length; KL, keel length; sl, spur
length; bl, beak length; SC, shank circumference, in the measurement of cm; Wt, weight (kg); NA, not available; LSM, least-squares mean; SE, standard
error and different superscripts within a row indicate significantly different means (P < 0.05).
Chicken ecotypes in Ethiopia
chickens (Table 3). A non-significant comb length variation between sexes of Naked neck chicken was obtained.
While Naked neck and Gasgie cocks had the longest beak
length of 2.42 ± 0.45 and 2.00 ± 0.02 cm, respectively,
than Gugut cocks 1.85 ± 0.10 (cm). Beak length variation
is recorded among ecotypes but not with in ecotype in
respective sexes (Table 3).
Correlations of body weight and other linear
body measurements
Live weight was positively correlated (r = 55.5, P < 0.01)
with wing span. Body length and spur length in Naked
neck were positively correlated, males (r = 0.62, P < 0.01)
and females (r = 0.55, P < 0.01). Whereas WL is the highest correlated trait (r = 0.67, P < 0.01) with body weight of
Gasgie male chickens. The high correlation coefficients
between body weight and other body measurements (P <
0.01) helped to predict body weight of chickens (Table 3).
variables by considering other traits like sl, SC, CL, bl
and KL at a time in the three chicken ecotypes. In linear
regression result, the body weight prediction value of
Naked neck cocks and hens and Gasgie cocks were 0.40,
0.31 and 0.45, respectively. In addition to liner regression,
multiple regression analysis was considered to determine
the effects of other body measurements on body weight
prediction (Table 4). To increase meat and egg production
it requires genetic improvement of body weight of chickens. But proper measurement of this variable is often
hard in villages due to lack of weighing scales. Hence, easily measurable linear body measurements are more relevant for chickens’ body weight prediction at farmers’
level rather subjectively judging manually. In addition,
the present farmers are active at early morning by providing supplementary feed to their chicken before bringing
them to the market to increase the temporary body weight
of their chickens. Therefore, prediction equation was
important.
Discussions
Prediction equation models
First WS, BL and WW traits were used as linear regression
to predict body weight of chickens. Whereas stepwise multiple regression was considered to predict the dependant
Analysing the research result evidenced that more than 70
percent of the population of chicken ecotypes in the study
area were carrying the Naked neck chicken characteristics.
This is new and significantly (P < 0.001) higher in number
than reported result in other parts of Ethiopia (7.9 percent;
Table 3. Coefficient of correlations between body weight and linear body measurements for female and male in all ecotypes in the study
area (N = 450).
Traits
Variables
Sex and ecotype
Naked neck
WS
SL
BL
CL
CW
WL
WW
bl
sl
SC
KL
N
r
N
r
N
r
N
r
N
r
N
r
N
r
N
r
N
r
N
r
N
r
Gasgie
Gugut type
M
F
M
F
M
F
50
0.64**
50
0.18ns
50
0.59**
50
0.31*
50
0.15ns
50
0.05ns
50
0.05ns
50
−0.22ns
50
0.48**
50
0.31*
50
0.37**
100
0.56**
100
0.20*
100
0.54**
100
0.05ns
100
−0.07ns
100
−0.01ns
100
−0.13ns
100
−0.01ns
100
0.27**
100
0.13ns
100
0.28**
50
0.35*
50
0.26*
50
0.49**
50
0.54**
50
0.64**
50
0.67**
50
0.52**
50
0.20ns
50
0.52**
50
0.35**
50
0.62**
100
0.41**
100
0.29**
100
0.59**
100
0.41**
100
0.39**
100
0.39**
100
0.47**
100
0.30**
100
0.28**
100
0.18ns
100
0.33**
50
0.50**
50
0.54**
50
0.33*
50
0.40**
50
0.37**
50
0.39**
50
0.49**
50
0.24*
50
0.21ns
50
0.04ns
50
0.23*
100
0.39**
100
0.08ns
100
0.50**
100
0.35**
100
0.21ns
100
NA
100
NA
100
0.22*
100
0
100
−0.02ns
100
0.21*
WS, wing span; SL, shank length; BL, body length; CL, comb length; CW, comb width; WL, wattle length; WW, wattle width; bl, beak length; sl, spur
length; SC, shank circumference; KL, keel length; N, number of samples and r, correlation coefficients.
49
50
A. Getu et al.
Table 4. Prediction equations in multiple regression analysis of body weight on other variables of female and male.
Ecotype
Naked neck
Gasgie
Gugut
Male
R2
Female
R2
Y = −1.34 + 0.08WS
Y = −1.12 + 0.07WS + 0.17sl
Y = −2.12 + 0.06WS + 0.04BL + 0.14sl
Y = 1.11 + 0.22WS
Y = 0.49 + 0.21WS + 0.2SC
Y = 1.1 + 0.21WW
Y = −0.97 + 0.16WW + 0.06WS
Y = −1.05 + 0.05WS + 0.09CL + 0.13WW
Y = −0.22 + 0.05WS + 0.12CL + 0.14WW + 0.03KL
0.40
0.60
0.65
0.45
0.53
0.30
0.44
0.50
0.55
Y = −0.78 + 0.06WS
Y = −1.48 + 0.04WS + 0.04BL
Y = −1.60 + 0.05WS + 0.04BL − 0.10bl
Y = −0.89 + 0.06BL
Y = −0.77 + 0.05BL + 0.19WW
Y = −0.04 + 0.04BL
Y = −0.47 + 0.04BL + 0.22bl
Y = −0.47 + 0.03BL + 0.07CL + 0.24bl
Y = −0.8 + 0.03BL + 0.06CL + 0.23bl + 0.04KL
Y = −1.15 + 0.03BL + 0.06CL + 0.2bl + 0.05SC + 0.07KL
0.31
0.41
0.47
0.35
0.46
0.25
0.31
0.37
0.40
0.42
WS, wing span; sl, spur length; BL, body length; SC, shank circumference; WW, wattle length; CL, comb length and KL, keel length, all variables left in
the model are significant at the 0.05 level. No other variable met the 0.05 significance level for entry into the model on body weight.
Aberra and Tegene, 2011; <2 percent; Dana, 2011),
Nigeria (6 percent; Gueye, 1998) and Botswana (3.6 percent; Badubi, Rakereng and Marumo, 2006). The other
results on plumage colours of the identified chicken ecotypes are different from the report result from northwest
Ethiopian (Halima, 2007). Variations of rose comb types,
white skin colour, blocky body shape and plain head
types are the dominant visible traits of chicken ecotypes.
This result was not in lined with the reported result done
at Bure and Fogera districts in the Amhara region and
Dale district in Southern Ethiopia (Fisseha, Abera and
Tadelle, 2010). This variation could be a breed-specific
trait, nutritional status, genotype and reflected adaptation
fitness to their environment (Aberra and Tegene, 2011;
Dana, 2011). Complete absence of wattle from Gugut
females, long neck and early weaning of Gasgie chicken
ecotype is the unique character from the previous studies
in Ethiopia and elsewhere in the tropics by Halima
(2007), Aberra and Tegene (2011) and Dana (2011).
Overall body weight of male and female chickens are
varied from Ethiopian chickens reported by Dana (2011)
which is 1.63 kg for males and 1.27 kg for females.
Body weight of Naked neck and Gasgie chickens were
higher than chicken in central (Danna, 2011) and northwest Ethiopia (Halima 2007) in the body weight of 1.26
and 0.87 kg for adult male and female, respectively. The
frequency of chicken ecotypes carrying the Naked neck
gene that we studied was significantly (P < 0.001) higher
than those reported in other parts of Ethiopia (<2 percent;
Dana, 2011), Nigeria (6 percent; Gueye, 1998) and
Botswana (3.6 percent; Badubi, Rakereng and Marumo,
2006).
Conclusions and recommendations
Naked neck, Gasgie and Gugut chickens are newly identified ecotypes from Quara, Alefa and Tache Armacheho
district in the northern parts of Ethiopia, respectively. The
identified chicken ecotypes had diversified variations in
both qualitative and quantitative characters. As an example,
phenotypic characterizations like 12 quantitative and seven
qualitative traits were considered among the three chicken
ecotypes. Heavier adult body weight and longer shank
length were measured from the Naked neck, followed by
the Gasgie chicken ecotypes. Qualitatively, the Gasgie
chicken eco-type had normal feather morphology and
others like the Naked neck chicken ecotype is easily distinguished by the complete absence of feather at neck and
chest. Whereas Gugut chicken ecotype is characterized by
complete absence of wattle in hens, it is the smallest of all
and has dunce feather at neck in both the sexes. All these
findings indicated that the investigated chicken ecotypes
show heterogeneity in most traits considered. Thus,
in-depth molecular characterization using genetic markers
should be undertaken to confirm the level of genetic variations and relationships among newly identified and other
indigenous chicken ecotypes.
Acknowledgements
This work is funded by the German International (GIZ)
project to which we are grateful. We also thank all interviewed village chicken owners, district agricultural office
experts, key informants and other participants who helped
us to carry out every activity on this research.
References
Aberra, M. & Tegene, N. 2011. Phenotypic and morphological characterization of indigenous chicken populations in southern region of
Ethiopia. Anim. Genet. Resour., 49: 19–31.
Badubi, S.S., Rakereng, M. & Marumo, M. 2006. Morphological
characteristics and feed resources available for indigenous chickens
in Botswana. Columbia, CIPAV, Livestock Research for Rural
Development.
Bogale, K. 2008. In situ characterization of local chicken eco-type for
functional traits and production system in Fogera district, Amhara
regional state. Submitted to the Department of Animal Science,
Haromiya University (MSc thesis).
CSA. 2011. Agricultural sample survey 2010/11. Volume 2: Statistical
Bulletin 05. Report on Livestock and Livestock Characteristics,
Addis Ababa, 21 February.
Chicken ecotypes in Ethiopia
Dana, N. 2011. Breeding programs for indigenous chicken in Ethiopia
analysis of diversity in production systems and chicken populations.
Submitted in fulfillment of the requirements for the degree of doctor
at Wageningen University (PhD thesis).
Dana, N., Tadelle, D., Elisabeth, H.V. & Johan, A.M. 2009.
Morphological features of indigenous chicken populations of
Ethiopia. Animal Breeding and Genomics Center, Wageningen
University. Anim. Genet. Resour., 46: 11–23.
Dana, N., van der Waaji, E. & Johan, A.M. 2010. Genetic and phenotypic parameter estimates for body weights and egg production in
Horro chicken of Ethiopia. Submitted to Tropical Animal Health
and Production, Animal Breeding and Genomics, Wageningen
University, The Netherlands.
FAO. 2012. Phenotypic characterization of animal genetic resources.
FAO Animal Production and Health Guidelines No. 11. Rome.
(accessible at http://www.fao.org/docrep/015/i2686e/i2686e00.pdf).
Fisseha, M., Abera, M. & Tadelle, D. 2010. Assessment of village
chicken production system and evaluation of the productive and reproductive performance local chicken ecotype in Bure district North West
Ethiopia. Afr. J. Agric. Res., 5(13):739–1748.
Gueye, E.F. 1998. Village egg and fowl meat production in Africa.
World’s Poult. Sci. J., 54: 73–86.
Halima, H. 2007. Phonotypic and genetic characterization of indigenous
chicken populations in Northwest Ethiopia. Submitted to the Faculty
of National and Agricultural Sciences, Department of Animal, Wild
Life and Grass Land Sciences, University of the Free State,
Bloemfontein and South Africa (PhD thesis).
Jens, C.R., Anders, P., Charlotte, V., Ainsh, M.C. & Lone, F. 2004.
Keeping of village poultry. A technical manual for small-scale poultry
production. Denmark 34.
Kondombo, S.R. 2005. Improvement of village chicken production in a
mixed farming system in Burkina Faso. Wageningen Institute of
Animal Sciences, Animal Nutrition Group, Wageningen University,
The Netherlands (PhD thesis).
Mekonnen, G. 2007. Characterization of smallholder poultry production
and marketing system of Dale, Wonsho and Loka Abaya Woredas
of southern Ethiopia. Awassa College of Agriculture, Hawassa
University (MSc thesis).
SAS. 2002. Statistical Analysis System (SAS), SAS users guide, version
9.1. NC, SAS Institute Inc.
Salam, K. 2005. Improvement of village chicken production in a mixed
(chicken ram) farming system in Burkina Faso. Wageningen
Institute of Animal Sciences, Animal Nutrition Group, Wageningen
University, The Netherlands (PhD thesis).
Tadelle, D. 2003. Phenotypic and genetic characterization of local
chicken ecotypes in Ethiopia. Submitted to Humboldt University of
Germany (PhD thesis).
Tadelle, D. & Alemu, Y. 1997. Studies on village poultry production systems in the central highlands of Ethiopia. Submitted to Swedish
University (MSc thesis).
Tadelle, D., Alemu, Y. & Peters, K. 2003. Village chicken production
systems in Ethiopia: use patterns and performance evaluation and
chicken products and socio-economic functions of chicken. Livest.
Res. Rural Dev., 15(1).
51
Animal Genetic Resources, 2014, 54, 53–63. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000095
Studies on morphometrical traits of Boran bulls
reared on two feedlots in Southern Ethiopia
Sandip Banerjee1, Mohamed Beyan Ahmed1 and Girma Tefere2
1
School of Animal and Range Sciences, Hawassa University, P.O Box 05, Hawassa, SNNPRS, Ethiopia; 2Dilla A.T.V.E.T College,
Dilla, SNNPRS, Ethiopia
Summary
The study was conducted on Boran bulls from three age groups (2, 3 and 4 years) reared at two different locations in Southern Ethiopia.
The study was conducted to assess the different morphometrical measurements in Boran bulls, to estimate live weight of the bulls using
step-down regression equations and also to calculate structural indices for assessment of type for which the breed was developed and
thus assist in the selection of the bulls. The feedlots were situated in Meki district and varied both in location and the type of management, with the second feedlot being better managed than the first. The morphometric traits included in the study were height at
withers (HW), height at rump (RH), body length (BL), heart girth (HG), head width (WFH), neck circumference (NC), neck length
(NL), chest width (CW), rump length (RL), hip width (WH) and flank width (FW) and the body weight (BW). The results indicated
that while the skeletal measurements HW, RH and BL did not vary (P < 0.05) between bulls of a particular age across the two feedlots,
the other parameters were higher among the bulls reared in the feed lot with wind breaks and situated away from lake Ziway. The
results of the step-down regression equations indicated that BW could be assessed using various morphometrical measurements viz.
NL, NC, RL, WH and HG. The parameters included varied both across the age groups and locations. The results related to the structural
indices indicated that the Boran bulls had posterior alignment and had higher CW than HW.
Keywords: Boran bulls, characterization, morphometric
Résumé
L’étude a été menée sur des taureaux Boran de trois groupes d’âge (2, 3 et 4 ans) élevés à deux endroits différents dans sud de
l’Ethiopie. Les parcs d’engraissement étaient situées dans le district de Meki et varié tant dans l’espace et le type de gestion, avec
le deuxième parc d’engraissement est mieux géré que la première. Les traits morphométriques inclus dans l’étude étaient la hauteur
au garrot (HW), la hauteur à la croupe (RH), la longueur du corps (BL), la circonférence de coeur (HG), la largeur de la tête
(FMH), circonférence du cou (NC), la longueur du cou (NL ), la largeur de la poitrine (CW), la longueur croupe (RL), la largeur
des hanches (WH) et la largeur de flanc (FW) et le poids corporel de (BW). Les résultats indiquent que, bien que la mesure squelettiques HW, RH et BL ne varient pas (P < 0.05) entre les taureaux d’un âge donné dans les deux parcs d’engraissement, les autres
paramètres étaient plus élevés chez les taureaux élevés dans le parc d’engraissement avec des brise-vent et situés loin du lac
Ziway. Les résultats de l’étape vers le bas équations de régression ont indiqué que BW peut être évaluée en utilisant différentes mesures
morphométriques à savoir. NL, NC, RL, WH et HG. Les paramètres inclus variée à la fois à travers les groupes d’âge et les lieux. Les
résultats liés à des indices structurels indiqué que les taureaux Boran eu alignement postérieur et avait CW supérieur à HW.
Mots-clés: taureaux Boran, paramètres morphométriques, caractérisation
Resumen
Este estudio fue llevado a cabo con toros Boran, de tres grupos de edad (2, 3 y 4 años), criados en dos lugares distintos del Sur de
Etiopía. El estudio se realizó con el fin de medir diferentes parámetros morfométricos en toros Boran, de estimar el peso vivo de
los toros con ecuaciones obtenidas por el método de regresión por eliminación de variables (análisis step-down) y con el fin
también de calcular índices estructurales para la determinación del tipo de animal pretendido cuando se desarrolló la raza y, así, contribuir a la selección de los toros. Los corrales de engorde estuvieron ubicados en el distrito de Meki y difirieron tanto en el emplazamiento como en el tipo de manejo, siendo el segundo cebadero mejor gestionado que el primero. Los parámetros morfométricos
incluidos en el estudio fueron la altura a la cruz (AC), la altura a la grupa (AG), la longitud corporal (LC), la circunferencia
torácica (CT), la anchura de la cabeza (ACz), la circunferencia del cuello (CCu), la longitud del cuello (LCu), la anchura del pecho
(AP), la longitud de la grupa (LG), la anchura de la cadera (ACd), la anchura de los flancos (AF) y el peso corporal (PC). Los resultados
indicaron que, si bien las medidas esqueléticas AC, AG y LC no variaron significativamente, para una misma edad, entre los toros de
los dos cebaderos, los valores de los otros parámetros fueron más elevados en los toros criados en el corral de engorde con cortinas
cortaviento, situado a gran distancia del lago Ziway. Los resultados obtenidos con las ecuaciones de regresión señalaron que el peso
corporal podía ser estimado usando algunas medidas morfométricas, en concreto LCu, CCu, LG, ACd y CT. Los parámetros
Correspondence to: Sandip Banerjee, School of Animal and Range Sciences,
Hawassa University, PO Box 05, Hawassa, SNNPRS, Ethiopia. email: [email protected] and [email protected]; tel.: +251916011747
53
54
S. Banerjee et al.
considerados se vieron afectados tanto por el grupo de edad como por la ubicación del cebadero. En cuanto a los índices estructurales,
los resultados mostraron que los toros Boran presentaban alineamiento posterior y que tuvieron mayor AP que AC.
Palabras clave: toros Boran, parámetros morfométricos, caracterización
Submitted 24 August 2013; accepted 27 February 2014
Introduction
Livestock contribute significantly to poverty alleviation of
a major section of society, especially in the developing
world. Studies by Hoffmann (2010) indicate that livestock
are an important component of livelihood of resource challenged societies. CSA (2012) indicate that Ethiopia has
about 52.13 million cattle and the livestock production system can be classified into three types of production systems: the lowland pastoral and agro pastoral system; the
highland crop livestock production system; and a very
small proportion of urban and peri-urban livestock production system. As indicated by ESPSLMMP (2010) the livestock sector contributes about 20 percent of the Gross
Domestic Product, supporting the livelihood (directly or
indirectly) of about 70 percent of the nation´s population
and representing 11 percent of the annual foreign earnings.
According to ESPSLMMP (2011), Ethiopia earned about
211.1 million USD from export of 16 877 tonnes of meat
and 472 041 head of livestock, and the revenue was
enhanced by 69 percent in 2011 over the previous fiscal
year. The study also shows that the earnings were mostly
due to the sale of live animals (70 percent), while the
rest was from the sale of chilled carcasses. Among the different classes of livestock, the sale of cattle on the hoof
accounted for 46 percent of the total livestock exported.
Studies by NEPAD–CAADP (2005) indicated that most of
the cattle raised for export purpose are bred in the lowlands
situated below 1 500 m a.s.l which covers about 60 percent
of the total land of the country. These lowlands are situated
in the Eastern, Southern and Western parts of the Central
highlands. The report also indicates that these regions
house 20 percent of the nation’s cattle, 25 percent sheep
and 75 percent of the goat population. The majority of
the residents in these areas directly or indirectly depend
on livestock or livestock products to meet their daily
needs. Cattle play a multifarious role in the life of the
Agrarian Society: their dung is used as manure, they are
also used for most of the agriculture-related work, from
ploughing to transportation of the agriculture produce to
the market, with many other intermediate activities in
between (Felleke and Geda, 2001; Little et al., 2001). As
indicated by Solomon (2001), Borena plateau of
Southern Ethiopia is the home of the best-known cattle
breed from this country. The Boran cattle are the most
sought after breed for consumption within the country
and for the export purpose (LMA 2001). The pastoralists
usually grade their livestock using informal methods of
quality estimation such as feeling the loin area or by visual
estimates alone. Weighing scales are rare and they are
mostly inaccurate due to lack of maintenance. Therefore
under such constraints, the pastoralists are usually unable
to receive a fair price of their livestock. Linear measurements provide a scientific basis to describe the biological
variations between breeds and also for animals within a
breed and thus can serve as a basis for measuring the performance, productivity and carcass characters (Kayastha
et al., 2011; Kugonza et al., 2011). Studies by Gatesy
and Arctander (2000) indicated that morphological
descriptions are useful tools for distinguishing livestock
breeds and strains. These traits are also used to evaluate
the breeding goals of livestock (Zechner et al., 2001).
Accordingly, Mwacharo et al. (2006) indicated that the
relationship between size and breed can also be fairly
well estimated using several morphometrical measurements. Many of the morphometrical traits are highly correlated with the body weight (BW) of livestock and hence
can serve as an important predictor for assessment of
live weight of animals (Goe, Alldredge and Light, 2001;
Mwacharo et al., 2006). Skeletal measurements such as
height at withers (HW) and body length (BL) indicate
measurements pertaining to size of the livestock, which
are better indicators of BW when compared to measurements which are related to muscle development and fat
deposition, which are affected by nutrition and management (Kamalzadeh, Koops and van Bruchem, 1998).
One of the most commonly used procedures for the estimation of live-weight of cattle is by developing regression
equations based on some simple linear measurements as
predictors. Studies by Heinrichs, Rogers and Cooper
(1992) and Gilbert, Bailey and Shannon (1993) indicated
that body measurements in livestock can serve as predictors of body weight. Msangi et al. (1999), Slippers,
Letty and De Villerrs (2000), Fouire et al. (2002),
Willeke and Dürsch (2002) and Bozkurt (2006) reported
that emphasis has shifted from subjective methods like
body condition score to objective methods such as the
use of linear measurements of different body parts for
the estimation of body weight. As indicated by Alderson
(1999), the importance of BW alone is of limited importance in the absence of associated traits of type and
conformation. Studies by Gilbert and Gregory (1952)
indicate that ratios of BW/ HW can serve as an indicator
of beef type in Hereford cattle. According to Alderson
(1999), indices can serve as useful tools in selection of
breeding animals and also for assessment of cattle at
Morphometrical traits of Boran bulls reared in Southern Ethiopia
maturity. They also serve as an alternative option for the
assessment of BW as it incorporates measures, which are
correlated with desirable conformation. Calculation of
indices can also help potential livestock dealers as the traits
considered in the development of the indices are associated
with the production traits. As indicated by Salako (2006),
the desirable body conformation for traits pertaining to meat
production is quite complex and hence cannot be truly
assessed taking into account a single linear measurement
and is usually assessed using body condition score, which
itself is a very subjective measurement and hence prone to
errors, besides most of the subjective scores have very
low heritability, and hence are rarely accurate in selection
of breeding stock. Indices are objective body measurements
that are relatively accurate to estimate and are relatively easy
to understand. The term “type” indicates the structure of an
animal besides its body form and is hence considered as
ideal for understanding the purpose for which the animal
has been developed. The aim of this study was to investigate
morphometrical traits, assessment of live weight using stepdown regression equations and calculation of structural indices values of Boran bulls aged 2, 3 and 4 years of age and
reared at two locations of Southern Ethiopia.
Materials and methods
The study was conducted at Maki district of Oromia region.
The feedlots are situated at a distance of 133 km south of
Addis Ababa. The study was conducted on two feedlots,
which varied significantly as far as the climate was concerned.
The first feedlot is situated near Lake Ziway (7°59′19″N 38°
50′30″E) in an area devoid of any vegetation or tree breaks;
especially during the night when the temperature was low
and uncomfortable for the bulls. The second feedlot is situated
25 km west of the first feedlot. The climate of the second feed
lot was favourable for the livestock as there are sufficient trees
to serve as wind break thereby preventing the chilly winds
from the lake thus making the cattle comfortable during the
night (Figure 1). The study was conducted between January
and April months of 2012, which is considered as the dry
Figure 1. Boran bulls reared in the second feed lot.
season in the region. The cattle were grouped in three age
groups, i.e. 2, 3 and 4 years, respectively in both the feedlots,
where they were separated by their ages, the bulls were purchased by estimating their age and body weight. The age of
the animals was assessed using the dentition method as suggested by Hammond, Mason and Robinson (1971).
The Boran bulls (Figure 2) were purchased from their
breeding in Southern Ethiopia tract 6 months prior to the
commencement of the study. In the feedlot, the bulls
were sprayed with Cypermethrin at 2 ml/l of water and
drenched with Albendazole based on their BW and as per
the manufacturer’s recommendation. The cattle were provided with concentrate supplements, which comprised rice
and wheat bran besides hulls from different pulses (haricot
bean (Phaseolus vulgaris), lentil (Lens culinaris) and peas
(Pisum sativum) cotton seed cake and common salt the
roughage (consisted of teff (Eragrostis tef), wheat
(Triticum sp.) and barley (Hordeum vulgare) straw) and
water was provided adlib, the proximate analysis of the
feed indicated that it contained 19 percent crude protein,
2.5 percent crude fat, 16.5 percent crude fibre on dry matter
basis, which was in accordance with the recommendation of
Hutcheson (2006) for Boran bulls reared for fattening purpose under Ethiopian condition. The concentrate was provided twice a day and the animals were group fed
according to their respective age categories.
The BW and linear measurements were taken early in the
morning (Figure 3) after overnight fasting to ensure minimum gut content in the bulls. The BW of the bulls was
assessed using a platform balance, which was calibrated
prior to being used. The linear measurements were taken
by one of the authors during the course of the study and
were carried out according to the methods suggested by
Macjowski and Zieba (1982) and Tolenkhomba et al.
(2012). The traits included in the study were: HW, height
at rump (RH), BL, heart girth (HG), head width (WFH),
neck circumference (NC), neck length (NL), chest width
(CW), rump length (RL), hip width (WH), flank width
(FW) and BW of the bulls. The methodologies for the
Figure 2. Boran bulls of different age groups.
55
56
S. Banerjee et al.
Table 2. Calculations for structural indices.
Type of index
Height index
Rump length index
Over increase index
Height slope
Length index
Width slope
Body weight index
Calculation
Height at withers/body length × 1001
Length of rump/body length × 1001
Height at rump/height at withersX1001
Rump height–withers height2
Body length/height at withers2
Hip width–chest width2
Body weight/height at withers × 1003
1
Alderson (1999).
Szabolcs et al. (2007).
3
Rohrer (1921).
2
Figure 3. Restraining chute for taking the morphometric measurements.
assessment of the measurements are presented in Table 1.
The data were analysed statistically using SPPS V 12 for
Windows (SPSS, 2003). The data were analysed using
descriptive statistics, the effect of feedlots on morphometrical traits and BW of Boran cattle from various age
groups were compared using one-way analysis of variance
and were considered significant both at P < 0.01 and also
P < 0.05. The prediction of BW taking into account different morphometrical traits was conducted using step down
linear regression analysis and the accuracy was assessed
using R2adj values. The formulae used to calculate the various body indexes are presented in Table 2, height, rump
length, over increase was calculated according to the methodology suggested by Szabolcs et al. (2007), whereas the
values for height slope, length; width slope were assessed
according to the methods suggested by Alderson (1999).
The weight index was assessed according to the
Table 1. Measurement techniques for the morphometrical traits.
Traits
Height at withers
Rump height
Body length
Heart girth
Width of fore
head
Neck
circumference
Neck length
Chest width
Rump length
Width of the hips
Flank width
Body weight
Measurements
Distance between highest point of the wither to the
ground
Distance between the highest point of the rump to
the ground
Distance between point of the shoulder to the pin
bone
The circumference of the chest at the widest point
The point between the two polls
Circumference of the neck at its widest point
The length between the atlas vertebrae and the first
thoracic vertebrae
Width of the thorax at the widest point just behind
the elbow
The distance between the last thoracic vertebrae
and just anterior of the hips
The widest point between the two pelvic bones
The widest point of the rear flank
The weight of the bulls on a calibrated weighing
bridge with an error margin of ±25 kg
method suggested by Röhrer and cited by Szabolcs et al.
(2007).
Results and discussions
Morphometrical traits of Boran bulls aged 2
years and reared in the two feedlots
The values pertaining to the various morphometrical traits
of Boran bulls aged 2 years and reared in two feed lots and
of different age categories are presented in Table 3. The
results from the table indicate that the average HW for
the bulls aged 2 years did not vary significantly between
the cattle reared in the two feedlots. The HW values as
assessed in the study are lower than those reported by
Alberro and Haile-Mariam (1982) for Boran cattle, Fasil
(2006) for Fogera cattle, Kugonza et al. (2011) for
Ankole cattle and Mwambene et al. (2012) for Nkasi cattle. The values are comparable with those reported by
Mason and Maule (1960) for Arado, Takele (2005) for
Sheko cattle, Getinet et al. (2009) for Ogaden cattle,
Fasil (2006) for Gojjam Highland Zebu cattle and
Nakachew (2009) for Abigar cattle. The results pertaining
to the RH too did not vary significantly across the two
locations. The values for the trait are comparable with
the figures reported by Nakachew (2009) for Abigar cattle.
The results of the study pertaining to BL also did not vary
significantly across the two locations. The values for BL
are comparable with those reported by Shiferaw (2006)
for Kereyu cattle and also Nakachew (2009) for Abigar
cattle, Zulu (2008) for Angoni and Tonga cattle and also
Cyprian et al. (2012) for Bunaji cattle. HG showed variations across the two locations, with higher values being
recorded among the cattle reared in the second feedlot,
which may be attributed to favourable climate prevailing
in the area. The HG values observed are in accordance
with the findings of Alberro and Haile-Mariam (1982)
for Boran cattle, Fasil (2006) for Fogera cattle and
Gojjam Highland Zebu, Getinet, Ayalew and Hegde
(2009) for Ogaden, Kugonza et al. (2011) for Ankole cattle, Mwambene et al. (2012) for Nkasi cattle. The HG
values as assessed were however lower than those reported
Morphometrical traits of Boran bulls reared in Southern Ethiopia
Table 3. Morphometrical measurements of Boran bulls of three age groups and across two feedlots.
Traits
HW (cm)
RH (cm)
BL (cm)
HG (cm)
WFH (cm)
NC (cm)
NL (cm)
CW (cm)
RL (cm)
WH (cm)
FW (cm)
BW (kg)
Age-2
Age-3
Age-4
Feedlot-1 (N = 49)
Feedlot-2 (N = 10)
Feedlot-1 (N = 181)
Feedlot-2 (N = 85)
Feedlot-1 (N = 127)
Feedlot-2 (N = 253)
117.3 ± 3.4
118.7 ± 4.2
125.8 ± 7.9
151.4 ± 9.1
19.5 ± 1.2
72.4 ± 8.4
36.6 ± 2.8
54.2 ± 5.3
45.5 ± 2.3*
29.9 ± 3.0
56.9 ± 5.2
248.0 ± 19.6
117.2 ± 2.3
118.4 ± 4.0
123.0 ± 6.7
160.6 ± 8.0**
19.5 ± 2.3
75.9 ± 7.4**
37.0 ± 6.8
57.1 ± 3.2*
42.5 ± 3.4
35.3 ± 4.0**
60.2 ± 5.1**
278.1 ± 23.8**
118.5 ± 5.0
120.1 ± 4.0
130.3 ± 11.1
156.8 ± 9.8
19.7 ± 1.1
75.5 ± 8.5
38.1 ± 2.8
55.2 ± 3.5
45.9 ± 2.6
30.2 ± 2.7
57.7 ± 5.9
298.0 ± 43.9
119.1 ± 5.1
121.2 ± 4.9
129.6 ± 9.2
164.3 ± 9**
21.1 ± 2.19*
79.1 ± 8.6**
40.8 ± 6.1**
60.3 ± 3.7**
46.3 ± 3.6
36.8 ± 3.7**
62.2 ± 5.8**
326.4 ± 52.1**
118.9 ± 6.2
120.6 ± 4.8
128.7 ± 16.8
158.0 ± 8.3
19.7 ± 1.2
77.9 ± 8.4
38.1 ± 3.5
56.0 ± 3.2
46.5 ± 2.7
30.2 ± 3.9
58.3 ± 7.1
316.5 ± 43.4
119.6 ± 5.9
122.4 ± 8.1
129.5 ± 8.0
167.6 ± 8.0**
21.5 ± 2.2*
83.7 ± 7.5**
41.9 ± 5.6**
61.1 ± 4.1**
46.3 ± 3.8
37.8 ± 3.2**
62.9 ± 4.7**
344.4 ± 39.5**
*P < 0.05, **P < 0.01.
HW, height at withers; RH, rump height; BL, body length; HG, heart girth; WFH, width of forehead; NC, neck circumference; NL, neck length; CW,
chest width; RL, rump length; WH, width of hips; FW, flank width; BW, body weight.
by Zulu (2008) for Barotse, Tonga and Baila cattle. The
WFH for the cattle reared in the two feedlots did not
vary significantly; the values are similar to those reported
by Szabolcs et al. (2007) for Charolais and Red Angus
cattle. NC values too varied across the two feedlots, with
(P < 0.01) higher values among the bulls raised in the second location, the values being similar to those reported by
Phanchung and Roden (1996) for Siri cattle from Bhutan.
The average NL indicated no significant difference among
the bulls reared across the two feedlots. The results as
obtained are similar to those reported by Abdelhadi and
Babiker (2009) for Baggara cattle but higher values for
the trait were reported by Mason and Maule (1960) for
Arado cattle, Nakachew (2009) for Abigar cattle and
Aamir et al. (2010) for Kenena cattle. The results pertaining to CW varied (P < 0.05) among the cattle reared in the
two feedlots. The results pertaining to the RL were higher
(P < 0.05) among the bulls reared in the first feedlot. The
RL values as recorded in the study were similar to those
observed by Szabolcs et al. (2007) for Aberdeen Angus
and Red Angus bulls. The results pertaining to WH, FW
and BW too differed significantly (P < 0.01) between the
two feedlots with higher values observed in the cattle
reared in the second location. The WH values as recorded
for the bulls raised in the second location are in accordance
with the reports of Gilbert, Bailey and Shannon (1993) for
Angus cattle; Suriya, Boonsaen and Innuruk (2011) for
Kamphaengsaen (grass-fed) cattle. The FL values as
recorded in the study are lower than the values reported
by Khalafalla et al. (2011) and Abdelhadi, Babiker and
Kijora (2011) for Baggara and Zebu cattle from Sudan,
the lower values for the trait may be attributed to both genetic and non-genetic factors affecting the trait. The results
pertaining to the BW of the bulls reared in the second site
are in close accordance with the reports of Nakachew
(2009) for Abigar cattle Mwambene et al. (2012) for
Sumbawanga rural cattle and also for Baggara cattle of
Sudan as observed by Khalafalla et al. (2011).
The results pertaining to the morphometrical traits of
Boran cattle (reared in the two feedlots) aged 3 years are
also presented in Table 2. The study indicated that the
HW values did not vary between the two feed lots and
are lower than the values reported by Kugonza et al.
(2011) for Ankole cattle, Mwambene et al. (2012) for
Nkasi cattle, Mwambene et al. (2012) for Sumbawanga
cattle Urban cattle, Mwambene et al. (2012) for
Sumbawanga cattle rural, Aamir et al. (2010) for Kenena
cattle and Abdelhadi and Babiker (2009) for Baggara cattle. The values, however, being higher than those reported
by Mason and Maule (1960) for Arado, Takele (2005) for
Sheko cattle, Getinet et al. (2005) for Ogaden cattle, Fasil
(2006) for Gojjam Highland Zebu cattle, Nakachew (2009)
for Abigar cattle and Kayastha et al. (2011) for Assam cattle. The values as assessed in the study find consonance
with the assessment of Alberro and Haile-Mariam (1982)
for Boran cattle and Fasil (2006) for Fogera cattle. The
average values of RH also did not vary significantly across
the two locations; the figures are comparable with the
values reported by Nakachew (2009) for Abigar cattle.
However, the values are lower than those reported by
Szabolcs et al. (2007) for Hungarian Simmental cattle,
Hereford cattle and for Aberdeen Angus cattle. The similar
trend was also observed for BL with no differences among
the cattle reared in the two locations. The findings are
in close agreement with the observations of Milla,
Mahagoub and Bushara (2012) for Nilotic cattle,
Mwambene et al. (2012) for Sumbawanga cattle Urban,
Zulu (2008) for Angoni cattle, Zulu (2008) for Tonga cattle, Cyprian et al. (2012) for Friesian cattle X Bunajii
cattle.
However, the HG varied (P < 0.01) among the bulls reared
in the two locations with higher values observed among
those raised in the second location. The values as assessed
for the first feed lot are in agreement with the observations
of Kugonza et al. (2011) for Ankole cattle and Mwambene
et al. (2012) for Nkasi cattle, while the results among the
57
58
S. Banerjee et al.
cattle reared the second feed lot find consonance with
the observations of Alberro and Haile-Mariam (1982) for
Boran cattle, Shiferaw (2006) for Kereyu cattle, Mason
and Maule (1960) for Arado, Milla, Mahagoub and
Bushara (2012) for Nilotic cattle, Takele (2005) for
Sheko cattle, Getinet et al. (2005) for Ogaden cattle,
Fasil (2006) for Gojjam Highland Zebu cattle and Fasil
(2006) for Fogera cattle. The findings indicate that the
WFH too varied (P < 0.05) among the bulls reared in the
two feedlots with higher values observed among the
bulls reared in the second location. The findings are in
close accordance with the observations of Szabolcs et al.
(2007) for Hereford cattle, Aberdeen Angus cattle, Red
cattle Angus cattle, Hungarian Simmental cattle, Lincoln
Red cattle, Shaver cattle and Charolais cattle. However,
the assessment of Gilbert, Bailey and Shannon (1993)
for Hereford cattle and Angus cattle, Tolenkhomba et al.
(2012) for Manipuri cattle, Szabolcs et al. (2007) for
Limousin cattle, and Blonde d’Aquitaine cattle are higher
than those observed among the bulls reared in first feedlot
but lower than those reared in second location. The
findings also indicate differences (P < 0.01) for NC
among the bulls reared in the two locations with higher
values observed among the cattle reared in the second
location, the values as assessed in the study are lower
than the observations of Phanchung and Roden (1996)
for bulls of Siri cattle from Bhutan.
The findings also indicate (P < 0.01) differences for NL
between the bulls reared in the two locations. The values
being higher among the cattle reared in the second location. The observations (irrespective of the feedlots) are in
accordance with the results of Mason and Maule (1960);
Arado cattle, Abdelhadi and Babiker (2009); Baggara cattle, Nakachew (2009); Abigar cattle and Aamir et al.
(2010); Kenena cattle. Similarly CW values too varied
among the cattle reared in the two locations, with higher
values observed among the cattle reared in the second
location the values as assessed find similarity with the
reports of Getinet et al. (2005) for Ogaden cattle. The
RL did not show significant differences among the cattle
reared in the two feedlots; the values are similar to
the results observed by Szabolcs et al. (2007) for Shaver,
Charolais, Limousin and Blonde d’Aquitaine cattle breeds.
While the WH too varied (P < 0.01) between the bulls
reared in the two locations with higher values observed
among the bulls reared in the second location, the findings
are in close agreement with the results of Gilbert, Bailey
and Shannon (1993) for Hereford and Angus cattle and
also Suriya, Boonsaen and Innuruk (2011) for
Kamphaengsaen (grass-fed) cattle; however, higher values
for the trait were reported for dairy cattle breeds, Holstein
Friesian and Brown Swiss by Ozkaya and Bozkurt (2009).
The results pertaining to the average values of FW too find
differences among the cattle reared in the two feed lots
with higher value being observed among those being
reared in the second feedlot. The values of this study
being lower than those reported by Khalafalla et al.
(2011) for Sudan Baggara and also by Abdelhadi,
Babiker and Kijora (2011) for Zebu cattle from Sudan.
The results pertaining to the average BW indicate that it
varied (P < 0.01) among the bulls reared in the two locations, the values being higher among the bulls raised in
the second feedlot. The values as observed among the
bulls reared in the first location find similarity with the
findings of Shiferaw (2006) for Kereyu, Milla,
Mahagoub and Bushara (2012) for Nilotic cattle,
Mwambene et al. (2012) for Sumbawanga cattle reared
in the urban areas. While BW of the cattle reared in the
second location are similar to those reported by
Phanchung and Roden (1996) for bulls of Siri breed
from Bhutan.
The results pertaining to morphometrical traits of bulls of
Boran breed and aged 4 years and reared in the two feed
lots are also presented in Table 3. The results indicate
that the HW were similar among the bulls reared in the
two locations, the figures are similar to the observations
of Alberro and Haile-Mariam (1982) for Boran cattle,
Shiferaw (2006) for Kereyu cattle, Mason and Maule
(1960) for Arado cattle, Getinet, Ayalew and Hegde
(2009) for Ogaden cattl and Fasil (2006) for Fogera cattle.
The HW values are however higher than those reported by
Fasil (2006) for Gojjam Highland Zebu, Kayastha et al.
(2011) for Assam cattle and also Suriya, Boonsaen and
Innuruk (2011) for Kamphaengsaen (grass-fed) cattle.
The values for HW as assessed in this study are however
lower than the figures reported by Suriya, Boonsaen and
Innuruk (2011) for Kamphaengsaen (feedlot-fed) cattle,
Abdulmojeed et al. (2010) for Sokoto Gudali cattle,
Cyprian et al. (2012) for Bunaji and also Angoni, Baila,
Barotse and Tonga cattle by Zulu (2008).
The results of the study also indicated that the values of
HR also did not vary among the bulls reared in the two
locations, the findings are in consonance with the observations of Abdulmojeed et al. (2010) for Sokoto Gudali cattle, Shiferaw (2006) for Kereyu cattle and Nakachew
(2009) for Abigar cattle; higher values for the trait were
reported by Szabolcs et al. (2007) for Hereford,
Aberdeen Angus, Red Angus, Charolais and Limousin
breeds. The study shows that BL too was non-significant
between locations, the values are in close accordance
with the findings of Zulu (2008) for Baila, Tonga and
Angoni cattle, the values are however higher than those
reported by Tolenkhomba et al. (2012) for Manipuri cattle,
Rajendran et al. (2008) for Umblachery cattle, and are
lower than those reported by Abdulmojeed et al. (2010)
for Sokoto Gudali and Bunaji cattle. The HG values indicated differences (P < 0.01) between the bulls reared in the
two locations. The HG values of the bulls raised in the first
feedlot find similarity with the observations of Fasil (2006)
for Fogera cattle, Alberro and Haile-Mariam (1982) for
Boran cattle, Aamir et al. (2010) for Kenena cattle and
Mwambene et al. (2012) for Sumbawanga Urban cattle,
whereas those raised in the second location find similarity
with the observations of Mwambene et al. (2012) for
Morphometrical traits of Boran bulls reared in Southern Ethiopia
Nkasi cattle, Zulu (2008) for Angoni, Baila and Tonga cattle. The WFH figures indicate the difference (P < 0.05)
between the bulls reared in the two locations the results,
for those raised in the first location being similar to
those reported by Szabolcs et al. (2007) for Red Angus,
Aberdeen Angus and Charolais bulls, whereas those reared
in the second feedlot are similar to those reported by
Szabolcs et al. (2007) for Shaver, Hungarian Simmental
and Hereford cattle.
The NC too varied between the bulls reared in the two
feedlots, the values being higher among the bulls raised
in the second location similar values were reported by
Phanchung and Roden (1996) for bulls of Siri breed.
The results of the study pertaining to the NL too indicate
that there is variation for the trait among the bulls reared
in the two feedlots, with higher values among the bulls
reared in the second feedlot, the values as observed
among the bulls from the first feedlot are in close accordance with the observation of Abdelhadi and Babiker
(2009) for Baggara cattle, whereas those from the second
feedlot are similar to those reported by Nakachew (2009)
and Aamir et al. (2010) for Abigar and Kenena cattle,
respectively. The NL values as assessed by Mason and
Maule (1960), Takele (2005) and Tolenkhomba et al.
(2012) are lower than those assessed for the bulls reared
in the first feedlot, while higher values for the trait have
also been reported by Shiferaw (2006) for Kereyu cattle.
The CW too showed difference (P < 0.01) among the
bulls reared in the two feedlots with higher value observed
among the cattle reared in the second feedlot, the results as
assessed for the bulls maintained in the first feedlot is in
agreement with the results of Getinet et al. (2005) for
Ogaden bulls. The differences may be attributed to differences in muscling among the bulls reared in the two feedlots with lower muscling among the bulls reared in the
first feedlot. The effect of several non-genetic factors
including the temperature prevailing in the region, which
may influence the muscling as a part of the ration is utilized in maintenance of the body temperature, the observations are in accordance with the reports of Young Manzi
et al. (2012). The results as assessed for RL indicated no
significant differences due to two feedlots.
The WH too indicated differences among the two feedlots
with higher (P < 0.01) values observed among the bulls
reared in the second feedlot. The WH for those reared in
the first location are similar to those reported by Gilbert,
Bailey and Shannon (1993) for Angus and Hereford
bulls, while those reared in the second feedlot are in consonance with the observations of Suriya, Boonsaen and
Innuruk (2011) for Kamphaengsaen (grass-fed) bulls,
while the value was lower than those of Kamphaengsaen
bulls reared on feedlot. The study also indicates that the
FW of the bulls reared in the two feedlots too varies significantly, with lower values observed among the bulls
reared in the second feedlot, the findings are lower than
those reported by Khalafalla et al. (2011), and
Abdelhadi, Babiker and Kijora (2011).
The BW of the bulls indicate that those reared in the second feedlot had higher (P < 0.01) values for the trait, those
reared in the first feedlot was higher than those reported
by Shiferaw (2006), Abdelhadi and Babiker (2009),
Khalafalla et al. (2011), Milla, Mahagoub and Bushara
(2012) and Nakachew (2009). The results of a study by
Mwambene et al. (2012) indicated that the BW of
Sumbawanga cattle reared in the rural and urban areas
was lower than those observed for the bulls reared in the
first feedlot, whereas the BW of Nkasi cattle was higher
than even the cattle reared in the second feedlot.
Effect of non-genetic factors influencing the
morphometrical traits and Body weight
The term “adaptability” refers to both genetic and physiological traits associated with an animal’s response to both
external and internal stimuli (Hafez, 1968). According to
Hafez (1968) the term physiological adaptation refers to
the capacity of an individual to adjust to the external environment. All animals are genetically adapted to the environment where they have evolved (Pianka, 2000), genetic
adaptation is the set of heritable traits that favour the survival of the population in a particular environment. This is
all the more true for those animals, which are raised on natural grazing as they are subjected to several stress factors
when compared to those raised in the farm premises.
The present study indicated that the skeletal traits (HW,
RL, BL and RH) did not vary significantly between feedlots for a particular age category, which may be because
skeletal traits are highly heritable and hence are least
affected by non-genetic factors the observations are in
accordance with the findings of Mwambene et al. (2012)
and Yunusa, Salako and Oladejo (2013). However, the
other non-skeletal traits varied significantly across feedlots
for a particular age category. The differences among the
bulls due to feedlots are observed in the study may be
attributed to the fact that the increase or decrease in live
weight is a gross expression of many factors viz. organs,
viscera, gut fill and also tissue mass, which are influenced
by both genetic and non-genetic factors besides sex of the
animal. As reported by Oladimeji et al. (1996), the climate
of a region affects feed and water intake and also can influence the utilization of components within the feed consumed. It also influences the heat produced by the
animal and thereby the net available energy and ultimately
the productivity and phenotypic expression of the growing
livestock.
The results also indicated that among the cattle aged 2
years the values for HG, NC, CW, BD, WH, FW and
BW were significantly higher in cattle raised in the second
location, while RL was significantly higher among cattle
reared in the first feedlot. The study also indicated that
traits such as HG, WFH, NC, NL, CW, BD and BW values
were higher among bulls of 3 and 4 years of age raised in
feedlot 2, whereas WH and FW for both the categories
were higher among the cattle raised in feedlot 1. It was
59
60
S. Banerjee et al.
also observed that the reared in the second feedlot were better managed. This may be attributed to adaptability of the
cattle to the respective location; the findings pertaining to
the effect of adaptability on variation in morpohometrical
traits have also been reported by Hafez (1968) and
Bonsma (1980). The effect of climate prevailing in the
first location may have influenced the physiological factors;
hence, the apparently cold climate influenced the muscle
development thus affecting the BW but did not influence
the skeletal development of the bulls, the findings being
in consonance with the observations of Otuma (2004).
The findings are in consonance with the observations of
several earlier studies in the tropics (Willamson and
Pyne, 1978; Pagot, 1992; McDonald et al., 2002; Brito
et al., 2004). The muscle development of the cattle is significantly affected by several non-genetic factors. This may
be the reason why there were differences among bulls
(within an age group) reared in the two feedlots; the observations are in accordance with the findings of Rothouge
(2000). The difference in muscle development may also
be attributed to the nutritional quality of the feed ingredients and the way they were cultivated, harvested and postharvest methods of processing and storing, the observations
are in accordance with the findings of Hunters and Buck
(1992) and Bosman (1999).
The results of step-down regression equation as presented
in Table 4 indicate that NC was considered as the best predictor among the cattle aged 2 years and reared in the first
feedlot, whereas the assessment of BW was best assessed
using NL values for the bulls reared in second feedlot, this
was followed by considering the NL and RL values
together. The assessment of BW of the bulls aged 3
years indicates that it was best assessed using HG values
which was followed by taking both HG and NC values
together, whereas the BW of the bulls reared in the second
location were best assessed taking into account the values
of WFL and RL together.
The results of the regression studies also indicate that BW for
the bulls aged 4 years and reared in the first feedlot was best
assessed using their HG values, while those reared in the second feedlot was estimated using RL, WFH and FW values
taken together, the importance of RL as an indicator of BW
is in accordance with the findings of Alderson (1999). The
importance of NC, NL and WFH for assessment of BW of
beef cattle has also been reported by Hammond, Mason and
Robinson (1971). The importance of HG as a reliable tool to
assess BW of cattle has also been reported (Branton and
Salisbury, 1946; Mullick, 1950; El Khidir, 1980; Khogali,
1999; Bagui and Valdez., 2007; Abdelhadi and Babiker
2009). According to Afolayan et al., (2006), the morphometrical traits are moderately heritable and have a strong relationship
with the growth traits of livestock; however, the relationship
vary from breed and also are influenced by several factors
such as age, type size, condition and degree of fattening of
the animals (Heinrichs, et al., 1992; Yanar et al., 1995;
Ozkaya and Bozkurt, 2009).
Structural indices
The results pertaining to the structural indices of Boran
bulls of different age groups and reared in the two feed
lots are presented in Table 5. The results indicate that
the height index values for the bulls aged 2 years varied
across the two feedlots with higher values being observed
among the bulls reared in the second location. While the
height index remained more or less similar among the
bulls aged 3 and 4 years and reared in both the feed
lots. The observations are in accordance with the findings
of Shackelford, Koohmaraie and Wheeler (1995) who
also reported that the skeletal maturity score increased
till 2 years of age in cattle and thereafter remained
more or less constant. The study also indicated that the
RL index did not vary between the bulls across both
age categories and feedlots. This can be attributed to
Table 4. Step-down regression equations for assessment of body weight using morphometric measurements of Boran bulls of different
age groups and reared in two different feedlots.
Age
Location
Age-2
Location-1
Location-2
Age-3
Location-1
Location-2
Age-4
Location-1
Location-2
R2adjusted
Equations
0.25
0.29
0.64
0.82
0.48
0.55
0.57
0.58
0.60
0.27
0.46
0.51
0.15
0.15
0.21
0.24
0.25
161.480 + 1.194(NC)
111.112 + 1.153(NC) + 0.938(FW)
172.098 + 2.865(LN)
50.447 + 2.617 (LN) + 3.078 (RL)
−190.406 + 3.114(HG)
−193.520 + 2.350(HG) + 1.626 (NC)
−19.630 + 2.253(HG) + 1.510(NC) − 1.263(HW)
12.000 + 2.310(HG) + 1.708(NC) − 1.231(HW) − 1.967 (WH)
−29.626 + 2.174(HG) + 1.598(NC) − 1.188(HW) − 2.122 (WH) + 1.859 (LN)
59.097 + 12.643(WFH)
−205.767 + 11.128(WFH) + 6.413 (RL)
−349.661 + 8.332(WFH) + 5.834 (RL) + 1.398(HG)
−8.920 + 2.059(HG)
161.266 + 3.954 (RL)
86.179 + 3.514 (RL) + 4.446 (WFH)
−6.752 + 3.759 (RL) + 3.953 (WFH) + 1.464 (FW)
−41.410 + 3.513(RL) + 3.516 (WFH) + 1.418(FW) + .697 (NC)
Morphometrical traits of Boran bulls reared in Southern Ethiopia
Table 5. Morphometrical indices of Boran bulls of different age groups and across the two feedlots.
Age (years)
2
3
4
Index
Feedlot-1
Feedlot-2
Feedlot-1
Feedlot-2
Feedlot-1
Feedlot-2
Height
index1
Rump length
index1
Over increase
index1
Height
slope2
Length
index2
Width
slope2
Weight3
93.24
95.28
90.90
91.89
92.38
92.35
36.16
34.55
35.22
35.72
36.13
35.75
101.19
101.02
101.35
101.76
101.42
102.34
1.4
1.2
1.6
2.1
1.7
2.8
107.2
104.9
109.9
108.8
108.2
108.3
−24.3
−21.8
−25.0
−23.5
−25.8
−23.3
211.40
237.28
251.40
274.05
266.19
287.95
1
Szabolcs et al. (2007).
Alderson (1999).
3
According to Röhrer as cited by Szabolcs et al. (2007).
2
the character of the breed, the RL index values as
obtained in the study are higher than those reported by
Szabolcs et al. (2007) for different taurine breeds of
beef cattle. The results pertaining to the over increase
index too did not vary between the bulls reared in the
two feed lots and also across the ages, the study indicated
that the frame of the Boran bulls sloped towards the anterior part of the body, the RH being higher than the height
at withers, the observations are in accordance with the
findings of Szabolcs et al. (2007). The results pertaining
to the height slope as assessed in the study too collaborated with the findings of the over increase index. The
length index indicates that the Boran bulls are proportionately longer bodied in comparison to their height. The
width slope index values as obtained in the study indicate
that the Boran bulls are narrower at the hind quarters. The
weight index values indicate that the values were lower
(across all age groups) among the bulls reared in the
first feedlot, which may be attributed to the fact that the
place was colder than the second feedlot and a part of
the energy from the ration was utilized for body maintenance rather than for BW development. The similar results
were also reported by Young (1981) who reported that
under the similar levels of nutrition the cattle subjected
to cold stress have poor productivity than those reared
under comfortable environment.
Acknowledgements
The authors acknowledge the assistance received from
Federal A.T.V.E.T co-coordinator, for the financial support.
The Dean and staff members of Dilla A.T.V.E.T College,
Head and staff members of School of Animal and Range
Sciences, Hawassa University.
References
Aamir, H.M., Babiker, S.A., Youssif, G.M. & Hassan, Y.A. 2010.
Phenotypic characterization of Sudanese Kenana cattle.
Res. J. Anim. Vet. Sci., 5: 43–47.
Abdelhadi, O.M.A., Babiker, S.A. 2009. Prediction of zebu cattle live
weight using live animal measurements. Livestock Research for
Rural Development. Volume 21 Article 133. Retrived August 2,
2013 from http://www.lrrd.org/lrrd21/8abde21133.htm
Abdelhadi, O.M.A., Babiker, S.A. & Kijora, C. 2011. Estimation of
zebu cattle carcass weight using body measurements. Livestock Res.
Rural Dev., 23: Article #12. Retrieved August 23, 2013 (available at
http://www.lrrd.org/lrrd23/1/abde23012.htm), Addis Ababa, Ethiopia.
Abdulmojeed, Y., Kingsley Omogiade, I., Hadiza Salihu, H.,
Matthew, W. & Samuel, A. 2010. Multivariate analysis of phenotypic differentiation in Bunaji and Sokoto Gudali cattle. Acta
Argiculturae Slovenica. 96(2): 75–80.
Afolayan, R.A., Adeyinka, I.A. & Lakpini, C.A.M. 2006. The estimation of live weight from body measurements in Yankasa sheep. Czech
J. Anim. Sci., 51: 343–348.
Conclusion
Alberro, M. & Haile-Mariam, S. 1982. The indigenous cattle of
Ethiopia. Part I. FAO World Anim. Rev., 41: 2–10.
Hence, it can be concluded from the study that Boran bulls
if properly managed can be reared profitably for beef purpose. Linear measurements can be effectively used to
assess BW of Boran bulls at all ages. Hence, morphometrical measurements such as NL, NC, RL and WFH of Boran
bulls can serve as indicators of selection of sires for higher
BW. The results of the indices indicate that the Boran bulls
have a higher CW when compared to the hips, which may
be a breed character. It can be concluded that Boran bulls
can be selected for BW using the regression equations.
However, similar studies should be conducted using a
large population to further confirm the results.
Alderson, G.L.H. 1999. The development of a system of linear measurements to provide an assessment of type and function of beef cattle.
Anim. Genet. Resour. Inf. FAO, 25: 45–55.
Bagui, N.J.G. & Valdez, C.A. 2007. Live weight estimation of locally
raised adult purebred Brahman cattle using external body measurements. Philip. J. Vet. Med., 44: 36–42.
Bonsma, J. 1980. Livestock production: a global approach. Cape Town,
RSA, Tafelberg Pub. Ltd., p. 26–59.
Bosman, D.J. 1999. Selecting cattle for functional efficiency. In M.
M. Scholtz, L. Berg & D.J. Bosman, eds. Beef breeding in South
Africa. Commemorating 40 years of beef cattle production testing,
1959–1999, pp. 13–24. Irene, Agriculture Research Council Animal
Improvement Inst.
61
62
S. Banerjee et al.
Bozkurt, Y. 2006. Prediction of body weight from body size measurements in Brown Swiss feedlot cattle fed under small-scale farming
conditions. J. Appl. Anim. Res., 29: 29–32.
Heinrichs, A.J., Rogers, G.W. & Cooper, J.B. 1992. Predicting body
weight and wither height in Holstein heifers using body measurements. J. Dairy Sci., 75: 3576–3581.
Branton, C. & Salisbury, G.W. 1946. The estimation of the live weight
of bulls from heart girth. J. Dairy Sci., 29: 141–143.
Hoffmann, I. 2010. Livestock biodiversity. Rev. Sci. Tech. Off. Int. Epiz.,
29(1): 73–86.
Brito, A.F.C., Silva, A.D.E.F., Barbosa, R.T. & Kastilec, J.P. 2004.
Testicular thermoregulation in Bos indicus bulls: relationship with
scrotal, testicular vascular cone and testicular morphology and its
effect on semen quality and sperm production. Theriogenology, 61:
511–528.
Hunters, R.A. & Buck, N. 1992. Nutritional and climatic limits of beef
production in the tropics. In R. Jarrige & C. Beranger, eds. World animal science, C5. Beef cattle production, pp. 379–387. The
Netherlands, Elsevier Science.
CSA. 2012. Central Statistics Agency of Ethiopia. Report on Livestock
and Livestock Characteristics, Agricultural Sample Survey 2010–11
(2003 E.C). Statistical Bulletin No.532, Vol. II. March 2012. Addis
Ababa Ethiopia.
Cyprian, A., Gerald Nwachi, A.K.P.A., Pano, B.P., Finangwai Hosea
Istifanus & Danbab, A.B. 2012. Comparative evaluation of linear
Udder and body conformation traits of Bunaji and Friesian X
Bunaji cows. World J. Life Sci. Med. Res., 2(4): 134–140.
El Khidir, O.A. 1980. A note on prediction of live weight of growing
Kenana heifers from linear body measurements. Sudan J. Vet. Sci.
Anim. Husbandry, 21(2): 102–104.
ESPSLMMP. 2010. Focus on Ethiopia’s Meat and Live Animal Export,
Ethiopia Sanitary and Phytosanitary Standards and Livestock & Meat
Marketing Program. Trade Bulletin Issue 1, Addis Ababa.
ESPSLMMP. 2011. Focus on Ethiopia’s Meat and Live Animal Export,
Ethiopia Sanitary and Phytosanitary Standards and Livestock & Meat
Marketing Program. Trade Bulletin 5, July.
Fasil, G. 2006. On-farm phenotypic characterization of cattle genetic
resources and their production systems in Awi, East and West
Gojjam zones of Amhara region. M.Sc. thesis, submitted to School
of Graduate Studies Haramaya University Ethiopia.
Hutcheson, D. 2006. Feeding to produce export quality Ethiopian beef
requirements and recommendations. Ethiopia Sanitary and Phyto sanitary standards and livestock and meat marketing program
(SPS-LMM), p. 18.
Kamalzadeh, A., Koops, W.J. & van Bruchem, J. 1998. Feed quality
restriction and compensatory growth in growing sheep: modeling
changes in body dimensions. Livestock Prod. Sci., 53: 57–67.
Kayastha, R.B., Zaman, G., Goswami, R.N. & Haque, A. 2011.
Physical and morphometric characterization of indigenous cattle of
Assam. Open Vet. J., 1: 7–9.
Khalafalla, I.E.E., Atta, M., Eltahir, I.E. & Mohammed, A.M. 2011.
Effect of body weight on slaughtering performance and carcass measurements of Sudan Baggara bulls. Livestock Res. Rural Dev., 23:
Article #47. Retrieved August 23, 2013 (available at http://www.
lrrd.org/lrrd23/3/khal23047.htm).
Khogali, A.M. 1999. The effect of different dietary levels on performance, carcass characteristics and meat quality of the Baggara cattle.
(Ph.D. thesis), University of Khartoum, Sudan.
Kugonza, D.R., Nabasirye, M., Mpairwe, D., Hanotte, O. & Okeyo,
A.M. 2011. Productivity and morphology of Ankole cattle in three
livestock production systems in Uganda. Anim. Genet. Resour. Inf.,
48: 13–22.
Felleke, G. & Geda, G. 2001. The Ethiopian dairy development policy.
In: A draft policy document, Addis Ababa, Ethiopia: Ministry of
Agriculture/AFRDRD/AFRDT. Food and Agriculture Organization/
SSF.
Little, P.D., Smith, K., Cellarius, B.A., Coppock, C.B. & Barrett, C.
2001. Avoiding disaster: diversification and risk management
among East African herders. Dev. Change, 32(3): 401–433.
Fouire, P.J., Neser, F.W.C., Oliver, J.J. & Van der Westhizen, C.
2002. Relationship between production performance, visual appraisal
and body measurements of young Dorper rams. South African
J. Anim. Sci., 32: 256–262.
Livestock Marketing Authority (LMA). 2001. Study on causes of
cross-border illegal trades in South, Southwest and Eastern
Ethiopia. Addis Ababa, Ethiopia, Market Research and Promotion
Department.
Gatesy, J. & Arctander, P. 2000. Hidden morphological support for the
phylogenetic placement of Pseudoryx ngetinhensis with bovine
bovids: a combined analysis of gross anatomical evidence and DNA
sequences from five genes. Syst. Biol., 49(3): 515–538.
Macjowski, J. & Zieba, J. 1982. Genetics and animal breeding part-A.
Biological and genetic foundations of animal breeding. Warszawa,
Elisever Scientific PWN. Polish Scientific Publishers, pp. 30–37.
Getinet, M., Ayalew, W. & Hegde, B.P. 2009. Growth and reproductive
performance of Ogaden cattle at Haramaya University, Ethiopia.
Ethiopian J. Anim. Prod., 9(1): 13–38.
Gilbert, H.R. & Gregory, P.W. 1952. Some features of growth and
development of Hereford cattle. J. Anim. Sci., 11: 3–16.
Gilbert, R.P., Bailey, D.R.C. & Shannon, N.H. 1993. Linear body
measurements of cattle before and after 20 years of selection for
postweaning gain when fed two different diets. J. Anim. Sci., 71:
1712–1720.
Goe, M.R., Alldredge, J.R. & Light, D. 2001. Use of heart girth to predict body weight of working oxen in Ethiopian highlands. Livestock
Prod. Sci., 69: 187–195.
Hafez, E.S.E. 1968. Principles of animal adaptation. In E.S.E. Hafez, ed.
Adaptation of domestic animals, pp. 3–15. Philadelphia, Lea and
Fabiger.
Hammond, J. Jr., Mason, I.L. & Robinson, T.J. 1971. Hammond’s
farm animals, 4th edition. London, Edward Arnold, p. 283.
Manzi, M., Junga, J.O., Ebong, C., & Mosi, R. 2012. Factors affecting
pre and post-weaning growth of six cattle breed groups at Songa
Research station in Rwanda. Livestock Research for Rural
Development. Volume 24, Article #68. Retrieved March 22, 2014,
from http://www.lrrd.org/lrrd24/4/manz24068.htm.
Mason, I.L. & Maule, J.P. 1960. The indigenous livestock of Eastern
and Northern Africa technical communication 14. Farnham Royal,
UK, CAB (Commonwealth Agricultural Bureaux).
Mc Donald, P., Edwards, R.A., Greenhalgh, J.F.D. & Morgan, C.A.
2002. Animal nutrition, 6th edition. Edinburg, UK, Pearson Edu
Ltd, pp. 5–8, 352–370.
Milla, A.P., Mahagoub, M.M.M. & Bushara, I. 2012. Estimation of
live body weight from heart girth, body length and condition score
in Nilotic cattle – Southern Sudan. J. Anim. Sci. Adv., 2(5): 453–457.
Msangi, B.S.J., Bryant, M.J., Kavana, Y., Msanga, N. & Kizima, J.B.
1999. Body measurements as a management tool for crossbred dairy
cattle at a smallholder farm Ksition. Proc. Tanzania Soc. Anim. Sci.,
26: 168–175.
Morphometrical traits of Boran bulls reared in Southern Ethiopia
Mullick, D.N. 1950. The estimation of the weight of cattle and buffalo
from heart girth measurements. Indian J. Anim. Nutr., 3: 52–58.
Mwacharo, J.M., Okeyo, A.M., Kamande, G.K. & Rege, J.E.O. 2006.
The small East African shorthorn zebu cows in Kenya. Linear body
measurements. Trop. Anim. Health Prod., 38: 65–74.
Mwambene, P.L., Katule, A.M., Chenyambuga, S.W. &
Mwakilembe, P.A.A. 2012. Fipa cattle in the southwestern highlands
of Tanzania: morphometric and physical characteristics. Anim. Genet.
Resour. Inf., 51: 15–29.
Nakachew, M. 2009. Characterization of Abigar (Nuer) cattle breed at
its production environment in Gambella Regional State, Ethiopia. A
thesis Submitted to the School of Graduate Studies Hawassa
University, p. 159.
NEPAD–CAADP (New Partnership for Africa’s Development –
Comprehensive Africa Agriculture Development Programme).
2005. Ethiopia: investment Project Profile “Live Animal and Meat
Export” – Preliminary Options Outline, p. 3.
Oladimeji, B.S., Osinowo, O.A., Alawa, J.P. & Hambolu, J.O. 1996.
Estimation of average values for pulse rate, respiratory rate and rectal
temperature and development of a heat stress index for adult Yankassa
sheep. Bull. Anim. Health Prod., 44: 105–107.
Otuma, M.O. 2004. Influence of breeding designs and seasonal changes
on growth of Nigerian goats and their crosses. Trop. J. Anim. Sci., 7
(2): 87–93.
Shackelford, S.D., Koohmaraie, M. & Wheeler, T.L. 1995. Effects of
slaughter age on meat tenderness and USDA carcass maturity scores
of beef females. J. Anim. Sci., 73: 3304–3309.
Shiferaw, G. 2006. In-situ phenotypic Characterization of Kereyu cattle
type in Fentale district of Oromya region. M.Sc. thesis submitted to
School of Graduate Studies Haramaya University Ethiopia.
Slippers, S.C., Letty, B.A. & De Villerrs, J.F. 2000. Prediction of body
weight of Nguni goats. S. Afr. J. Anim. Sci., 30 (Suppl. 1): 127–128.
Solomon, D. 2001. Cattle population Dynamics in the Southern Ethiopian
Rangelands. Utah State University Pastoral Risk Management Project.
Research brief 01-02-PARIMA.
SPSS. 2003. Statistical package for social sciences. SPSS 12.0 for windows. Chicago, IL, SPSS Inc.
Suriya, S., Boonsaen, P. & Innuruk, P. 2011. Body measurements of
male Kamphaengsaen beef cattle as parameters for estimation of
live weight. Kasetsart J. (Nat. Sci.), 45: 428–434.
Szabolcs, B., Nagy, B., Nagy, L. & Kiss, B. 2007. Comparison of body
measurements of beef cows of different breeds Arch. Tierz.,
Dummerstorf, 50(4): 363–373.
Takele, T. 2005. On farm phenotypic Characterization of Sheko breed of
cattle and their habitat in Bench Maji. M.Sc. thesis submitted to
School of Graduate Studies Alemaya University, Ethiopia.
Ozkaya, S. & Bozkurt, Y. 2009. The accuracy of prediction of body
weight from body measurements in beef cattle. Arch. Tierz, 52:
371–377.
Tolenkhomba, T.C., Konsam, D.S., Shyamsana Singh, N., Prava, M.,
Damodor Singh, Y., Ayub Ali, M. & Motina, E. 2012. Factor analysis of body measurements of local cows of Manipur, India. Int.
Multidisciplin. Res. J., 2(2): 77–82.
Pagot, J. 1992. Animal production in the tropics and sub-tropics.
London, UK, McMillan Press Ltd., pp. 1–86, 232–252.
Willamson, G. & Pyne, W.J.A. 1978. An introduction of animal husbandry in the tropics, 3rd edition. USA, Longman Inc., p. 2.
Phanchung & Roden, J.A. 1996. Characterisation of the Siri breed and
the Mithun cross Siri in Bhutan. Anim. Genet. Resour. Inf., 20: 27–34.
Pianka, E.R. 2000. Evolutionary ecology, 6th edition. San Francisco,
Addison-Wesley-Longman.
Rajendran, R., Raja, T.V., Thiruvenkadan, A.K., Mahalinga Nainar,
A. & Thangaraju, P. 2008. Morphobiometrical characteristics and
management of Umblachery cattle from coastal region of
Tamilnadu, India. Livestock Res. Rural Dev., 20: Article #40.
Retrieved August 23, 2013 (available at http://www.lrrd.org/lrrd20/3/
raje20040.htm).
Rohrer, F. 1921. “Der Index der Körperfülle als Maß des
Ernährungszustandes” [The index of corpulence as measure of nutritional state]. Münchener medizinische Wochenschrift (in German),
68: 580–582.
Rothouge, A. 2000. New Ecological perceptions of arid rangelands.
Agricola, 11: 49–56.
Salako, A.E. 2006. Application of morphological indices in the assessment of type and function in sheep. Int. J. Morphol., 24(1): 13–18.
Willeke, H. & Dürsch, T. 2002. Prediction of the body weight of
Simmental heifers using heart girth measurements. Arch. Tierzucht,
45(1): 23–28.
Yanar, M., Tüzemen, N., Özhan, M., Aydın, R. & Ug˘ ur, F. 1995.
Prediction of body weights from body measurements in Brown
Swiss cattle. Turk. J. Vet. Anim. Sci., 19: 357–360.
Young, B.A. 1981. Cold stress as it affects animal production. J. Anim.
Sci., 52: 154–163.
Yunusa, A.J., Salako, A.E. & Oladejo, O.A. 2013. Principal component
analysis of the morphostructure of Uda and Balami sheep of Nigeria.
Int. Res. J. Agric. Sci., 1(3): 45–51.
Zechner, P., Zohman, F., Sölkner, J., Bodo, I., Habe, F. & Marti, E.
2001. Morphological description of the Lipizzan horse population.
Livestock Prod. Sci., 69(2): 163–177.
Zulu, D.N. 2008. Genetic Characterization of Zambian native cattle
breeds. M.Sc. thesis, submitted to Virginia Polytechnic Institute and
State University, p. 68.
63
Animal Genetic Resources, 2014, 54, 65–72. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000125
Analysis of the body structure of Djallonke sheep
using a multideterminant approach
Peter T. Birteeb1, Sunday O. Peters2 and Michael O. Ozoje3
1
Department of Animal Science, University for Development Studies, P. O. Box TL 1882, Tamale, Ghana; 2Department of Animal
Science, Berry College, Mount Berry, GA 30149, USA; 3Department of Animal Breeding and Genetics, University of Agriculture,
Abeokuta, Nigeria
Summary
This study aimed at using a multivariate approach to describe the body structure of Djallonke sheep in northern Ghana and to determine
which approach explains better the variation in body composition. Live weight (LW) and linear body measurements including heart
girth (HG), neck girth (NG), chest depth (CD), height at withers (HW), rump height (RH), body length (BL) and pin-bone width
(PBW) were obtained from 172 sheep aged between two and three years. The fixed effects of sex and age were tested using the general
linear model (GLM) while the Nearest Neighbor method of Hierarchical Cluster Analysis was used to group body traits into clusters.
Principal Component Factor Analysis was used to describe the variation in body traits where extracted factors were varimax rotated to
enhance interpretability. The analysis of variance revealed significant (P < 0.01) differences in the morphological traits of the two sexes
with higher values recorded for the male in all traits examined except in PBW, which was insignificant (P > 0.05). Age had no significant influence (P > 0.05) on the body traits. The sheep weighed 26.92 ± 0.89 kg averagely and had averages of other body measurements to be: 71.74 ± 1.23, 40.52 ± 0.79, 27.73 ± 0.52, 60.72 ± 0.86, 59.61 ± 0.87, 58.87 ± 1.06 and 12.81 ± 0.23 cm for HG, NG, CD,
HW, RH, BL and PBW, respectively. The product moments of correlation were positive and significant (P < 0.05, 0.01; r = 0.18–0.99)
for all pairs of traits. The body traits were categorized mainly into two clusters with the first cluster comprising the HG, HW, RH and
BL while NG, CD and PBW formed the second cluster. The grouping of the traits was slightly different in Factor analysis where two
underlying principal components (PC) were extracted to discern the variance structure of the Djallonke sheep. The first principal component which consisted of CD, HW, RH, BL and PBW explained 61.26 percent and the second, 12.92 percent thereby giving a maximum of 74.17 percent generalized variance in body measurements. The traits loaded on the first principal component are closely
associated with bone growth hence describing the general body size conformation while the traits (HG and NG) on the second component seem to describe only the thoracic region. It can be concluded that both the Hierarchical Cluster analysis and the Factor analysis
grouped body traits similarly but the later is to be recommended because of the additional ability of indicating the amount of variation
explained by the developed factors.
Keywords: body measurements, cluster, generalized variance, genetic resources, multivariate, West African dwarf
Résumé
Cette étude a adopté une approche multivariée pour décrire la structure corporelle des moutons Djallonke du Nord du Ghana et pour
déterminer quelle méthode permet d’expliquer le mieux la variation observée dans la conformation corporelle. Le poids vif (PV) et une
série de mesures corporelles linéaires, à savoir le périmètre thoracique (PT), le tour du cou (TC), la profondeur de la poitrine (PP), la
hauteur au garrot (HG), la hauteur à la croupe (HC), la longueur du corps (LC) et la largeur de la tubérosité ischiatique (LTI), furent
obtenus sur un total de 172 moutons âgés de 2 à 3 ans. Les effets fixes du sexe et de l’âge ont été analysés suivant un modèle GLM
alors que la méthode du plus proche voisin de l’analyse hiérarchique a été utilisée pour regrouper les traits corporels dans des grappes.
L’analyse factorielle en composantes principales, avec rotation selon la méthode Varimax des facteurs identifiés (ceci a été fait pour
améliorer l’interprétabilité), a été employée pour décrire la variation observée dans les caractères corporels. L’analyse de la variance a
décelé des différences significatives (P < 0.01), entre les deux sexes, dans les caractères morphologiques, avec les valeurs obtenues chez
les mâles étant les plus élevées pour tous les traits sauf pour la LTI, pour laquelle pas de différences significatives ont été observées
(P > 0.05). L’âge n’a pas eu d’effet significatif (P > 0.05) sur les caractères corporels. Les moutons ont pesé en moyenne 26.92 ± 0.89
kg et les valeurs moyennes des mesures corporelles ont été: 71.74 ± 1.23, 40.52 ± 0.79, 27.73 ± 0.52, 60.72 ± 0.86, 59.61 ± 0.87, 58.87
± 1.06 et 12.81 ± 0.23 cm pour PT, TC, PP, HG, HC, LC et LTI, respectivement. Les coefficients de corrélation ont été positifs et significatifs (P < 0.05, 0.01; r = 0.18–0.99) pour toutes les paires de caractères. Les caractères corporels ont été regroupés principalement
dans deux grappes. La première grappe a compris les mesures PT, HG, HC et LC alors que TC, PP et LTI ont constitué la deuxième
grappe. Le regroupement des caractères a été légèrement différent avec l’analyse factorielle qui a extrait deux composantes principales
sous-jacentes pour percevoir la structure de la variance des moutons Djallonke. La première composante principale, formée par PP, HG,
HC, LC et LTI, a expliqué le 61.26 pour cent et la deuxième le 12.92 pour cent, donnant ainsi un maximum de 74.17 pour cent de
variance généralisée dans les mesures corporelles. Les traits compris dans la première composante principale sont étroitement liés à
la croissance des os, comme quoi ils peuvent être utilisés pour décrire la conformation générale du corps. Par contre, les traits de la
deuxième composante principale (PT et TC) semblent décrire seulement la région thoracique. Il peut être conclu que l’analyse
Correspondence to: P.T. Birteeb, Department of Animal Science, University
for Development Studies, Tamale, Ghana. email: [email protected]; tel.:
( + 233) 24 981 5083, ( + 233) 20 827 8578
65
66
P.T. Birteeb et al.
hiérarchique de regroupement et l’analyse factorielle ont classé les caractères corporels de manière semblable. Néanmoins, la deuxième
méthode est retenue pour la capacité additionnelle à indiquer la quantité de variation expliquée par les facteurs révélés.
Mots-clés: regroupement, mesures corporelles, variance généralisée, ressources génétiques, multivariée, moutons Nains d’Afrique
Occidentale
Resumen
En este estudio se adoptó un enfoque multivariante para describir la estructura corporal de las ovejas Djallonke del Norte de Ghana y
para determinar qué método permite explicar mejor la variación en la conformación corporal. Se tomaron el peso vivo (PV) y una serie
de medidas corporales lineales (la circunferencia torácica CT, la circunferencia del cuello CC, la profundidad del pecho PP, la altura a la
cruz AC, la altura a la grupa AG, la longitud del cuerpo LC y la anchura de la tuberosidad isquiática ATI) en una muestra de 172
cabezas de ganado ovino, de edades comprendidas entre los dos y los tres años. Se analizaron los efectos fijos del sexo y la edad usando
un modelo GLM mientras que se empleó el método del vecino más cercano del análisis jerárquico para agrupar los parámetros corporales en conglomerados. Se recurrió al análisis factorial de componentes principales para describir la variación en los rasgos corporales,
siendo rotados, según el método Varimax, los factores identificados, lo cual se hizo con el fin de mejorar la interpretabilidad. El análisis
de la varianza sacó a la luz diferencias significativas (P < 0.01), entre los dos sexos, en los rasgos morfológicos, siendo mayores en los
machos los valores de todos los parámetros examinados, con la excepción de la ATI, para la cual no se dieron diferencias significativas
(P > 0.05). La edad no tuvo un efecto significativo (P > 0.05) sobre los parámetros corporales. Los animales pesaron de media 26.92 ±
0.89 kg y los valores medios de las medidas corporales fueron: 71.74 ± 1.23, 40.52 ± 0.79, 27.73 ± 0.52, 60.72 ± 0.86, 59.61 ± 0.87,
58.87 ± 1.06 y 12.81 ± 0.23 cm para CT, CC, PP, AC, AG, LC y ATI, respectivamente. Los coeficientes de correlación fueron positivos
y significativos (P < 0.05, 0.01; r = 0.18–0.99) para todos los pares de caracteres. Los parámetros corporales fueron agrupados principalmente en dos conglomerados. El primer conglomerado comprendió las medidas CT, AC, AG y LC mientras que CC, PP y ATI
formaron el segundo conglomerado. La agrupación de los parámetros corporales fue ligeramente diferente en el análisis factorial en
que se extrajeron dos componentes principales subyacentes para discernir la estructura de la varianza del ganado ovino Djallonke.
El primer componente principal, formado por PP, AC, AG, LC y ATI, explicó el 61.26 por ciento y el segundo el 12.92 por ciento,
dando así un máximo del 74.17 por ciento de varianza generalizada en las medidas corporales. Los parámetros comprendidos en el
primer componente principal están estrechamente relacionados con el crecimiento de los huesos, de ahí que sirvan para describir la
conformación general del cuerpo, mientras que las medidas CT y CC, del segundo componente, aparentemente sólo describen la
región torácica. Se puede concluir que el análisis jerárquico de conglomerados y el análisis factorial agruparon los parámetros corporales de un modo similar. No obstante, se recomienda el segundo análisis por la capacidad adicional de indicar la cantidad de variabilidad explicada por los factores identificados.
Palabras clave: conglomerado, medidas corporales, varianza generalizada, recursos genéticos, multivariante, oveja Enana de África
Occidental
Submitted 2 December 2013; accepted 5 March 2014
Introduction
Sheep have long been recognized as major contributor to
protein supply and family income in most developing
countries. The choice of breed in a locality is influenced
by the production objectives and the environmental conditions, with increased productivity as the underlying objective. There is a considerable potential for increased sheep
production, if proper management is employed (Birteeb
et al., 2012), and this demands a look at their genetic
resources. At present, many countries are losing their genetic resources which may have lasting effects on food security
and sustainable development especially in the light of global
warming changes (Hoffman, 2010). This is why the Food
and Agriculture Organization of the UN deemed it necessary to promote the conservation of farm animal diversity
with the view that humankind may need to keep this specific
genetic biodiversity to face future (unknown) challenges
such as changes in demand for livestock products, spread
of new diseases, reducing environmental impact and climate
change (FAO, 2011). In general, Animal Genetic Resources
(AnGRs) in developing countries are being eroded through
the rapid transformation of the agricultural systems in
which the main cause of the loss of indigenous AnGRs is
the indiscriminate introduction of exotic genetic resources
before proper characterization, utilization and conservation
of indigenous genetic resources (Yakubu, Salako and
Abdullah, 2011). Nevertheless, AnGRs conservation is
receiving keen attention of late as livestock researchers
explore classical multivariate methods to study and characterize livestock populations genetically and phenotypically
especially through the use of quantitative information, particularly body measurements.
Linear body measurements have become very useful in livestock research, as alternative body measurements and indices
estimated from various combinations of conventional and
non-conventional body parameters not only provide superior
guide to weight but also served as indicators of type and
function in domestic animals (Salako, 2006a). Body weight
is a major characteristic associated with animal breed types.
Precise measurement of weight is by using weighing scales
Djallonke sheep body structure analysis
or bridges. However, proper weighing scales are neither readily available to nor affordable by smallholder livestock farmers, but even if they were, it would be inconvenient and a huge
task to carry and assemble those weighing scales each time to
weigh animals especially during management practices.
According to Traoré et al. (2008), the definition of the
breed as the operational unit for the assessment of livestock diversity all over the world, necessitates the characterization of local domestic animal populations in
developing countries. The characterization of African
small ruminant populations through the use of classical
multivariate methods in analyzing morphological traits to
assess variations within and between populations will
play a major role in the maintenance of autochthonous
genetic resources (Birteeb et al., 2012).
Factor analysis is a multivariate technique for examining
the interrelationships among a set of variables that are correlated. It deals with the reduction of a set of observable
variables in terms of a small number of latent factors
(Rencher, 2002). Principal component factor analysis has
been effectively used to study cattle (Yakubu, Ogah and
Idahor, 2009a; Pundir et al., 2011), sheep (Riva et al.,
2004; Salako, 2006b; Yakubu, Salako and Abdullah,
2011; Birteeb et al., 2012), and even poultry (Ogah,
Alaga and Momoh, 2009; Yakubu, Kuje and Okpeku,
2009b; Ogah, 2011). Cluster analysis is another multivariate technique in which a search is made for patterns in a
data set by grouping the (multivariate) observations into
clusters, with the goal of finding an optimal grouping for
which the observations or objects within each cluster are
similar, but the clusters are dissimilar to each other
(Rencher, 2002). In grouping the observations, the similarities between all pairs of observations are considered.
Cluster analysis is similar to factor analysis in the following ways: (1) neither the number of groups nor the groups
themselves are known in advance; (2) when clustering
variables, the similarity is based on a correlation (matrix).
Among the existing sheep breeds, the Djallonke (West
African dwarf) sheep is known to be trypano-tolerant
hence has become a dependable asset to the local farmers
in West Africa (Wafula et al., 2005). It is well adapted to
and produces under the local environmental conditions and
so contributes significantly to the African small ruminant
genetic resources. Despite the availability of this breed
of sheep, detail information on its characteristics is limited.
Hence this study was undertaken to provide a detailed
description of the Djallonke sheep breed as well as determine the multivariate approach that explains better the
variation in its body composition.
Livestock Breeding Station, were used for this study.
Pong-Tamale is located at latitude 9°40″N and longitude
0°49″W and is about 32.7 km north of Tamale, the
Northern Regional capital in Ghana (Encarta, 2009). The
sheep were managed semi-intensively. They were housed
in properly constructed pens throughout the night and
sometimes during the day when there was the need to
restrict their movement. Feed and water were provided
for the animals ad libitum throughout the year.
Conventional disease and pest control regimes were
practised.
The Breeding Station practises open nucleus breeding programme, where occasionally, outstanding sires from different farms are selected and brought to the station for
improvement. Among the progenies, very superior rams
are retained on the station for breeding while all yearling
rams are supplied to farmers. The breeding sires and/or
rams (which were all >2 years) included in this study,
were second and third generation progenies of sires that
were selected from different smallholder farms for
improvement at the station. Hence the animals under
study were quite varied in terms of pedigree.
Data collection
The sex and age of each sheep were noted. Ages of animals were identified using their birth records and categorized into two groups (2 years and ≥3 years). Eight
biometric traits which include live weight (LW), heart
girth (HG), neck girth (NG), chest depth (CD), height at
withers (HW), rump height (RH), body length (BL) and
pin-bone width (PBW) were measured on each animal.
LW was measured with a hanging scale while all linear
body dimensions were measured using a measuring tape.
The traits were defined and measured in accordance to
Birteeb et al. (2012) as follows:
HG: The circumference around the chest just behind the
front legs and withers.
NG: This is the circumference around the neck near the
withers.
CD: The distance from the backbone at the shoulder to the
brisket between the front legs
HW: The distance from the surface of a platform on which
an animal stands, to the withers of the animal.
RH: This is the distance from the surface of a platform to
the rump.
BL: The distance from the base of the tail to the base of the
neck.
PBW: It is the distance between the outer edges of the
major hip bones on the right and left sides.
Materials and methods
Management of study animals
Statistical analysis
A total of 172 (28 males and 144 females) Djallonke (West
African Dwarf) sheep, reared at the Pong-Tamale
The fixed effects of sex and age on the biometric traits
were tested using general linear model (GLM). The
67
68
P.T. Birteeb et al.
higher at the withers by 1.15 cm (Table 3). Also, the
sheep were significantly taller than longer.
model was defined as:
Yij = m + Si + Aj + (SA)ij + 1ij ,
where Yij is the individual biometric trait; μ the overall
mean; Si fixed effect of the ith sex (i = ram, ewe); Aj the
fixed effect of the jth age ( j = 2 years old, ≥3 years old);
(SA)ij the interaction effect of ith sex and jth age; εij the
random error associated with each biometric trait [ε N
(0, δ)].
A paired sample t-test was used to compare the heights
(wither and rump) and BL. The Nearest Neighbor method
of Hierarchical Cluster Analysis was used to group the
various body traits into clusters. Pearson’s coefficients of
correlation (r), among the various traits, were estimated,
which were then used for the principal component factor
analysis. Anti-image correlations, Kaiser–Meyer–Olkin
(KMO) measures of sampling adequacy and Bartlett’s
Test of Sphericity were computed to test the validity of
the factor analysis of the data set. The factor matrix was
subjected to varimax rotation to enhance interpretability
of the extracted factors. All analyses were done using the
appropriate programmes in SPSS version 17 (SPSS, 2008).
The cluster analysis revealed the formation of two distinct
clusters from the linear body traits of which the first cluster
comprised four traits (Figure 1). The first agglomeration
occurred between HW and RH, which then combined
with BL and finally HG to form the first cluster. The second cluster resulted from the agglomeration of NG, CD
and PBW.
Pearson’s correlation coefficients between all pairs of the
various body traits are shown in Table 4. Even though
LW was moderately (0.52–0.70) correlated with all the
body conformation traits, the highest coefficient (0.99)
was obtained between RH and HW. All correlations
between pairs of traits were highly significant (P < 0.01)
except that between NG and PBW, which was only significant at (P < 0.05).
Results
The KMO measure of sampling adequacy, which was
significantly in the middle (0.791) supported the use of
the correlation matrix of the data set for factor analysis.
Bartlett’s test of sphericity (chi-square = 1118.89; P <
0.001), coupled with the high communalities (0.639–
0.848), which represent the explained variance, and the
determinant (0.001) obtained from the correlation matrix,
all provided support for the validity and reliability of the
principal component factor analysis.
The analysis of variance of LW and linear body measurements of Djallonke sheep are presented in Tables 1 and 2.
The biometric traits were significantly (P < 0.01)
influenced by sex, with the rams (males) being generally
superior to the ewes (females) in all the biometric traits
under consideration except for the PBW where the females
were larger (P > 0.05) in absolute terms (Table 2).
However, age did not have any significant influence on
the LW and linear body traits as all the body traits of the
2–year-old sheep were statistically similar (P > 0.05) to
those of the older sheep, even though the later recorded
slightly higher values. Sex by age interaction was significant (P < 0.05) only for RH (Table 1). The S.E. values
revealed that HG was the most varied trait, whereas the
animals were more consistent by the PBW irrespective of
their sex or age. A t-test between the HW and RH revealed
that the animal was significantly (t = 29.9; P < 0.001)
The estimated factor loadings extracted by factor analysis,
eigenvalues and variation explained by each factor, are
presented in Table 5. After a varimax (orthogonal) rotation
of the component matrix, two principal component factors
were extracted. The variance of a variable was partitioned
into a common portion ‘communality’ shared with some or
all of the other variables, which showed that 63.9–84.8
percent of the variation in conformation traits were brought
about by the underlying factors (PC’s). The first principal
component which was associated with five linear body
traits (CD, HW, TH, BL and PBW), explained about
61.26 percent of the generalized variance in the body measurements with moderate (0.651) to high (0.838) emphasis
given to these body measurements. This factor can be considered as a generalized conformation or size of the sheep.
The second factor comprised the HG and NG and
accounted for 12.92 percent of the generalized variance,
Table 1. Analysis of variance for morphological traits in Djallonke sheep.
Source of variation
Sex
Age
Sex × age
Residual
Mean squares and level of significance**
DF
LW
HG
NG
CD
HW
RH
BL
PBW
1
1
1
168
362.20**
2.13
0.01
10.64
572.94**
5.12
4.63
20.27
997.05**
6.92
2.66
8.22
57.00**
7.41
7.77
3.59
177.94**
15.32
28.52
9.86
179.70**
26.28
43.87*
10.05
213.58**
19.42
11.26
15.04
1.09
0.53
0.55
0.70
**Highly significant (P < 0.01); *significant (P < 0.05); all other traits are not significant.
DF, degrees of freedom; LW, live weight; HG, heart girth; NG, neck girth; CD, chest depth; HW, height at Withers; RH, rump height; BL, body length;
and PBW, pin-bone width.
Djallonke sheep body structure analysis
Table 2. Least-square means (±S.E.) of live weight (kg) and linear body measurements (cm) of Djallonke sheep as affected by sex and
age.
Traits
LW
HG
NG
CD
HW
RH
BL
PBW
Sex
Age
Overall
Male
Female
2 years
≥3 years
32.13 ± 1.76a
78.29 ± 2.43a
49.17 ± 1.55a
29.79 ± 1.02a
64.37 ± 1.70a
63.28 ± 1.71a
62.88 ± 2.09a
12.52 ± 0.45ns
21.71 ± 0.29b
65.19 ± 0.41b
31.88 ± 0.26b
25.66 ± 0.17b
57.06 ± 0.28b
55.94 ± 0.29b
54.87 ± 0.35b
13.09 ± 0.08ns
26.52 ± 0.71
71.12 ± 0.98
41.24 ± 0.63
26.98 ± 0.41
59.64 ± 0.69
58.21 ± 0.69
57.67 ± 0.85
13.01 ± 0.18
27.32 ± 1.64
72.36 ± 2.26
39.80 ± 1.44
28.47 ± 0.95
61.79 ± 1.58
61.02 ± 1.59
60.08 ± 1.95
12.61 ± 0.42
26.92 ± 0.89
71.74 ± 1.23
40.52 ± 0.79
27.73 ± 0.52
60.72 ± 0.86
59.61 ± 0.87
58.87 ± 1.06
12.81 ± 0.23
a,b
Means within the same row having different superscripts differ significantly (P < 0.05/0.01) between the two sexes. ns = not significant
S.E., standard error; LW, live weight; HG, heart girth; NG, neck girth; CD, chest depth; HW, height at Withers; RH, rump height; BL, body length; and
PBW, pin-bone width.
Table 3. Comparison of selected linear traits (cm) of Djallonke
sheep.
Paired traits
HW–RH
HW–BL
RH–BL
Mean difference
t-statistic
P-value
1.147
1.822
0.675
29.900
7.270
2.758
<0.000
<0.000
0.006
thereby bringing the total variance accounted for to 74.17
percent.
Discussion
Production of the autochthonous Ghanaian sheep breeds is
directly associated with the concept of sustainable agriculture (Birteeb et al., 2012). For centuries, the Djallonke
sheep has been an integral component of African AnGRs
as it is kept and reared throughout the continent. This
breed has varied names and exhibits biometric variations
across geographic regions, hence could be referred to as
a traditional population (FAO, 2011). Genetic variation
is fundamental for livestock populations to adapt to varying environments and to respond to artificial selection;
therefore, any conservation and development scheme
should start from assessing the state of variation in the
Figure 1. Dendrogram indicating the agglomeration of body traits into clusters.
population (Toro et al., 2011). The superiority of males
over females in this study was in agreement with the
works of Birteeb et al. (2012), Legaz et al. (2011),
Carneiro et al. (2010) and Yakubu and Akinyemi (2010)
who attributed such differences to sexual dimorphism.
Sexual dimorphism is thought to develop post-weaning
because of faster mass gain by males during the age of
1–2 years (Festa-Bianchet et al., 1996). These same
researchers suggested that males might have a longer season to amass (gain) body mass each year throughout their
lives, while females divert annual resources into reproduction, rather than body mass.
The insignificant influence of age on any of the body traits
in this study was analogous to the findings of Kunene,
Nesamvuni and Fossey (2007) in Zulu sheep where all
matured (2 and 3 years) sheep recorded similar body traits,
suggesting that at maturity sheep exhibited negligible zoometric trait variations as a result of age difference. Hence
the growth and development of Djallonke sheep reach a
peak after 2 years of age and then seem to remain almost
constant afterwards. The report by Traoré et al. (2008)
that the Djallonke sheep is generally small in size was
confirmed in this study since the sheep herein was much
smaller when compared to Zulu sheep in South Africa
(Kunene, Nesamvuni and Fossey, 2007) and Yankasa, Uda
and Balami sheep in Nigeria (Yakubu and Ibrahim, 2011).
69
70
P.T. Birteeb et al.
Table 4. Phenotypic correlations among body traits of matured Djallonke sheep.
Trait
LW
HG
NG
CD
HW
RH
BL
HG
NG
CD
HW
RH
BL
PBW
0.70**
0.65**
0.61**
0.62**
0.60**
0.61**
0.52**
0.59**
0.54**
0.61**
0.58**
0.40**
0.35**
0.45**
0.50**
0.48**
0.44**
0.18*
0.71**
0.73**
0.61**
0.43**
0.99**
0.62**
0.46**
0.64**
0.46**
0.48**
**Highly significant (P < 0.01); *significant (P < 0.05).
LW, live weight; HG, heart girth; NG, neck girth; CD, chest depth; HW, height at Withers; RH, rump height; BL, body length; and PBW, pin-bone
width.
Nevertheless, they were comparable to Sudan-Sahel sheep of
Burkina Faso (Traoré et al., 2008) and Karayaka sheep of
Turkey (Cam, Olfaz and Soydan, 2010). The animal is a typical tropical breed, being higher (taller) than long except that
it slopes slightly from the withers towards the rump just like
the Nigerian indigenous sheep (Yakubu and Ibrahim, 2011).
Since the Djallonke sheep is a traditional population (FAO,
2011) in sub-Saharan Africa, it may be biologically favoured
in its ability to adapt to changes in management, climate,
nutrition and marketing.
The significant phenotypic correlations observed herein were
similarly reported by Legaz et al. (2011), Cam, Olfaz and
Soydan (2010) and Salako (2006a, 2006b). Slightly higher
values were earlier reported by Afolayan, Adeyinka and
Lakpini (2006). High correlations indicate the interrelationships between/among the traits and such knowledge is very
useful in breeding and management practices of livestock,
as selection for a given trait directly favours other positively
associated traits but disfavours negatively associated traits.
Nevertheless, selection for positively or negatively associated traits is influenced by the production objectives, selection goals and even the socio-cultural demands or conditions
of the farmer. Correlations among body traits also serve as
the basis for employment of further multivariate techniques
Table 5. Varimax rotated factor loadings and communalities of
body traits of Djallonke sheep.
Trait
HG
NG
CD
HW
RH
BL
PBW
Eigenvalue
Explained variance (%)
Cumulative variance (%)
Principal
components
PC1
PC2
0.294
0.081
0.651
0.702
0.724
0.713
0.838
4.288
61.255
61.255
0.774
0.879
0.520
0.592
0.569
0.360
−0.043
0.904
12.918
74.173
Communalities
0.685
0.780
0.694
0.843
0.848
0.639
0.704
LW, live weight; HG, heart girth; NG, neck girth; CD, chest depth; HW,
height at Withers; RH, rump height; BL, body length; and PBW, pinbone width.
(Yakubu, Salako and Abdullah, 2011; Birteeb et al., 2012)
like Principal Component, Factor and Cluster analyses in
quantifying trait variability and characterizing breeds. The
agglomeration of the traits into two clusters suggests that
body conformation of Djallonke sheep could be explained
in two dimensions. Explicitly the traits on the first cluster
are associated with bone growth hence give information
about the general body conformation of the sheep. The second cluster seemed to indicate body thickness which may
result from muscle development and/or fat deposition.
However, the amount of variation attributable to each cluster
could not be estimated.
The measure of sampling adequacy, KMO was significantly high but slightly lower than 0.85 reported for Uda
sheep (Salako, 2006b). Recently Birteeb et al. (2012)
and Yakubu, Salako and Abdullah (2011) reported
KMO’s of 0.91 and 0.92 for sheep in Northern Ghana
and Nigeria, respectively. High KMO values were equally
reported for cattle (Yakubu, Ogah and Idahor, 2009a;
Pundir et al., 2011). The KMO test shows whether the partial correlations among variables are low. In this study, the
high KMO obtained implied that the proportion of the
variance in the body traits/measurements caused by
the underlying factors is high hence true factors existed
and the data are factorable.
The extraction of two PC factors in the Factor Analysis is
comparable to the results of the Cluster Analysis where
traits were grouped into two clusters. Except the replacement of HG by the PBW, the association of major linear
measures (HW, RH and BL) with the first PC was analogous to the trait clustering in Figure 1. The similarity of
the results of these two procedures suggests that variations
in body composition of Djallonke sheep are best explained
in two dimensions. The result of this study is similar to earlier reports on Djallonke sheep (Birteeb et al., 2012) and
Uda sheep (Salako, 2006b; Yakubu, Salako and Abdullah,
2011) in which two underlying factors each were extracted
to explain the generalized variance in body traits. However,
the respective total explained variances of 87.19, 86.27 and
78.7 percent by those earlier reports were higher than that
obtained in this study. In studying Bergamasca sheep,
Riva et al. (2004) extracted two and four factors for
young and adult sheep, respectively, in the sedentary
Djallonke sheep body structure analysis
flock, and three factors each for both age groups in the transhumant flock. In a similar study in cattle, Pundir et al.
(2011) extracted three latent factors to explain a total variance of 66.02 percent. Again in the White Fulani cattle of
Nigeria, two factors were extracted in the age group of
1.5–2.4 years to account for 85.37 percent of total variation,
while four factors extracted in the age group of 2.5–3.6
explained 86.4 percent of the total variance (Yakubu,
Ogah and Idahor, 2009a). Except the lower coefficient of
HG, the high loadings of body height (RH and WH), BL
and PBW on the first factor in the present study is very
much comparable to the report of Pundir et al. (2011) in
Kankrej cows although the later study was on a different
species. Most researchers (Riva et al., 2004; Salako,
2006b; Yakubu, Ogah and Idahor, 2009a; Pundir et al.,
2011; Yakubu, Salako and Abdullah, 2011) have described
the first factor as a representation of the general body size.
In this Djallonke sheep, the first factor equally describes
the general body size, while the second seems to indicate
the size of the thoracic region. Both principal components
could play a role in the ranking of the animals, and thus provide an opportunity to select the animals based on a group
of variables rather than on isolated traits (Yakubu, Salako
and Abdullah, 2011). Such knowledge will be valuable in
obtaining animals with highly coordinated bodies from
fewer traits amidst many body measurements, as a result
of exploiting underlying factors. In recent times, linear
body measurements have become very useful in livestock
studies especially breed characterization. Analyses of morphometric variables that are easy to measure make it possible to explore areas such as the structure of breeds, the
degree of variability between various populations, the harmony of morphological models and the definition of morphological models for a given breed (Birteeb et al., 2012).
Conclusion
It may be concluded that the Djallonke sheep is generally
small in body size. Both the Cluster and Factor analyses
yielded very similar results, thus categorizing linear body
measurements into two groups each (clusters and factors).
This implies that the linear body measurements considered
herein can best be grouped into two main dimensions, and
factor analysis approach is preferable because of its ability
to quantify the explained variance in body composition.
Finally, an easy way to describe the Djallonke sheep is
by considering the linear measurements on the first factor.
References
Afolayan, R.A., Adeyinka, I.A. & Lakpini, C.A.M. 2006. The estimation of live weight from body measurements in Yankasa sheep. Czech
J. Anim. Sci., 51: 343–348.
Birteeb, P.T., Peters, S.O., Yakubu, A., Adeleke, M.A. & Ozoje, M.O.
2012. Multivariate characterisation of the phenotypic traits of
Djallonke and Sahel sheep in Northern Ghana. Tropic. Anim.
Health Prod., 45: 267–274.
Cam, M.A., Olfaz, M. & Soydan, E. 2010. Body measurements reflect
body weights and carcass yields in Karayaka sheep. Asian J. Anim.
Vet. Adv., 5: 120–127.
Carneiro, H., Louvandini, H., Paiva, S.R., Macedo, F., Mernies, B. &
McManus, C. 2010. Morphological characterization of sheep breeds
in Brazil, Uruguay and Colombia. Small Rum. Res., 94: 58–65.
Encarta (2009). World Atlas, Geography. Microsoft Student with
Encarta premium.
FAO. 2011. Draft guidelines on phenotypic characterization of animal
genetic resources, Commission on Genetic Resources for Food and
Agriculture, 13th Regular Session, 18–22 July, 2011, Rome (available
at http://www.fao.org/docrep/meeting/022/am651e.pdf).
Festa-Bianchet, M., Jorgenson, J.T., King, W.J., Smith, K.G. &
Wishart, W.D. 1996. The development of sexual dimorphism: seasonal and lifetime mass changes in bighorn sheep. Can. J. Zool.,
74: 330–342.
Hoffman, I. 2010. Climate change and the characterization, breeding
and conservation of animal genetic resources. Anim. Genet., 41:
32–46.
Kunene, N., Nesamvuni, E.A. & Fossey, A. 2007. Characterization of
Zulu (Nguni) sheep using linear body measurements and some environmental factors affecting these measurements. S. Afr. J. Anim. Sci.,
37: 11–20.
Legaz, E., Cervantes, I., Perez-Cabal, M.A., de la Fauente, L.F.,
Martinez, R., Goyache, F. & Gutierrez, J.P. 2011. Multivariate
characterisation of morphological traits in Assaf (Assaf.E) sheep.
Small Rum. Res., 100: 122–130.
Ogah, D.M. 2011. Assessing size and conformation of the body of
Nigerian indigenous turkey. Slovak J. Anim. Sci., 44: 21–27.
Ogah, D.M., Alaga, A.A. & Momoh, M.O. 2009. Principal component
factor analysis of the morphostructural traits of Muscovy duck.
Int. J. Poult. Sci., 8: 1100–1103.
Pundir, R.K., Singh, P.K., Singh, K.P. & Dangi, P.S. 2011. Factor analysis of biometric traits of Kankrej cows to explain body conformation. Asian Aust. J. Anim. Sci., 24: 449–456.
Rencher, A.C. 2002. Methods of multivariate analysis, 2nd edition.
Canada, Wiley-Interscience, John Wiley & Sons, Inc. Publication,
pp. 408–447.
Riva, J., Rizzi, R., Marelli, S. & Cavalchini, L.G. 2004. Body measurements in Bergamasca sheep. Small Rum. Res., 55: 221–227.
Salako, A.E. 2006a. Application of morphological indices in the
assessment of type and function in sheep. Int. J. Morphol., 24: 13–18.
Acknowledgement
The authors are grateful to the staff of the Pong-Tamale
Livestock Breeding Station especially the Manager, Mr
Ibrahim Shahadu and Head of the Sheep Unit, Mr
Lawrence Dartay for providing the experimental animals
and support during the data gathering process.
Salako, A.E. 2006b. Principal component factor analysis of the
morphostructure of immature Uda sheep. Int. J. Morphol., 24:
571–574.
SPSS. 2008. Statistical package for social sciences. Chicago, IL, SPSS Inc.
Toro, M.A., Meuwissen, T.H.E., Fernandez, J., Shaat, I. &
Maki-Tanila, A. 2011. Assessing the genetic diversity in small
farm animal populations. Animal, 5: 1669–1683.
71
72
P.T. Birteeb et al.
Traoré, A., Tamboura, H.H., Kabore, A., Royo, L.J., Fernandez, I.,
Álvarez, I., Sangare, M., Bouchel, D., Poivey, J.P., Francois, D.,
Toguyeni, A., Sawadogo, L. & Goyache, F. 2008. Multivariate characterization of morphological traits in Burkina Faso sheep. Small
Rum. Res., 80: 62–67.
Yakubu, A. & Ibrahim, I.A. 2011. Multivariate analysis of morphostructural characteristics in Nigerian indigenous sheep. Ital. J. Anim.
Sci., 10: 83–86.
Yakubu, A., Ogah, D.M. & Idahor, K.O. 2009a. Principal component
analysis of the morphostructural indices of White Fulani cattle.
Trakian J. Sci., 7: 67–73.
Wafula, P.O., Jianlin, H., Sangare, N., Sowe, J.M., Coly, R.,
Diallo, B. & Hanotte, O. 2005. Genetic characterization of
West African Djallonke sheep using microsatellite markers. The
role of biotechnology. Turin, Italy, Villa Gualino, 5–7 March,
pp. 177–178.
Yakubu, A., Kuje, D. & Okpeku, M. 2009b. Principal components as
measures of size and shape in Nigerian indigenous chickens. Thai
J. Agric. Sci., 42: 167–176.
Yakubu, A. & Akinyemi, M.O. 2010. An evaluation of sexual size
dimorphism in Uda sheep using multifactorial discriminant analysis.
Acta Agric. Scand., Sect A – Anim. Sci., 60: 74–78.
Yakubu, A., Salako, A.E. & Abdullah, A-R. 2011. Varimax rotated
principal component factor analysis of the zoometrical traits of Uda
sheep. Arch. Zootec., 60: 813–816.
Animal Genetic Resources, 2014, 54, 73–77. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000071
Variation in qualitative traits in Bhutanese
indigenous chickens
T. Tashi and N. Dorji
Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, Bhutan
Summary
The objective of the study was to determine the phenotypic variation among four Bhutan indigenous chickens (BIC) namely Seim
(SM), Phulom (PL), Yuebjha Narp (YN) and Khuilay (KL). A total of 120 chickens (KL, 30; YN, 30; PL, 30; SM, 30) were included
for the present study. Based on descriptive statistic analysis, the results illustrate that there are three types of comb and single type
predominant. The Bhutanese chickens do not have feather on the shank and the head type is plain. The common colours of earlobe
in four indigenous birds are white and red. White skin and shank colour rank high among BIC groups; however, in SM the yellowish
skin colour is observed high. The predominant feather colour of four indigenous chickens is pure black in YN (48.28 percent), white in
KL (30.00 percent), reddish brown in SM (33.33 percent) and PL (23.33 percent). In addition, breast, back and neck feather followed
the similar pattern of colour. Among BIC populations, KL and YN strains present the greatest and lowest plumage colour diversity,
respectively. For example, eight different colours of breast feather are surveyed in KL and PL birds. Therefore, considering the variation in feather colourings, KL and PL seems to have more diversity in morphology but, it requires further studies. On the other hand,
YN appears to have less diversity requiring for appropriate development of conservation strategies in Bhutan. Moreover, the large variations present the possibility of making improvement among BIC.
Keywords: indigenous chickens, phenotypic variation, diversity, conservation
Résumé
Le but de l’étude a été de déterminer la variation phénotypique entre quatre poules autochtones du Bhoutan, à savoir Seim (SM),
Phulom (PL), Yuebjha Narp (YN) et Khuilay (KL). Cette étude a compris un total de 120 poules (KL, 30; YN, 30; PL, 30; SM,
30). Basés sur une analyse statistique descriptive, les résultats ont décelé qu’il existe trois types de crêtes, dont le type simple est le
type prédominant. Les poules bhoutanaises n’ont pas de plumes sur les tarses et leur tête est du type simple. Les couleurs les plus
courantes des oreillons sont, chez les quatre poules autochtones, le blanc et le rouge. La peau et les tarses sont blancs chez la plupart
des poules bhoutanaises. Néanmoins, de nombreux spécimens SM présentent une peau de couleur jaunâtre. La couleur prédominante
du plumage est le noir pur chez YN (48.28 pour cent), le blanc chez KL (30.00 pour cent) et le marron rougeâtre chez SM (33.33 pour
cent) et chez PL (23.33 pour cent). En outre, le plumage de la poitrine, du dos et du cou suivent un schéma de couleur similaire. Parmi
les différentes populations de poules bhoutanaises, les lignées KL et YN sont celles qui présentent, respectivement, la plus grande et la
plus faible diversité chromatique dans leur plumage. Ainsi, par exemple, huit couleurs différentes ont été relevées pour le plumage de la
poitrine des poules KL et PL. Par conséquent, d’après la variation chromatique du plumage, les lignées KL et PL semblent être celles
ayant la plus grande diversité morphologique. Toutefois, des études plus approfondies s’avèrent nécessaires. D’un autre côté, la lignée
YN semble être celle qui présente la plus faible diversité, comme quoi des stratégies devraient être mises en place au Bhoutan pour
assurer la conservation de cette lignée. De plus, les grandes variations observées entre les différentes poules bhoutanaises ouvrent
la possibilité de procéder à des projets d’amélioration génétique.
Mots-clés: poules autochtones, variation phénotypique, diversité, conservation
Resumen
El objetivo del estudio fue determinar la variación fenotípica existente entre cuatro gallinas autóctonas de Bhután, concretamente entre
Seim (SM), Phulom (PL), Yuebjha Narp (YN) y Khuilay (KL). En este estudio, se incluyeron un total de 120 gallinas (KL, 30; YN, 30;
PL, 30; SM, 30). Con base en un análisis estadístico descriptivo, los resultados mostraron que se dan tres tipos de cresta, de los cuales
predomina el tipo sencillo. Las gallinas butanesas no tienen plumas sobre los tarsos y la cabeza es de tipo sencillo. En las cuatro gallinas autóctonas, los colores de orejilla más comunes son el blanco y el rojo. Por lo general, el blanco es el color de la piel y de los
tarsos en las gallinas butanesas. No obstante, muchos ejemplares SM presentan piel de color amarillento. El color predominante en las
plumas es el negro puro en YN (48.28 por ciento), el blanco en KL (30.00 por ciento) y el marrón rojizo en SM (33.33 por ciento) y en
PL (23.33 por ciento). Asimismo, las plumas del pecho, del dorso y del cuello siguen un patrón cromático similar. Entre las distintas
poblaciones de gallinas butanesas, las variedades KL y YN son las que presentan, respectivamente, la mayor y la menor diversidad
cromática en su plumaje. Así, por ejemplo, se han registrado ocho colores diferentes para el plumaje del pecho en las gallinas KL
y PL. Por tanto, de acuerdo con la variación en el colorido de las plumas, KL y PL son probablemente las variedades que mayor
Correspondence to: N. Dorji, Department of Animal Science, College of Natural
Resources, Royal University of Bhutan, Lobesa, Punakha, Bhutan.
emails: [email protected]; [email protected]
73
74
T. Tashi and N. Dorji
diversidad morfológica presentan. Sin embargo, se precisan más estudios. Por otro lado, parece que la variedad YN es la que menor
diversidad presenta, con lo que se hace necesario un adecuado desarrollo de estrategias para la conservación de esta variedad en Bhután.
Por último, las grandes variaciones observadas entre las distintas gallinas butanesas abren la posibilidad de hacer mejora genética.
Palabras clave: gallinas autóctonas, variación fenotípica, diversidad, conservación
Submitted 2 July 2013; accepted 23 January 2014
Introduction
In developing countries, the majority of poultry products
come from traditional production practices. Indigenous
chickens continue to be most popular due to their adaptability to harsh conditions and their resistance against
local diseases (Ajayi, 2010; Dorji and Gyeltshen, 2012).
This indigenous bird manifests a great deal of variation
which is due to genetic and environmental factors (Olori
and Sonaiya, 1992). Thus, they are reservoirs of genetic
materials for genetic studies, improvement, preservation
and conservation (Dorji, Duangjinda and Phasuk, 2012).
Poultry production has been playing crucial roles in sustaining and supplementing a cheap protein to the poor
(Dorji and Gyeltshen, 2012). Importantly, indigenous
chickens are kept for their socio-cultural importance
(Dorji and Gyeltshen, 2012; Dorji, Duangjinda and
Phasuk, 2012). For example, society believes in consuming eggs and meat during pregnancy and after delivery.
The traditional sub-sector consists of poorly uncharacterized indigenous chickens (Dorji and Gyeltshen, 2012).
Recently, Food and Agriculture Organization of the
United Nation (FAO) Domestic Animal Diversity
Information System (DADIS) listed ten indigenous strains
of chicken in Bhutan. Dorji, Duangjinda and Phasuk
(2012) conducted genetic study on four strains of
Bhutanese local chicken based on the economic importance to the rural society and their popularity. Dorji,
Duangjinda and Phasuk (2012) documented for greater
genetic diversity of Khuilay (naked neck) and lowest for
Yuebjha Narp (black chicken). Moreover, they did mention that the phenotypic variation was likely to be highest
for Khuilay but they did not quantify. Therefore, the
objective of the study was to access diversity of
Bhutanese local chicken based on qualitative trait.
Materials and methods
Sample sizes
Considering the agro-ecology, socioeconomic significance
of chicken production and population of indigenous chickens, Tsirang was selected and this district has been recognized as important genetic resources of poultry in the
country. Thus, farmers are being trained related to conservation activity of traditional birds. The study was based on
four Bhutanese indigenous chicken comprising Khuilay
(KL = 30), Yuebjha Narp (YN = 30), Phulom (PL = 30)
and Seim (SM = 30).
Data collection and analysis
The data captured parameters which are visually judged for
variation in the phenotypic traits such as colour of feather,
shank, ear lobe and shank, comb type and head type (FAO,
2012). Descriptive statistics of SPSS 16 was used to analyze the data.
Results and discussion
Feather colour
The plumage colour of local chickens available was reddish brown constituting the maximum proportion of
plumage colour in SM and PL varieties with 33.33 and
23.33 percent, respectively. An utmost plumage colour
was white (30.00 percent) and black (48.28 percent) in
KL and YN, respectively. Similarly, a predominant colouring as reddish brown (20.00 percent), black (30.00 percent)
and reddish (30.00 percent) in neck feather was observed
for PL, YN and SM, respectively. Neck feather was
more varied in PL population. On contrary, YN contains
the least variation of neck feather colours. The naked
neck gene is a dominant gene and is responsible for general reduction of feather over body surface and total loss
of feather in neck region (Merat, 1986; Ige et al., 2012).
In terms of back feather colouration, the highest percentage
was surveyed in SM, KL, PL and YN was reddish brown
(40.00 percent), white (23.33 percent), brownish (20.00
percent) and black (46.67 percent), respectively. The
same colour domination was examined for breast feather
colourings in SM (reddish brown, 33.33 percent), KL
(white, 36.67 percent), PL (brownish, 20.00 percent) and
YN (black, 53.33 percent). Importantly, plumage, neck
feather, back and breast feather colour were found to be
more varied in KL and PL populations (Table 1). This
probably explains the greater diversity with respect to feather colourations (Bhuiyan et al., 2005; Faruque et al.,
2010). On the other hand, lowest feathers colour was
observed in YN indicating the least diversified among
the four Bhutan indigenous chickens (BIC) populations
agreeing with Dorji, Duangjinda and Phasuk (2012)
findings. Their report was based on FAO recommended
Variation in qualitative traits in Bhutanese indigenous chickens
Table 1. Feather colour in four Bhutanese indigenous chicken populations (percent).
Trait
Seim
Characteristic
Plumage
Reddish brown
Reddish black
Reddish dark green
Brownish
Reddish brown,
black lines
Reddish black
brown
Khuilay
Phulom
Yuebjha Nap
Percent
Characteristic
Percent
Characteristic
Percent
33.33
16.67
13.33
13.33
13.33
White
Brownish black
Black
Reddish/brown
Barred
30.00
26.67
6.67
6.67
6.67
Reddish brown
Barred
White
Black
Brownish black
23.33
20.00
16.67
13.33
13.33
10.00
Brownish
6.67
Brownish
10.00
Reddish black
6.67
White, yellowish
brown
3.33
Reddish
Brownish white
6.67
3.33
23.33
16.67
16.67
16.67
10.00
6.67
6.67
3.33
Reddish brown
Brownish
White
Reddish
Whitish black
Black
White black lines
Brownish black
Yellowish black
Brownish
Whitish black
Reddish brown
Brownish black
White
Reddish
Yellowish white
Black
20.00
16.67
13.33
13.33
10.00
10.00
6.67
6.67
3.33
20.00
20.00
16.67
16.67
13.33
6.67
3.33
3.33
36.67
23.33
10.00
10.00
6.67
6.67
3.33
3.33
Brownish
White
Reddish brown
Whitish black
Reddish
Brownish black
Black
Brownish white
20.00
20.00
16.67
10.00
10.00
10.00
6.67
6.67
Neck
feather
Reddish
Reddish black
Brownish
Reddish brown
Brownish black
Multiple
Brownish yellow
Reddish/dark green
30.00
16.67
13.33
13.33
10.00
10.00
3.33
3.33
Back
feather
Reddish brown
Reddish/black
Multiple
Brownish
Reddish/dark green
Black
Reddish
40.00
20.00
20.00
6.67
6.67
3.33
3.33
Breast
feather
Reddish brown
Brownish
Reddish
Reddish black
Brownish white
Multiple
Brownish yellow
33.33
23.33
16.67
10.00
6.67
6.67
3.33
White
Brownish black
Reddish brown
Black/white
Black/dark green
Reddish
Brownish
Brownish/dark
green
White
Brownish
Black
Reddish
Brownish/black
Black/white
Yellowish/white
Reddish/brown
molecular tools. Moreover, the frizzling and naked neck
genes is considered for increased feed efficiency, growth
rate, egg production and disease tolerance (Ajayi, 2010;
Egahi, Dim and Momoh, 2013). Moreover, genetic distance between broiler and KL was sufficiently close
(Dorji, Duangjinda and Phasuk, 2012).
Characteristic
Percent
Black
Black/dark green
Black/white
Black/brown
Black/dark green/
brown
48.28
20.69
13.79
10.34
6.90
Black
Black/dark green
Brownish
Black/brownish
Black/white
White
Reddish
30.00
23.33
16.67
16.67
6.67
3.33
3.33
Black
Black/dark green
Black/brownish
Black/white
46.67
40.00
10.00
3.33
Black
Light black
Black/dark green
Brownish/black
Black/white
Brown spot
53.33
16.67
13.33
6.67
6.67
3.33
Comb type and earlobe
from native chickens of Botswana (Badubi et al., 2006)
and Bangladeshis (Bhuiyan et al., 2005; Faruque et al.,
2010; Uddin et al., 2011). This indicates that the bird
have been favoured by hot climatic conditions whereby
large comb, such as single comb allows for efficient heat
regulation (Apuno, Mbap and Ibrahim, 2011). On the
other hand, pea type was the most frequently sampled
for Ethiopian traditional birds (Dana et al., 2010).
Only three types of comb (rose, pea and single) were found
in all four indigenous chickens of Bhutan (Table 2). The
finding agrees with the reports of Daikwo, Okpe and
Ocheja (2011) and Ige et al. (2012) on native chickens
of Nigeria. Egahi et al. (2010), Dana et al. (2010) and
Badubi, Rakereng and Marumo (2006) reported more
than three comb types contradicting with present study.
Nevertheless, the common comb occurring was single
comb type as examined for Nigerian local birds (Egahi
et al., 2010; Apuno, Mbap and Ibrahim, 2011; Daikwo,
Okpe and Ocheja, 2011). Parallel result was also obtained
Except for the SM, all the BIC birds have ear lobes
(Table 2). Earlobe colour was dominated by red (50.00
percent) in SM, white (46.67 percent) in KL, white and
red (36.67 percent) and white (43.33 percent) in YN
flocks. The dominant white colour was also reported
in Nigerian (Egahi et al., 2010; Ige et al., 2012),
Bangladeshis (Faruque et al., 2010) and Ethiopian (Dana
et al., 2010) indigenous chicken. Furthermore, Faruque
et al. (2010) documented that the red and white earlobe
colour dominants in naked neck population and is in line
with KL populations.
75
76
T. Tashi and N. Dorji
Table 2. Shank, skin and earlobe colour, comb type, heat type and ptilopody among four indigenous chickens of Bhutan (percent).
Trait
Seim
Characteristic
Khuilay
Percent
Shank colour
Yellowish
White
Ash
Yellowish white
Black
36.67
26.67
16.67
13.33
6.67
Skin colour
Yellowish
White
Light red
Red
Pale yellow
46.67
30.00
10.00
6.67
6.67
Ear lobe
Present
Absent
Red
White
Yellowish white
93.33
6.67
50.00
32.14
17.86
Earlobe colour
Comb type
Head shape
Ptilopody
Single
Rose
Pea
Plain
Crested
Absent
Present
40.00
33.33
26.67
100.00
0.00
100.00
0.00
Characteristic
White
Yellow
Black
Ash
Light red
Yellowish white
Reddish
White
Reddish white
Yellowish
Reddish ash
Present
Absent
White
Red
Reddish white
Ash
Yellowish
Single
Rose
Pea
Plain
Crested
Absent
Present
Ptilopody and head type
Throughout the study crested head and ptilopody were not
found in all BIC populations (Table 2). The absence of
feather on shank aligns with the finding of Halima
(2007) in Northwest Ethiopian local birds. Faruque et al.
(2010) also observed that the shank feather phenomenon
was absent in three genotypes of Bangladeshis native
chicken. On contrary, lower percent of ptilopody among
Nigerian local birds was examined (Daikwo, Okpe and
Ocheja, 2011).
Skin and shank colour
The skin colour ranged from white to red among the studied BIC populations. However, the prime skin colour in
SM, KL, PL and YN was yellowish (46.67 percent), reddish (33.33 percent), white (30 percent) and (33.33 percent), respectively (Table 2). Daikwo, Okpe and Ocheja
(2011) also reports multiple shank colour for Nigerian
traditional birds. This was contradicting with the
Ethiopian local bird’s shank colour with white and yellow
(Dana et al., 2010). Nevertheless, high percent colour of
shank follow the same pattern.
Shank with white colour accounted the most in KL (26.67 percent) and PL (33.33 percent), yellowish (36.67 percent) in
SM and black (36.67 percent) in YN. Faruque et al. (2010)
also mentioned that the white shank colouring dominants
Phulom
Percent
26.67
23.33
20.00
16.67
10.00
3.33
33.33
30.00
23.33
10.00
3.33
100.00
0.00
46.67
43.33
3.33
3.33
3.33
36.67
33.33
30.00
100.00
0.00
100.00
0.00
Characteristic
White
Reddish
Yellowish white
Yellow
Black
Ash white
White
Red
Yellowish
Yellowish white
Yuebjha Nap
Percent
33.33
23.33
20.00
10.00
6.67
6.67
30.00
26.67
23.33
20.00
Present
Absent
White
Red
Reddish white
Ash
100.00
0.00
36.67
36.67
16.67
10.00
Single
Pea
Rose
Plain
Crested
Absent
Present
40.00
33.33
26.67
100.00
0.00
100.00
0.00
Characteristic
Black
Ash
Light red
White
Pale yellow
White
Light red
Yellowish
Ash
Reddish white
Yellowish white
Present
Absent
White
Red
Ash
Ash black
Yellowish white
Single
Pea
Rose
Plain
Crested
Absent
Present
Percent
36.67
23.33
20.00
16.67
3.33
33.33
33.33
16.67
6.67
6.67
3.33
100.00
0.00
43.33
33.33
13.33
6.67
3.33
36.67
36.67
26.67
96.67
3.33
100.00
0.00
in Bangladeshis chickens. This contradicts with Mancha
(2004) whose finding in Plateau chicken was pink, dark
ash, ash and light yellow. Genes that affect plumage colour
also affect shank colour (Crawford, 1990).The presence of
large variations further confirms that higher diversity in KL
and PL as suggested by Daikwo, Okpe and Ocheja (2011).
Conclusion
Bhutanese indigenous chicken has their place in contributing to the genetic collection because of their hardiness
and aptitude to survive under low input conditions.
Development of conservation strategies is very important
to make genetic resources available for meeting the future
unpredicted breeding requirement. Among four studied
chicken strains in Bhutan, single comb type predominates
and there was no feather on shank and head. Based on feather colours, Kuilay seems to be more diversed while
Yuebjha Narp reflect lower morphological variation. It is
further suggested to conduct morphometric study on
Bhutanese chicken populations to confirm our claims.
Acknowledgements
We would like to thank individual farmers for their active
participation during this study.
Variation in qualitative traits in Bhutanese indigenous chickens
References
Ajayi, F.O. 2010. Nigerian indigenous chicken: a valuable genetic
resource for meat and egg production. Asian J. Poultry Sci., 4:
164–172.
Apuno, A.A., Mbap, S.T. & Ibrahim, T. 2011. Characterization of local
chickens (Gallus gallus domesticus) in Shelleng and Song local government areas of Adamawa state, Nigeria. Agric. Biol. J. N. Am., 2(1):
6–14.
Badubi, S.S., Rakereng, M. & Marumo, M. 2006. Morphological
characteristics and food resources available for indigenous chickens
in Botswana. Livestock Res. Rural Dev. (available at http://www.
lrrd.org/lrrd18/1/badu18003.htm).
Bhuiyan, A.K.F.H., Bhuiyan, M.S.A. & Deb, G.K. 2005. Indigenous
chicken genetic resources in Bangladesh: current status and future outlook. Animal Genet. Res. Inf. (AGRI), 36: 73–84, FAO, Rome.
Crawford, R.D. 1990. Poultry breeding and genetics. New York,
Elsevier Press, pp. 109–169.
Daikwo, I.S., Okpe, A.A. & Ocheja, J.O. 2011. Phenotypic characterization of local chickens in Dekina. Int. J. Poultry Sci., 10(6):
444–447.
Dana, N., Dessie, T., van der Waaij, L.H. & van Arendonk, J.A.M.
2010. Morphological features of indigenous chicken populations of
Ethiopia. Animal Genet. Res., 46: 11–23.
Egahi, J.O., Dim, N.I., Momoh, O.M. & Gwaza, D.S. 2010. Variations
in qualitative traits in the Nigerian local chicken. Int. J. Poultry Sci., 9:
978–979.
Egahi, J.O., Dim, N.I. & Momoh, O.M. 2013. The effect of plumage
modifier genes on egg quality indices of the Nigerian local chicken.
J. Agric. Vet. Sci., 2(2): 04–06.
Faruque, S., Siddiqee, N.U., Afroz, M.A. & Islam, M.S. 2010.
Phenotypic characterization of native chicken reared under intensive
management system. J. Bangladesh Agric. University, 8: 79–82.
Food and Agriculture Organization. 2012. Phenotypic characterization
of animal genetic resources. FAO Animal Production and Health
Guidelines 11, Rome.
Halima, H.M. 2007. Phenotypic and genetic characterization of indigenous chicken populations in Northwest Ethiopia. University of Free
State, Bloemfontein, South Africa. (Ph.D. thesis).
Ige, A.O., Salako, A.E., Yakubu, A. & Adeyemi, S.A. 2012. Qualitative
traits characterization of Yoruba and Fulani ecotype indigenous chickens in derived Savannah zone of Nigeria. Int. J. Poultry Sci., 11(10):
616–620.
Mancha, Y.P. 2004. Characterization of local chickens in Northern part
of the Jos Plateau. Animal Production Programme, School of
Agriculture, ATBU, Bauchi. (Ph.D. thesis).
Merat, P. 1986. Potential use of Na (naked neck) gene in poultry production. Int. J. Poultry Sci., 42: 124–142.
Dorji, N. & Gyeltshen, T. 2012. Characterisation of family poultry production in Haa and Mongar districts of Bhutan. Livestock Res. Rural
Dev. (available at http://www.lrrd.org/lrrd24/9/dorj24155.htm).
Olori, V.E. & Sonaiya, E.B. 1992. Effect of length of lay of Nigerian
indigenous chicken on their egg composition and shell quality.
Nig. J. Anim. Prod., 19: 95–100.
Dorji, N., Duangjinda, M. & Phasuk, Y. 2012. Genetic characterization
of Bhutanese native chickens based on an analysis of Red Junglefowl,
domestic Southeast Asian and commercial chicken lines. Genet. Mol.
Biol., 35(3): 603–609.
Uddin, A.H., Ali, A., Aktar, Y. & Khatun, M.A. 2011. Geographical
distribution, classification, characterization and conservation of different native chicken varieties of Bangladesh. Bangladesh Res. Publ. J.,
5(3): 227–233.
77
Animal Genetic Resources, 2014, 54, 79–83. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633613000490
Genetic polymorphism of αS1 casein in Guéra and
Sahel goat
D. Traoré, Y. Sanogo, R. Fané, A. Touré, O. Cissé and A.H. Babana
Laboratoire de Recherche en Microbiologie et biotechnologie Microbienne (LaboREM-biotech), Faculté des Sciences et Techniques
(FST), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Mali
Summary
The αS1 casein gene is one of the lacto protein genes, which are involved in the milk synthesis. The objective of this study was to
identify genotypes of B and E alleles at the locus αS1 casein in the Guéra and Sahel goat herds in Mali. These herds were located
in the Regional Center of Agronomic Research and the Ségala village in Kayes, Mali. A total of 101 blood samples (53 for Guéra
goat and 48 for Sahel goats) were collected and analysed. Alleles B and/or E, located on exon 19, of the αS1 casein gene were amplified
using allele specific amplification polymerase chain reaction and analysed using 2 percent agarose gel electrophoresis. Results from this
analysis identified three genotypes: BB, BE and EE with frequencies 0.77, 0.17 and 0.06 for the Guéra goats. However, only the BB
genotype was identified in the Sahel goats. The frequencies of alleles B and E in the Guéra goats were 0.86 and 0.14, respectively, with
an observed and expected heterozygotes of 0.08 and 0.12, respectively.
Keywords: allele, αS1 casein, Guéra goat, Sahel goat
Résumé
Le gène αS1 caséine fait partie du groupe de gène des lactoprotéines intervenant dans la synthèse du lait. L’objectif de notre travail était
d’identifier les génotypes liés aux allèles B et E au locus αS1 caséine chez deux races caprines, la chèvre Guéra et du Sahel au Mali. Les
analyses ont porté sur le gène αS1 caséine d’un troupeau de chèvre Guéra du Centre Régional de Recherche Agronomique de Kayes au
Mali et d’un autre troupeau, la chèvre du Sahel en milieu rural dans un village (Ségala) près de Kayes au Mali. Des amorces spécifiques
ont été utilisées pour l’identification des allèles B et/ou E du gène αS1 caséine (exon 19). Au total, 101 échantillons de sang (53 de la
chèvre Guéra et 48 de la chèvre du Sahel) ont été prélevés et le gène αS1 caséine a été amplifié par la méthode de l’allèle spécifique
polymerase chain reaction (AS-PCR). La révélation des allèles a été faite après électrophorèse sur un gel d’agarose 2 percent en utilisant le bromure d’éthidium. Trois génotypes, (BB, BE et EE) avec des fréquences respectives de 0,77; 0,17 et 0,06 ont été observés
chez la chèvre Guéra. En revanche, un seul génotype (BB) a été identifié chez la chèvre du Sahel. Les fréquences des allèles B et E au
niveau du troupeau Guéra étaient respectivement 0,86 et 0,14. L’hétérozygotie observée et attendue était de 0,08 et 0,12.
Mots-clés: allèles, αS1 caséine, chèvre Guéra, chèvre du Sahel
Resumen
El gen de la caseína αS1 es uno de los genes, codificantes para proteínas lácteas, implicados en la síntesis de la leche. El objetivo de este
estudio era identificar los genotipos de los alelos B y E del locus de la caseína αS1 en los rebaños de cabras Guéra y Sahel de Malí. Estos
rebaños se encontraban en el Centro Regional de Investigación Agronómica y en el pueblo de Ségala, en la región de Kayes de Malí. Se
tomaron y se analizaron un total de 101 muestras de sangre (53 de cabras Guéra y 48 de cabras Sahel). Los alelos B y/o E, situados en el
exón 19, del gen de la caseína αS1 fueron amplificados de forma específica usando la reacción en cadena de la polimerasa y analizados
por electroforesis en gel de agarosa (2%). Los resultados de este análisis permitieron identificar tres genotipos: BB, BE y EE, con unas
frecuencias de 0,77, 0,17 y 0,06 para las cabras Guéra. Sin embargo, tan sólo el genotipo BB fue identificado en las cabras Sahel. Las
frecuencias de los alelos B y E en las cabras Guéra fueron de 0,86 y 0,14 respectivamente, con una heterocigosis observada y esperada
de 0,08 y 0,12, respectivamente.
Palabras clave: alelo, caseína αS1, cabra Guéra, cabra Sah
Submitted 7 August 2013; accepted 12 November 2013
Introduction
Correspondence to: D. Traore, Laboratoire de Recherche en Microbiologie et biotechnologie Microbienne (LaboREM-biotech), Faculté des Sciences et Techniques
(FST), Université des Sciences, des Techniques et des Technologies de Bamako
(USTTB), Mali. email: [email protected]
Small ruminants and especially goats play an important
role in the economies of rural smallholder families in
Mali. Goat milk is an important source of protein for
rural populations in the region of Kayes and particularly
79
80
D. Traoré et al.
in the fight against child malnutrition. In recent years, the
Institute of Rural Economy of Mali through the
Programme “Small Ruminants” conducted research activities to introduce the Guéra goats in rural areas with a
view to improve milk production of local goats.
The Guéra goats widely found in Mauritania was introduced at the Agricultural Research Station in Kayes Mali
in 1998. This goat breed is raised for its high milk performance (Traoré, Nantoumé and Diarra, 2005).
According to the Mauritanian farmers, the origin of this
breed is the Canary Islands (Spain). Information about
its genetic potential in Mali is sparse. The present research
will contribute to a better understanding of the genetic
characteristics of Guéra and Sahel goats, through analysis
of αS1 casein gene.
In the past few years, αS1 casein gene in ruminants and
especially in goats has been used as a tool for genetic characterization (Ramunno et al., 2001; Angiolillo et al., 2002;
Feligini et al., 2005). This gene is part of the lactoproteins
(αS1, αS2, β, κ casein, α lactalbumin and β lactoglobulin),
which has been used in several studies to identify genotypes of animals and their links to milk performances
(Boulanger, Grosclaude and Mahe, 1984; Grosclaude
et al., 1987). Today, several alleles of these genes have
been identified and characterized in different species and
breeds. For the αS1 casein gene in goats, seven alleles
(A, B, C, D, E, F and O) with four levels of casein synthesis: 3.6 g/l for strong alleles (A, B and C), 1.6 g/l for the
allele E, 0.6 g/l for low alleles (D and F) and 0 in goats
with the allele null (0), were identified (Grosclaude
et al., 1987).
In Alpine goats, it has been found that the goats with genotype AA produce significantly less milk than those with
genotypes AE, AF, EE and FF, the highest milk yield
being observed in goats with EE genotype (Barbieri
et al., 1995). At birth, kids with genotype AA had an average weight significantly lower than those with AE and EF
genotypes.
Alleles A, B and C are recognized to be the ancestral types
carried nucleotide substitutions, whereas allele E is from
an insertion of 458 bp nucleotides at the last exon of the
gene (Martin, 1993). F allele is characterized through epitasis abnormalities in form of deletions of 37 amino acid
residues (Barbieri et al., 1995).
Studies on genetic characterization of casein gene complex
in West African goats (Red Sokoto, West African Dwarf
Nigeria, West African Dwarf Cameroon and Borno) were
carried out by Caroli et al. (2007). The four casein genes
αS1, β, αS2 and κ were typed at the DNA level. A polymerase chain reaction (PCR) single-strand conformation polymorphism method was implemented for the identification
of CSN1S1*F allele simultaneously with A/0(1), B/E, N
and the new allele (CSN1S1*B’). The investigations
showed a high frequency of CSN1S1*B’ in all the
population.
Vacca et al. (2009) investigated on genetic diversity at the
four casein genes in the Arbi goat, a native goat breed from
Tunisia. The most frequent allele at the CSN1S1 locus was
B, followed by A and 01. Analysis on αS1 gene were carried out in a dairy goat herd (Saanen and Alpine) in
Southeastern region of Brazil (Soares et al., 2009). Three
different regions of the αS1 casein gene (CSN1S1) were
investigated to determine the frequencies of major alleles
for null, low, intermediate and high milk protein expression. Allele E was the most frequent in both Saanen
(0.35) and Alpine (0.48) breeds followed with F allele
(0.30).
Information on casein genes by Guéra goat is rare. The
relatively high milk yield in Guéra goat, 1–3 litres, in
142 days of lactation length (Traoré, Nantoumé and
Diarra, 2005), could be better understood through molecular genetics analysis. The objective of the investigations
was to analyse the genetic polymorphism of αS1 casein
in Guéra and Sahel goats and to determine the genetic
diversity in the studied populations. The present study
was focused on identifying the B and E alleles of the
CSN1S1 gene using allele specifics primers.
Materials and methods
Materials
Descriptive characteristics of the breeds
Guéra goat
In this study, 53 Guéra goats were randomly sampled from
the experimental herd of the Regional Center for
Agronomic Research in Kayes (Mali). The breed is characterized by a great diversity in coat colour (uniform: white,
brown, black, etc. or pied). It is distinguished through its
long hair. The average weight of mature males and females
are 44 and 36 kg, respectively (Traoré, Nantoumé and
Diarra, 2007).
Sahel goat
During the study 48 Sahel goats were also randomly
sampled in farmer’s herds in Ségala in the region of
Kayes (Mali). This breed is raised in the Sahelian zone
of West Africa. It is found from Mali to Chad. It is kept
for its milk and meat. The Sahel goat appears in various
coat colours: uniform white, brown, black or pied. The
average weight of mature males and females are 35 and
25 kg, respectively (Nantoumé, Traoré and Diarra, 2005).
Methods
Sampling and DNA extraction
Blood samples from 53 Guéra goats and 48 Sahel goats
were collected using confetti paper type Whatman 903
for molecular genetic analysis.
DNA was extracted from blood on confetti paper using the
Truett et al. (2000) protocol. For alkaline lysis, a solution
Genetic polymorphism of αS1 casein in Guéra and Sahel goat
of 25 mM NaOH, 0.2 mM disodium EDTA, pH 12 was
used. The precipitation of DNA molecules was obtained
with absolute ethanol in the presence of potassium acetate
(8 M, pH 7.4). A solution of neutralization (40 mM Tris–
HCl, pH 5) was also used to stabilize DNA. Final DNA
was obtained using 70 percent ethanol by washing.
Results
Three genotypes (BB, BE and EE) were observed in Guéra
goats samples (Figure 1a and b), whereas only genotype
(BB) was observed in Sahel goat samples (Figure 2).
DNA concentrations ranging between 18 and 58 ng/μl
measured with a spectrometer (Eppendorf Bio
Photometer) at 260 and 280 nm, were used for PCR.
In the Guéra goat, homozygous BB (41 animals) was the
most frequent genotype (0.77) followed by the heterozygous BE (nine animals) with 0.17 and the homozygous
EE (three animals) with 0.06. In Sahel goat, all animals
(48) were homozygous BB.
Allelic specific amplification by PCR for
identification of B and E alleles
The genotypic and allelic frequencies in the two breeds are
shown in Tables 1a and 1b.
For the PCR, 50 ng of genomic DNA was amplified in a
reaction volume of 30 μl using 150 nM primer, 50 mM
KCL, 10 mM Tris–HCl (pH 8.3), 2.5 mM MgCl2, 200
μM dNTPs and 1.25 U Taq polymerase (Invitrogen).
The frequency of allele B in the two breeds and that of E is
given in Table 2.
Primers were selected according to the study of Feligini
et al. (2005) for the identification of B alleles (90 bp)
and/or E (550 bp) at the locus CSN1S1 (exon 19). The
accession number of gene at the Genbank is X72221.
The thermocycler thermal-type PTC-200 (M) Research
was used for amplification with the following programme:
initial denaturation at 94 °C for 3 min, denaturation at 94 °
C for 45 s by 25 cycles, hybridizing at 59 °C for 45 s,
extension at 72 °C for 1 min, final extension at 72 °C for
5 min and the conservation at 4 °C.
The PCR products were migrated in 2 percent agarose gel
(BDH electran), for 60 min at 100 V. Ethidium bromide (1
μM) was used to reveal the bands.
Statistical analysis
The frequencies of B and E alleles were calculated using
the formula:
pB = [2(BB) + (BE)]/2N,
qE = [2(EE) + (BE)]/2N ,
where pB and qE are the frequencies of B and E alleles,
BB and EE are the genotypes and N is the total number.
The heterozygous rates (observed and expected) were evaluated assuming that the herds were in genetic equilibrium
of Hardy–Weinberg.
Different heterozygosity rates were evaluated. The genetic
diversity index (FST) in the two breeds was low (0.07).
Discussion
Previous studies (Missohou, Talaki and Maman Laminou,
2006) on the casein gene on African goat breeds including
those of West Africa have shown that the allelic frequencies were low and the most identified allele were A and
B (strong allele). Further investigations (Caroli et al.,
2007) on the casein group genes using four breeds or varieties of goats in Africa, namely the Sokoto red goat
(Nigeria), the Borno goat (Nigeria), the Nigerian and
Cameroon dwarf goat, showed that the A and B alleles
were more frequent with a predominance of B allele
(0.37). A new allele, named CSN1S1*B’, was identified
with a high frequency in all populations, ranging from
0.295 (West African Dwarf Cameroon) to 0.405 (Borno).
The intermediate E allele was also observed with a very
low frequency of 0.01 in Sokoto red goats.
In our study, the results obtained in the Sahel goats were
expected. They indicate the non-introduction of exotic
breeds in the studied herd in Ségala (Kayes). In contrast,
the Guéra goats introduced in Africa for several decades,
from Spain was subject of many questions relating its
wide range of milk performances observed at the
The observed heterozygosity (Ho) = 1/N Σ Hi, where N is
the total number of loci,
Hi is the heterozygosity at the locus i.
The expected heterozygosity (He) = 1 − (f12 + f22 + . . .+
fk2) = 1 − Σ f2, where f are frequencies f1, f2,. . .,fk.
Total heterozygosity (HT) = 1 − (f12T + f22T + . . .fk2T) = 1 −
Σ f2T, where, fT is the total frequency.
The genetic diversity index was calculated using FST
(HT − He)/HT, where FST is the genetic diversity indice,
HT is the total heterozygosity and He is the expected
heterozygosity.
Figure 1. (a) Amplification of the αS1 casein gene (E 19) in 2 percent agarose
gel for Guéra goat; M: marker 14; lane 1: EE lanes 2–7: BB lane C: negatif
control. (b) Amplification of the αS1 casein gene (E 19) in 2 percent agarose
gel for Guéra goat; M: marker 14; lanes 6 et 7: BE lanes 5; 8; 9; 10; 11:
BB line C: negatif control.
81
82
D. Traoré et al.
Table 2. Observed, expected and total heterozgosity at the locus
αS1 casein (exon 19) in Guéra and Sahel goat
Heterozygoty
observed (Ho)
expected (He)
Guéra goat: 0.17
Sahel goat: 0.00
Guéra goat: 0.24
Sahel goat: 0.00
Both breeds: 0.08
Both breeds: 0.12
Total (HT) = 0.13
Figure 2. Amplification of the αS1 casein gene (E 19) in 2 percent agarose gel
for Sahel goat; M: marker 14; lanes 1 à 6: BB; lanes 7; 8; 9; 10: negatifs lane
C: negatif control.
Agricultural Research Center in Kayes (Mali). The study
made on the Guéra goat breed by Traoré, Nantoumé and
Diarra (2005) showed an average daily milk quantity of
1.9 litres ranging from 1 to 3 litres, with a total milk production of 262 litres in 142 days. The milk protein percentage was estimated to 3.9 percent (Traoré, Nantoumé and
Diarra, 2005).
It appears that the Guéra goat carried the allele (E) with a
frequency of 0.14. This allele is widely identified in some
European dairy goats (Feligini et al., 2005) such as the
Alpine goat and in the Red Sokoto at a low frequency
(Caroli et al., 2007). The allelic frequency of E in our
study is higher than those reported by Missohou, Talaki
and Maman Laminou (2006) with 0.11.
Studies on Spanish dairy goats, especially those of the
Canary Islands breeds showed a high frequency of the
allele E (Jordana et al., 1996). A phylogeny relationship
between the Guéra goat and Spanish goat breed was not
investigated in the present study. However, the relatively
high milk production of Guéra could be explained by the
presence of the allele E in this breed. The genetic diversity
observed was low, due to relatively low heterozygosity
Table 1a. Genotype frequencies at the locus αS1 casein (exon 19)
in Guéra and Sahel goat
Guéra goat
Genotypes
BB
BE
EE
Number
Frequencies
Number
Frequencies
41
9
3
0.77
0.17
0.06
48
0
0
1
0
0
Conclusions
Genetic diversity is very important for animal breeding.
Our study revealed polymorphism in αS1 casein gene in
Guéra goat. Allele B and the intermediate allele E were
found in this breed. For the Sahel goat, no polymorphism
was identified, B was the unique allele. The heterozygosity
rates and the genetic diversity index (FST) in the two
breeds were low.
The presence of allele E in Guéra goats could explain the
relatively high milk production of this breed and its origin
in the Canary Islands. The information obtained for Guéra
goat regarding the αS1 casein gene might be used in genetic improvement schemes of local goats in Mali.
Acknowledgements
The authors express their gratitude to “Institut d’Economie
Rurale du Mali” for the help and support of this research.
Allele
Guéra goat
Sahel goat
both
Allele B was predominant in both breeds. The methodology used in the present study cannot identify the difference between alleles B and B’ of CSN1S1 like by Caroli
et al. (2007). More investigations using other methodology
(PCR–SSCP, PCR–RFLP and DNA sequencing) are
necessary to better genetic characterization of Malian
goat breeds.
Sahel goat
Table 1b. Allele frequencies at the locus αS1 casein (exon 19) in
Guéra and Sahel goat
Breed
rate. The absence of the E allele in Sahel goats is largely
responsible for these low values (0.07). It would be interesting to carry out further studies including other populations of Sahel goat in Mali to confirm the absence of E
allele.
B
E
0.86
1.00
0.93
0.14
0.00
0.07
References
Angiolillo, A., Yahyaoui, M.H., Sanchez, A., Pilla, F. & Folch, J.M.
2002. Characterization of a new genetic variant in the caprine
κ-casein gene. Journal of Dairy Science 85: 2679–2680.
Barbieri, M.E., Manfredi, E., Elsen, J.M., Ricordeau, G., Bouillon, J.,
Grosclaude, F., Mahe, M.F. & Bibe, B. 1995. Effet du locus de la
caséine alpha S1 sur les performances laitières et les paramètres
génétiques des chèvres Alpines. Genetic Selection Evolution 27: 437–450.
Genetic polymorphism of αS1 casein in Guéra and Sahel goat
Boulanger, A., Grosclaude, F. & Mahe, M.F. 1984. Polymorphisme des
caséines αs1 et αs2 de la chèvre (Capra hircus). Genetic Selection
Evolution 16: 157–176.
Caroli, A., Chiatti, F., Chessa, S., Rignanese, D., Ibeagha-awemu,
E.M. & Erhardt, G. 2007. Characterization of the casein gene complex in West African goats and description of a new αs1-casein polymorphism. Journal of Dairy Science 90: 2989–2996.
Cisse, M., Fall, Y. & ly, I. 2005. Performances laitières et état nutritionnel des chèvres du Sahel conduites sur parcours naturels: relations
avec la croissance des chevreaux. In Proceedings of the Third
Biennial Conference of the African Small Ruminant Research
Network – UICC, Kampala, Uganda, 5–9 December y1994.
Nantoumé, H., Traoré, D. & Diarra, C.H.T. 2005. Mise au point de
techniques d’amélioration des productions de lait, de viande et de
laine des petits ruminants. Rapport final de Recherche, 11e
Commission Scientifique du Comité National de Recherche
Agricole, Novembre 2005, Bamako.
Ramunno, L., Longobardi, E., Pappalardo, M., Rando, A., Di
Gregorio, P., Cosenza, G., Mariani, P., Pastore, N. & Masina, P.
2001. An allele associated with a non-detectable amount of alpha
S2 casein in goat milk. Animal Genetics 32: 19–26.
Soares, M.A.M., Rodrigues, M.T., Mognol, G.P., Ribeiro, L.F.C.,
Silva, J.L.C. & Brancalhão, R.M.C. 2009. Polymorphism of
alphas1-casein gene in a dairy goat herd in the southeastern region
of Brazil. Revista Brasileira de Zootecnia 38(6).
Feligini, M., Frati, M., Cubrik, V.C., Brambilla, A., Parma, P., Curik,
I., Greppi, G.F. & Enne, G. 2005. Caprine alpha S1 casein polymorphism, characterization of A, B, E and F variants by means of
various biochemical and molecular techniques. Food Technology
Biotechnology 43(2): 123–132.
Traoré, D., Nantoumé, H. & Diarra, C.H.T. 2005. Amélioration de la
production laitière par l’introduction de la chèvre Guéra. Rapport
final de Recherche, 11e Commission Scientifique du Comité
National de Recherche Agricole, Novembre 2005, Bamako.
Grosclaude, F., Mahe, M.F., Brignon, G., Di stasio, I. & Jeunet, R.
1987. A Mendelian polymorphism underlying quantitative variations
of goat αs1 casein. Genetic Selection Evolution 19(4): 399–412.
Traoré, D., Nantoumé, H. & Diarra, C.H.T. 2007. La chèvre Guéra.
Institut du Sahel; les Monographies Sahéliennes ISBN:
2-912693-48-9.
Jordana, J., Amills, M., Diaz, E., Angulo, C., Serradilla, J.M. &
Sanchez, A. 1996. Gene frequencies of caprine αS1-casein polymorphism in Spanish goat breeds. Small Ruminant Research 20: 215–221.
Truett, G.E., Heeger, P., Mynett, R.L., Truett, A.A., Walken, T.A. &
Warmen, M.L. 2000. Preparation of PCR quality mouse
genomic DNA with hot sodium and tris (Hotshot). Biotechnics 29
(1): 52–54.
Martin, P. 1993. Polymorphisme génétique des lactoprotéines caprines.
Lait 73: 511–532.
Missohou, A., Talaki, E. & Maman Laminou, I. 2006. Diversity and
genetic relationships among seven West African goat breeds.
Asian-Australasian Journal of Animal Sciences 19(9): 1245–1251.
Vacca, G.M., Ouled Ahmed Ben Ali, H., Carcangiu, V., Pazzola, M.
& Dettori, M.L. 2009. Genetic structure of the casein gene cluster
in tne Tunisian native goat breed. Small Ruminant Research 87(1):
33–38.
83
Animal Genetic Resources, 2014, 54, 85–91. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633613000519
Estimación de heredabilidad de la curva de
crecimiento en el borrego de raza Chiapas en
México
A.C. Méndez-Gómez1, R. López-Ordaz2,4, M. Peralta-Lailson1, R. Ulloa-Arvizu2,
P. Pedraza-Villagómez1, F.J. Ruiz-López3, J.M. Berruecos-Villalobos2, C.G. Vásquez-Peláez2
1
Centro Universitario de Investigación y de Transferencia de Tecnología, Universidad Autónoma de Chiapas, Campus III, San
Cristóbal de las Casas, México; 2Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México
D.F.; 3Centro Nacional de Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales y Agropecuarias,
SAGARPA, Ajuchitlán Qro, México; 4Dirección actual: Universidad Autónoma Metropolitana, Unidad Xochimilco, México D.F.
Resumen
Se utilizaron los registros genealógicos y de pesos mensuales de 790 ovinos de la raza Chiapas nacidos de 1991 a 2004 con objeto de
caracterizar la curva de crecimiento y estimar componentes de (co)varianza de los estimadores (A, k y b) de la función de Gompertz. La
estructura del pedigrí consistió por 790 ovinos, incluyendo 45 sementales y 379 madres. La estimación de los componentes de (co)
varianza de cada uno de los estimadores de crecimiento se realizó utilizando un modelo animal univariado con la metodología de
máxima verosimilitud restringida (REML). Los valores de heredabilidad estimados fueron: A (peso asintótico) 0.21 ± 0.06; b
(constante de integración) 0.25 ± 0.07; k (tasa de madurez) 0.16 ± 0.06; edad a la inflexión se estimó como (ln(b)/k) 0.24 ± 0.07 y
velocidad de crecimiento absoluto estimada como [k*(0.368*A)* ln(A/0.368*A)] 0.22 ± 0.07. Los machos muestran una velocidad
de crecimiento 24% más rápida que las hembras (P < 0.05), siendo el crecimiento absoluto de 59 ± 2 g y 44 ± 2 g por día para machos
y hembras respectivamente. La raza Chiapas es un borrego de tamaño pequeño con lenta velocidad de crecimiento debido probablemente a su adaptación a las condiciones ambientales donde es utilizado. La curva de crecimiento puede ser modificada a través de
selección.
Palabras clave: heredabilidad, función de Gompertz, curvas de crecimiento, crecimiento absoluto, borrego Chiapas
Summary
Genealogical and live body weight monthly records from 790 sheep of the Chiapas breed born between 1991 and 2004 were used to
characterize the growth curve and estimate (co)variance components for the parameters (A, k and b) of the Gompertz function. The
pedigree structure consisted of 790 sheep, including 45 rams and 379 ewes. Estimation of (co)variance components for each growth
parameter was achieved using a univariate animal model with the restricted maximum likelihood (REML) method. Estimated values of
heritability were: A (adult weight) 0.21 ± 0.06; b (integration constant) 0.25 ± 0.07; k (maturity rate) 0.16 ± 0.06; age at the inflexion
estimated as (ln(b)/k) 0.24 ± 0.07; and absolute growth rate as [k*(0.368*A)* ln(A/0.368*A)] 0.22 ± 0.07. The growth of males was
24% (P < 0.05) faster than that of females; adult weight was 25 ± 0.7 kg for males and 23 ± 0.7 kg for females; absolute growth was 59
± 2 g and 44 ± 2 g per day for males and females respectively. The Chiapas breed of sheep is a small animal with a slow growth curve,
probably due to its adaptation to the environmental conditions where it lives. Growth curve can be modified through selection.
Keywords: heritability, Gompertz function, growth curves, absolute growth, Chiapas sheep
Résumé
Archives généalogiques ont été utilisés et 790 pesos mensuels course de moutons Chiapas nés de 1991 à 2004 afin de caractériser la
courbe de croissance et composants estimation de (co)estimateurs de la variance (A, K et b) de la fonction Gompertz. La structure
pedigree composé de 790 moutons, dont 45 étalons et 379 mères. Estimation des composantes de (co)variance de chacun des estimateurs de croissance a été réalisée en utilisant un modèle animal univariée méthodologie REML (MVR). Les valeurs d’héritabilité
estimées sont les suivantes: A (poids asymptotique) 0,21 ± 0,06, b (constante d’intégration) 0,25 ± 0,07, k (taux de maturité) 0,16 ±
0,06; âge d’inflexion a été estimée à [(ln (b) / k] 0,24 ± 0,07 et le taux de croissance absolue estimé que [k*(0,368*A)* ln(A/
0,368*A)] 0,22 ± 0,07. mâles montrent un taux de croissance de 24% plus vite que les femelles (P < 0,05), avec la croissance absolue
de 59 ± 2 g à 44 ± 2 g par jour pour les mâles et les femelles. Chiapas est une race de moutons de faible taux de croissance faible sans
doute en raison de leur adaptation aux conditions environnementales où est utilisé. courbe de croissance peut être modifié par sélection.
Mots-clés: héritabilité, la fonction de Gompertz, courbes de croissance, croissance absolue, moutons Chiapas
Correspondencia: Dr Carlos Vásquez, Facultad de Medicina Veterinaria y
Zootecnia, Universidad Nacional Autónoma de México, México D.F. email:
[email protected]
85
86
A.C. Méndez-Gómez et al.
Introducción
En la región de los Altos de Chiapas, México, se estableció
desde el siglo XVI en la población indígena un sistema de
producción ovina que prevalece casi sin cambios hasta
nuestros días. Esta población de borregos tiene su origen
de las razas Churra, Manchega y Lacha y es conocida
como raza Chiapas, con tres biotipos: Blanca, Negra y
Café (Figura 1) (Pedraza et al., 1992; FAO, 2009).
Estos ovinos tienen importancia cultural, social y
económica por la producción de lana en la población
Tzotzil de origen maya (Perezgrovas y Castro, 2000).
Son animales rústicos con partos anuales generalmente
sencillos; el empadre se realiza con monta natural teniendo
presente al macho durante todo el año, a pesar de existir
una marcada estacionalidad con partos al término de la
época de lluvias (octubre–noviembre). La trasquila se realiza cada 6 meses (abril–octubre). Los rebaños son
pequeños de entre 8 a 10 animales por comunero y son alojados en corrales de madera pequeños fijos o móviles. Los
ovinos son llevados a pastorear en zonas comunales y a pie
de carretera donde consumen pastos (Sporobolus sp.,
Stipa ichu, Avena fatua, Cynodon dactylon, Pennisetum
clandestinum, Tripogandra spp., Trifolium amabile,
Melilotus alba) y plantas nativas (Eupatorium mairetianum,
Eupatorium ligustrinum, Salvia spp., Phytolaccaceae spp.,
Rulus trilobus, Sambucus mexicana). El agua de bebida es
proporcionada de forma individual a cada animal con una
cubeta procurando evitar que los animales beban de los
aguajes o cauces de ríos a fin de evitar parasitosis.
Cuando los dueños tienen oportunidad suplementan con
rastrojo de maíz. Los animales enfermos son tratados con
herbolaria tradicional (Pedraza et al., 1992; Perezgrovas
y Castro, 2000). Por su respuesta reproductiva a estas condiciones ambientales se le considera a la raza de borregos
Chiapas como un recurso zoogenético de la región.
Actualmente, la Universidad Autónoma de Chiapas conserva un núcleo de esta raza con las tres variedades, con
apareamientos controlados exclusivamente dentro de
estos biotipos, con el objetivo de caracterizar, evaluar y
apoyar la producción ovina de la región.
El borrego Chiapas es una raza pequeña con pesos al nacimiento de 2.5 kg y de 26 a 30 kg en la edad adulta en hembras y machos respectivamente (Perezgrovas y Pedraza,
1984; Pedraza et al.,1992; Perezgrovas y Castro, 2000;
López et al., 2012); sin embargo, se desconoce la curva
y velocidad de crecimiento. López et al. (2012) estimaron
heredabilidades de 0.09 a 0.34 para peso al nacimiento y
de 0.09 a 0.16 para peso ajustado al destete (90 días),
con una correlación genética entre estos pesos de 0.81 ±
0.18, sin que exista información en edades y pesos
posteriores.
La estimación de la curva de crecimiento del nacimiento
hasta la edad adulta permite identificar etapas en el desarrollo de esta raza, pudiendo establecer programas de manejo y alimentación así como estimar la tasa de crecimiento
absoluto, la tasa relativa de maduración y peso adulto
(Fitzhugh, 1976), e identificar animales genéticamente
sobresalientes a las condiciones ambientales.
Diferentes funciones no lineales han sido utilizadas para
describir y ajustar la curva de crecimiento en diferentes
especies, entre las cuales se encuentra la función de
Gompertz que tiende a un mejor ajuste con respecto a
otros modelos (Özdemir y Dellal, 2009; Forni et al.,
2009; Renne et al., 2003; Delgadillo et al., 2009,
Martínez et al., 2010). Esta función presenta dos
parámetros con interpretación biológica: A supone que el
peso tiende a un valor final o asintótico con el tiempo
(peso adulto) y k es la tasa de crecimiento la cual disminuye monotónicamente a medida que aumenta el peso
hacia la madurez, mientras que el parámetro b está relacionado con las condiciones iniciales (Blasco, 1999).
El objetivo de este estudio fue caracterizar la curva de crecimiento utilizando la función de Gompertz desde el nacimiento hasta la edad madura y la estimación de las (co)
varianzas de los componentes de la función en ovinos de
la raza Chiapas que permitan ayudar a establecer sistemas
de manejo, alimentación y genéticos en esta raza.
Materiales y métodos
Se utilizó la información de los corderos nacidos entre 1991
y 2004, del rebaño de borrego Chiapas localizado en el
Centro Universitario de Investigación y Transferencia de
Tecnología de la Universidad Autónoma de Chiapas
(CUITT-UNACH) ubicado en el municipio de Teopisca,
Figura 1. Ovino de la raza Chiapas en sus variedades Blanca, Negra y Café. (a) Variedad blanca Borrego Chiapas (Icsat en lengua Tzotzil) Blanco con manchas
negras alrededor de los ojos, el hocico y las orejas (b) Variedad negra o Chamula (Saciol en lengua Tzotzil) Negro de piel y lana, con manchas blancas en la
región frontal de la cabeza y la punta de la cola. (c) Variedad Cafó (Mesha en lengua Tzotzil) El color de la lana es blanco cremoso con tres variedades marrón,
negro y dorado. Fuente: Adaptado de Perezgrovas y Castro, 2000.
Estimación de heredabilidad de la curva de crecimiento en el borrego Chiapas
16°32′24″ de latitud norte y 92°28′19″ de longitud oeste
y a una altitud de 1780 msnm. El clima es templado
subhúmedo C(w2) (w) (clasificación de Köeppen), la
temperatura media anual oscila entre los 14 y 18°C con
heladas de noviembre a febrero y una precipitación pluvial
de 1200 mm anual de abril a octubre (Nahed, 1999). El
CUITT-UNACH, tiene una extensión de 50 ha de praderas;
10 ha son dedicadas para la siembra de maíz y casi una ha
para instalaciones donde se localizan los corrales rústicos
construidos con madera, y techo de lámina de zinc, sala
de ordeño, bodega y oficina. Los borregos se mantienen
en un sistema mixto con pastoreo diurno de 6 a 8 horas
en pradera compuesta principalmente de zacate kikuyu
(Pennisetum clandestinum) con encierro nocturno complementada con mazorca de maíz, harina de soya y sales
minerales. El manejo sanitario del rebaño consistió en
una rotación de principios activos para el control de enfermedades gastroentéricas y respiratorias. En la época de
empadre se formaron lotes de 10 hembras por cada semental, con una duración de 60 días de inicios de noviembre a
finales de diciembre de 1991 a 1997; a partir de 1998 hasta
2004, las hembras fueron inducidas al estro con el empadre
a principios de marzo; los nacimientos fueron desde agosto
a finales de septiembre. El destete se realizó cuando los corderos tenían 3 meses de edad aproximadamente.
Para cada uno de los corderos se registró la identificación
del padre, de la madre, el número de parto del cual
provenían, tamaño de la camada, año de parto, sexo,
fecha de nacimiento, edad y peso semanal del nacimiento
al destete, y mensual del destete hasta los 24 meses de
edad. Eliminando del análisis aquellos registros que contaron con menos de 5 pesajes posdestete quedando un
total de 790 animales y 15,067 mediciones.
lineal (GLM, SAS, 1993) incluyendo los efectos fijos y
las interacciones dobles, quedando en el modelo final los
efectos de año de nacimiento, tamaño de la camada,
edad de la madre y sexo (P < 0.05); mientras que las interacciones dobles se eliminaron al no presentar significancia
estadística (P > 0.15). La estimación de los componentes
de (co)varianza de los parámetros de crecimiento predichos a partir de la función de Gompertz se realizó utilizando un modelo animal univariado bajo la metodología
de máxima verosimilitud restringida (REML) con el programa ASReml versión 2.0 (Gilmour et al., 2006) a partir
de un modelo mixto representado como
Y = X b + Za + e
donde Y es el vector N × 1 observaciones de los estimadores de los parámetros A, b y k del modelo de
Gompertz, peso y edad a la inflexión, o velocidad de crecimiento absoluto; β es el vector de efectos fijos ambientales de número de parto, tamaño de la camada, sexo; X
es la matriz de incidencia que relaciona los efectos ambientales con las características de crecimiento; a es el vector
del valor genético aleatorio de los animales; Z es la matriz
de incidencia que relaciona los efectos aleatorios de los
animales con las observaciones; e es el vector de efectos
aleatorios residuales. Los supuestos en el modelos fueron
E[y] = Xβ y E[e] = 0y
2
a
Asa
0
Var
=
e
0
I N s2e
donde N es el número de registros de las características
estudiadas; A es la matriz de relaciones genéticas aditivas
entre los animales; IN es la matriz de identidad de orden N.
Análisis estadístico
Resultados
La caracterización de la curva de crecimiento se realizó utilizando la función de Gompertz (Proc NLIN, SAS, 1993),
calculando para cada animal los estimadores de los
parámetros de la función
En el Cuadro 1 se presentan las medias de cuadrados
mínimos de los efectos ambientales sobre los estimadores
de la curva de crecimiento. El tamaño de la camada y
número de parto del que provenían los animales, no
influyeron en A (P > 0.05), mientras que el valor estimado
en los machos fue de 25.4 kg (7.9%) mayor (P < 0.05) que
en las hembras (24.8 kg). El parámetro b fue afectado por
todos los efectos fijos incluidos en el modelo (P < 0.05).
yt = Ae−be
−kt
donde yt representa el peso corporal a la edad t (en días);
A es el valor estimado del peso asintótico cuando la edad
tiende a infinito, interpretado como peso adulto o maduro;
b es la constante de integración; k es la relación y/A que
representa la tasa de crecimiento (tasa de madurez); y e
es el número de Euler 2.7182818.
La relación (ln(b)/k) estima la edad a la inflexión, y ky ln
(A/y) la velocidad de crecimiento absoluto al punto de
inflexión, donde el valor de y se tomó como el peso a la
inflexión que es 0.368.
Para el cálculo de los efectos ambientales sobre los estimadores de la curva de crecimiento se utilizó un modelo
El parámetro k no se vio influenciado por tamaño de la
camada (P > 0.05); los machos tuvieron una mayor tasa
de madurez (24%) que las hembras (P < 0.05), mientras
que los corderos provenientes de madres primíparas
tuvieron el valor más bajo (0.0056), lo que representa
del 80 a 87% de lo alcanzado por los corderos provenientes de hembras multíparas (P < 0.05). El peso a la
inflexión fue alcanzado 30 días antes en los corderos de
parto sencillo comparados con los de parto múltiple (P <
0.05); los machos alcanzaron el peso a la inflexión 8%
más rápido que las hembras (P < 0.05); los corderos de
87
88
A.C. Méndez-Gómez et al.
Cuadro 1. Medias de cuadrados mínimos y errores estándar para las características de crecimiento de acuerdo al tamaño de la camada,
sexo y número de parto en borregos de la raza Chiapas
Efectos
Tamaño de la
camada
Sencillo
Múltiple
Sexo
Macho
Hembra
Número de
Parto
Primíparas
Segundo
>2
N
Peso adulto
(kg) (A)
Constante de
integración (b)
Tasa de
madurez (k)*
Peso de
inflexión (kg)
Edad de
inflexión (días)†
Velocidad de crecimiento
absoluto (g/día)††
736
54
25.0 ± 0.5a
23.9 ± 1.2a
1.89 ± 0.02a
2.10 ± 0.06b
65 ± 2a
56 ± 6a
9.2 ± 0.1a
8.7 ± 0.4a
101.8 ± 2a
131.5 ± 7b
55 ± 4a
48 ± 4a
391
399
25.4 ± 0.7a
23.5 ± 0.7b
2.09 ± 0.04a
1.90 ± 0.04b
67 ± 4a
54 ± 4b
9.3 ± 0.2a
8.6 ± 0.2b
111.5 ± 2a
119.5 ± 3.b
59 ± 2a
44 ± 2b
296
206
288
24.7 ± 0.7a
23.7 ± 0.8a
24.8 ± 0.8a
2.03 ± 0.04a
1.91 ± 0.04b
2.08 ± 0.04a
56 ± 4a
64 ± 4b
62 ± 4b
9.1 ± 0.2a
8.7 ± 0.3a
9.1 ± 0.2a
121.6 ± 3a
106.9 ± 3b
118.0 ± 3b
47 ± 2a
53 ± 2b
55 ± 2b
* 1 × 10−4
† ln(b)/k
†† ky ln (A/y), tomando y = 0.368*A. 1 × 10−3
a, b, c Valores con diferente literal dentro del efecto son medias diferentes (P < 0.05)
segundo parto tuvieron la menor edad a la inflexión (107
días), que representa un 13.7% menos que los corderos
de primíparas y 10 % menos de las de tres o más partos
(P < 0.05).
La Figura 2 muestra la curva de crecimiento y la tasa de
crecimiento absoluto por sexo; la mayor tasa de crecimiento de los machos fue de 59 g/día (punto de
inflexión), mientras que en las hembras la ganancia fue
de 44 g/día (P < 0.05). Por otro lado, las crías de hembras
de primer parto tuvieron una tasa de crecimiento absoluto
menor que los corderos de dos o más partos (P < 0.05).
En general, los factores tamaño de la camada, número de
parto de la hembra y sexo del cordero, fueron significativos
en la variación de la curva de crecimiento del ovino
Chiapas.
En el Cuadro 2 se presentan los componentes de varianzas
aditiva y fenotípica así como los valores de heredabilidad
estimados de los parámetros de la función de Gompertz
siendo para A (peso adulto) 0.21 ± 0.066, b (Constante de
integración) 0.25 ± 0.068 y k (tasa de madurez) 0.16 ± 0.05.
La estimación de heredabilidad para peso a la inflexión fue
0.21 ± 0.066; para edad a la inflexión, 0.24 ± 0.072 y para
velocidad de crecimiento absoluto, 0.22 ± 0.065.
Discusión
Con respecto al peso adulto, los valores encontrados en
este estudio son inferiores a lo observado en razas
españolas Churra, Manchega y Lacha (Pedraza et al.,
1992), así como con otras razas locales en otras latitudes
(Lewis et al., 2002; Topal et al., 2004; Lambe et al.,
2006; Malhado et al., 2009; Braga et al., 2006; Ozder
et al., 2009; Kubuc y Eyduran, 2009; Darkiran et al.,
2010; Solomon et al., 2010), pero semejantes a lo informado por Perezgrovas y Pedraza (1984): 25 y 28 kg en
hembras y machos respectivamente en esta misma raza
de ovino Chiapas, siendo esto indicativo de que la
población de ovino de raza Chiapas no ha sido seleccionada para características de crecimiento, ya que es una
raza que es destinada para la producción de lana
(Perezgrovas y Castro, 2000) y que el sistema de
producción permanece prácticamente sin cambios (López
et al., 2012).
El modelo de Gompertz para peso maduro (A), mostró una
subestimación de 1.5 kg aproximadamente, la cual ha sido
también observada por otros autores (Lambe et al., 2006;
Malhado et al., 2009), posiblemente debido a la cantidad
de tejido graso, que es muy variable a lo largo del estado
adulto del animal (Blasco, 1999), y a la disponibilidad de
forraje a través del tiempo. También hay referencias que
mencionan que la subestimación del peso maduro se
debe únicamente al uso de datos realizados en la etapa
temprana (Lambe et al., 2006).
Figura 2. Pesos estimados con la funcion de Gompertz y velocidad de
crecimiento absoluto (V.A.) para hembras y machos en el borrego de la raza
Chiapas.
El peso adulto en los machos fue 7.9% superior al de las
hembras, siendo un porcentaje menor a lo observado en
Estimación de heredabilidad de la curva de crecimiento en el borrego Chiapas
Cuadro 2. Componentes de varianzas y heredabilidades estimadas (h2 ± e.e) para las características de crecimiento en borregos Chiapas
Característica
Constante de integración (b)
Peso adulto (A)
Tasa de madurez (k)
Peso inflexión
Edad de inflexión
Velocidad de crecimiento absoluto
h2 ± e.e
Varianzas
Aditiva
Residual
Fenotípica
0.04986
13.57
0.000026
1.8432
2751.36
0.00993
0.143
50.91
0.000136
6.8915
8565.17
0.0357
0.1929
64.49
0.00016
8.735
11316.53
0.04568
razas de carne como la Suffolk (Lewis et al., 2002). El
hecho de que no existió efecto del tamaño de la camada
y número de parto (P > 0.05) es explicado debido a que
el peso adulto del animal está muy alejada de los efectos
maternos que existen en el ambiente uterino y en la lactancia (López et al., 2012), los resultados de este trabajo coincide con algunos estudios (Malhado et al., 2009), aunque
otros autores han registrado un efecto del número de
parto sobre el peso maduro de sus crías (Bathaei y
Leroy, 1996; Lewis et al., 2002; McManus et al., 2003).
El parámetro b se considera como una constante de
integración sin significado biológico particular y con alta
correlación con el parámetro A (Blasco, 1999); de tal
modo que la expresión y0 = A exp (-b), puede ser interpretada como un estimador del peso al nacimiento; esta función
estimó el peso al nacer de 3.14 kg para machos y de 3.51 kg
para hembras, mostrando una sobrestimación en corderos de
la raza Chiapas; Perezgrovas y Castro, (2000) y López et al.
(2012) observaron pesos al nacer de 2.15 y 2.27 kg para
hembras y machos de esta misma raza. Este sesgo se
puede deber a la inconsistencia de la función.
En la mayoría de los estudios no se presenta el valor
encontrado de b, sin embargo, hay informes en razas del
medio oriente (Topal et al., 2004) y brasileñas (Malhado
et al., 2009) que presentan valores alrededor de 2, semejante a la encontrado en el borrego Chiapas por López
et al. (2012) y en este estudio.
En este estudio, los valores de la tasa de madurez son
menores hasta en un 50% de los registrados en otras razas
ovinas locales (Topal et al., 2004; Kubuc y Eyduran,
2009; Malhado et al., 2009) y solo ligeramente inferiores
a los encontrados en la West African Dwarf (Gbangboche
et al., 2008), indicando que la raza de ovinos en la raza
Chiapas es de lento crecimiento, lo que puede estar asociado
a su adaptabilidad al medio ambiente de la zona. Como se
esperaba, los machos presentaron una tasa de madurez 1.24
veces mayor que la de las hembras (P < 0.05); resultados
similares se han observado en razas locales brasileñas
(Malhado et al., 2009).
El peso y la edad a la inflexión son los puntos donde la
ganancia de peso llega al máximo y posteriormente tiende
asintóticamente a cero (Figura 2). En la función de
Gompertz este punto es fijo; el peso a la inflexión
representó el 36.78% del peso a la madurez (A). Como
0.25 ± 0.068
0.21 ± 0.066
0.16 ± 0.059
0.21 ± 0.066
0.24 ± 0.072
0.22 ± 0.065
en borregos Chiapas tienen valores de A menores que
los encontrados en otras razas, consecuentemente el peso
a la inflexión también resultó menor. Sin embargo, como
el valor de k también fue menor, dando resultado que la
edad a la inflexión fuera superior a lo que presentan las
otras razas (Lewis et al., 2002; Topal et al., 2004;
Lambe et al., 2006; Malhado et al., 2009; Braga et al.,
2006; Ozder et al., 2009; Kubuc y Eyduran, 2009;
Darkiran et al., 2010; Solomon et al., 2010).
La velocidad absoluta de crecimiento en el borrego
Chiapas se presenta por arriba de los 50 g/día. Los machos
tuvieron una velocidad absoluta de crecimiento 1.34 veces
mayor que las hembras (P < 0.05) y 8 días antes (P < 0.05);
los corderos provenientes de parto simple mostraron una
velocidad de crecimiento similar que aquellos proveniente
de parto múltiple (P > 0.05). La mayor velocidad de crecimiento se da en la fase predestete, donde el cordero es
dependiente del ambiente materno dado básicamente por
la producción de leche. Las bajas tasas de crecimiento
observadas después del destete indican que el manejo
nutricional de estos animales no es el óptimo.
La estimación de componentes de varianza para los
parámetros de la función de Gompertz en este estudio para
la raza Chiapas mostraron un rango entre 0.16 y 0.25. Con
respecto al peso adulto o maduro (A), Stobart et al. (1986)
estimaron valores de 0.57 con una edad a la madurez de
cinco años en razas Rambouillet, Targhee y Columbia,
superiores a lo observado en este estudio (0.21) a los dos
años de edad. Lewis et al. (2002), utilizando animales de
la raza Suffolk, estimaron una heredabilidad de 0.37 en el
mismo parámetro, y Lambe et al. (2006) estimaron heredabilidades de 0.427 con la función de Richards y 0.871 con la
función de Gompertz para la raza Texel. En estudios con
otras razas locales, como la Mehraban (Bathaei y Leroy,
1996), Scottish Blackface (Lambe et al., 2006) y Horro
(Solomon et al., 2010), los valores de heredabilidad estimados variaron entre 0.29 a 0.52.
En cuanto a la tasa de madurez (k), el valor de heredabilidad estimado en este estudio fue similar a lo reportado en
razas Santa Inés y Horro (Braga et al., 2006; Solomon
et al., 2010), mientras que Lambe et al. (2006) estimaron
una heredabilidad de 0.06 en la raza Scottish Blackface; en
contraste, Bathaei and Leroy (1996) encontraron un valor
de 0.45 en la raza Mehraban Irani y Stobart et al. 1986
de 0.32 en razas Rambouillet, Targhee y Columbia.
89
90
A.C. Méndez-Gómez et al.
En cuanto al parámetro b, que es considerada como una
constante de integración que está ligado a las condiciones
de inicio de la curva (Blasco, 1999), en la raza Suffolk,
Lewis et al. (2002) estimaron un valor de 0.38, superior
a lo encontrado en este estudio.
La forma en el crecimiento en ovejas se modifica con la
edad y su forma depende de efectos de raza y condiciones
ambientales como es la disponibilidad de alimento y manejo. La función de Gompertz se ha sugerido como adecuada, cuando no existen limitantes en las condiciones
ambientales (Lewis et al., 2002).
Los resultados indican que es posible modificar a través de
selección la forma de la curva Selección directa en los
parámetros A o b, tendrían como resultado un incremento
en el peso adulto así como en los pesos corporales al nacer
e indirectamente en la producción de lana y la resistencia a
parásitos (Safari and Fogarty, 2003). Sin embargo, tiene el
inconveniente de incrementar el intervalo generacional. La
selección sobre la tasa de madurez (k) o la velocidad de
crecimiento, podría mejorar peso adulto, aunque habría
que evaluar su impacto en la eficiencia dentro de este sistema de producción de los Altos de Chiapas.
Conclusiones
El borrego de la raza Chiapas muestra una curva de crecimiento lento, el cual puede atribuirse a la adaptación al
medio ambiente.
La variabilidad genética aditiva encontrada a partir de la
función de Gompertz en el crecimiento de esta raza de ovinos Chiapas, indica que es posible modificar la curva de
crecimiento del borrego Chiapas pudiendo ser utilizada
la estimación de velocidad o crecimiento máximo absoluto
como criterio de selección.
Agradecimientos
Se agradece al Consejo Nacional de Ciencia y Tecnología
(CONACYT-México) por la beca otorgada a la primera
autora para realizar estudios de Maestría en Ciencias
(FMVZ-UNAM); Proyectos UNAM-PAPIIT IN207707-3,
UNAM-PAPIIT IN205710-3 y SAGARPA-CONACYT
2004-CO1-111/A1.
Esta investigación fue posible gracias al convenio de
colaboración entre la Facultad de Medicina Veterinaria y
Zootecnia de la Universidad Nacional Autónoma de México
y el Centro Universitario de Investigación y Transferencia de
Tecnología de la Universidad Autónoma de Chiapas.
Declaración de interés
Los autores declaran que no existen conflictos de interés en
la presentación de este artículo.
Referencias
Abegaz, S., Van Wyk, J.B. & Oliver, J.J. 2010. Estimation of genetic
and phenotypic parameters of growth and productivity of Horro
sheep. Archiv für Tierzucht (1): 85–94.
Bathaei, S.S. & Leroy, P.L. 1996. Growth and mature weight of
Mehraban Iranian fat-tailed sheep. Small Ruminant Research22:
155–162.
Blasco, A. 1999. La descripción del crecimiento. Informe Técnico
Ocasional No. 6. Universidad Politécnica de Valencia. Departamento
de Ciencia Animal.
Braga, L.R.N., Vasques, V.L.C., Oliveira, L.A.M., Sousa, P.J.R. &
Oliveira, A.A. 2006. Parâmetros genéticos de características estimadas da curva de crescimento de ovinos da raça Santa Inês. Revista
Brasileira de Zootecnia 3:1012–1019.
Darkiran, I., Koncagul, S. & Bingol, M. 2010. Growth characteristics of
indigenous norduz female and male lambs. Journal of Agricultural
Science 16: 62–69.
Delgadillo, C.A.C., López, O.R., Montaldo, V.H.H., Berruecos, V.J.
M., Luna, A.E., Shimada, M.A. & Vásquez, P.C.G. 2009.
Caracterización de la curva de crecimiento del ciervo rojo (Cervus elaphus scoticus) en el centro de México. Técnica Pecuaria en México
47: 117–123.
FAO. 2009. Domestic Animal Diversity Information System, http://www.
fao.org/dad-is/. Food and Agriculture Organization of the United
Nations, Rome.
Fitzhugh Jr., H.A. 1976. Analysis of growth curves and strategies for
altering their shape. Journal of Animal Science 42: 1036–1051.
Forni, S., Piles, M., Blasco, A., Varona, L., Oliveira, H.N., Lôbo, R.B.
& Albuquerque, L.G. 2009. Comparison of different nonlinear functions to describe Nellore cattle growth. Journal of Animal Science 87
(2): 496–506.
Gbangboche, A.B., Glele-Kakai, R., Salifou, S., Albuquerque, L.G. &
Leroy, P.L. 2008. Comparison of non-linear growth models to
describe the growth curve in West African Dwarf sheep. Animal
(7): 1003–1012.
Gilmour, A.R., Gogel, B.J., Cullis, B.R. & Thompson, R. 2006.
ASReml User Guode Release 2.0 VSN International Ltd, Hemel
Hempstead, HP1 1ES, UK.
Kubuc, M. & Eyduran, E. 2009. The determination of the best growth
model for Akkaraman and German Blackheaded Mutton x Akkaraman
B1 crossbreed lambs. Bulgarian Journal of Agricultural Science 15:
90–92.
Lambe, N.R., Navajas, E.A., Simm, G. & Bünger, L. 2006. A genetic
investigation of various growth models to describe growth of lambs of
two contrasting breeds. Journal of Animal Science 84: 2642–2654.
Lewis, R.M., Emmans, G.C. & Dingwall, W.S. 2002. A description of
the growth of sheep and its genetic analysis. Animal Science 74: 51–62.
López, O.R., Olivera, I.V., Berruecos, J.M., Peralta, L.M.,
Ulloa-Arvizu, R. & Vásquez, C.G. 2012.Genetic parameters for
birth and weaning weights in the local Chiapas sheep breed from
Mexico, Revista Mexicana de Ciencias Pecuarias 3(1): 113–123.
Martínez, C.A., Rodríguez, A.P., Jiménez, A. & Manrique, C. 2010.
Descripción matemática de la función de Gompertz aplicada al crecimiento de animales. Revista de la Facultad de Medicina Veterinaria y
de Zootecnia 57:76–80.
Malhado, C.H.M., Carneiro, P.L.S., Affonso, P.R.A.M., Souza, A.A.
O. & Sarmento, J.L.R. 2009. Growth curves in Dorper sheep crossed
with the local Brazilian breeds, Morada Nova, Rabo Largo and Santa
Inés. Small Ruminant Research 84: 16–21.
Estimación de heredabilidad de la curva de crecimiento en el borrego Chiapas
McManus, C., Evangelista, C. & Fernandes, L.A.C. 2003. Curvas de
crescimento de ovinos Bergamasia criados no Distrito Federal.
Revista Brasileira de Zootecnia 32: 22–27.
Nahed, T.J. 1999. Alternativas para el desarrollo de sistemas de
producción ovina sostenibles en los altos de Chiapas. Tesis doctorado,
Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional
Autónoma de México, México D.F.
Özdemir, H. & Dellal, G. 2009. Determination of growth curves in
young angora goats. Tarim Bilimleri Dergisi 15 (4): 358–362.
Ozder, M., Sezenler, T., Onal, A.R. & Ceyhan, A. 2009. Genetic and
non-genetic parameter estimates for growth traits in Turkish
Merino lambs. Journal of Animal and Veterinary Advances
(9):1729–1734.
Pedraza, P., Peralta, M. & Pérezgrovas, R. 1992. El borrego Chiapas:
una raza local mexicana de origen español. Archivos de Zootecnia 41
(extra): 355–362
Perezgrovas, R. & Castro, G.H. 2000. El borrego Chiapas y el sistema
tradicional de manejo de ovinos entre las pastoras tzotziles. Archivos
de Zootecnia 49: 391–403.
Perezgrovas, R. & Pedraza, P. 1984. Ovinocultura indígena
I. Desarrollo corporal del borrego Chiapas. Cuadernos de
Investigación 1 (Universidad Autónoma de Chiapas, Tuxtla
Gutiérrez, México), pp. 1–13.
Renne, U., Langhammer, M., Wytrwat, E., Dietl, G. & Bünger, L.
2003. Genetic-statistical analysis of growth in selected and unselected
mouse lines. Journal of Experimental Animal Science 42: 218–232.
Safari, A. & Fogarty, N.M. 2003. Genetic parameters for sheep production traits: estimates from the literature. Technical Bulletin 49, NSW
Agriculture, Orange, Australia.
SAS Institute. 1993. SAS/STAT User’s Guide. In: 6.03 ed., Series SAS/
STAT User’s Guide. SAS Institute, Cary, NC.
Stobart, R.H., Bassett, J.W., Cartwright, T.C. & Blackwell, R.L.
1986. An analysis of body weights and maturing patterns in western
range ewes. Journal of Animal Science 63: 729–740.
Topal, M., Ozdemir, M., Aksakal, V., Yildiz, N. & Dogru, U. 2004.
Determination of the best nonlinear function in order to estimate
growth in Morkaraman and Awassi lambs. Small Ruminant
Research 55: 229–232.
91
Animal Genetic Resources, 2014, 54, 93–101. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633613000313
Caracterización genética de la población bovina
criolla de la Región Sur del Ecuador y su relación
genética con otras razas bovinas
L. Aguirre Riofrio1, G. Apolo2, L. Chalco2 y A. Martínez3
1
Universidad Nacional de Loja, Centro de Biotecnología Reproductiva Animal (CEBIREA), Ecuador y aluno Doutorado em
Biociência Animal, Universidade de São Paulo, Brasil; 2Tesistas, MVZ-UNL, 2012; 3Facultad de Veterinaria, Universidad de
Córdoba, España.
Resumen
Al no contar a la fecha con ningún estudio sobre la variabilidad genética de la población bovina criolla de la Región Sur del Ecuador
(RSE), se ha procedido a su análisis y caracterización con fines de disponer de información técnica que permita planificar y desarrollar
medidas tendientes a su conservación y utilización sustentable en este duro ecosistema en donde habita. Para ello se analizaron
genéticamente 46 animales adultos, de una población de bovinos criollos de 114, agrupados por sus características fanerópticas en cuatro grupos, conocidos en el medio como: Negro Lojano (15 animales), Encerado (15), Colorado (9) y Pintado o Cajamarca (7). En el
análisis de la variabilidad genética intrapoblacional, se obtuvo un Na de 228, un número promedio de alelos por locus de 8,14, y un PIC
de 0,70 ± 0,10. Todos los 28 marcadores analizados son polimórficos y altamente informativos. Las He y Ho fueron de 0,74 ± 0,0178 y
0,676 ± 0,013, lo que indica la existencia de una alta diversidad molecular en la población estudiada. El HWE determina que el 32 por
ciento de los alelos no se encuentran en equilibrio. El Gst fue de 4,5 ± 2,8 por ciento, y el Fst de 0,08 por ciento, lo que permite corroborar que no existe diferenciación genética entre los cuatro grupos de esta población. Las medias del Fit y Fis son de 8,89 y 8,92 por
ciento, respectivamente. También se determinó el grado de distanciamiento genético entre esta población criolla con 18 razas taurinas y
cebuinas. Los distanciamientos con todas las poblaciones superan el 0,10, las distancias menores están entre Ec:BC (0,1031), Ec:PAJ
(0,1132), Ec:NAN (0,1302), Ec:VCA (0,1326) y Ec:FRI (0,1362). El mayor distanciamiento se observa entre Ec:GUZ (0,4725) y Ec:
NEL (0,4624). Estos valores indican que los bovinos criollos de la RSE tienen un gran distanciamiento con las razas cebuinas y más
bien sus troncos ancestrales están en las poblaciones ibéricas. Los resultados de variabilidad y distancias genéticas permiten disponer de
herramientas para trazar estrategias que lleven a un manejo y conservación de la raza Criolla de la RSE y sugieren un manejo independiente de los cuatro grupos faneropticamente diferenciados a ser manejados en los distintos pisos altitudinales de la Región Andina
del Ecuador.
Palabras clave: Bovino criollo de Ecuador, variabilidad genética, grado de distanciamiento, microsatélites
Summary
In the absence to date of studies on genetic variability in the Creole cattle of the Southern Region of Ecuador, the analysis and
characterization of this population was carried out in order to provide the technical information needed for the planning and
development of measures aimed at the population’s conservation and sustainable use in the harsh ecosystem these animals
inhabit. For this purpose, 46 adult animals, out of a population of 114 Creole cattle, were genetically analysed; on the basis
of phaneroptical traits, they were classified into four groups known locally as Negro Lojano (15 animals), Encerado (15),
Colorado (9) and Pintado or Cajamarca (7). The analysis of the intra-population genetic variability brought out a Na of 228,
an average number of alleles per locus of 8.14 and a PIC of 0.70 ± 0.10. All 28 markers analyzed were polymorphic and highly
informative. The He and Ho amounted to 0.74 ± 0.0178 and 0.676 ± 0.013, which is an indication of a high molecular diversity in
the population studied. The HWE determines that 32 per cent of the alleles are not in equilibrium. The Gst amounted to 4.5 ± 2.8
per cent and the Fst was 0.08 per cent, which corroborates that there is no genetic differentiation among the four groups of this
population. The average values for Fit and Fis were 8.89 and 8.92 percent, respectively. The degrees of genetic distance between
this Creole population and 18 cattle and zebu breeds were also determined. The distance exceeded 0.10 for all populations, with
the lowest distances being those between Ec:BC (0.1031), Ec:PAJ (0.1132), Ec:NAN (0.1302), Ec:VCA (0.1326) and Ec:FRI
(0.1362). The greatest distances were observed between Ec:GUZ (0.4725) and Ec:NEL (0.4624). These values show that the
Creole cattle of the Southern Region of Ecuador are very distant from the zebu breeds, and therefore their ancestors would
be more likely to have originated from Iberian populations. The results concerning variability and genetic distance will enable
strategies to be devised for managing and conserving the Creole breed of the Southern Region of Ecuador. These results also
suggest that the four groups with phaneroptical differences should be managed independently at the different altitudes of the
Andean Region of Ecuador.
Keywords: Creole cattle of Ecuador, genetic variability, degree of distance, microsatellites
Correspondence to: L. Aguirre, Universidad Nacional de Loja, Centro de
Biotecnología Reproductiva Animal (CEBIREA), Ecuador.
email: [email protected]
93
94
L. Aguirre et al.
Résumé
Compte tenu du manque d’études sur la variabilité génétique des populations bovines créoles de la Région Sud de l’Équateur, le but de ce
travail a été d’analyser et de caractériser ces bovins afin de disposer de l’information technique nécessaire à la planification et
développement de mesures pour leur conservation et utilisation durable dans le dur écosystème où ils sont élevés. Pour ce faire, 46 animaux adultes d’une population de 114 bovins créoles ont été analysés génétiquement. Les bovins créoles sont classés, d’après certaines
caractéristiques des phanères, en quatre types qui reçoivent localement le nom de: Negro Lojano (15 animaux), Encerado (15), Colorado
(9) et Pintado ou Cajamarca (7). Il résulte de l’analyse de la variabilité génétique intra-populationnelle que le Na est de 228, le nombre
moyen d’allèles par locus de 8,14 et le PIC de 0,70 ± 0,10. Il a de même été observé que les 28 marqueurs analysés sont tous polymorphes
et très informatifs. La He et la Ho ont été de 0,74 ± 0,0178 et de 0,676 ± 0,013, ce qui indique l’existence d’une grande diversité
moléculaire dans la population étudiée. D’après le HWE, le 32 pour cent des allèles ne se trouvent pas en équilibre. Le Gst a été de
4,5 ± 2,8 pour cent et le Fst de 0,08 pour cent, ce qui permet de confirmer qu’il n’existe pas de différenciation génétique entre les quatre
groupes de cette population. Le Fit et le Fis ont été en moyenne de 8,89 et de 8,92 pour cent, respectivement. Le degré de d’éloignement
génétique entre cette population créole et 18 races taurines et de zébu a aussi été déterminé. L’éloignement dépasse le 0,10 pour toutes les
populations, les plus faibles distances étant celles entre Ec:BC (0,1031), Ec:PAJ (0,1132), Ec:NAN (0,1302), Ec:VCA (0,1326) et Ec:FRI
(0,1362). Le plus grand éloignement a été observé entre Ec:GUZ (0,4725) et Ec:NEL (0,4624). Ces valeurs indiquent que les bovins
créoles de la Région Sud de l’Équateur sont très éloignés des races de zébu, comme quoi leurs ancêtres seraient plutôt parmi les populations ibériques. Les résultats de variabilité et d’éloignement génétique vont aider à élaborer des stratégies d’élevage et de conservation de
la race Créole de la Région Sud de l’Équateur. Ces résultats suggèrent de même une conduite indépendante, sur les différents niveaux
d’altitude de la Région Andine de l’Équateur, des quatre groupes à différences phanériennes.
Mots-clés: Bovins créoles de l’Équateur, variabilité génétique, degré d’éloignement, microsatellites
Presentado: 13 Marzo 2013; aceptado: 8 Julio 2013
Introducción
Según Lucena (1987), fue Sebastián de Belalcázar, procedente de Panamá en 1534, quien arribó al Ecuador en la
conquista del Reino de Quito, el que trajo los primeros
bovinos Bos taurus, los cuales eran animales con una aptitud a más de la producción de carne y leche, de tracción de
carretas, función tan importante para aquella época en las
zonas alto andinas con un relieve tan irregular. Estos bovinos criollos han tenido un proceso de adaptación largo de
cinco siglos a los diversos climas y ambientes, primero en
un proceso de selección natural y luego con la intervención
del hombre, en la búsqueda de animales funcionales para
estos ecosistemas de montaña. Desde esa época el territorio ecuatoriano estuvo poblado exclusivamente por bovinos criollos (ibéricos naturalizados). Es a partir de los
primeros años del 1900 (Pinzón, 1984), en que se inició
la introducción de bovinos extranjeros para la producción
de carne y de leche por la creencia de que estas razas
son la mejor alternativa para los ganaderos, pues los resultados relativamente favorables obtenidos al inicio, fueron
atribuidos a las aptitudes de las razas introducidas y no
al vigor híbrido que produce el mestizaje. Con el transcurso del tiempo y los cruzamientos desordenados, se
han producido procesos de absorción de los animales criollos, y como consecuencia el número de estas poblaciones
ha disminuido drásticamente.
Sin embargo, a pesar de ello aún se reporta la existencia de
ganado bovino criollo en algunos lugares apartados del
Ecuador, como es en la RSE limítrofe con el norte del
Perú, donde aún se pueden encontrar poblaciones de bovinos criollos en núcleos pequeños y heterogéneos, los mismos que por sus particularidades fenotípicas y genotípicas
han logrado sobrevivir y desarrollarse en condiciones complejas, adquiriendo características propias que les permitieron adaptarse y prosperar en este hábitat. Al respecto,
De Alba (2009) y Aguirre et al. (2011) manifiestan que
estos animales poseen características de adaptación a
estos ecosistemas, como: tolerancia al calor y sequedad,
con temperaturas sobre los 26°C; estatura pequeña y
gran fortaleza, lo que les permite caminar grandes distancias por pedregales y terrenos irregulares en busca de
alimento y abrevaderos; resistencia a los parásitos y excelente fertilidad e instinto materno.
Los bovinos criollos cumplen un rol importante en la vida
de las comunidades campesinas marginales de la RSE, pues
constituyen una fuente de sustento y trabajo, su leche, su
carne, la venta misma de animales y su utilización como
medio de tracción animal benefician estas regiones
geográficamente apartadas en donde la mecanización
agrícola no es posible y la crianza de otros bovinos sería
insostenible.
La presente investigación se orientó a realizar un estudio
genético con el uso de marcadores moleculares para determinar la variabilidad intrapoblacional y el grado de
influencia de las razas ibéricas y cebuinas en esta
población de bovinos y promover de esta forma estrategias
para el manejo y conservación de este importantísimo
material genético de esta parte de los Andes del Ecuador.
Materiales y métodos
El análisis genético se realizó en 46 bovinos adultos de una
población de 114 animales criollos, agrupados por sus
Caracterización genética de la población bovina criolla de la Región Sur del Ecuador
Figura 1. Bovinos criollos ‘Negro Lojano’.
características fanerópticas en cuatro grupos: 15 Negros
Lojanos (Figura 1, véase las páginas 00–00), 15
Encerados (Figura 2), 9 Colorados (Figura 3) y 7 Pintados
(Figura 4), provenientes de los sectores de Purunuma y
Nambacola en el cantón Gonzanama, provincia de Loja,
Ecuador (S 4°20′ / S 4°10′; W 79°30′ / W 79°0′5; Figura
5). Los animales seleccionados fueron de ambos sexos y
se evitó considerar para el análisis más de un animal proveniente de la misma familia. Se tomaron muestras de pelo de
la región terminal de la cola, que fueron identificadas y guardadas herméticamente hasta su procesamiento en el laboratorio del Departamento de Genética Molecular Aplicada de
la Universidad de Córdoba, España, en donde se realizó el
análisis del ADN por medio de marcadores moleculares
amplificados mediante la técnica de reacción en cadena de
la polimerasa (PCR). Para la separación por tamaños de
los fragmentos obtenidos mediante la PCR se sometieron
estos a una electroforesis en gel de poliacrilamida en un
secuenciador automático ABI 377XL; el análisis de los fragmentos y la tipificación alélica se realizó mediante los programas informáticos Genescan Analysis 3.1.2 y Genotyper 2.5
Figura 2. Bovinos criollos ‘Encerado’.
respectivamente. El panel de 28 microsatélites empleados
son: BM1314, BM8125, BM1818, CSSM66, ETH10,
INRA32, MM12, TGLA122, BM2113, CRSM60, ETH185,
HAUT27, HEL9, HEL13, ILSTS6, INRA23, INRA35,
INRA37, INRA63, SPS115, TGLA227, BM1824, ETH225,
ETH3, HAUT24, ILSTS011, TGLA53, TGLA126 (FAO,
2011).
La caracterización genética se realizó de la siguiente manera: Para el cálculo del PIC de cada microsatélite se aplicó
la fórmula de Botstein et al. (1980), empleándose para ello
el complemento ‘The Excel Microsatellite Toolkit’ (Park,
2001), y utilizando el programa MS Excel® 2003.
También se computarizaron los estadísticos F de Wright
(1969) y Weir & Cockerham (1984), que corresponden:
F = FIT, ɵ = FST y f = FIS, realizando un análisis factorial
de correspondencias mediante el programa Genetix
v. 4.05 (Belkhir et al., 2003). Se calcularon las matrices
de distancias genéticas Da (Nei & Chesser., 1983); para
ello se emplearon los análisis genéticos de 789 individuos
pertenecientes a 19 razas taurinas y cebuinas del Consorcio
95
96
L. Aguirre et al.
Figura 3. Bovinos criollos ‘Colorado’.
Biobovis de la Red CONBIAND – Criollos RSE, Retinta,
Avileña, Rubia Gallega, Berrenda Colorada, Berrenda
Negra, Mostrenca, Pajuna, Negra Andaluza, Canaria,
Palmera, Frisona, Hereford, Pardo Suiza, Gyr, Brahman,
Sindy, Guzera y Nelore – utilizando el programa
Populations 1.2.28 (Olivier, 2002: see http://bioinformat
ics.org/tryphon/populations/). Con los valores obtenidos
se trazaron árboles de distancias, graficando los mismos
con el programa Treeview (Page, 1996) y con la matriz
de distancias Da de Nei, se construyeron ‘splitsgraph’
mediante el algoritmo ‘Neighbor-Net’ con el programa
SplitsTree v 4.10 (Bryant & Moulton, 2004; Huson &
Bryant, 2006).
Resultados y discusión
Variabilidad genética poblacional
En la Tabla 1, se observa que la población bovina de la
RSE presenta un total de 228 alelos, con una media de
8,14 ± 2,05 y un rango comprendido entre 5 (ILSTS6,
INRA63, BM1824,INRA35) y 12 (HEL9, TGLA53) alelos por locus. Estos valores son superiores a los reportados
Figura 4. Bovinos criollos ‘Pintado’.
por Villalobos (2010) para las criollas panameñas Guabala
y Guaymi, y algunas razas ibéricas tales como Berrenda
Colorada, Berrenda Negra, Pajuna, Mostrenca, Retinta,
Negra Andaluza, siendo comparables los resultados de
Na nuestros, con los obtenidos por Dalvit et al. (2008)
en cuatro razas italianas (Na = 8,2). También se determinaron los alelos únicos (Au) en los cuatro grupos poblacionales (datos no mostrados), destacando que 96 alelos son
compartidos en los cuatro grupos, siendo el grupo de los
Negro Lojanos el que presenta el mayor número de Au
(17) y que se correlaciona con una mayor variabilidad
alélica, en tanto que los Pintados poseen el menor
número de Au (5) y también la menor variabilidad. En
general, los marcadores que presentaron los valores más
elevados son los más recomendables en caso de
asignación de nuevos individuos a esta población.
De los 28 microsatélites analizados ninguno mostró alelos
con frecuencias superiores a 0,95, por lo cual todos pueden
considerarse polimórficos y altamente informativos, exceptuando el HEL13 y ILSTS011, que presentan un PIC medianamente informativo; por tanto el 100 por ciento de estos
marcadores son útiles para valorar la variabilidad genética
del bovino criollo de la RSE, es de destacar que el PIC
Caracterización genética de la población bovina criolla de la Región Sur del Ecuador
Figura 5. Cantón Gonzanama en la provincia de Loja, Ecuador, área de ubicación de los bovinos criollos.
medio de esta población (0,7) es ligeramente superior al
obtenido en la raza Guaymi panameña y la Limonero venezolana, con 0,69 y 0,65 respectivamente (Villalobos, 2010;
Villasmil et al., 2008).
Los valores medios de Ho y He en la población criolla de
la RSE muestran valores altos de 0,676 y 0,74 respectivamente, existiendo únicamente cuatro marcadores genéticos
que presentan un menor grado de heterocigosis: HAUT27,
HEL13, ILSTS011 e INRA35, determinando que hay una
buena variabilidad genética, si comparamos los mismos
con los valores de He y Ho que se han obtenido en estudios de caracterización genética que oscilan entre 0,755
y 0,895 en razas mexicanas (Quiroz, 2007); 0,461 y
0,694 en razas Argentinas (Martínez, 2008); 0,750 y
0,756 en el criollo Casanareño de Colombia (Sastre
et al., 2003). Por otra parte Villalobos (2010) cita los estudios hechos en seis razas autóctonas españolas que mostraron valores ligeramente inferiores de 0,564 y 0,570
(Menorquina), 0,590 y 0,512 (Lidia), 0,617 y 0,588
(Pirenaica), 0,681 y 0,666 (Asturiana); igualmente se
tiene información reportada en razas autóctonas de
Portugal como la Alentejana, valores de 0,677 y 0,638,
Mertolenga 0,696 y 0,747, Arauquesa 0,717 y 0,730
(Mateus et al., 2004). En razas de Hungría y Austria
como la Carinthian Blond y la Waldviertel Blond, se
reportan valores de 0,674, 0,662 y 0,654, 0,634 respectivamente (Baumung et al., 2006).
De los microsatélites analizados, nueve no se han mostrado en
equilibrio Hardy-Weinberg (P < 0.1). Estos son: BM2113,
HAUT27, BM1824, ETH225, ETH3, HAUT24, ILSTS011,
INRA35 y TGLA53, lo que representa el 32 por ciento del
total de alelos y revela que en estos animales se están operando
fuerzas que están cambiando las frecuencias genotípicas ya
sea por deriva genética, selección o migración, y que pone
de manifiesto que hay una ligera inestabilidad genética
en esta población. Estas desviaciones del equilibrio
97
98
L. Aguirre et al.
Tabla 1. Índices de variabilidad genética obtenida en los 28 loci
analizados de la población criolla de la Región Sur del Ecuador.
Locus
Na
PIC
Ho
He
BM 8125
7
0,64
0,61
0,70
BM1314
9
0,70
0,78
0,75
BM1818
7
0,62
0,63
0,69
CSSM66
10
0,84
0,85
0,87
ETH10
8
0,56
0,56
0,59
INRA 32
9
0,74
0,67
0,78
MM12
8
0,63
0,67
0,67
TGLA122
11
0,76
0,70
0,79
BM2113
8
0,69
0,55
0,73
CRSM60
8
0,65
0,76
0,71
ETH185
8
0,72
0,77
0,76
HAUT27
9
0,75
0,50*
0,78
HEL13
7
0,51
0,50*
0,54
HEL9
12
0,74
0,80
0,78
ILSTS6
5
0,76
0,83
0,80
INRA 23
10
0,76
0,70
0,80
INRA 37
8
0,71
0,63
0,75
INRA63
5
0,59
0,72
0,66
SPS115
8
0,74
0,69
0,78
TGLA227
10
0,84
0,89
0,87
BM1824
5
0,70
0,76
0,75
ETH 225
9
0,78
0,76
0,82
ETH3
11
0,79
0,72
0,82
HAUT24
7
0,78
0,62
0,82
ILSTS 011
6
0,49
0,42*
0,52
INRA35
5
0,53
0,35*
0,58
TGLA53
12
0,85
0,77
0,88
TGLA126
6
0,69
0,70
0,74
Total
228
Promedio ± SD 8,1 ± 2,05 0,7 ± 0,1 0,68 ± 0,01 0,74 ± 0,02
HWE
0,23
0,91
0,92
0,42
0,41
0,16
0,98
0,13
0,00*
0,58
0,92
0,00*
0,16
0,19
0,95
0,38
0,10
0,84
0,36
0,15
0,05*
0,02*
0,01*
0,03*
0,01*
0,00*
0,00*
0,88
Na: número de alelos por locus; PIC: contenido de información
polimórfica; Ho: heterocigosidad observada; He: heterocigosidad esperada; HWE: equilíbrio Hardy-Weinberg.
Nota: Se destacan con * los marcadores con menor grado de heterocigosis
y en desequilibrio Hardy-Weinberg
Hardy-Weinberg (HWE) pueden estar produciéndose aceleradamente debido a factores como los siguientes:
• en la selección y en el apareamiento de los animales hay
intervención del propietario;
• existe migración de animales por la cercanía geográfica
entre las poblaciones;
• no existe el criterio de tener núcleos de animales
fenotípicamente homogéneos.
Vale destacar que los microsatélites ETH3, INRA35 y
TGLA53 también se encontraron en desequilibrio en los
bovinos criollos Patagónicos (Martínez, 2008) y los
microsatélites BM1824, HAUT24 y HAUT27 en la
población Guabala (Villalobos, 2010).
Análisis intrapoblacional
En la Tabla 2, se presentan los índices de variabilidad
genética intrapoblacional considerando las cuatro subpoblaciones del bovino criollo de la RSE. El valor de Gst (coeficiente de diferenciación genética) es entre 0,0091 para el
locus BM1818 y 0,115 para el INRA32, y el valor medio
para todos los loci representa apenas el 4,5 ± 2,8 por ciento,
Tabla 2. Coeficiente de variación genética (GST) y Estadísticos F
de Wright: coeficiente de consanguinidad dentro de la población
(Fis), coeficiente de consanguinidad total (Fit) y coeficiente de
variación genética entre las subpoblaciones (Fst), por marcador
en la población bovina criolla de la RSE.
Locus
BM8125
BM1314
BM1818
CSSM66
ETH10
INRA32
MM12
TGLA122
BM2113
CRSM60
ETH185
HAUT27
HEL13
HEL9
ILSTS6
INRA23
INRA37
INRA63
SPS115
TGLA227
BM1824
ETH225
ETH3
HAUT24
ILSTS011
INRA35
TGLA53
TGLA126
Promedio±SD
Gst
Fst (θ)
Fit (F)
Fis (f)
0,03
0,03
0,01
0,07
0,04
0,11
0,08
0,03
0,09
0,04
0,07
0,03
0,02
0,01
0,02
0,05
0,07
0,01
0,03
0,02
0,02
0,02
0,03
0,05
0,09
0,06
0,08
0,03
0,04±0,03
−0,02
−0,01
−0,04
0,03
0,02
0,06
0,04
0,01
0,03
−0,00
0,03
−0,01
−0,03
−0,02
−0,02
0,00
0,02
−0,03
−0,01
−0,02
−0,02
−0,02
−0,01
−0,01
0,04
−0,00
0,02
−0,02
0,001±0,025
0,12
−0,04
0,09
0,02
0,06
0,14
−0,01
0,14
0,26
−0,08
−0,00
0,37
0,07
−0,05
−0,04
0,12
0,16
−0,10
0,11
−0,03
−0,02
0,07
0,13
0,24
0,20
0,40
0,11
0,06
0,09±0,13
0,13
−0,03
0,13
−0,01
0,05
0,08
−0,05
0,13
0,23
−0,08
−0,03
0,38
0,09
−0,03
−0,01
0,11
0,14
−0,07
0,12
−0,01
0,00
0,09
0,14
0,24
0,17
0,41
0,09
0,08
0,09±0,12
Nota: Se destacan con * los marcadores con mayor grado de
consanguinidad.
lo que nos indica que la diferenciación genética entre los
cuatro grupos poblacionales es muy pequeña. Esta escasa
diferenciación se corrobora con los valores de Fst (grado
de diferenciación genética entre las subpoblaciones) encontrados en los cuatro grupos fenotípicamente definidos, con
un valor medio de Fst = 0,0008, valor muy inferior al encontrado en el ganado criollo mexicano con 0,033 (Quiroz,
2007), en los bovinos criollos panameños con 0,068
(Villalobos, 2010) y entre las razas bovinas europeas con
0,068 y 0,07 (Cañón et al., 2001; Jordana et al., 2003).
Vale indicar que si bien no hay diferencia genética entre
estas cuatro subpoblaciones, si se los debe manejar como
núcleos homogéneamente diferenciados por el color del
pelaje, pues ello favorece el bienestar animal y la
adaptación que tienen los mismos a los diferentes pisos altitudinales de la Región Andina, en donde el Negro Lojano
(Figura 1) y el Encerado (Figura 2) han ido evolucionando
para un clima moderado por la altura, absorbiendo y manteniendo más calor de los rayos solares para estas zonas frías y
ventosas y no siendo por el color obscuro los más apropiados para las zonas andinas bajas por el stress del calor y la
mayor predisposición al ataque de los ectoparásitos
(De Alba, 2009). Para estas zonas es más conveniente
0,1524
0
0,1153
0,1014
0,1328
0,2456
0,2159
0,1223
0,1466
0,1735
0,2634
0,2143
0,2150
0,1862
0,4798
0,3656
0,4801
0,5165
0,4712
0
0,1524
0,1580
0,1566
0,1031
0,2379
0,1929
0,1132
0,1302
0,1326
0,2243
0,1363
0,1730
0,1593
0,4289
0,3429
0,4216
0,4725
0,4624
0,1580
0,1153
0
0,1186
0,1249
0,2662
0,2221
0,1331
0,1169
0,1804
0,2645
0,1913
0,2441
0,1890
0,5400
0,4307
0,5161
0,5547
0,5246
AVI
0,1566
0,1014
0,1186
0
0,1343
0,2491
0,2182
0,1256
0,1509
0,1587
0,2646
0,1774
0,1984
0,1789
0,5304
0,3942
0,4881
0,5536
0,5233
RGA
0,1031
0,1328
0,1249
0,1343
0
0,2007
0,1564
0,0673
0,1012
0,1110
0,2079
0,1402
0,1595
0,1363
0,4850
0,3681
0,4426
0,4953
0,4855
BC
0,2379
0,2456
0,2662
0,2491
0,2007
0
0,2667
0,2057
0,1964
0,2310
0,3029
0,2759
0,2563
0,2370
0,5597
0,4394
0,5490
0,5903
0,5553
BN
0,1929
0,2159
0,2221
0,2182
0,1564
0,2667
0
0,1573
0,1814
0,1815
0,2794
0,2342
0,2003
0,2043
0,5389
0,4556
0,5243
0,5846
0,5247
MOS
0,1132
0,1223
0,1331
0,1256
0,0673
0,2057
0,1573
0
0,1055
0,1215
0,2177
0,1362
0,1742
0,1466
0,4796
0,3760
0,4771
0,5223
0,4994
PAJ
0,1302
0,1466
0,1169
0,1509
0,1012
0,1964
0,1814
0,1055
0
0,1548
0,2413
0,1807
0,2050
0,1568
0,5115
0,4132
0,5054
0,5347
0,5153
NAN
0,1326
0,1735
0,1804
0,1587
0,1110
0,2310
0,1815
0,1215
0,1548
0
0,1603
0,1533
0,1813
0,1559
0,5058
0,3921
0,4697
0,5252
0,5006
VCA
0,2243
0,2634
0,2645
0,2646
0,2079
0,3029
0,2794
0,2177
0,2413
0,1603
0
0,2648
0,2878
0,2693
0,5767
0,4928
0,5118
0,5701
0,5775
PAL
0,1363
0,2143
0,1913
0,1774
0,1402
0,2759
0,2342
0,1362
0,1807
0,1533
0,2648
0
0,1842
0,1807
0,5580
0,4324
0,5253
0,5856
0,5521
FRI
0,1730
0,2150
0,2441
0,1984
0,1595
0,2563
0,2003
0,1742
0,2050
0,1813
0,2878
0,1842
0
0,1719
0,5394
0,4335
0,5111
0,5602
0,5398
HER
0,1593
0,1862
0,1890
0,1789
0,1363
0,2370
0,2043
0,1466
0,1568
0,1559
0,2693
0,1807
0,1719
0
0,5003
0,4022
0,4741
0,5426
0,5033
SPA
0,4289
0,4798
0,5400
0,5304
0,4850
0,5597
0,5389
0,4796
0,5115
0,5058
0,5767
0,5580
0,5394
0,5003
0
0,1407
0,2330
0,2185
0,2404
GYR
0,3429
0,3656
0,4307
0,3942
0,3681
0,4394
0,4556
0,3760
0,4132
0,3921
0,4928
0,4324
0,4335
0,4022
0,1407
0
0,1653
0,2048
0,1870
BRH
0,4216
0,4801
0,5161
0,4881
0,4426
0,5490
0,5243
0,4771
0,5054
0,4697
0,5118
0,5253
0,5111
0,4741
0,2330
0,1653
0
0,2333
0,2664
SIN
0,4725
0,5165
0,5547
0,5536
0,4953
0,5903
0,5846
0,5223
0,5347
0,5252
0,5701
0,5856
0,5602
0,5426
0,2185
0,2048
0,2333
0
0,2526
GUZ
0,4624
0,4712
0,5246
0,5233
0,4855
0,5553
0,5247
0,4994
0,5153
0,5006
0,5775
0,5521
0,5398
0,5033
0,2404
0,1870
0,2664
0,2526
0
NEL
Abreviación de las razas: RS-EC: Región Sur del Ecuador; RET: Retinta; AVI: Avileña; RGA: Rubia Gallega; BC: Berrenda Colorada; BN: Berrenda Negra; MOS: Marismeña; PAJ: Pajuna o Serrana; NAN: Negra
Andaluza; VCA: vaca Canaria; PAL: vaca Palmera; FRI: Frisona; HER: Hereford; SPA: Pardo Suizo; GYR: Gyr; BRH: Brahman; SIN: Sindi; GUZ: Guzera; NEL: Nelore.
RS-EC
RET
AVI
RGA
BC
BN
MOS
PAJ
NAN
VCA
PAL
FRI
HER
SPA
GYR
BRH
SIN
GUZ
NEL
RET
RS-EC
Tabla 3. Matriz de distancias genéticas Da (Nei & Chesser, 1983), sobre 19 poblaciones de bovinos.
Caracterización genética de la población bovina criolla de la Región Sur del Ecuador
99
100
L. Aguirre et al.
mantener el grupo de los Colorados (Figura 3) y Pintados
(Figura 4).
El Fit (coeficiente consanguinidad total población) y el Fis
(coeficiente consanguinidad subpoblaciones) indican que
hay nueve marcadores que presentan valores negativos (exceso
de heterocigosis); cabe destacar también que marcadores que
estén con valores de Fit y Fis elevados (superiores a 0,1) indican
una consanguinidad elevada, sea a nivel de población total o
subpoblación. En este caso, son once los marcadores con un
Fit y Fis superior a 0,10 (BM8125, TGLA122, BM2113,
HAUT27, INRA23, INRA37, SPS115, ETH3, HAUT24,
ILSTS011 e INRA35). De acuerdo a los resultados de estos
estadísticos, la media del Fit y Fis de la población es de 8,89
y 8,92 por ciento respectivamente; valor ligeramente superior
al encontrado por Martínez (2008) en los bovinos Patagónicos
(0,06579) y muy superior al descrito en los bovinos criollos del
Noroeste de Argentina (–0,00913). Esto revela que los vacunos
criollos de la RSE muestran un nivel mayor de homocigosis.
Relaciones genéticas
Para el cálculo de distancias se trabajó con 19 poblaciones
(razas): 13 taurinas europeas, 5 índicas y la población criolla
de la RSE. El tamaño de la muestra analizada fue de 789 individuos y 24 locus estudiados; se empleó el cálculo de distancia Da (Nei & Chesser, 1983), y la Tabla 3 muestra los
valores de distancia genética de los criollos de la RSE con
el resto de poblaciones. Es de destacar que los distanciamientos con las 18 poblaciones de bovinos, superan el 0,10. Las
distancias menores están entre RSE:BC (0,1031), RSE:PAJ
(0,1132), RSE:NAN (0,1302), RSE:VCA (0,1326) y RSE:
FRI (0,1362); el mayor distanciamiento se observa entre
RSE:GUZ (0,4725) y RSE:NEL (0,4624). Estos valores indican que los bovinos criollos de la RSE tienen un gran distanciamiento con las razas cebuinas y más bien sus troncos
ancestrales están en las poblaciones ibéricas traídas en la conquista de América, destacándose en ello, en su orden: la
Berrenda Colorada, Pajuna ó Serrana, la Negra Andaluza,
la vaca Canaria y la Frisona (Holstein Friesian), población
esta última importada recientemente a la región.
En la Figura 6, se puede observar el árbol de distancias
genéticas construido mediante el algoritmo Neighbor-Net,
de las 19 razas bovinas, analizadas mediante la matriz de distancias Da. Con un valor de replicación del 49 por ciento, se
nota la rama distante que separa al grupo (clúster) de razas
cebuinas de las taurinas, incluida la criolla de la RSE; así
mismo, con un valor de replicación bajo de 39 por ciento,
hay una relación genética cerrada entre la Hereford, la
Marismeña y la Pardo Suiza formando un clúster; otra
rama la conforman la Rubia Gallega, la Retinta y la
Avileña. Hay una población separada del resto que es la
Berrenda Negra; y con un nivel de remuestreo alto (99 y
68 por ciento), se forma una rama con nodos cortos que
dan lugar a una relación genética entre la población criolla
de la RS-EC, la Pajuna, la Berrenda Colorada, la Negra
Andaluza, la vaca Canaria y la Frisona.
Figura 6. Árbol de distancias genéticas entre 19 poblaciones (razas) bovinas:
Da, NJ. Abreviación de las razas: NEL: Nelore; GYR: Gyr; GUZ: Guzera;
BRH: Brahman; SIN: Sindi; EC:Ecuador; VCA: vaca Canaria; PAL: vaca
Palmera; FRI: Frisona; NAN: Negra Andaluza; AVI: Avileña; RET: Retinta;
RGA: Rubia Gallega; BC: Berrenda Colorada; PAJ: Pajuna ó Serrana; BN:
Berrenda Negra; SPA: Pardo Suizo; MOS: Marismeña; HER: Hereford.
En general se puede apreciar que los bovinos criollos de la
RSE están muy distanciados genéticamente de las razas
cebuínas y están más relacionadas con las razas de origen
taurino, especialmente las razas autóctonas españolas; en
este análisis también hay que destacar que a excepción
de la rama de las razas índicas, prácticamente todos los
nodos del árbol están próximos al origen del mismo, lo
que indica que las poblaciones representadas son independientes entre sí. Estos resultados filogenéticos son similares a los encontrados por Villalobos (2010) y Martínez
(2008) en los bovinos criollos panameños y argentinos
respectivamente, lo que demuestran el origen común que
tienen los vacunos criollos de América.
Conclusiones
Los bovinos criollos de la RSE presentan una elevada variabilidad genética, demostrada en el número de alelos por locus, en
el PIC y en la heterocigosidad, vale destacar el 32 por ciento de
alelos que se encuentran en desequilibrio H-W, lo que demuestra una ligera inestabilidad genética que de no tomarse correctivos conllevaría a una disminución de esta valiosa diversidad.
Caracterización genética de la población bovina criolla de la Región Sur del Ecuador
Esto se corrobora con los valores de Fit y Fis encontrados donde
se evidencia que existe un exceso de homocigosis que puede
deberse a una elevada consanguinidad que supera el 8 por
ciento; si bien los valores de Gst y Fst, indican que no hay
una diferenciación genética entre los cuatro grupos de bovinos
criollos, faneróptica y fenotípicamente sí se diferencian por lo
que convendría manejarlos como núcleos en forma separada
por el color del pelaje, pues esto ayuda a un mejor bienestar
y desenvolvimiento de los animales de acuerdo a los diferentes
pisos altitudinales existentes en la región. En la determinación
de las distancias genéticas se aprecia un mayor grado de acercamiento con razas ibéricas, como la Berrenda Colorada,
Pajuna, Negra Andaluza, Canaria y Frisona, y un mayor alejamiento genético con las cebuinas; en todo caso los valores de
distanciamiento superan el 0,10 en todos los pares en que se
comparó a la criolla de la RSE con el resto de razas, lo que permite afirmar que la población bovina criolla de la RSE puede
ser considerada genéticamente como una raza taurina ‘propia’
a la que hay que conservar, pues se corre el riesgo a un corto
plazo de su desaparición.
Agradecimiento
Al proyecto Biobovis de la Red CONBIAND, que con su
banco de material genético, contribuyó a cumplir con los
objetivos propuestos en la presente investigación.
De Alba, M.J. 2009. El libro de los bovinos criollos de América (Ed.
Papiro Omega, S.A., México), pp. 19–36, 425.
FAO. 2011. Molecular genetic characterization of animal genetic
resources. FAO Animal Production and Health Guidelines. No. 9.
Rome. (available at http://www.fao.org/docrep/014/i2413e/i2413e00.
pdf).
Huson, D.H. & Bryant, D. 2006. Application of phylogenetic networks
in evolutionary studies. Mol. Biol. Evol. 23: 254–267.
Jordana, J., Alexandrino, P., Beja-Pereira, A., Bessa, I., Cañon, J.,
Carretero, Y., Dunner, S., Laloe, D., Moazami, K., Sanchez, A.
& Ferrand, N. 2003. Genetic structure of eighteen local south
European beef cattle breeds by comparative F-statistics analysis.
Journal of Animal Breeding and Genetics 120: 73–87.
Lucena Salmoral, M. 1987. Sebastián de Belalcázar, Historia 15
(Quórum, Madrid), p. 155.
Martínez, R. 2008. Caracterización genética y morfológica del bovino
criollo argentino de origen patagónico. Tesis de doctorado,
Universidad Politécnica de Valencia, España, pp. 157–175.
Mateus, J.C., Penedo, M.C., Alves, V.C., Ramos, M. & Rangel-Figueiredo,
T. 2004. Genetic diversity and differentiation in Portuguese cattle
breeds using microsatellites. Animal Genetics 35: 106–113.
Nei, M., & Chesser, R.K. 1983. Estimation of fixation indices and gene
diversities. Ann. Hum. Genet. 47: 253–259.
Olivier, L., 2002. Populations 1.2.28. Disponible en: http://bioinformatics.org/tryphon/populations/.
Page, R.D.M. 1996. Treeview: an application to display phylogenetic
trees on personal computers. Computer Applications in the
Biosciences 12: 357–358.
Referencias
Park, S.D.E. 2001. Trypanotolerance in West African cattle and the
population genetic effects of selection. Tesis de doctorado, Trinity
College, Dublín. Irlanda.
Aguirre, L., Bermeo, A., Maza, D. & Merino, L. 2011. Estudio
fenotípico y zoométrico del bovino criollo de la sierra media y alta
de la región sur del Ecuador (RSE). Actas Iberoamericanas de
Conservación Animal 1: 392–397.
Pinzón, M.E. 1984. Historia de la Ganadería en Colombia. Suplemento
Ganadero CEGA, Centro de Estudios Ganaderos y Agricolas. Bogota,
Colombia. Vol. 4, p. 208.
Baumung, R., Cubric-Curik, V., Schwend, K., Achmann, R. &
Soelkner, J. 2006. Genetic characterization and breed assignment in
Austrian sheep breeds using microsatellite marker information.
Journal of Animal Breeding and Genetics 123: 265–271.
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F.
2003. Genetix: 4.05 Logiciel sous WindowsTM pour la génétique
des populations. Laboratoire Génome, Populations, Interactions
CNRS UMR 5000. Université de Montpellier II, Montpellier, Francia.
Botstein, D., White, R.I., Skolnich, M. & Davis, R.W. 1980. Construction
of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics 32: 324–331.
Bryant, D. & Moulton, V. 2004. Neighbor-Net: an agglomerative
method for the construction of phylogenetic networks. Mol. Biol.
Evol. 21: 255–265.
Cañon, J., Alexandrino, P., Bessa, C., Carleos, Y., Carretero, S.,
Dunner, N., Ferran, D., Garcia, J., Jordana, J., Laloe, A.,
Pereira, A. & Moazami, K. 2001. Genetic diversity measures of
local European beef cattle breeds for conservation purposes.
Genetics Selection Evolution 33: 311–332.
Dalvit, C., De Marchi, M., Dal Zotto, R., Gervaso, M., Meuwissen, T.
& Cassandro, M. 2008. Breed assignment test in four Italian beef cattle breeds. Meat Science 80: 389–395.
Quiroz, J. 2007. Caracterización genética de los bovinos criollos
mexicanos y su relación con otras poblaciones bovinas. Tesis
de
doctorado,
Universidad
de
Córdoba,
España,
p. 155.
Sastre, H.J., Rodero, E., Rodero, A., Azor, P.J., Sepúlveda, N.G.,
Herrera, M. & Molina, A. 2003. Caracterización genética de la
raza bovina colombiana criolla Casanare mediante análisis de
microsatélites. Revista Colombiana de Ciencias Pecuarias 16
(supl.): 49.
Villalobos, A. 2010. Caracterización genética de las poblaciones bovinas
Guaymí y Guabala y su relación con otras poblaciones bovinas mediante microsatélites. Tesis de doctorado, Universidad de Córdoba,
España, pp. 70–72, 78–87.
Villasmil, Y., Roman, R., Yañez, L., Contreras, G., Jordana, J. &
Aranguren, J. 2008. Diversidad genética de la raza criollo
Limonero utilizando marcadores de ADN microsatélites. Revista
Científica FCV-LUZ 18 (4): 415–423.
Weir, B.S. & Cockerham, C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.
Wright, S. 1969. Evolution and the genetics of populations, vol. 2: The
theory of gene frequencies. University of Chicago Press, Chicago.
101
Animal Genetic Resources, 2014, 54, 103–113. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000058
Genealogical and population viability analysis
of a conservation nucleus of Brazilian
Bergamasca sheep
H. Carneiro1, S.R. Paiva2, H. Louvandini3, R.M. Miranda4 and C. McManus1,4
1
Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF
70910-900, Brazil; 2EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Avenida W5 Norte (Final), Brasília,
DF 70770-900, Brazil; 3Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, CEP 13416-000,
Brazil; 4Departamento de Zootecnia, Universidade Federal de Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, CEP
91540-000, Brazil
Summary
A genealogical and a viability analysis was carried out on the 1559 available registers for the Conservation Nucleus of Brazilian
Bergamasca sheep of the University of Brasilia farm in Brazil using the ENDOG and the Vortex programs. To run the ENDOG it
was used the registered data and for the Vortex it was used information obtained by a questionnaire answered by the curators of
the herds. Of the animals registered, 767 had known parents, with significantly more dams known at each generation. The number
of pedigrees known has increased over the generations, with higher registration of parents of sires than dams. The Computed Mean
Inbreeding calculated by ENDOG was 0.29 percent and mean average relatedness was 1.52 percent. Mean Generation interval was
3.71 years with this values being lower for sires than dams. The population probability of extinction, calculated by Vortex was 17
percent and the average time to extinction was 59 years. Forty-two additional scenarios were created to determine which factors
most threaten these populations which were frequency of catastrophes, lack of animal entrance and adult and lamb mortalities, especially adult female mortality. These results indicate that future breeding plans should include exchange of sires between farms to maintain low inbreeding levels and increase genetic variability and upgrade the management to control the mortality rates of animals.
Keywords: average relatedness, inbreeding, population modelling, Vortex, Wright statistics
Résumé
Une analyse généalogique et de viabilité a été réalisée avec les 1559 enregistrements disponibles au Centre de Conservation de la race
ovine Bergamasca Brésilienne de l’Université de Brasilia (Brésil), en utilisant les logiciels ENDOG et Vortex. Les données des enregistrements ont été utilisées pour travailler avec le logiciel ENDOG alors que l’information traitée par le logiciel Vortex avait été obtenue au moyen d’un questionnaire auquel ont répondu les personnes prenant soin des troupeaux. Pour 767 des animaux enregistrés, les
parents étaient connus, avec le nombre de femelles connues étant significativement plus élevé à chaque génération. Le nombre de
généalogies connues a augmenté au fil des générations, grâce à un enregistrement plus fréquent des parents des mâles. La
Consanguinité Moyenne a été estimée par ENDOG à 0,29 pour cent alors que la Parenté Moyenne a été de 1,52 pour cent.
L’Intervalle Générationnel Moyen a été de 3,71 ans, avec l’intervalle étant plus court chez les mâles que chez les femelles. La
probabilité d’extinction de la population a été de 17 pour cent d’après Vortex et le temps moyen d’extinction a été de 59 ans.
Quarante-deux scénarios additionnels ont été créés pour déterminer quels sont les facteurs menaçant le plus ces populations. Ceuxci ont été: la fréquence de catastrophes, le manque de renouvellement des animaux et la mortalité des adultes et des agneaux, notamment la mortalité des femelles adultes. Ces résultats indiquent que les futurs plans de sélection devraient envisager l’échange de mâles
entre les fermes afin de maintenir bas les niveaux de consanguinité et d’accroître la variabilité génétique. Il faudrait, de même, améliorer
la gestion des exploitations dans le but de contrôler le taux de mortalité des animaux.
Mots-clés: consanguinité, modélisation populationnelle, parenté moyenne, statistiques de Wright, Vortex
Resumen
Se realizó un análisis genealógico y de viabilidad con los 1559 registros disponibles en el Núcleo de Conservación de la raza ovina
Bergamasca Brasileña, de la Universidad de Brasilia (Brasil), usando los programas ENDOG y Vortex. En el programa ENDOG se
trabajó con los datos de los registros mientras que en el programa Vortex se usó la información obtenida mediante un cuestionario
al que respondieron los encargados del cuidado de los rebaños. De los animales inscritos, se conocían los progenitores de 767, con
un número significativamente mayor de hembras conocidas en cada generación. El número de genealogías conocidas ha aumentado
a lo largo de las generaciones, gracias a un mayor registro de los progenitores de los machos. La Consanguinidad Media calculada
por ENDOG fue de 0,29 por ciento mientras que el Parentesco Medio fue de 1,52 por ciento. El Intervalo Generacional Medio fue
Correspondence to: C. McManus, Faculdade de Agronomia e Medicina Veterinária,
Campus Universitário Darcy Ribeiro, Brasília – DF 70919-900, Brazil. email:
[email protected]
103
104
H. Carneiro et al.
de 3,71 años, siendo este dato menor para los machos que para las hembras. La probabilidad de extinción de la población, calculada por
Vortex, fue del 17 por ciento y el tiempo medio hasta la extinción de 59 años. Se recrearon 42 escenarios adicionales para determinar
cuáles son los factores que, en mayor medida, amenazan a estas poblaciones. Éstos resultaron ser: la frecuencia de catástrofes, la falta
de reposición de los animales y la mortalidad de los adultos y de los corderos, en especial la mortalidad de las hembras adultas. Estos
resultados indican que los futuros planes de selección deberían contemplar el intercambio de machos entre las granjas para mantener
bajos los niveles de consanguinidad e incrementar la variabilidad genética. Asimismo, se debería mejorar el manejo de las explotaciones para controlar las tasas de mortalidad de los animales.
Palabras clave: consanguinidad, estadísticos de Wright, modelización poblacional, parentesco medio, Vortex
Submitted 11 June 2013; accepted 10 January 2014
Introduction
Sheep have been present in Brazil for almost 500 years, but
their numbers have not increased to the same extent as
other farm animals (Hermuche et al., 2012, 2013). This
has been largely due to herd structure (smallholders), perceived use of sheep as a secondary culture and lack of
interest from major research groups. Taking into account
rapid genetic erosion (Hall and Ruane, 1993; Scherf,
2000) and the importance of Animal Genetic Resources
for the future (Notter, 1999), it may not be possible to
wait for specific and detailed information on available
breeds and ecotypes.
The Brazilian Bergamasca is an Italian breed from the
Lombardy region, which is widespread mainly in
Northern Italy (Dalvit et al., 2009). In Italy, this breed specializes in meat production and is widely used in crossing
with other breeds. It is thought to have been introduced in
Brazil in the 1930s with Italian immigration (Miranda and
McManus, 2000; Paiva et al., 2005). Although once widespread has been substituted for other breeds, especially
hair sheep. In Brazil, it is considered a triple purpose
breed raised for milk, meat and coarse wool (Miranda
and McManus, 2000), and at present is threatened with
extinction in the country.
More recently, there has been some interest in this breed
for milk production to make cheese, which is not traditional in Brazil, but a few herds are left. The rare ARK haplotype has also been described in this breed (Luhken et al.,
2007) meaning that it may be useful in studying scrapie
resistance in sheep. Embrapa (Brazilian Agricultural
Research Corporation) included domesticated and naturalized breeds threatened of extinction in its Program of
Research on Genetic Resources in 1983. Currently, the
conservation of animal genetic resources is carried out
by diverse Research Centers of Embrapa, Universities,
State Research Companies, as well as private farmers.
Currently, much of the naturalized animals are in small and
scattered populations. Small populations are unstable,
since they are more exposed to stochastic factors that can
lead to extinction, such as demographic stochasticity,
environmental variation, genetic drift and inbreeding
depression (Armstrong, Postiglioni and Gonzáles, 2006).
Genetic diversity can be considered the cornerstone of conservation genetics, since it is the basis of the evolutionary
potential of species to respond to environmental changes.
The most threatened populations are subdivided into different groups in different fragments of habitat, nature reserves
or in groups of different breeds or lines, in the case of
domestic animals (Toro and Caballero, 2005).
This study aims to analyse genealogical information integrated with simulation tools in the risk of extinction and
molecular markers of a Conservation Nucleus of this breed
to determine the effectiveness of current conservation efforts.
Material and methods
The flock of Brazilian Bergamasca sheep used in this study
is kept on the University of Brasilia (UnB) research farm,
is part of the Brazilian National Program for Conservation
of Animal Genetic Resources and this is the only one of
this breed to participate in this program. The population
studied was of 1 559 animals, which included all
Brazilian Bergamasca sheep on the UnB farm born
between 1990 and 2010. There were 48 percent males
and 52 percent females. Data for the population viability
analysis were taken from the questionnaire answered by
the curator of the flock, the data from which are in
Table 1. On the other hand, information for the pedigree
analysis were obtained in the animal register.
Two analyses were carried out: one looking at the genetic
structure of the herd over the 20-year period to determine
population parameters (pedigree analysis) and the other
simulating future events to evaluate the future of the
herd (viability analysis).
Pedigree analysis
The population genetic parameters were computed using
the ENDOG program, version 4.8. The program details
can be found in Gutiérrez and Goyache (2005). ENDOG
is a computer program for population genetics that performs various demographic and genetic analyses from
pedigree information. A number of population and genetic
Genealogy and viability analyses for sheep conservation
parameters were computed for the reference populations,
which consist of animals with both parents known.
Parameters included: pedigree completeness level was
computed as the proportion of ancestors known per parental generation; the number of equivalent to discrete generations (t) for each individual in a pedigree; the inbreeding
coefficient (F), defined as the probability that two alleles
at a randomly chosen locus are identical by descent; The
average relatedness coefficient (AR), defined as the probability that an allele randomly chosen from the whole
population belongs to a given animal; the probability of
gene origin was characterized by computing: effective
number of founders ( fe) was computed according to
Lacy (1989); effective number of ancestors ( fa); the founder genome equivalents was calculated from the inverse of
twice the average coancestry of the individuals within the
population. Effective population size (Ne) was computed
following Gutiérrez et al. (2003).
Population viability analysis
Simulations of interactions between demographic, environmental and genetic factors were carried out using the program Vortex, version 9.99. A questionnaire was developed
to be answered by the curators of the herds linked to the
Brazilian National Program for Conservation of Animal
Genetic Resources with the information required for program input. According to Miller and Lacy (2005), the
Vortex program begins by creating individuals to form a
base population and then steps through life cycle events
on an annual basis. Stochastic events such as breeding success, progeny number, sex at birth and mortality rate were
determined by a predefined probability density function
given by the operator (Table 1). Consequently, each iteration of the model gave a different result and by running
the model hundreds of times, and a range of possibilities
and outcomes were examined. The scenario described in
Table 1 was called baseline and all the other scenarios created changed one parameter of it to test the population
(Tables 5 and 6).
The data including catastrophes described above were
informed by the curator of the nucleus. The loss of genetic
variability is simulated as the transmission of alleles from
parents to offspring in a hypothetical neutral site. For each
animal at the beginning of the simulation is assigned two
unique alleles at this locus. Then for each individual created during the simulation is randomly assigned one of
the alleles from each parent.
The program monitors how many alleles remain in the original population, by giving the mean number of alleles
remaining within extant population, the average heterozygosity and genetic diversity relative to the initial level.
Forty-six Brazilian Bergamasca animals were genotyped
using 19 microsatellite markers to provide input allele frequency information, obtained in the Animal Genetics
Laboratory in Embrapa Genetic Resources and
Biotechnology, Brasilia – DF, Brazil (Table 2). Diversity
105
Table 1. Demographic parameters used to simulate the population
of sheep Brazilian Bergamasca with Vortex.
Input data
Number of iterations
Number of years
Reproduction system
Age of first offspring (F/M)
Inbreeding depression?
Maximum number of lambings per year
Maximum number of progeny per lambing
Sex ratio at birth
Maximum age of reproduction
Adult female breeding (%)
Probability of simple birth
Probability of twin birth
Probability of triple birth
Female mortality age between 0 and 1 (%)
Female mortality age between 1 and 2 (%)
Female mortality after age 2 (%)
Male mortality age between 0 and 1 (%)
Male mortality age between 1 and 2 (%)
Male mortality after age 2
Catastrophe 1: animal attack
Frequency (%)
Effect on reproduction (%)
Effect on survival (%)
Catastrophe 2: feeding error
Frequency (%)
Effect on reproduction (%)
Effect on survival (%)
Males in breeding pool (%)
Initial population
Carrying capacity (K)
Animals harvested?
100 males per year
First year of harvest
Last year of harvest
Interval between harvests
Population supplemented?
One male every 2 years
First year of supplementation
Interval between supplementation
Value
1 000
100
Polygamous
2/2
Yes
2
3
50%
8
80
74
23
3
30
5
5
30
5
5
6
80
90
12
60
50
5
25
400
Sim
5
100
1
Sim
2
2
indexes for microsatellites were calculated using the
Molkin package (Gutiérrez et al., 2005).
To determine which factors most threaten this population,
new scenarios were tested to see the behaviour of the parameters. Forty-two additional scenarios were created, as
described in Tables 5 and 6, by changing baseline
(Table 1) values, maintaining other variables stable.
Results
Pedigree data on 1 559 animals were analysed, the herd
was classified as commercial using according to
Gutiérrez and Goyache (2005) as care has been taken
over the years to buy rams where possible to avoid
inbreeding. Pedigree Information increased over the generations were analysed, with more information available
on dams than sires, with almost 100 percent of dams
106
H. Carneiro et al.
Table 2. Microsatellite loci information in Brazilian Bergamasca sheep.
Locus
Inra23A
Oar304A
MAF214A
INRA63A
OARHH35A
INRA35A
OMHC1A
ILSTS87A
ILSTS05A
ILSTS11A
MAF65A
BM827A
OARFCB20A
OARCP20A
OAR129A
INRA172A
HUJ616A
SRCRSP05A
BM6526A
Number of alleles/locus
10
6
5
7
9
9
5
9
5
5
7
7
11
7
3
7
3
4
5
Allele frequency
0.05
0.06
0.04
0.18
0.02
0.12
0.14
0.04
0.14
0.47
0.22
0.03
0.17
0.28
0.02
0.03
0.32
0.04
0.03
0.05
0.15
0.43
0.23
0.19
0.27
0.71
0.04
0.27
0.2
0.34
0.11
0.49
0.17
0.76
0.03
0.67
0.35
0.19
0.12
0.01
0.39
0.04
0.02
0.1
0.003
0.04
0.38
0.02
0.09
0.36
0.02
0.22
0.22
0.38
0.01
0.48
0.01
known in the present generation (Figure 1). The reference
populations were taken as the animals with both parents
known. This population will be smaller than that one
used to analyse Founders. The effective founder population Size was 229 with 791 animals in the reference population and 215 ancestors contributing to the reference
population. The effective number of founders/ancestors
for the reference population was 42/34 with 12 animals
supplying 50 percent of the ancestors.
The Computed Mean Inbreeding was 0.29 percent and
Mean AR was 1.52 percent. These numbers are comparable to those for the Galega (Adán et al., 2007) and
Mallorquina (Goyache et al., 2010) sheep in Spain and
well below the dangerous level (10 percent).
As the generations increased, there was little change in
inbreeding and AR (Table 1). This was due to careful control of reproduction in the nucleus. Although very low (<0.4
percent) there is an increase over the generations, which
should be carefully monitored. There were 2 percent matings between sibs and 1 percent between parent-offspring.
These values are summarized in Table 3, per generation.
Figure 1. Proportion of parents known per generation in a Conservation
Nucleus of Brazilian Bergamasca sheep. P – parent, GP – grandparent,
GGP – great grandparent.
0.05
0.48
0.06
0.13
0.12
0.07
0.14
0.34
0.06
0.18
0.11
0.34
0.04
0.01
0.05
0.06
0.08
0.37
0.19
0.15
0.007
0.15
0.15
0.13
0.02
0.04
0.04
0.17
0.01
0.24
0.1
0.19
0.12
0.03
0.02
0.14
0.02
0.37
0.13
0.04
0.01
0.03
0.01
0.07
0.24
0.08
0.26
0.21
0.11
0.04
0.02
0.01
0.01
0.02
0.13
0.07
0.02
0.15
0.02
0.2
0.19
0.13
0.02
0.75
0.26
0.08
0.01
Effective population size per year (Figure 2) has remained
relatively stable over the years, varying about 30 animals.
The sharp decrease in 1998 was due to an attack by dogs,
which killed the whole lamb flock and a large number of
ewes.
Generation intervals (Table 4) varied from 4.08 (father–
son) to 2.98 years (Father–daughter). This shows a relatively fast turnover of reproducing animals. In terms of
mean age of parents when offspring were born these
were higher for dams than sires. Alderson (1990) used
the genetic conservation index (GCI) to calculate an effective number of founders in the pedigree of an animal. The
higher the GCI value the higher the value of an animal for
conservation. Mean GCI was 1.36, varying between 0.77
and 5.07. This has increased steadily over the years with
an increment of approximately 0.05 per year (Figure 3).
Using sires to analyse differentiation, Fis was found to be
−0.080; Fst = 0.069 and Fit = −0.005, all indices being
close to zero. In the present study, when sires were considered subpopulations there is low genetic differentiation
(7.7 percent of total genetic variation). Self-coancestry
Figure 2. Effective population size per year of birth in a Conservation
Nucleus of Brazilian Bergamasca sheep.
Genealogy and viability analyses for sheep conservation
Table 3. Inbreeding (F), average relatedness (AR) and effective
population size (Ne) per generation in a Conservation Nucleus
of Brazilian Bergamasca sheep.
F
Maximum generations
1
–
2
0.00
3
0.00
4
0.00
5
0.01
6
0.01
7
0.01
8
–
Complete generations
0
0
1
0.00
2
0.03
%
AR
0.01
0.02
0.07
0.08
0.13
0.20
0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.02
0.04
0.08
0.40
Ne
336.00
1 369.00
760.60
152.30
57.70
115.80
19.70
was 0.50, inbreeding 0.003 and Nei distance between sires
0.069, showing that, according to the pedigree analysis, no
immediate problems in maintenance of genetic diversity
within the herd is seen.
Population viability analysis
The estimated probability of extinction in population viability analysis was 17 percent and therefore, the possibility
of success of 83 percent. From the scenarios that have
become extinct, the average time to extinction was 59
years (Table 5). Considering only the deterministic growth
of the population, i.e. no inbreeding depression, mating
with no restrictions and no entry and exit of animals, the
population would grow until it reaches the carrying capacity of the environment (K ) and the deterministic growth
rate (Det.r) remained stable for the full simulation period.
However, the stochastic prediction considering the factors
and the stochastic growth rate (Stoch.r) was different
(Figure 4).
In the herd analysed, population growth was much lower
than expected considering only the Det.r (Figure 4). The
Table 4. Generation intervals (L), their standard deviations (SD)
and standard errors (SE) for a Conservation Nucleus of
Brazilian Bergamasca sheep.
Interval
Generation intervals
Father–Son
4.08
Father–Daughter
2.98
Mother–Son
3.49
Mother–Daughter
4.02
Total
3.71
Mean age of parents when offspring born
Father–Son
3.03
Father–Daughter
2.83
Mother–Son
4.21
Mother–Daughter
4.18
Total
3.74
Standard deviation
SE
1.48
1.20
1.06
2.04
1.87
0.66
0.10
0.29
0.12
0.09
1.77
1.56
2.25
2.32
2.17
0.08
0.07
0.08
0.08
0.05
Figure 3. Genetic conservation index for year of birth in a conservation
nucleus of Brazilian Bergamasca sheep.
difference in expected values between Stoch.r and Det.r
is clearly seen. While the first had high variation, the second remained stable throughout the period of the simulation, which supports the idea that the population is
highly susceptible to environmental and genetic effects,
such as variations in the feed, precipitation levels, inbreeding and genetic drift.
When considering the influence of environmental variation, the population did not reach K = 400 (Figure 5).
The values of genetic diversity were relatively high,
always above 0.8 (Table 5). The overall results did not
change significantly when the default program was used
(each animal at the beginning of the simulation is assigned
two unique alleles and not using real population genetic
data (Table 5)), as the genetic diversity values were very
similar in both scenarios. However, when calculating the
within diversity observed directly from the original microsatellite markers, the following values of diversity was
obtained: (1) observed heterozygosity of 0.6880 (SD
0.0160); (2) expected heterozygosity of 0.6864 (SD
0.0335); (3) mean number of alleles 6.53 (SD 2.29); and
fixation index (Fis) of −0.002 (P > 0.05).
The mean observed heterozygosity reported by Vortex is
the mean inbreeding coefficient of the population (Miller
and Lacy, 2005), in this case, a high inbreeding value of
0.9238. One thousand iterations were needed to ensure stabilization of the results (Harris, Maguire and Shaffer,
1987). This population appeared to be influenced by genetic effects inherent to small populations. This can also be
noticed by observing the average number of alleles, which
declined to less than half of the initial value for the
Figure 4. Difference between the deterministic (Det.r) and stochastic (Stoch.r)
growth rates for the period of Vortex simulations in Brazilian Bergamasca
sheep.
107
108
H. Carneiro et al.
and the lamb mortality in this population is already high
(30 percent).
Figure 5. Total number of animals achieved at the end of Vortex simulations
in Brazilian Bergamasca sheep considering only the stochastic growth rate, i.e.
environmental and genetic factors.
Figure 6. Total number of alleles obtained at the end of Vortex simulations in
Brazilian Bergamasca sheep estimated for the entire period simulated.
projected period (Figure 6), indicating a great loss of allelic
diversity, which can endanger the long-term population
persistence.
The results of the simulations (Tables 5 and 6) showed that
removing inbreeding from the analysis (Table 5) only
reduced the probability of extinction, but the other parameters remained unchanged. This was expected, since
the program models inbreeding depression as a reduction
in the survival of offspring during the first year of life,
When comparing the Effective Number of Founders and
Ancestors for the reference population found by ENDOG
(42/34) with the initial population size (25) answered by
the curator of the herd, it is noticed that the value found
by pedigree analysis was higher than the actual initial
population. This may be due to error in animal records
or the reduction of the herd size due to pressure to reduce
the number of animals to increase the commercial herd.
To include a value of the initial population obtained in the
analysis with ENDOG in the simulation with Vortex, we
chose the 12 animals supplying 50 percent of the ancestors
to also check the impact of a smaller initial population.
This increased the probability of extinction, but did not
affect the other parameters (Table 5).
The lowest percentage of females breeding each year had a
strong impact on the population with a probability of
extinction of 100 percent. On the other hand, raising the
percentage of males available for breeding increased
only the genetic variability of the population and did not
affect the other parameters (Table 5).
The population seemed to be viable for the simulation period of 100 years, but increasing the simulation time to 500
and 1 000 years there was a probability of extinction of 99
and 100 percent, respectively (Table 5). Fieberg and Ellner
(2000) found that extinction probabilities seem to be an
uncertain measure, sensitive to various parameters and
data quality. According to these authors, attempting to
incorporate density dependence, genetic effects, interactions with other species to the models will inevitability
introduce even more uncertainty.
Table 5. Result summary obtained from Vortex simulations in Brazilian Bergamasca sheep considering baseline and the alternative
scenarios.
Scenario
r
Baseline
0.103
Without inbreeding
0.103
Using ENDOG output as initial
0.103
population
20% of females breeding
−0.192
100% of males in the breeding pool
0.103
Without the allelic frequency data
0.103
Simulated for 500 years
0.103
Simulated for 1000 years
0.103
Extreme scenarios
Scenario
r
70% of lamb mortality
−0.086
30% of adult female mortality
−0.127
Higher catastrophe severity
0.069
Higher catastrophe frequency
−0.003
Smaller initial population
0.103
70% of female lamb mortality
−0.086
70% of male lamb mortality
0.103
GI female
GI male
PE
Years to first extinction
He
Ho
Alleles
4.34
4.34
4.34
4.34
4.34
4.34
17
11
38
59
75
31
0.8601
0.8256
0.8565
0.9238
0.8754
0.9178
18.71
17.38
18.78
4.91
4.34
4.34
4.34
4.34
4.91
4.34
4.34
4.34
4.34
100
15
17
99
100
15
65
59
71
55
0
0.9206
0.8574
0.4859
0
0
0.9573
0.9195
0.4968
0
0
27.98
18.64
2.00
0
L female
4.70
3.69
4.30
4.21
4.34
4.70
4.34
L male
4.70
4.78
4.30
4.21
4.34
4.70
4.34
PE
99
100
49
90
55
100
11
Years to first extinction
23
17
42
33
38
19
22
He
0.9139
0
0.8961
0.8969
0.8875
0
0.8994
Ho
1.00
0
0.9596
0.9801
0.9382
0
0.9597
Alleles
17.67
0
24.46
18.68
27.17
0
29.22
r, deterministic growth rate; L, generation interval; PE, probability of extinction; He, expected heterozygosity; Ho, observed heterozygosity; Alleles,
estimated final number of alleles.
Genealogy and viability analyses for sheep conservation
Table 6. Result summary for the scenarios testing alternative management options in Vortex simulations in Brazilian Bergamasca sheep.
Scenario
Ten males entering
Ten females entering
15% of catastrophe 1 frequency
20% of catastrophe 1 frequency
25% of catastrophe 1 frequency
25% of catastrophe 1 frequency
30% of catastrophe 2 frequency
35% of catastrophe 2 frequency
15% of female adult mortality
20% of female adult mortality
30% of female adult mortality
40% of female adult mortality
50% of female adult mortality
60% of female adult mortality
20% of male adult mortality
40% of male adult mortality
50% of male adult mortality
60% of male adult mortality
40% of female lamb mortality
50% of female lamb mortality
60% of female lamb mortality
70% of female lamb mortality
80% of female lamb mortality
40% of male lamb mortality
50% of male lamb mortality
60% of male lamb mortality
70% of male lamb mortality
80% of male lamb mortality
r
L female
L male
PE
Years to first extinction
He
Ho
Alleles
0.103
0.103
0.089
0.082
0.074
0.018
−0.017
−0.052
0.076
0.062
0.031
−0.003
−0.043
−0.089
0.103
0.103
0.103
0.103
0.066
0.024
−0.025
−0.09
−0.17
0.103
0.103
0.103
0.103
0.103
4.34
4.34
4.33
4.32
4.32
4.23
4.18
4.14
4.38
4.41
4.47
4.54
4.61
4.70
4.34
4.34
4.34
4.34
4.40
4.48
4.58
4.70
4.86
4.34
4.34
4.34
4.34
4.34
4.34
4.34
4.33
4.32
4.32
4.23
4.18
4.14
4.38
4.41
4.47
4.53
4.61
4.70
4.34
4.34
4.34
4.34
4.40
4.48
4.58
4.70
4.86
4.34
4.34
4.34
4.34
4.34
10
0
26
32
35
86
97
100
27
37
64
82
97
100
20
17
17
18
36
64
92
99
100
19
16
15
19
18
30
0
47
41
39
22
18
15
45
43
34
30
26
23
37
53
59
57
44
35
25
21
15
47
53
45
35
35
0.953
0.8936
0.8597
0.8591
0.8627
0.8554
0.8407
–
0.8659
0.8697
0.8771
0.8794
0.8781
–
0.8536
0.8564
0.8573
0.8574
0.866
0.8748
0.8747
0.8889
–
0.8611
0.8609
0.8651
0.8680
0.8717
0.9811
0.923
0.9277
0.9293
0.9356
0.9607
0.9682
–
0.9362
0.9454
0.9605
0.9739
0.9845
–
0.9164
0.9197
0.9226
0.9227
0.9393
0.9622
0.9832
0.999
–
0.9282
0.9293
0.9376
0.9416
0.9510
82.54
85.51
18.26
18.08
18.11
13.20
10.34
–
18.64
18.37
17.48
15.70
13.67
–
18.51
18.63
18.54
18.74
18.66
16.43
13.21
12.00
–
18.78
19.09
19.55
19.72
20.09
r, deterministic growth rate; L, generation interval; PE, probability of extinction; He, expected heterozygosity; Ho, observed heterozygosity; Alleles,
estimated final number of alleles.
Increasing the mortality of lambs had a strong impact on
the population, with a negative growth rate, increase in
the generation interval and increased the probability of
extinction (Table 5). Separating the mortality of male
and female lambs, it is noticed that the major impact is
due to the mortality of female lambs, probably due to
the role of females in reproduction and the characteristic
of the herd of having more females than males. Working
with Vortex, Brook et al. (1997) found that small changes
in mortality, potentially due to inbreeding depression,
minor chronic disease, or new exotic predators, had a profound effect on the population projected future. This same
author observed that the mortality of the juveniles was
more important in determining the extinction probability
than that of the adults. Any increase in mortality also greatly reduced the size of any extant populations. However, in
this study the mortality of adult females had a greater
impact on the population than the mortality of young
females (Table 5).
From the conclusions of the extreme scenarios, we
attempted to determine the extent to which the population
would be still viable by changing some parameters to
determine critical points in the management of these animals and suggest measures to be adopted in the conservation of this herd (Table 6). In the first two scenarios, ten
male and ten female adults were added to the population
every 2 years for 100 years. The entrance of this animals
increased genetic variability, greatly influenced the final
number of alleles, reduced the probability of extinction,
but did not affect the growth rate and the generation interval. The increase in the final number of alleles was
expected, since the Vortex considers that all migrants are
not related to the initial population and have unique alleles.
Another implication of this, according to Brook et al.
(1997), as Vortex assumes all supplemented animals are
unrelated; inbreeding could not be realistically modelled.
The extreme scenarios, higher mortality of lambs, higher
mortality of female lambs (Table 5), affected the population growth rate, the general interval and the probability
of extinction, but did not affect the genetic variability,
probably because the population was extinct in the simulations before losing the genetic variability. The frequency
of the catastrophe seemed to be worse than the severity
Catastrophe 1, animal attack, being less severe (Table 6),
even at higher frequencies did not affect the population
to a great extent, once the genetic variability was maintained high and did not affect either the growth rate and
generation interval. Catastrophe 2, feeding error, being
more severe, rapidly affected population. Up to 25 percent
did not show much effect, but from 30 percent the
(Table 5), showing that it is better to have fewer severe catastrophes than several mild disasters.
109
110
H. Carneiro et al.
population is already in a declining trend and at 35 percent
the probability of extinction was 100 percent.
The mortality of adult female (Tables 5 and 6) has a
greater effect than the mortality of males. At 30 percent
mortality of adult females affects the population, but it is
still viable. For example, 40 percent adult male mortality
does not affect most of the population parameters, but at
the same 40 percent of adult female mortality the trend
is a decrease in the population growth rate. At 60 percent
mortality of adult females, the probability of extinction is
100 percent.
The population was more “resistant” to female lamb mortality than to adult female mortality (Table 6). Up to 50
percent mortality of female lambs, the population was
affected, but was still viable. At the 60 percent mortality
the population growth rate was negative and only at 80 percent of female lamb mortality that the probability of
extinction was 100 percent. On the other hand, the mortality of male lambs did not affect much, since up to 80 percent mortality and the population was still viable.
Discussion
Pedigree analysis
This herd is part of the Brazilian National Program for
Conservation of Animal Genetic Resources and the only
Brazilian Bergamasca herd in the program. Of the five naturalized breeds of sheep analysed by Paiva et al. (2005),
this breed had showed the lowest gene diversity and percentage of polymorphic loci. The lack of sire information
is due to multiple ram mating groups, errors in recording
and frequent exchange of farm helpers. Nevertheless
these numbers are significantly higher than those found
by Goyache et al. (2010) and Álvarez et al. (2007) for
Mallorquina and by Alfonso et al. (2006) for Latxa
Black-Faced sheep breed in Spain. These latter authors
note that the lack of genealogies leads to computation of
high generation intervals.
The effective number of founders/ancestors for the reference population was 42/34 with 12 animals supplying 50
percent of the ancestors. The effective number of ancestors
for the reference population of Conservation Nucleus of
Galego sheep in Spain was 13 animals with five explaining
50 percent of the ancestors (Adán et al., 2007). The
Brazilian Bergamasca Conservation Nucleus has therefore
a higher genetic base and a low effective number of ancestors for the reference population. The low number of
ancestors, which explain half the genetic variation, indicates a super usage of a low number of sires. This is due
to difficulty in finding rams of this breed, distances and
cost required to transport these animals when found (usually >1 000 km) as well as funding difficulties for a
Federal University sheep herd.
Generation intervals are similar to those found for a
Conservation Nucleus of Galega (Adán et al., 2007) and
Mallorquina sheep (Goyache et al., 2010) in Spain.
These are on the lower limit for those calculated by
Huby et al. (2003) in six French meat sheep breeds in
France but higher than those found by Goyache et al.
(2003) for the Xalda of Asturias breed, which is also threatened with extinction. High generation intervals are due to
dams and sires remaining in reproduction for a long time.
This is due to high lamb mortality (~30 percent per year)
mainly caused by harsh dry winters (8 percent relative humidity and temperatures reaching 5 °C at night rising to 30 °C
during the day) and infections caused by Haemonhcus
contortus, which are resistant to antihelminthics.
Moureaux et al. (1996) reported that when inbreeding
using pedigree studies on horse breeds are considered,
two groups of horse breeds may be distinguished: one
group of international breeds, showing values ranging
from 0.81to 2.89 percent, and the other group with small
population sizes with values ranging from 2.25 to 14.7 percent. Although the population here was small, the inbreeding is less than found in the international breeds. This may
be due to two factors: careful choice of sires in the conservation herd or lack of pedigree information (Sabbioni
et al., 2007). Low AR means that an animal shares a
low percentage of genes with the rest of the population;
these animals could therefore serve to disseminate the
breed to other farms or regions in the country.
The herd size has not increased and sires are becoming
more difficult and expensive to find on the national market,
this reduced herd size may bring problems for the conservation nucleus in the coming years. The effective population size is an important parameter to monitor breeds and
breeding programs since it is related to inbreeding depression and loss of genetic variability. According to Gandini
et al. (2004) Ne is the measure of choice to determine the
risk of extinction of a population. The determination of this
parameter allows one to infer the rate of inbreeding and
loss of genetic diversity within the population. This population kept Ne relatively stable and could recover from the
sharp decrease of 1998, but probably with the difficulty of
introducing new animals, the Ne could not stay stable for
very long.
Population viability analysis
The Det.r equals the average growth of the population if
the flock is large enough to avoid being affected by random or stochastic factors. The Det.r will correctly predict
the population development if the birth and mortality
rates are constant over time and within the expected
values, if there is no inbreeding depression, no limitation
or restriction on random mating and has not limiting to
the carrying capacity of the environment. However, usually one or more of these assumptions are not respected, thus
leading to a slightly lower population growth than
expected by the deterministic growth rate (Ballou, Lacy
and Miller, 2005).
Genealogy and viability analyses for sheep conservation
The Stoch.r is calculated for each year of the simulation.
Usually, this parameter is lower than Det.r and only
shows values close to Stoch.r if the population growth is
steady and robust. The Stoch.r will be noticeably smaller
than the Det.r if the population is under wide fluctuations
due to environmental variation, catastrophes and demographic or genetic instability inherent to the small populations (Frankham, Ballou and Briscoe, 2008). As seen in
Figure 4, there is a difference between the Det.r and
stoch.r, with a wide variation of the second, supporting
the idea of environmental and genetic effects on
susceptibility.
According to Miller and Lacy (2005), the expected heterozygosity remaining in a simulated population, in the case of
this study 0.8601, is a useful metric of genetic decay for
comparison across scenarios and populations. From this
result, it is found that the value of heterozygosity calculated
by Vortex, using real allele frequency data or not, should be
analysed considering only the decrease from the value of
100 percent. We do not suggest using the final value of
He to confirm whether the population is threatened or not.
The instability present in the population is probably due to
inbreeding depression and low allelic diversity (Figure 6),
since the housing environment is controlled and does not
present major challenges to the animals, unless the mortality
of lambs that can be considered high (around 30 percent).
The genetic instability is caused possibly by the small number of animals entering the population and the use of a few
sires. Population managers should concern with the variation
depleting effects of genetic drift, which can be countered by
the introduction of occasional immigrants to prevent deleterious inbreeding within population (Lacy, 1987).
The extinction probability should not be considered alone
and should not be the only factor taken into account when
determining conservation strategies. It can be used to indicate the population trend of extinction or persistence and
warn if conservation measures must be urgent or not.
The reliable predictions of extinction probabilities can be
made only for short-term time horizons, 10 to 20 percent
as long as the period over which the population has been
monitored (Fieberg and Ellner, 2000). These authors stated
that the given typical amounts of data available it will rarely be meaningful to estimate a long-term extinction probability, but it may sometimes be possible to reliably
estimate a short-term extinction probability. Considering
the amount of data available in this study, neither it
would be appropriate nor reliable to estimate the probability of extinction for a period longer than 100 years.
According to Table 5, it is better to have fewer severe catastrophes than having several mild disasters. Keith et al.
(2008), working with plants found that species populations
were more viable under the less frequent catastrophe simulations, in this case, fire. The frequency and severity of catastrophes had major effects on both the probability of
extinction and the final size of extant populations. When
a catastrophe’s frequency and severity were increased
concurrently, the likelihood of extinction increases dramatically (Brook et al., 1997).
Both catastrophes analysed in this study, are easily
avoided, improving the feeding control by making a
stock for the drought period, training the handlers and protecting the flock from attacks installing fences and arresting the animals at night, period on which most attacks
have occurred. These procedures would reduce the frequency of the catastrophes, which seemed to be worse to
the population (Table 5).
Working with Vortex, Lindenmayer, Lacy and Pope
(2000) found that in the absence of animals entering, the
population rapidly collapsed. One migrant per generation
is an appropriate lower limit to the amount of gene flow
that is desirable, but sometimes more than one migrant
per generation will be necessary to achieve the desired
genetic goals (Mills and Allendorf, 1996).
According to these same authors, one migrant per generation is sufficient to avoid the loss of alleles in subpopulations caused by genetic drift and will allow the allele
frequencies within subpopulations to respond to local
selective pressures. However, deviations from the ideal
population structure will tend to compromise the effectiveness of migration relative to expectations, including the
social structure and taking into account the relative reproductive success of immigrants. This could mean that more
than one migrant per generation may be necessary. The
acquisition of new animals for this herd is difficult as
there is a lack of pure commercial flocks for purchase or
exchange, the distances between farms, priorities for
research and bureaucracy in trading animals with a herd
belonging to a public university in Brazil. Therefore, it
would be very difficult to increase the entry of animals
beyond what has already occurred in the analysed period.
Based on these results (Table 5), we noticed that the mortality rates of adults and lambs, males and females should
always be monitored and controlled to ensure the viability
of the population. The lamb mortality rate could be
decreased by improving the management, especially taking
better care of the new born, such as navel dipping, colostrum, protecting from the cold and wind, dam mastitis control, as well as vaccinating at the appropriate time.
However, the mortality of the adult females seemed to be
more critical to the population and should be closely monitored by the curators, even though it is already low, about
5 percent. Changes to mortality and fecundity were a dangerous threat to the short-term persistence of the population
Brook et al. (1997) studied. Even relatively minor increases
in mortality or decreases in fecundity translated into strong
effects on population size and extinction probability.
Conclusion
While no immediate problems are observed in the conservation nucleus, reduced herd size and lack of other herds
111
112
H. Carneiro et al.
of this breed could cause problems in the near future. From
all of the scenarios, it is concluded that the number of
females is critical to sustain the population. The key parameters to be observed in a conservation management were
providing the entrance of animals, control the frequency of
catastrophes, not so much the severity, and control the
mortality of females, especially the adults ones (up to 30
percent).
Goyache, F., Gutiérrez, J.P., Álvarez, I., Fernández, I., Royo, L.J. &
Gomez, E. 2003. Genetic analysis of calf survival at different preweaning ages in beef cattle. Livestock Prod. Sci., 83: 13–20.
Goyache, F., Fernández, I., Espinosa, M.A., Payeras, L., Pérez-Pardal,
L., Gutiérrez, J.P., Royo, L.J. & Álvarez, I. 2010. Análise
demográfico y genetic de la raza ovina Mallorquina. ITEA, 106: 3–14.
Gutiérrez, J.P. & Goyache, F. 2005. A note on ENDOG: a computer
program for analysing pedigree information. J. Anim. Breeding
Genet., 122: 172–176.
Acknowledgements
Gutiérrez, J.P., Altarriba, J., Díaz, C., Quintanilla, R., Cañón, J. &
Piedrafita, J. 2003. Pedigree analysis of eight Spanish beef cattle
breeds. Genet. Sel. Evol., 35: 43–63.
The authors acknowledge to the CNPq, INCT-Pecuária,
FAPDF and Finatec for financial support.
Gutiérrez, J.P., Royo, L.J., Àlvarez, I. & Goyache, F. 2005. Molkin
v. 2.0: a computer program for genetic analysis of populations using
molecular coancestry information. J. Hered., 96: 718–721.
Hall, S.J. & Ruane, J. 1993. Livestock breeds and their conservation: a
global overview. Conserv. Biol., 7: 815–825.
Statement of interest
Harris, R.B., Maguire, L.A. & Shaffer, M.L. 1987. Samples sizes for
minimum viable population estimation. Conserv. Biol., 1: 72–76.
No conflict of interest was identified in this study.
Hermuche, P., Silva, N.C., Guimarães, R.F., Carvalho Júnior, O.A.,
Paiva, S.R., Gomes, R.A.T. & McManus, C.M. 2012. Dynamics
of sheep production in Brazil using principal components and maps
of auto-organization characteristics. Rev. Bras. Cart., 64: 821–832.
References
Adán, S., Fernández, M., Justo, J.R., Rivero, C.J., Rois, D. & Lama,
J. 2007. Análisis de la información genealógica en la raza ovina ovella
galega. Arch Zootec., 56: 587–592.
Alderson, L. 1990. Genetic conservation of domestic livestock. Wallin,
CAB International, US page.
Alfonso, L., Parada, A., Legarra, A., Ugarte, E. & Arana, A. 2006.
Effects on geneticvariability of selection against scrapie sensitivity
in the Latxa black-faced sheep. Genet. Sel. Evol., 38: 495–511.
Álvarez, I., Fernández, I., Espinhosa, M.A., Payeras, L., Gutiérrez, J.
P., Royo, L.J. & Goyache, F. 2007. Análisis del libro genealógico de
la raza ovina mallorquina. In Proceedings SEOC 2007. pp. 163–166.
(available at http://www.exopol.com/seoc/docs/6t02xe4o.pdf)
Armstrong, E., Postiglioni, A. & Gonzáles, S. 2006. Population viability analysis of the Uruguayan Creole cattle genetic reserve. Anim.
Genet. Resour. Inf., 38: 19–33.
Ballou, J., Lacy, B. & Miller, P. 2005. Population and Habitat Viability
Assessment (PHVA): Briefing Book. I Maned Wolf International
Workshop – CENAP/IBAMA, Atibaia, SP, Brazil.
Brook, B.W., Lim, L., Harden, R. & Frankham, R. 1997. How secure
is the Lord Howe Island woodhen? A population viability analysis
using Vortex. Pacific Conserv. Biol., 3: 125–133.
Dalvit, C., De Marchi, M., Zanetti, E. & Cassandro, M. 2009. Genetic
variation and population structure of Italian native sheep breeds undergoing in situ conservation. J. Anim. Sci., 87: 3837–3844.
Fieberg, J. & Ellner, S.P. 2000. When is it meaningful to estimate an
extinction probability? Ecology, 81: 2040–2047.
Hermuche, P., Maranhão, R.L.A., Guimarães, R.F., Carvalho Júnior,
O.A., Gomes, R.A.T., Paiva, S.R. & McManus, C.M. 2013.
Dynamics of Sheep Production in Brazil. ISPRS Int. J. Geo-Info., 2:
665–679.
Huby, M., Griffon, L., Moureaux, S., De Rochambeau, H., Burge, C.
D. & Verrier, E. 2003. Genetic variability of six French meat sheep
breeds in relation to their genetic management. Genet. Sel. Evol., 35:
637–655.
Keith, D.A., Akçakaya, R., Thuiller, W., Midgley, G.F., Pearson, R.
G., Phillips, S.J., Regan, H.M., Araújo, M.B. & Rebelo, T.G.
2008. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.
Biol. Lett., 4: 560–563.
Lacy, R.C. 1987. Loss of genetic diversity from managed populations:
interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol., 1: 143–158.
Lacy, R.C. 1989. Analysis of founder representation in pedigrees: founder
equivalents and founder genome equivalents. Zoo Biol., 8: 111–123.
Lindenmayer, D.B., Lacy, R.C. & Pope, M.L. 2000. Testing a
simulation model for population viability analysis. Ecol. Appl., 10:
580–597.
Luhken, G., Buschmann, A., Brandt, H., Eiden, M., Groschup, M.H.
& Erhardt, G. 2007. Epidemiological and genetical differences
between classical and atypical scrapie cases. Veter. Res., 38: 65–80.
Miller, P.S. & Lacy, R.C. 2005. Vortex user´s manual. A stochastic simulation of the extinction process. Chicago Zoological Society, Chicago.
Mills, L.S. & Allendorf, F.W. 1996. The one-migrant-per-generation
rule in conservation management. Conserv. Biol., 10: 1509–1518.
Frankham, R., Ballou, J.D. & Briscoe, D.A. 2008. Genética e extinção;
Conseqüências genéticas do tamanho populacional pequeno. In:
Fundamentos de Genética da Conservação, pp. 77–101. Ribeirão
Preto, Sociedade Brasileira de Genética.
Miranda, R.M. & McManus, C. 2000. Desempenho de ovinos
Bergamácia na região de Brasília. Rev. Brasil. Zootec., 29: 1661–
1666.
Gandini, G.C., Ollivier, L., Danell, B., Distl, O., Georgoudis, A.,
Groeneveld, A., Martyniuk, E., Van Arendonk, J.A.M. &
Woolliams, J.A. 2004. Criteria to assess the degree of endangerment
of livestock breeds in Europe. Livestock Prod. Sci., 91: 173–182.
Moureaux, S., Verrier, É., Ricard, A. & Mériaux, J.C. 1996. Genetic
variability within French race and riding horse breeds from genealogical data and blood marker polymorphisms. Genet. Sel. Evol., 28:
83–102.
Genealogy and viability analyses for sheep conservation
Notter, D.R. 1999. The Importance of genetic diversity in livestock
populations of the future. J. Anim. Sci., 77: 61–69.
Paiva, S., Silvério, V.C., Egito,
Mariante, A.S., Castro, S.R.,
J.A. 2005. Genetic variability
Pesquisa Agropecuária Brasil.,
A.A., McManus, C., Faria, D.A.,
Albuquerque, M.S.M. & Dergam,
of the Brazilian hair sheep breeds.
40: 887–893.
Sabbioni, A., Valentino, B., Francesca, T.M. & Paola, S. 2007. Genetic
variability and population structure in the Italian Haflinger Horse
from pedigree analysis. Ann. Facoltà Med. Veterin. Parma., 27:
199–210.
Scherf, B.D. 2000. World watch list for domestic animal diversity, Third
edition. Rome, Food and Agricultural Organization of the United
Nations.
Toro, M.A. & Caballero, A. 2005. Characterization and conservation of
genetics diversity in subdivided populations. Phil. Trans. R. Soc. B,
360: 1367–1378.
113
Animal Genetic Resources, 2014, 54, 115–125. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633613000489
Population structure and genealogical analysis
of the Brazilian Crioula Horse
F.C. Maciel1, C.D. Bertoli2, J. Braccini Neto2, J.A. Cobuci2, S.R. Paiva3 and C.M. McManus2,4
1
Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; 2Departamento de Zootecnia,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; 3EMBRAPA Recursos Genéticos e Biotecnologia, Brasília,
DF 70770-970, Brazil; 4Universidade de Brasília, Brasília, DF 70910-900, Brazil
Summary
A genealogical analysis of Crioula horses registered by the Brazilian Association of Crioula Horse Breeders was performed. The state
of Rio Grande do Sul is the largest producer of animals with 89.85 percent of registered animals, of which 45.29 percent were males
and 54.71 percent females. The inbreeding coefficient was calculated at 0.88 percent and the average relatedness was 0.65 percent in the
total population (animals born in Brazil and imported). Inbreeding increased over the generations. An increase was seen in the average
genetic conservation index in animals born after the year 1927 (0) until 2010 (8.67 percent). The average generation interval was
10.3 years and the average age of parents when offspring born were 10.5 years, falling in recent years. The effective population
size of founders was 95.19 animals, the number of ancestors contributing to this population was 5086 where 56 ancestors explained
50 percent of the genetic diversity of the breed. Inbreeding is under control in the Crioula horse. The increase in registrations reflects the
increased interest from farmers in this breed.
Keywords: average relatedness, founding, ancestors, genetic conservation index, inbreeding, statistics of Wright
Résumé
Une analyse généalogique des chevaux Créoles inscrits à l’Association Brésilienne d’Éleveurs de Chevaux Créoles a été réalisée. L’état
du Rio Grande do Sul est le plus grand producteur d’animaux avec 89,85 pour cent des animaux inscrits, dont le 45,29 pour cent sont
mâles et le 54,71 pour cent femelles. Le coefficient de consanguinité a été estimé à 0,88 pour cent, avec une parenté moyenne de 0,65
pour cent dans la population totale, y compris les animaux nés au Brésil et ceux importés. La consanguinité a augmenté au fil des
générations. Un accroissement de l’indice moyen de conservation génétique a été observé pour les animaux nés entre 1927 (0) et
2010 (8,67 pour cent). L’intervalle générationnel moyen a été de 10,3 ans et l’âge auquel les parents ont en moyenne leur premier
descendant a été de 10,5 ans, cet âge ayant diminué au cours des dernières années. La taille effective de la population des fondateurs
a été de 95,19 animaux. Le nombre d’ancêtres ayant contribué à cette population a été de 5086, dont 56 sont responsables du 50 pour
cent de la diversité génétique de la race. La consanguinité est sous contrôle dans la race équine Créole au Brésil. L’augmentation des
inscriptions reflète l’intérêt croissant des éleveurs pour cette race.
Mots-clés: consanguinité, parenté moyenne, indice de conservation génétique, statistiques de Wright, ancêtres fondateurs, généalogie,
cheval créole, Brésil
Resumen
Se realizó un análisis genealógico de los caballos Criollos registrados en la Asociación Brasileña de Criadores de Caballo Criollo. El
estado de Río Grande del Sur es el mayor productor de animales con el 89,85 por ciento de los animales registrados, de los cuales el
45,29 por ciento son machos y el 54,71 por ciento hembras. El coeficiente de endogamia se estimó en un 0,88 por ciento, con un parentesco medio de 0,65 por ciento en la población total, contando tanto con animales nacidos en Brasil como con animales importados.
La endogamia aumentó de generación en generación. Se detectó un incremento en el índice medio de conservación genética en los
animales nacidos entre 1927 (0) y 2010 (8,67 por ciento). El intervalo generacional medio fue de 10,3 años y la edad media de los
progenitores al nacimiento del primer descendiente fue de 10,5 años, habiéndose reducido esta edad en los últimos años. El tamaño
efectivo de la población de fundadores fue de 95,19 animales. El número de ancestros que han contribuido a esta población fue de
5086, de los cuales 56 eran responsables del 50 por ciento de la diversidad genética de la raza. La endogamia está bajo control en
la raza equina Criolla en Brasil. El aumento de registros refleja el interés creciente de los ganaderos por esta raza.
Palabras clave: endogamia, parentesco medio, índice de conservación genética, estadísticos de Wright, ancestros fundadores,
genealogía, caballo criollo, Brasil
Submitted 19 April 2013; accepted 17 October 2013
Correspondence to: C.M. McManus, Universidade de Brasília, Brasília, DF
70910-900, Brazil. email: [email protected]
115
116
F.C. Maciel et al.
Introduction
Brazil has the third largest herd of horses in the world with
~5.9 million animals, second only to China with 7.9 million and Mexico with 6.2 million. The equine generates
about 640 000 direct jobs and if we consider indirect
jobs about 3.2 million, according to ESALQ/USP (2006).
The Crioula horse of southern Latin America is a direct
descendant of the horses brought to the New World by
the Spanish and Portuguese conquistadores during the sixteenth century (Rodero, Delgado and Rodero, 1992). Many
horses escaped or were abandoned, and returned to a wild
state. These were Portugese, Barbe and Spanish (particularly Andaluse) horses.
Studies with Uruguayan (Kelly et al., 2002) and
Argentinian Crioulas (Mirol et al., 2002) using blood
group and protein polymorphism variants that are considered to be breed markers of Spanish Pure-bred and Barb
horses were detected in the Crioula breed but some microsatellites and protein polymorphisms alleles were found
uniquely in the Crioula horse. Argentinean Crioula horses
shared two haplotypes with the Peruvian Paso from
Argentina, and the commonest haplotype of the Crioula
horses is identical to one of the Andalusian horses. Even
when there was substantial subdivision between breeds
with highly significant Wright’s Fixation Index (FST),
the parsimony and distance-based phylogenetic analyses
failed to show monophyletic groups and there was no
clear relationship in the trees between the South American
and any of the other horses analysed. Although this result
could be interpreted as mixed ancestry of the South
American breeds with respect to the Spanish breeds, it is
probably indicating the retention of very ancient maternal
lineages in the breeds analysed.
The South American horse breeds form two main groups,
the Crioula types (including Brazilian, Argentinean and
Uruguayan) and the other Brazilian breeds (Cothran
et al., 1998) and the Crioula is most closely related to
Iberian Sorraia, Andalusian, Paso Fino and Lusitano
breeds. The pairing of the Sorraia with the Argentine
Crioula was probably due to the combination of low variability of the Sorraia, small sample size of the Argentine
Crioula and the fact that an Argentine Crioula stallion
was used in the regeneration of the Sorraia.
According to the Brazilian Association of Crioula Horse
Breeders (ABCCC), from 2001 until the end of 2010
there was an increase of 143.7 percent in applications for
registration of temporary records, jumping from 10 271
in 2001 to 25 020 in 2010. Based on this growth, the
Association estimates that this number could reach
57 502 in the year 2020, an increase of approximately
129.82 percent over 2010. Trade of animals increased
985 percent between 2001 and 2010, rising from $9.2 to
$100 million, respectively, and this number could exceed
$300 million in the year 2020, according to data from
the ABCCC.
According Laat (2001), population aspects of horse herds,
especially those related to inbreeding and effective size,
present peculiarities since the horse herds are generally
small, selection does not have well-defined goals and
economic characteristics to evaluate progress, and sports
prizes, morphology and associated functionality are not
objectively measured. Furthermore, the low uses of
reproductive biotechnologies such as artificial insemination, embryo transfer and IVF – which are prohibited
by the Association of Crioula breeders, affect population
parameters.
Despite its importance, no studies on the level of inbreeding and population structure of the Crioula breed and,
therefore, the objective of this study was to analyse the
current situation of the breed using population genetics
parameters, focusing especially on some aspects of genetic
variability and population structure.
Material and methods
The analysis was based on data from the studbook where
the population was 341 616 animals that included all registered animals (final and interim) by the Brazilian
Association of Crioula Horse Breeders (ABCCC) since
its foundation up to 8th April 2011 (154 663 males and
186 843 females). Data were analysed using ENDOG programme to calculate population parameters for the breed.
The following parameters were calculated: the pedigree
completeness level was computed as the proportion of
ancestors known per parental generation (MacCluer
et al., 1983); The number of equivalent to discrete generations (t) for each individual in a pedigree (Boichard,
Maignel and Verrier, 1997); The inbreeding coefficient
(F) (Malécot, 1948); average relatedness coefficient
(AR) (Goyache et al., 2003; Gutiérrez, Goyache and
Cervantes, 2009). The probability of gene origin was characterized by computing the following parameters: effective
number of founders ( fe) (James, 1977) computed from the
genetic contribution of founders to the descendant gene
pool of the population (Lacy, 1989); effective number of
ancestors ( fa), defined as the minimum number of ancestors, not necessarily founders, explaining the complete
genetic diversity of a population (Boichard, Maignel and
Verrier, 1997); the founder genome equivalents (Ballou
and Lacy, 1995) obtained by the inverse of twice the average coancestry of the individuals within the population
(Caballero and Toro, 2000); Effective population size
(Ne) was computed following Gutiérrez, Goyache and
Cervantes (2009); F-statistics where a population has a
population structure of two levels; one from the individual
(I ) to the subpopulation (S) and one from the subpopulation to the total (T ). F-statistics describe the amount
inbreeding-like effects within subpopulations FIS, among
subpopulations FST, and within the entire population FIT.
In this case Wright’s F-statistics are obtained according
to Caballero and Toro (2000, 2002); The within-breed
coancestry ( fii) and the between-breeds coancestry matrix
Population structure of the Brazilian Crioula Horse
( fij) were computed averaging all pairwise coancestry
coefficients of the individuals belonging, respectively, to
a given breed i or to two different breeds i and j.
Following Caballero and Toro (2000, 2002) the betweenbreeds Nei’s minimum distance (Dm) matrix was also computed as Dm = (( fii + fjj)/2) − fij where fii and fjj are the
average coancestry within two breeds i and j and fij the
coancestry between two breeds i and j. In the present
study, municipalities, farms and sires were considered separate populations; the effective number of founders in an
animal’s pedigree was calculated using the genetic conservation index, genetic conservation index (GCI; Alderson,
1991): GCI = 1/ΣP2i where Pi is the proportion of genes
of founder animal i in the pedigree. Subsets were also analysed using sires with more than 100 offspring (803) giving 163 817 foals, the fathers of these animals (196) giving
53 632 foals. Farms (106) and municipalities with more
than 500 horses registered were also investigated.
Two further reference populations were created – families
of stallions with more than 500 offspring (184 005 animals – FAMILY) and animals registered since 1998
(184 669 animals – RECENT). In the latter two populations
135 449 animals appeared in both. Patterns of inbreeding in
the three populations studied (ALL, RECENT, FAMILY).
Levels of inbreeding were grouped (0.00, 0.001–0.05
(0.05), 0.051–0.10 (0.10), 0.101–0.15 (0.15), 0.151–0.20
(0.20), 0.201–0.25 (0.25) and >0.25 (0.30).
Figure 1. Geographical distribution of the population (Pop) of Crioula horses
in Brazil.
Results
The Crioula horse is present in 23 of the 27 states of the
Federative Republic of Brazil (Figure 1). The Crioula
horse does not have animals born in states of Alagoas,
Maranhão, Rio Grande do Norte and Amapá. The largest
producers are the three southern states of the country that
together add up to 96.34 percent, and Rio Grande do
Sul, the largest producer with 89.85 percent, 3.81 percent
in Paraná and Santa Catarina with 2.67 percent of the
population total. Horses were also imported from
Argentina (866), Chile (868) and Uruguay (852) of
which ~80 percent were females. While horses from
Argentina and Uruguay have been imported since the
start of breed registration, those from Chile have been
more recent becoming the most important source of
importation (Figure 2).
Figure 2. Number of Crioula horses imported per year from Uruguay,
Argentina and Chile.
In this year, there was a decrease in the number of records
of animals to 1996. From 1996 to 1998 the number of
records was almost stable, and from 1999 there was a
Of all registered animals, 97.98 percent have their pedigrees fully known. The number of known pedigrees has
increased over the generations with emphasis on the
growth of the ninth generation. In the following, six generations this increased from 4.95 percent of the known
pedigrees to 97.98 percent in the current 15th generation
(Figure 3).
The increase in the number of records per year is evident
(Figure 4). Since the 1970s there has been a steady growth
in the breed until the mid-1990s, more precisely in 1992.
Before 1980, 9.3 percent of all animals were registered.
Figure 3. Percentage of known generation pedigrees of the Crioula horse in
Brazil.
117
118
F.C. Maciel et al.
Figure 4. Percentage of records by year of birth for the Crioula horse in
Brazil.
Figure 5. Percentage of records by month of birth for the Crioula horse in
Brazil.
higher growth than seen in the 1970s and 1980s. From the
year 2005, growth has intensified, with an increase in 3042
animals from 2006 to 2007. The numbers of records for the
years 2010 and 2011 should be disregarded, since the data
were collected in April 2011 and most of the animals born
in the spring of 2010 onwards had not been through technical inspection on the date on which the data were
gathered.
Cabanha Paineiras (2994), Cabanha St. Angelo (2370) and
Estância San Francisco (2252), and these five farms, from
a total of 7949, were responsible for 4.5 percent of registered animals. When you consider the 50 largest farms,
they, together, represent 19.67 percent of the animals
reared in the country, reaching 63 977 for a total of
325 301 animals.
Of the animals recorded by the ABCCC, 54.71 percent
are female and 45.29 percent are males, in a total of
341 497 observations. As for the month of birth, 90.71 percent of registered animals are born between September and
January, the largest concentration in the months of October
and November where we find, respectively, 25.85 and
26.44 percent of births (Figure 5).
Farms with the largest number of animals were registered
for Estância Nazareth (3930), Cabanha Tupambaé (3114),
The inbreeding coefficient was calculated at 0.88 percent
and the AR was 0.65 percent in the total population
(animals born in Brazil and imported). With the increase
of generations, an increase in inbreeding was observed
(Table 1). This increase is evident from the first generation,
and especially observed in the fourth generation full generation. 96.58 percent of the animals which have some
degree of inbreeding and inbreeding coefficient in this generation was 2.78 percent. There is an increasing trend up to
100 percent of animals in the 15th generation being inbred,
Table 1. Inbreeding (F), average relatedness (AR) and effective population size (Ne) per generation in Brazilian Crioula Horse.
Generation
No. of animals
Endogamy per generation1
0
5882
1
7157
2
7794
3
10 997
4
15 147
5
23 019
6
38 604
7
59 015
8
67 583
9
56 469
10
34 183
11
13 532
12
2004
13
186
14
42
15
2
Endogamy per complete Generation2
0
7901
1
64 559
2
18 1704
3
84 471
4
2981
1
2
F Mean (%)
% Endogamic animals
F Mean for endogamic animals
% Mean AR
0.00
0.00
0.68
0.93
1.08
0.94
0.93
1.10
1.30
1.44
1.72
1.85
2.16
1.99
2.27
13.10
3.77
8.11
14.72
18.73
27.46
41.55
57.17
68.72
78.87
84.85
85.83
87.10
95.24
100.00
18.15
11.41
7.33
5.04
3.40
2.65
2.28
2.10
2.18
2.18
2.52
2.29
2.38
13.10
0.01
0.16
0.57
0.88
0.90
1.04
1.35
1.60
1.79
1.96
2.14
2.24
2.24
2.18
2.13
1.30
0.00
0.27
1.25
1.89
2.78
2.39
48.33
80.99
96.58
11.12
2.59
2.33
2.88
0.08
0.83
1.77
1.89
1.69
Maximum number of generations traced.
Complete generations traced as defined by Gutiérrez, Goyache and Cervantes (2009).
Ne
73.0
206.5
323.2
2117.7
243.7
353.2
180.6
370.4
155.9
461.7
4.5
188.0
50.4
77.7
55.0
Population structure of the Brazilian Crioula Horse
Table 2. Average number of generations, inbreeding per
generation and effective population size for the Brazilian
Crioula horse.
All
Maximum
Complete
Equivalent
Family
Maximum
Complete
Equivalent
Mean
generations
Increase in
endogamy (%)
Effective
population size
12.09
1.85
4.62
0.05
0.50
0.23
994.64
99.18
214.46
7,15
2.03
3.40
0.14
0.76
0.54
348.53
65.45
93.28
which is not complete since the animals can be registered
definitively up to 4 years after birth. The number of generations, complete and equivalent, shows that the breed
is expanding (Table 2). Large variations in effective herd
size per generation are an indication of animals being
imported into the herd (for example, from Uruguay,
Chile or Argentina).
The highest level of inbreeding was 0.41 with 6755 animals
with a value >0.1. These animals were on average in the
seventh generation, but there were animals in the second
generation with high levels of inbreeding. Analysing the
full herd, 72 (0.02 percent) animals were from crosses
between full-sibs, 3047 (0.89 percent) between half-sibs
and 1784 (0.52 percent) between parents and offspring.
The mean coefficient of individual relatedness showed an
increase in population over the years, especially after
the1950s, reaching 2.09 percent in animals born in the
year 2010 (Figure 6).
An increase in average individual relatedness was found
from the 1940s until 1970, the largest observation in
1955 was 3.11 percent. In recent years, there was an average increase of inbreeding about 0.50 percent (Figure 7).
An increase in the average individual coefficient of
inbreeding was found in animals born after the 1940s,
and in 1955 an average rate of 2.95 percent was seen.
Figure 7. Genetic conservation index (GCI) and average relatedness (AR)
average per year of birth for the Brazilian Crioula horse.
After 1970 there was a reduction in the coefficient of average individual inbreeding, and the animals born in the past
decade had rates of ~1.50 percent (Figure 7). An increase
in the average rate of genetic conservation was seen in animals born after the year 1927 until 2010, which had the
highest average GCI, 8.67 percent (Figure 7).
The interval between generations (Table 3) was higher for
mares than stallions. This indicates that mares are kept
longer for reproduction or start reproductive life later.
There was no significant genetic differentiation between
the states of the federation where animals are raised
when considered sub-populations (not shown). Average
coancestry within subpopulations was 0.0084 and average
coancestry in the metapopulation was 0.0079. Wright parameters show that the inbreeding in the population is greater
than expected if matings were performed at random and
which occur between the mating subpopulations.
The effective population size of founders was 95.19 animals, expected inbreeding due to an imbalance in the contribution of founders was calculated as 0.53 percent and
the mean inbreeding coefficient computed was 1.21
Table 3. Generation interval and the average age of parents when
their offspring born for the Brazilian Crioula horse.
Relation
Generation interval
Sire–Son
Sire–daughter
Dam–son
Dam–daughter
Total
N
L
Se
10.580
74.037
10.647
74.006
169.270
9.986
9.737
10.611
10.781
10.264
0.051
0.018
0.045
0.018
0.012
9.880
9.983
11.042
11.097
10.504
0.013
0.012
0.012
0.011
0.006
Mean age of parents when offspring born
Sire–Son
153.294
Sire–daughter
180.964
Dam–son
153.901
Dam–daughter
181.173
Total
669.332
Figure 6. Mean individual inbreeding (F) and Average individual change in
inbreeding (AF) by year of birth for the Brazilian Crioula horse.
N is the number of animals, L is the generation interval and SE is the
standard error.
119
120
F.C. Maciel et al.
Table 4. Measures of genetic variation and Wright’s statistics (FIS,
FST and FIT) for Brazilian Crioula Horse.
Parameter
Mean coancestry within
Subpopulations
Autocoancestry
Endogamy
Nei’s Distance
Mean Coancestry in Metapopulation
FIS
FST
FIT
All
Recent
Family
0.008414
0.009137
0.010384
0.506043
0.012087
0.000516
0.007898
0.003704
0.000520
0.004222
0.506043
0.012087
0.001238
0.007898
0.002977
0.001249
0.004222
0.506043
0.012087
0.002486
0.007898
0.001721
0.002505
0.004222
percent for the population of 341 616 animals and the base
population (animals with one or more parents unknown)
was 7901 (Table 4). The ratio of founders to ancestors
was 1.21 (91/75) meaning that in general no specific
lineages were created within the Crioula population.
The reference population (both parents known) was smaller than that used for the analysis of founders. The number
of ancestors contributing to this population was 5086 for a
reference population of 333 715 animals, where 56 ancestors explained 50 percent of the genetic diversity of the
breed. Animals 9838, 5174, 18 182, 5178, 5532, 5497,
5208, 5418, 5439 and 5449 had the largest contribution
to the herd, reaching ~25 percent of the total genetic variation. The largest number of offspring per stallion was
1428 (sire 63 592) with four animals (9838, 97 059 and
5208) with more than 1000 offspring. Animals 63 592
and 97 059 are offspring of 9838, and eight stallions had
more than 500 offspring (forming the second reference
population – FAMILY). Animal 9838 had the highest
average relatedness. Mare 49 893 had the most offspring
(20), but more than 12 292 mares had more than ten
offspring, showing the prolificacy and longevity of the
breed.
The total population of animals was divided by their state
of birth and these subpopulations were analysed for type
(Table 5) and structure (Table 6).
Only Commercial and Multiplier herds were seen, with no
nuclei or disconnected herds. Most multiplier states (14/
15) use their own breeding males, buy in animals and
sell sires to other states. As for commercial herds, 63.64
Table 5. Number of herds by type and characteristics for the
Brazilian Crioula horse.
Type
Nucleus
Multiplier
Multiplier
Commercial
Commercial
Isolated
Buy-in
sires
Use own
sires
Sell
sires
No. of
states
% Sires
bought
No
Yes
Yes
Yes
Yes
No
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
No
No
No
0
14
1
4
7
0
0.00
24.22
100.00
93.69
100.00
0.00
Table 6. Structure of the Brazilian Crioula Horse herds by state.
State1
Acre
Bahia
Ceará
Federal
District
Espirito
Santo
Goiás
Minas Gerais
Mato Grosso
do Sul
Mato Grosso
Pará
Pernumbuco
Piauí
Paraná
Rio de
Janeiro
Rondônia
Roraima
Rio Grande
do Sul
Santa
Catarina
Sergipe
São Paulo
Tocantins
Region
Type
% parents
born in
state/
number of
births
% males
born in state
which are
sires/number
of sires
N
NE
NE
CO
Commercial
Multiplier
Commercial
Multiplier
0.00
20.19
0.00
0.48
0.00
77.78
0.00
3.51
SE
Commercial
0.83
100.00
CO
SE
CO
Multiplier
Commercial
Multiplier
5.25
5.47
8.25
46.81
100.00
39.76
CO
N
NE
NE
S
SE
Multiplier
Commercial
Commercial
Multiplier
Multiplier
Commercial
0.74
0.00
0.00
32.79
36.01
6.82
15.79
0.00
0.00
9.13
44.95
100.00
N
N
S
Commercial
Commercial
Multiplier
8.06
0.00
81.74
100.00
0.00
92.70
S
Multiplier
12.83
70.37
NE
SE
N
Commercial
Multiplier
Multiplier
0.00
12.29
16.36
0.00
37.97
60.27
1
Brazilian States; N, North; NE, Northeast; S, South; SE, southeast; CO,
Midwest.
percent (7/11) did not use their own sires for reproduction,
while 36.36 percent (4/11) using both purchased and own
males for reproduction. Rio Grande do Sul state (RS) had
the highest percentage of sires born in the State, which is
not surprising as this is the home state for this breed.
Even when subpopulations are studied, genetic parameters
(F, AR, AF) vary little from the mean (Table 7), showing
Table 7. Genetic variation by subpopulation (sires and grandsires
with largest number of offspring, farms and municipalities) for the
Brazilian Crioula horse.
Number
Offspring
F
AR
Gen Max
Gen Com
Gen Eq
AF
GCI
Grandsire
Sire
Farms
Municipalities
196
53 632
0.010
0.018
6.043
1.552
2.737
0.005
4.722
803
163 817
0.011
0.018
6.952
1.852
3.196
0.005
6.014
106
935.68
0.013
0.016
6.878
1.915
3.236
0.005
2.818
49
4242.22
0.011
0.015
7.308
2.085
3.509
0.004
1.793
Genetic conservation index (GCI), average relatedness (AR), mean individual inbreeding (F) and average individual inbreeding (AF), GenMax,
maximum number of generations; Gen_Com, common number of generations; Gen_Eq, equivalent number of generations.
Population structure of the Brazilian Crioula Horse
Table 8. Population data depending on recently born (from 1998) or family of sires with largest offspring numbers (family) in Crioula
horses from Brazil.
No. of reference animals
No. of ancestors
Effective number of founders
Effective number of ancestors
No. of ancestors explaining 50%
Base population (one or more unknown parents)
Actual Base Population (one unknown parent = half founder)
Effective Population Size of Founders
Expected F by unbalancing of founders contribution
Computed mean F
Mean Average Relatedness
Age first becoming parent
Regression coefficient of age becoming parent on inbreeding coefficient
Regression coefficient of age becoming parent on increase in inbreeding coefficient
Ne from regression birth date
Ne from log regression birth date
Ne via individual increase in inbreeding
Ne from Log regression on equivalent generations
Ne via regression on equivalent generations
All
Recent
Family
333 715
5086
91
75 (1.21)
56
7901
6891.5
95.19
0.53%
1.21%
1.58%
10.21
−13.18 ± 8.89
−15.75 ± 16.71
184 646
4230
62
45 (1.38)
41
184 005
3334
49
35 (1.40)
31
6.92
−1.11 ± 0.51
0.32 ± 1.22
274.48
270.80
98.94 ± 20.01
68.88
70.14
10.19
−21.35 ± 1.00
−34.77 ± 2.25
215.59
230.19
97.23 ± 19.83
58.06
58.90
Ne, effective population size.
Figure 8. Percentage of animals registered per year depending on inbreeding level on all (ALL) animals registered, those from the major families (FAMILY) and
the present generation (RECENT)Levels of inbreeding (0.00 (0.0), 0.001–0.05 (0.05), 0.051–0.10 (0.10), 0.101–0.15 (0.15), 0.151–0.20 (0.20), 0.201–0.25 (0.25)
and greater than 0.25 (0.30).
Figure 9. Mean inbreeding (F) of Crioula Horse depending on the date the farm started to register animals, the period of time the farm registered animals and the
number of animals registered per farm.
that sires are imported into farms as a general rule. GCI
was significantly higher than herd average for those stallions that left more offspring, as expected.
that the major sire families produce a large proportion of
the recently born animals, reflected by the large number
of animals in common in both groups.
More recently animals are becoming parents at a relatively
younger age. This may be a reflection of the rapid expansion of the breed and the need for breeding females to
reproduce (Table 8). Effective population sizes were similar for different subgroups. This is a reflection of the fact
It can be seen that the more recently farms started to register
animals the higher mean F (Figure 8, Figure 9). This is also
reflected in the longer the farm has been registering animals
and the higher the number of animals registered the lower
the mean F.
121
122
F.C. Maciel et al.
Discussion
Due to their high commercial value, the horses, especially
those used for sports, need have their pedigree known,
both for registration and purchase. Confirmation of genealogy is extremely important, not only for ensuring the
ascendancy of the animals, but also because a pedigree
can reliably enable the buyer to identify the origin of genetic problems in the herd and reduce or eliminate them
(Coelho and Oliveira, 2008). The study of genetic variability and population structure in some horse breeds using
pedigree analysis, alone or in combination with information such as genetic markers, has grown in recent years
(Chiofalo et al., 2003; Valera et al., 2005).
The results on the distribution of this breed in Brazil were
in accordance with expected, with a high concentration of animals in the southern region, since the breed was developed in
Southern Latin America, a region known as South American
Pampa (Argentina, Southern Brazil and Uruguay). The
increase in the use of the Crioula Horse in southeastern states
such as Sao Paulo, as well as in Northern and Northeastern
Brazil is also seen. This reflects the expansion and distribution of the breed, where the largest breeder (Estância
Nazareth) has only 1.2 percent of the animals, unlike other
local breeds, such as the Pantaneiro Horse, where the largest
breeder has 7.25 percent of animals recorded.
The amount of information on the Crioula has increased
with the number of generations. These data are consistent
with those found in studies with other breeds where the
most distant generations have less genealogical information, as this may have been lost over the years or were
not recorded (Valera et al., 2005). Vicente, Carolino and
Gama (2009), as here, found an increase in complete
Lusitano pedigrees over ten generations.
The increase in the number of records per year is evident
(Figure 2), mainly due to two factors: (a) partnership
between the Breeder’s Association and the Rural TV
Channel, where the most important competition involving
the Crioula, Freio de Ouro (which involves several tests,
such as breed standard, gait, barrel racing, separating cattle, lassoing, horse control and obedience), is televised
across the country and worldwide over the internet. This
channel also televises most of the auctions with these
horses, so farmers from distant regions can acquire animals
without leaving home; (b) projects developed by the
ABCCC, such as Vaquejada Project (A northeastern tradition where horses are used to drive cattle in a confined
space.), created to insert Crioula horse in this activity in
the northeast. The number of registers in the last two
years (2010 and 2011) should be disregarded as the animals are subjected to technical inspection until they are
nine months old and most of the animals born in this period had not passed inspection at the time of data collection.
The greater number of females compared to males can be
explained by fact that some breeders do not register males
which do not meet their specifications.
In domestic animals some individuals assume importance
in the origin of the breed and its development (Fletcher,
1945, 1946; Rhoad and Kleberg, 1946; Gazder, 1954) as
evidenced in this population. This is due to several factors,
such as propaganda, success in auction rings and competitions as well as functional and morphological traits.
The concentration of births in the months from September
to January is mainly due to the occurrence of marked
photoperiod in southern Brazil (Winter, 2007). Most
mares show anestrus and transitional phases in summer
and autumn and, under natural conditions, the transition
ends near or after the equinox, in September and October.
The mean coefficient of inbreeding found in Crioula was
lower compared to other local breeds. Schurink, Arts and
Ducro (2012) found average inbreeding coefficient of
0.053 while the Crioula horse was found 0.88 percent
for the total population (including imported) and 1.21 percent for those born in Brazil. Wolc and Balin´ska (2010)
also found much higher values (5.9, 5.1 and 5.6 percent)
on three farms breed Polish Konik. Abrahão et al.
(2002) found similar levels of inbreeding (0.8 percent) to
those found in Crioula when studying inbreeding in
Thoroughbred mares reared in Brazil. Low levels of
inbreeding found in Crioula in Brazil can be explained
by the large population base, large number of founders
and ancestors, and the introduction of animals from other
countries (Argentina, Uruguay and Chile), introducing different racial strains.
The number of inbred animals found in the full third generation (80.99 percent of the population) was similar to
that found by Mota et al. (2006) found that 88.0 percent
of inbred animals in Mangalarga horses in the period
1936–2003. The results in Crioula show a clear increase
in the number of inbred animals, reaching 100 percent at
the 15th generation, although there are only two animals
in this generation. Inbreeding of 10 percent was estimated
for ethnic breeds such as Spanish Purebred (Valera et al.,
2005) and Lipizzano (Zechner et al., 2002), and after the
closing of the studbook this parameter has aggravated
(Vicente et al., 2009). For Mangalarga inbred animals,
the mean coefficient of inbreeding was 5.7 percent, with
a maximum of 46.9 percent (Costa et al., 2005), similar
to those found by Procópio et al. (2003) in the Campolina.
The increase of inbreeding (Boichard, Maignel and
Verrier, 1997) can be used to derive the effective size of
a population. However, this method reflects mainly the
long-term effects of selection and, furthermore, is very
sensitive to incomplete information from a pedigree. An
alternative would be additional parameters based on the
probability of gene origin, and the effective number of
founders and effective number of remaining genomes are
commonly used in wild populations, but less common in
studies of domestic animals. However, there are several
studies in domestic species and different breeds, such as
in cattle (Faria et al., 2002; Vercesi Filho et al., 2002;
Pereira et al., 2005; Vozzi et al., 2006, 2007; Hammami
Population structure of the Brazilian Crioula Horse
et al., 2007; Martínez, García, and Gallego, 2008), in
horses (Costa et al., 2005), sheep (Goyache et al., 2003),
pigs (Toro et al., 2000) and even donkeys (Gutiérrez
et al., 2005), based on some sort of pedigree analysis.
Ideal levels of inbreeding range from 0.05 (Nicholas,
1989) to 0.01 (FAO, 2000) per generation, and the
Crioula are below these levels.
Moureaux et al. (1996) reported that when studying
inbreeding in horse breeds, two groups can be distinguished: a group of international breeds, with values ranging from 0.81 to 2.89 percent, and another group with
small population sizes with values ranging from 2.25 to
14.7 percent. The high variation in mean individual levels
of inbreeding and inbreeding rate seen here between 1940
and 1970 may have been a reflection of the lack of breeding animals, the difficulty in finding stallions of the breed
as well as in moving between farms, since the increase in
effective herd size came after 1970 (Figure 3).
The mean coefficient of relatedness (kinship) increased
from the start of breed registration until about the year
2003. These results can be explained by selection of animals which showed excellent results in morphological
and functional competitions, and therefore many breeders
sought to acquire its offspring. Mean coefficient of relatedness provides additional information to explain relations
between relatives (Gutiérrez, Goyache and Cervantes,
2009). In conservation genetics, knowledge of relatedness
is required to optimize conservation strategies. Coancestry
relationship is expressed relative to the base population in
which all alleles are not defined as being identical by descent, so that the population coancestry base is zero by
definition (Falconer and Mackay, 1996; and Lynch
Walsh, 1998). Kinship average here was low compared to
other breeds of horse (Zechner et al., 2002; Valera et al.,
2005). Valera et al. (2005) found average values of
inbreeding and AR of the Andalusian horse population
were, respectively 8.48 and 12.25 percent, while
Cervantes et al. (2008) found inbreeding average of 7 percent to Spanish Arabian.
The average individual inbreeding and variation in inbreeding increased from the mid-1930s to mid-1970s, and
remained relatively constant thereafter. This can be explained
by an intense exchange of animals between Brazil, Argentina,
Uruguay, and especially Chile, where different strains were
incorporated into the local population after the 1970s.
When comparing inbreeding in the three populations studied (ALL, FAMILY and RECENT), a clear increase in the
percentage of animals with relatively low levels of inbreeding (0.05). The percentage of animals with F > 0.05 has
not grown since the late 1990s and although an increase
in inbreeding (F > 0.1) was seen in the ALL population
in the 1940s to 1980, this has largely disappeared.
Higher levels of inbreeding are not seen in RECENT or
FAMILY. The percentage of animals with no inbreeding
has steadily decreased in all populations and should
increase with the closure of the herd book.
In Andalusian horses, Valera et al. (2005) found 39.6
effective founders and 27 ancestors, with only six animals
responsible for 50 percent of genetic variability in the
breed. The situation of Crioula is better, with nearly
95 founders, but this is lower than for Pantaneira
(McManus et al. 2013), perhaps due to rapid expansion
of the breed in recent years. The small number of founder
animals highlights the need for monitoring of inbreeding of
the herd studied, control of breeding and introduction of
animals that have no direct relationship with the principal
ancestors identified in this study. Alderson (1991) used
the GCI to calculate an effective number of founders in
the pedigree of an animal. The higher the value GCI better
it is for use in conservation of a breed. The GCI can be
used both by individual breeders as an aid in selecting
breeding stock, or within a breed to formulate a comprehensive improvement program. However, the index has
limitations, as it is not representative of any concentration
of breeding animals for non-founders in subsequent generations and cannot be used without pedigree records
(Alderson, 1991).
The interval between generations found in Crioula was
higher when compared with other breeds such as Costa
(2002) and Gonçalves (2010), who evaluated animals
Mangalarga Marchador found generation interval of 8.9
and 8.98 years, respectively. This may be due to the prohibition of use of reproductive biotechnologies until
2011, as well as the large number of morphological and
functional competitions in which these horses compete,
means that these horses begin reproductive life at a later
age. As natural breeding is still used, many mares exposed
to the stallion do not impregnate. Vicente, Carolino and
Gama (2009) also found a high generation interval for
the Lusitano breed (10.4 years: males 11.2 and females
9.6 years), also possibly due to use after the end of their
sporting career. McManus (2013) found lower intervals
between generations in the Pantaneiro horse and considered this was because this breed is used on-farm animals
instead of sports and therefore enter reproduction earlier.
The use of artificial insemination and embryo transfer are
beginning to become more widely used in horse populations (2011 in Crioula) but less frequently than in other
farm animals (Laat, 2001). The population aspects of
horses, especially those related to inbreeding and effective
size therefore have an individual character (Costa et al.,
2005) and continued monitoring is necessary to avoid
future problems.
Vinocur et al. (2003) determined the allele frequencies of
seven blood group systems and eight protein systems in
six herds of Crioula horses raised in Rio Grande do Sul
of State. The herds presented a significant component
due to isolation (FST = 0.0866, p < 0.01). They found high
values for average heterozygosity (0.4631). When all
herds were considered in the analysis, the inbreeding level
(FIS) was zero, in line with seen here where values near
zero indicate that levels of genetic variability of the flock
123
124
F.C. Maciel et al.
are high, since these values indicate an excess of heterozygous animals, both within and paternal lineages (subpopulations) and for the population as a whole (metapopulation).
For the FST index, the value calculated was 0.000, demonstrating that there is no differentiation between the parental
strains with the formation of subpopulations. The Crioula is
not at risk status (FAO 1998; Database http://dad.fao.org
DAD-IS) as opposed to other breeds of naturalized horses
(Luís et al., 2005). The integration of herdbooks from
other countries with Crioula horses used for crossing with
the Brazilian Crioula (such as Uruguay, Argentina and
Chile) could help to identify some genetic bottlenecks that
may exist but were not seen here.
The fact that the smaller, younger farms have higher levels
of inbreeding may reflect a policy of the larger farmers to
import stallions or sell off inbred animals to those starting
up in the business. It may also reflect a lack of breeding
policy by the smaller farmers who may have a single stallion. This is also from the case seen with some pig breeds
in the USA (Welsh et al., 2010) but to a lesser extent.
Conclusion
The indices obtained from the genetic data of genealogical
record of the Crioula Breed show that in general inbreeding is under control in the total population and the effective
population size is not at a critical level. Recent decrease in
generation intervals may be a reflection of the rapid expansion of the breed and the need for mares for reproduction.
Acknowledgements
Thanks are due to the Breeder’s Association for the
Crioula Horse, INCT – Pecuária (CNPq, FAPEMIG,
MCT) and CAPES for scholarships.
small population conservation. New York: Columbia University
Press, p.76–111.
Boichard, D., Maignel, L. & Verrier, É. 1997. The value of using probabilities of gene origin to measure genetic variability in a population.
Genet. Sel. Evol., 29: 5–23.
Caballero, A. & Toro, M.A. 2000. Interrelations between effective
population size and other pedigree tools for the management of conserved populations. Genet. Res., 75: 331–343.
Caballero, A. & Toro, M.A. 2002. Analysis of genetic diversity for the
management of conserved subdivided populations. Conserv. Genet.,
3: 289–292.
Cervantes, I., Molina, A., Goyache, F., Gutiérrez, J. P. & Valera, M.
2008. Population history and genetic variability in the Spanish Arab
Horse assessed via pedigree analysis. Livestock Sci., 113: 24–33.
Chiofalo, L., Portolano, B., Liottal, L., Rundo Soteral, A. &
Finocchiaro, R. 2003. Demographic characterization, inbreeding
and genetic variability within Sanfratellano population horse from
genealogical data. Ital. J. Anim. Sci., 2(Suppl. 1): 592–594.
Coelho, E.G.A. & Oliveira, D.A.A. 2008. Testes genéticos na
eqüideocultura. Revista Brasileira de Zootecnia, 37: 202–205.
Special Number.
Costa, M.D. 2002. Caracterização demográfica e estrutura genética da
raça Mangalarga Marchador. Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil (Thesis).
Costa, M.D., Bergmann, J.A.G., Resende, A.S.C. & Fonseca, C.G.
2005. Análise temporal da endogamia e do tamanho efetivo da
população de equinos da raça Mangalarga Marchador. Arquivo
Brasileiro de Medicina Veterinária e Zootecnia, 57: 112–119.
Cothran, E.G., Santos, S.A., Mazza, M.C.M., Lear, T.L. & Sereno, J.
R.B. 1998. Genetics of the Pantaneiro horse of the Pantanal region of
Brazil. Genet. Mol. Biol. (available at http://dx.doi.org/10.1590/
S1415-47571998000300009).
Escola Superior de Agricultura Luiz de Queiroz – ESALQ. Centro de
Estudos Avançados em Economia Aplicada da ESALQ. 2006.
Estudo do Complexo do Agronegócio do Cavalo no Brasil. Brasília,
CAN, MAPA.
Falconer, D.S. & Mackay, T.F.C. 1996. Introduction to Quantitative
Genetics. Harlow, Longman.
Faria, F.J.C., Vercesi Filho, A.E., Madalena, F.E. & Josahkian, L.A.
2002. Estrutura populacional da raça Nelore Mocho. Arquivos
Brasileiro de Medicina Veterinária e Zootecnia, 54: 501–509.
Statement of interest
Fletcher, J.L. 1945. A genetic analysis of the American Quarter Horse.
J. Hered., 36: 346–352.
No conflicting interests were identified.
Fletcher, J.L. 1946. A study of the first fifty years of Tennessee Walking
horse breeding. J. Hered., 37: 369–373.
References
Abrahão, A.R., Mota, M.D.S., Oliveira, H.N. & Madureira, A.P.
2002. Endogamia em éguas da raça Puro-Sangue Inglês. In
Proceedings IV Simpósio da Sociedade Brasileira de Melhoramento
Animal, Campo Grande, Brazil, pp. 224–225.
Alderson, G.L.H. 1991. A system to maximize the maintenance of genetic
variability in small populations. In L. Alderson, ed. Genetic conservation
of domestic livestock, pp. 18–29. Wallingford, UK, CAB International.
Ballou, J.D. & Lacy, R.C. 1995. Identifying genetically important individuals for management of genetic diversity in pedigreed populations.
In: Ballou, J.D., Gilpin, M. & Foose, T.J. (Eds) Population management for survival & recovery. Analytical methods and strategies in
Gazder, P.J. 1954. The genetic history of the Arabian Horse. J. Hered.,
45: 95–98.
Gonçalves, R.W. 2010. Efeito da endogamia nas características
morfométricas e reprodutivas dos eqüinos da raça Mangalarga
Marchador. Universidade Estadual de Montes Claros, Montes
Claros, Brazil. (Dissertation) (available at http://www.dominiopublico.gov.br/pesquisa/DetalheObraForm.do?select_action=&co_obra=
193645).
Goyache, F., Gutiérrez, J.P., Fernández, I., Gomez, E., Alvarez, I.,
Díez, J. & Royo, L.J. 2003. Using pedigree information to monitor
genetic variability of endangered populations: the Xalda sheep breed
of Asturias as an example. J. Anim. Breed. Genet., 120: 95–105.
Gutiérrez, J.P., Marmi, J., Goyache, F. & Jordana, J. 2005. Pedigree
information reveals moderate to high levels of inbreeding and a
Population structure of the Brazilian Crioula Horse
weak population structure in the endangered Catalonian donkey breed.
J. Anim. Breed. Genet., 122: 378–386.
(Eds) Evolution and animal
International, p.201–209.
breeding.
Wallingford:
CAB
Gutiérrez, J.P., Goyache, F. & Cervantes, I. 2009. User´s Guide, ENDOG
v4.6, A Computer Program for Monitoring Genetic Variability of
Populations Using Pedigree Information, (available at http://www.
ucm.es/info/prodanim/html/JP_Web_archivos/EN_Us_G_.pdf).
Pereira, M.C., Mercadante, M.E.Z., Albuquerque, L.G. & Razook, A.
G. 2005. Estimativa de ganho genético a partir de diferenciais de
seleção e parâmetros populacionais em um rebanho Caracu. Revista
Brasileira de Zootecnia, 34: 2245–2252.
Hammami, H., Croquet, C., Stoll, J., Rekik, B. & Gengler, N. 2007.
Genetic diversity and joint-pedigree analysis of two importing
Holstein populations. J. Dairy Sci., 90: 3530–3541.
Procópio, A.M., Bergmann, J.A.G., Costa, M.D. 2003. Formação e
demografia da raça Campolina. Arq. Bras. Med.Vet. Zoot. 55:361–
365.
James, J.W. 1977. A note on selection differentials and generation length
when generations overlap. Anim. Prod., 24: 109–112.
Rhoad, A.O. & Kleberg, J.R. 1946. The developments of a superior
family in the modern Quarter Horse. J. Hered., 37: 227–238.
Kelly, L., Postiglioni, A., De Andrés, D.F., Vega-Plá, J.L., Gagliardi,
R., Biagetti, R. & Franco, J. 2002. Genetic characterisation of the
Uruguayan Crioula horse and analysis of relationships among horse
breeds. Res. Vet. Sci., 72(1): 69–73.
Rodero, A., Delgado, J.V. & Rodero, E. 1992. Primitive Andalusian
livestock and their implication in the Discovery of America. Arch.
Zootec., 41: 383–400.
Laat, D.M. 2001. Contribuição genética de fundadores e ancestrais na
raça Campolina. Universidade Federal de Minas Gerais, Belo
Horizonte, Brazil. (Dissertation) (available at http://www.ebookcult.
com.br/produto/Contribuicao_genetica_de_fundadores_e_ancestrais_
na_raca_campolina-10151).
Lacy, R.C. 1989. Analysis of founder representation in pedigrees:
founder equivalents and founder genome equivalents. Zoo Biol., 8:
111–123.
Luís, C., Cothran, E.G., Oom, M.M. & Bailey, E. 2005. Major histocompatibility complex locus DRA polymorphism in the endangered
Sorraia horse and related breeds. J. Anim. Breed. Genet., 122: 69–72.
Schurink, A., Arts, D.J.G. & Ducro, B.J. 2012. Genetic diversity in the
Dutch harness horse population using pedigree analysis. Livestock
Sci., 143: 270–277.
Toro, M.A., Rodrigañez, J., Silio, L. & Rodriguez, C. 2000.
Genealogical analysis of a closed herd of Black Hairless Iberian
pigs. Conserv. Biol., 14: 1843–1851.
Valera, M., Molina, A., Gutiérrez, J.P., Gómez, J. & Goyache, F.
2005. Pedigree analysis in the Andalusian horse: population structure,
genetic variability and influence of the Carthusian strain. Livestock
Prod. Sci., 95: 57–66.
Lynch, M. & Walsh, J.B. 1998. Genetics and analysis of quantitative
traits. Sunderland: Sinauer Assocs. Inc., 980p.
Vercesi Filho, A.E., Faria, F.J.C., Madalena, F.E. & Josahkian, L.A.
2002. Estrutura populacional do rebanho Tabapuã registrado no
Brasil. Arquivos Brasileiro de Medicina Veterinária e Zootecnia,
54: 609–617.
Maccluer, J.W., Boyce, A.J., Dyke, B., Weitkamp, L.R., Pfenning,
D.W. & Parsons, C.J. 1983. Inbreeding and pedigree structure in
Standardbred. J. Hered., 74: 394–399.
Vicente, A., Carolino, N. & Gama, L.T. 2009. Indicadores
Demográficos no Cavalo Lusitano. Arch. Zootec., 58(Supl. 1): 501–504.
Malécot, G. 1948. Les Mathématiques de l’Hérédité. Masson et Cie,
Paris
Martínez, R.A., García, D., Gallego, J.L. 2008. Genetic variability in
Colombian Crioula cattle populations estimated by pedigree information. J. Anim. Sci., 86: 545–552.
McManus, C. 2013. Evaluation of Conservation Program for the
Pantaneiro Horse in Brazil, Revista Brasileira de Zootecnia, in press.
McManus, C., Santos, S.A., Dallago, B.S.L., Paiva, S.R., Saraiva, R.
F., Braccini Neto, J., Marques, P.R. & Abreu, U.G. 2013.
Evaluation of conservation program for the Pantaneiro horse in
Brazil. Rev. Bras. Zoot. 42:404–413.
Mirol, P.M., Peral García, P., Vega-Pla, J.L. & Dulout, F.N. 2002.
Phylogenetic relationships of Argentinean Crioula horses and other
South American and Spanish breeds inferred from mitochondrial
DNA sequences. Anim. Genet., 33: 356–363.
Mota, M.D.S., Prado, R.S.A. & Sobreiro, J. 2006. Characterization of
the Mangalarga horse population in Brazil. Arch. Zoot., 55:31–37.
Moureaux, S., Verrier, É., Ricard, A. & Mériaux, J.C. 1996. Genetic
variability within French race and riding horse breeds from genealogical data and blood marker polymorphisms. Genet. Sel. Evol.
28:83–102.
Nicholas, F.W. 1989. Incorporation of new reproductive technology in
genetic improvement programs. In: Hill, W.G., Mackay, T.F.C.
Vinocur, M.E., Brass, K.E., Rubin, M.I.B. & Silva, C.A.M. 2003.
Genetic variability in the Brazilian Crioula horse breed. Cienc.
Rural, 33: 137–142.
Vozzi, P.A., Marcondes, C.R., Magnabosco, C.U., Bezerra, L.A.F. &
Lôbo, R.B. 2006. Structure and genetic variability in Nellore (Bos
indicus) cattle by pedigree analysis. Genet. Mol. Biol., 29: 482–485.
Vozzi, P.A., Marcondes, C.R., Bezerra, L.A.F. & Lôbo, R.B. 2007.
Pedigree analyses in the Breeding Program for Nellore Cattle.
Genet. Mol. Res., 6: 1044–1050.
Welsh, C.S., Stewart, T.S. & Schwab, C. 2010. Pedigree analysis for 5
swine breeds in the United States and the implications for genetic conservation. J. Anim. Sci., 88:1610–1618.
Winter, G.H.Z. 2007. Características reprodutivas sazonais da égua
Crioula em um propriedade latitude 29°38′S no Rio Grande do Sul.
Universidade Federal de Santa Maria, Brazil. (Dissertation) (available
at http://www.openthesis.org/documents/Reprodutivas-sazonais-dacrioula-em-473051.html).
Wolc, A., Balin´ska, K. 2010. Inbreeding effects on exterior traits in
Polish konik horses. Arch. Anim. Breed., 53: 1–8.
Zechner, P., Sölkner, J., Bodo, I., Druml, T., Baumung, R., Achmann,
R., Marti, E. Habe, F. & Brem, G. 2002. Analysis of diversity and
population structure in the Lipizzan horse breed based on pedigree
information. Livestock Prod. Sci., 77: 137–146.
125
Animal Genetic Resources, 2014, 54, 127–134. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633613000362
Pedigree and population viability analyses of a
conservation herd of Moura pig
H. Carneiro1, S.R. Paiva2, M. Ledur3, E.A.P. Figueiredo3, V.H. Grings3, F.C.P. Silva1 and C. McManus1
1
Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brazil; 2EMBRAPA Recursos Genéticos e Biotecnologia, Brasília,
DF, Brazil; 3EMBRAPA Suínos e Aves, Concordia, SC
Summary
Pedigree and population viability analyses of a conservation herd of Moura breed from Embrapa Swine and Poultry were carried out.
ENDOG software was used for pedigree analysis and VORTEX for population viability analysis. The data were obtained with the curator of the herd and a total of 411 animals born between the years of 1999 and 2011 for the analysis with ENDOG. The input data in
VORTEX were obtained from a questionnaire answered by the curator of the herd. The Inbreeding Coefficient (F ) was 0.06 percent,
the average effective population size (Ne) was 30 animals with an average generation interval of 3.48 years. The extinction probability
was 0 percent for a simulation period of 100 years and 3 percent for a period of 500 years. The determinant parameters for the viability
of this herd were the entry of animals and prolificacy of the breed. Although the study did not indicate immediate risk of extinction of
this herd, it should be constantly monitored with controlled population parameters to prevent the extinction of this last herd of Moura
pig breed.
Keywords: inbreeding, conservation population modelling, Moura pig
Résumé
Les analyses de la viabilité de la population et pedigree ont été effectuées sur un harde de la race Moura de l’Embrapa Porcins et
Oiseaux. ENDOG logiciel a été utilisé pour l’analyse de pedigree et VORTEX pour l’analyse de la viabilité de la population. Les
données ont été obtenues avec le conservateur du harde et un total de 411 animaux nés entre les années 1999 et 2011 ont été
analysés avec ENDOG. Les données d’entrée dans VORTEX ont été obtenus a partir d’un questionnaire auquel ont répondu par le
conservateur du harde. Le coefficient de consanguinité (F) était 0,06%, la taille effective de la population moyenne (Ne) était 30 animaux, avec un intervalle de 3,48 ans en moyenne de la production. La probabilité d’extinction était de 0% pour une période de simulation de 100 ans, et 3% pour une période de 500 ans. Les paramètres déterminant pour la viabilité de ce harde a été l’introduction des
animaux et la prolificité de la race. Bien que l’étude ne mentionne pas le immédiat extinction, la dernière race de porcs Moura doit être
contrôlée en permanence avec les paramètres de population pour éviter l’extinction.
Mots-clés: endogamie, modèles de conservation de la population, porcs Moura
Resumen
Se realizó el análisis de pedigrí y de viabilidad de la población de un rebaño de la raza Moura Embrapa Suínos y Aves. Se utilizó el
Software ENDOG para el análisis de pedigree y VORTEX para el análisis de viabilidad de la población. Los datos se obtuvieron con el
curador de lo rebaño y un total de 411 animales nacidos entre los años 1999 y 2011 se analizaron con ENDOG. Los datos de entrada en
VORTEX se obtuvieron de un cuestionario contestado por el curador de lo rebaño. El coeficiente de endogamia (F) fue de 0.06%, el
tamaño medio efectivo de la población (Ne) fue de 30 animales, con un intervalo medio de generación de 3,48 años. La probabilidad de
extinción fue de 0% para un período de simulación de 100 años y 3% durante un período de 500 años. Los parámetros más importantes
para la determinación de la viabilidad de este rebaño fuerón el ingreso de animales y prolificidad de la raza. Aunque el estudio no indica
peligro inmediato de extinción, el último rebaño de la raza Moura debe ser monitoreado constantemente con los parámetros de
población para evitar la extinción.
Palabras clave: Endogamia, modelos de conservación de la población, cerdos Moura
Submitted 23 July 2013; accepted 16 October 2013
Introduction
Correspondence to: C. McManus, Faculdade de Agronomia e Medicina Veterinária,
Campus Universitário Darcy Ribeiro, Brasília, DF 70919-900, Brazil.
email: [email protected]
Pigs were introduced in Brazil since the sixtieth century
during the colonization period. The animals probably originated from the Iberian Peninsula (Cavalcanti, 2000).
The variety of environment conditions found in farms in
127
128
H. Carneiro et al.
different regions of Brazil resulted in a wide variety of
breeds that for centuries sustained livestock production in
the country (Mariante et al., 2009).
Naturalized swine produce a higher fat to meat ratio than
commercial breeds, so there was little interest in using
them for improvement programmes. However, in rural
areas these were the preferred animals, not only due to
the large production of lard but also because of the taste
of their meat. They are adapted to different ecosystems
in different regions of Brazil and have a high capacity
for survival in unfavourable conditions. The naturalized
pig breeds of Brazil are characterized by their toughness,
resistance to diseases, low management requirements and
feeding as well as a high adaptability. These traits make
them an important genetic resource to be used in breeding
programmes and research, thus justifying efforts for their
conservation (Castro, Albuquerque and Germano, 2002).
Eight naturalized Brazilian swine breeds have already
been described in the literature: Canastra, Canastrão,
Nilo, Piau, Caruncho, Pirapetinga, Moura and Tatu.
Currently, there is no standardization in the phenotypic
characterization of pig breeds as well as their denomination leading to a possible loss of genetic diversity. On
the other hand, these breeds can also be considered as a
potential source of new allelic combinations of extreme
importance for the future of the Brazilian pig industry
(Sollero, Paiva and Faria, 2009). However, the lack of
data recording and specifying traits of zootechnical interest
coupled with the large distances between farms and the
small size of the breeding population makes it difficult to
effectively work with naturalized swine herds (Garcia
and Barbosa, 2005). Crossbreeding and selection can
rapidly modify characteristics of a breed, giving rise to
different genetic groups and complicating breed identification. Although molecular techniques have aided in the
identification and characterization of individuals and
breeds, phenotypic characterization is also necessary. A
few studies have been carried out on the diversity of naturalized swine breeds in South American countries and subjective data are frequently missing for the most naturalized
breeds of farm animals (McManus et al., 2010).
The Moura breed is a primary source of edible fat or lard.
In addition, its relatively efficient conversion of food into
weight gain makes it a useful cross with modern breeds.
These features make this breed a good alternative for subsistence farming in the various regions of Brazil (Castro
et al., 2001). The Moura is usually blue roan in colouration, occasionally red roan (Mason, 1996). The breed
emerged in southern Brazil (Machado, 1967), although
the precise period remains unknown. This breed was
widely used in the farms of the region before the introduction of the breeds such as Duroc, Landrace, Large White
and others (Fávero et al., 2007).
The first initiatives aiming the formation of breeding herds
for selection programmes of Moura pigs occurred in the
state of Paraná, initially led by the Universidade Federal
do Paraná in 1985, and later by the Company Café do
Paraná. The first genealogical records of the breed were
issued by the Brazilian Association of Swine Breeders
(ABCS) in 1990, the year that marked the opening of
Brazilian Pig Book (PBB) of the Moura breed. Two
other breeders, also in Paraná, started the records of animals since the year 1992. The records issued by ABCS
stopped in 1995. But returned in 2002, when Embrapa
Swine and Poultry created a pure herd using animals
from the Universidade Federal do Paraná, and this persists
until today. One thousand, five hundred and twenty eight
(1528) births were registered as pure animals in the
ABCS from 2003 to 2011 (ABCS, 2011). Currently,
there are records on animals in the municipalities of
Teutônia, Roca Sales, Cruzeiro do Sul, Venâncio Aires
and Carlos Barbosa. In the state of Santa Catarina, there
are reports of the occurrence of the breed in the region
of Lages. In Paraná state, the records of occurrence are
in the municipalities of Bituruna and Roncador. In addition
to these states, boars were sent to the Southern, UNESP
(Ilha Solteira-SP), and Noreasthern, Universidade Federal
do Piauí (Teresina-PI), regions to compose pure herd.
The aim of this study was to monitor the conservation programme of the herd of Moura pigs maintained by Embrapa
Swine and Poultry, located in the state of Santa Catarina
(Brazil) through pedigree and population viability analysis.
Materials and methods
Experimental design
Animals
Pig data from the conservation herd of Moura pig breed
maintained by Embrapa Swine and Poultry, located in
Concordia, Santa Catarina, Brazil were analysed.
The herd comprised a pure breeding herd of about 20
females and ten males of different families. These families
are crossed with each other to expand the genetic base for
sire and dam replacement. When there is no need to
replace animals, females are crossed with boars of
MS115 strain, a third-generation light pig developed by
Embrapa, and the piglets sold for finishing.
The data from all purebred pigs for pedigree and population viability analyses were obtained directly from the
curators of the Moura herd.
Analysis of pedigree
The genetic population parameters were analysed using the
ENDOG program, version 4.8 (Gutiérrez and Goyache,
2005). The information included pedigrees of animals
born between 1999 and 2011, totalling 411 animals: 255
females and 156 males.
Two analyses were performed, one with all the animals of
the pedigree and another considering only the animals that
Moura Pig genetic resources’ conservation
Table 1. Allele frequencies in the conservation herd of Moura pig from Embrapa Swine and Poultry.
Locus
S0026
S0155
SW857
S0101
SW830
S0097
SW911
SW2406
S0068
OPN
SW936
SW1517
S0002
S0178
SW72
S0228
SW445
Allele frequency
Number of alleles per locus
1
2
3
4
5
6
7
8
9
8
9
6
5
3
7
7
5
10
6
9
8
5
6
8
4
6
0.01
0.01
0.05
0.32
0.80
0.27
0.01
0.73
0.10
0.34
0.07
0.09
0.01
0.03
0.28
0.84
0.34
0.05
0.18
0.01
0.38
0.19
0.30
0.04
0.01
0.17
0.06
0.27
0.09
0.01
0.09
0.01
0.14
0.11
0.01
0.01
0.22
0.11
0.01
0.01
0.10
0.02
0.22
0.01
0.03
0.18
0.6
0.01
0.01
0.01
0.06
0.03
0.09
0.17
0.18
0.42
0.01
0.09
0.01
0.01
0.23
0.46
0.29
0.01
0.18
0.43
0.03
0.01
0.50
0.03
0.01
0.51
0.01
0.07
0.36
0.07
0.01
0.01
0.03
0.13
0.20
0.21
0.28
0.05
00.03
0.02
0.02
0.01
0.54
0.08
0.10
0.20
0.05
0.01
0.03
0.01
0.17
0.01
0.10
0.02
0.31
0.14
0.17
0.24
0.10
0.01
0.13
0.18
0.28
are currently part of the herd. For this purpose, animals
born after 2006 were used, totalling 364 records.
0.79
0.01
The known distribution of allele frequencies was obtained
by microsatellite marker analysed in Animal Genetics
Laboratory – LGA, Embrapa Cenargen, coming from the
genotypic analysis of 35 animals (Table 1). Simulations
of interactions between demographic, environmental and
genetic factors were made in the program VORTEX
Population Viability Analysis Software, version 9.99
(Miller and Lacy, 2005). Table 2 shows the demographic
parameters used to simulate the Moura pig herd, obtained
mainly from the answers of the curators of the conservation
herds linked to the National Programme for Conservation of
Animal Genetic Resources. The base scenario was used in
the VORTEX model. VORTEX models population
dynamics as discrete sequential events that occur according
to the distribution of the random variables informed. A
population was simulated as undergoing a series of events
that describe the annual cycle of a sexually reproducing
organism: mate selection, reproduction, mortality, age
increase each year, migration, among others. At the end
of the simulations, the programme provides: (1) the probability of extinction of the population; (2) the mean time
to extinction if the population is extinguished in at least
50 percent of the simulations; and (3) the average size and
genetic variation within the remaining population. Loss of
genetic diversity is estimated by simulating the transmission
of alleles from parents to offspring in a hypothetical neutral
locus. The programme monitors how original alleles remain
in the population, the average heterozygosity and the genetic diversity relative to the initial level.
To determine which factors mostly affect the population,
26 new scenarios were created by changing just one of
the parameters of the base scenario (Table 3).
0.08
Table 2. Demographic parameters input in VORTEX used to
simulate the population of Moura pigs.
Input data in VORTEX
Analysis of population viability
10
Number of interactions
Number of years
Reproduction system
Age of first reproduction (F/M)
Inbreeding depression?
Maximum number of farrowing per year
Maximum size of the litter
Mean sexual rate at birth
Maximum age of reproduction
Adult females in reproduction (%)
Female probability having zero farrowing
Female probability having one farrowing
Female probability having two farrowing
Mortality of females aged between 0 and 1 (%)
Mortality of adult females >1 (%)
Mortality of males aged between 0 and 1 (%)
Mortality of adult males >1
Catastrophe 1: not determined by curator
Frequency (%)
Effect on reproduction (%)
Effect of the survival (%)
Male reproduction
Initial population
Support capacity of the environment (K)
Animals are removed?
80 males and 50 females per year
Animals entering the population?
20 females and three males per year
Value
500
100
Polygamous
1/1
Yes
2
11/farrowing
50% (males)
5 years
80
2
40
58
8
5
8
5
1
5%
10%
10
12
120
Yes
Yes
Results
The reference population was formed by parents of known
animals. The pedigree information with the identification
of parents was 85 percent. The values found for the effective number of founders (fe), effective number of ancestors
(fa), average relatedness (AR), coefficient of inbreeding
129
130
H. Carneiro et al.
Table 3. Population viability analysis of the Moura herd, considering the base and additional scenarios.
Base scenario
No entry
Two catastrophes
100% males reproduction
Lower prolificacy
100% females reproduction
20% mortality of piglets
50% mortality of piglets
70% mortality of piglets
60% mortality of piglets females
More severe catastrophe
Fewer animals entering
Greater frequency catastrophe
70% mortality of piglets females
Greater adult mortality
No inbreeding depression
No genetic data
500 years
Initial population ENDOG
Breed lower
More animals coming out
Most one farrowing per year
Lower reproduction. more output and less input
More output and less entry of animals
Lower reproduction and more output of animals
Lower reproduction and less input of animals
r
L females
L males
PE
Final population
He
Ho
N alleles
1.71
1.71
1.54
1.71
1.34
1.90
1.60
1.24
0.89
1.08
1.59
1.71
1.64
0.89
1.65
1.71
1.71
1.71
1.71
1.70
1.71
1.36
1.34
1.35
1.34
1.34
1.77
1.77
1.71
1.77
1.91
1.71
1.81
1.96
2.15
2.04
1.74
1.77
1.75
2.15
1.43
1.77
1.77
1.77
1.77
1.51
1.77
1.91
1.58
1.91
1.58
1.58
1.77
1.77
1.71
1.77
1.91
1.71
1.81
1.96
2.15
2.04
1.74
1.77
1.75
2.15
1.43
1.77
1.77
1.77
1.77
1.51
1.77
1.91
1.58
1.91
1.58
1.58
0
100
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
100
100
2
100
118.58
0.00
115.67
84
0
86
93
87
80
85
88
93
95
87
73
84
97
84
77
84
.01
83
83
86
87
0
0
81
0
86
0
88
94
89
81
87
91
96
98
90
76
86
98
86
79
85
.01
85
85
88
89
0
0
86
0
34.46
0.00
42.83
46.00
47.37
28.19
39.04
54.09
69.39
72.00
42.63
14.16
36.70
83.00
36.02
28.73
34.16
1.00
34.52
35.35
41.26
47.49
0.00
0.00
24.67
0.00
116.13
119.26
120.67
114.02
95.32
104.94
106.38
96.91
118.34
96.97
118.70
118.91
119.37
118.48
119.43
119.09
115.31
117.33
0.00
0.00
2.91
0.00
r, rate of population growth; L, interval between generations; PE, probability of extinction; He, expected heterozygosity; Ho, observed heterozygosity; N
alleles, The average number of alleles at the end of the simulation period.
(F) and mean index of genetic conservation (ICG) for the
reference population with pedigree are listed in Table 4.
The coefficient of inbreeding was 0.06 percent, which is
considered low for the herd.
their genealogy. The average number of complete generations observed was 1.32, the average maximum number
of generations observed was 2.64 and the average equivalent complete generations observed was 1.78.
The reference population (animals with both parents known)
was smaller than that used for analysing the founders. From
a total of 411 animals in the pedigree, 353 were included in
the reference population. The base population, with at least
one known parent, had 58 animals. When considering
only the current herd, the base population fell to 52 animals.
The number of ancestors that contributed to the reference
population was 31. Analysing only the current herd, the
reference population was 364 animals and 35 ancestors.
The interval between generations of the conservation herd
from the Moura pigs and average ages at birth are shown in
Table 5. In the pedigree analysis, there were 27 records of
animals born in 1999. The next birth was registered only in
2004, indicating gaps in the registry of pedigree.
There are a few generations available for evaluating the
Moura herd. This is common in conservation programmes,
since the interest in the conservation of these animals is
recent, and insufficient to obtain detailed information on
Table 4. Population parameters from ENDOG pedigree analysis
in Moura pigs.
Parameter
Effective number of founders (fe)
Effective number of ancestral (fa)
Average relatedness (AR)
Coefficient of inbreeding (F)
Mean index of genetic conservation (ICG)
Full dataset
Present herd
14
14
8.38%
0.06%
1.36
14
14
8.38%
0.06%
1.36
The generation interval in Moura pigs was obtained in the
simulation with VORTEX. The interval between generations refers to the average value at the end of the 100
Table 5. Interval between generations of the conservation herd
from the Moura pigs (in years) and average ages at birth.
Generation interval
Sire – offspring (male)
Sire – offspring (female)
Dam – offspring (male)
Dam – offspring (female)
Overall mean
Average ages at birth
Boar – offspring (male)
Boar – offspring (female)
Dam – offspring (male)
Dam – offspring (female)
Overall mean
Full population
Present population
4.21
5.41
3.32
3.48
4.31
4.43
5.44
2.89
3.48
4.21
2.94
3.89
2.45
2.39
3.13
3.74
3.84
2.40
2.39
3.10
Moura Pig genetic resources’ conservation
years simulation and was close to the reality of the species.
The generation interval in male was 1.77, in female 1.77
and the average size of the final population was 118.58.
The fixation index (F-statistics) describes the level of
heterozygosity in the population. The F statistics shows
how inbreeding influences within the subpopulation
(FIS), among subpopulations (FST) and in the whole population (FIT). The values found for the Moura herd were:
FIS = −0.043073, FST = 0, and FIT = −0.043073. The
zero value indicates no population subdivision.
The Ne averaged by year of birth of the animals was 30
and decreased in the period analysed. The herd size did
not increase, probably due to lack of market for the products, the absence of replacements and to the structural
difficulties in maintaining a larger herd. This population
size may cause problems in the viability of this herd.
Factors threatening the herd and possible management strategies for conservation were tested in the new scenarios in
the PVA to determine the major threats. The average final
herd size was very close to the environmental carrying
capacity (K), indicating the growth capacity of the herd,
considering the rearing conditions. The probability of
extinction was 0 based on 500 iterations performed in the
VORTEX, indicating no extinction of the herd. The herd
increased rapidly to environmental carrying capacity (K)
with an average deterministic growth rate (Det.r) of 1.71.
Figure 1 shows the population growth comparison between
deterministic (Det.r) and stochastic (Stoch.r) simulation.
Figure 1. Comparison between growth rates Det r. and Stoch r.
Figure 2. Comparison of the evolution of inbreeding in different scenarios.
The Det.r assumes no inbreeding depression, no mating
restrictions and no entry or exit to the animal population.
Therefore, it simulates how the herd would react without
any fluctuation due to chance or environment. The
Stoch.r considers the occurrence of environmental events
at random. Figures 2 and 3 show the comparison of the
evolution of inbreeding and the final average number of
alleles, at different scenarios, respectively. Figure 4
shows the comparison of the growth rate, Stoch r. between
different scenarios of mortality in piglets and Figure 5
shows the comparison of the evolution of genetic diversity
and inbreeding in scenario 500 years.
Discussion
The parameters that support population viability are the
high prolificacy of the breed and the entry of new animals.
The number of animals added to the herd was considered
high. Evaluating the number of births in each year added to
the entry of animals and subtracting the animals from the
population, intentionally or by mortality, it was noticed
an important increase of animals every year in this herd.
Scenarios were created by changing only the factors: prolificacy and fecundity; entry of animals and animals leaving the population. In scenarios with “fewer offspring”,
“more animals produced” and “more than one farrowing
per year”, the values of the maximum number of offspring,
number of animals leaving the herd and number of
131
132
H. Carneiro et al.
Figure 3. Comparison of the evolution of the final average number of alleles at different scenarios.
Figure 4. Comparison of the growth rate, Stoch r. between different scenarios of mortality in piglets.
Figure 5. Comparison of the evolution of genetic diversity and inbreeding in scenario 500 years.
farrowings per year changed. The scenario that most
impacted the herd was of the maximum number of farrowings per year. The other parameters were not affected in
relation to the base scenario. Other scenarios were that
there was a decrease in the entry of animals caused the
extinction of the herd in all simulations. It was noted,
therefore, that maintaining the entry of animals in the
herd is important for its persistence. This result corroborated with Fimland (2007), who also noted that the most
effective way to maintain genetic variability is the immigration of individuals carrying alleles from different populations. Hamann and Distl (2008) found the 19 immigrants
per generation were sufficient to maintain the inbreeding
within the acceptable level.
The coefficient of inbreeding observed was 0.06 percent
(Table 4). Estimating the inbreeding coefficient is complex
because it usually requires knowledge of the pedigree of
individuals. In addition, the calculation of the coefficient
from the pedigree information requires the specification of
the degree of relationship between the founders (Hedrick
and Kalinowski, 2000). According to Toro Rodriganez
and Rodriguez (2000), for the calculation of the inbreeding
coefficient, it is preferable to use pedigree information
Moura Pig genetic resources’ conservation
instead of using the molecular marker information.
Molecular marker can be useful to verify, correct or even
complete pedigree data. The pedigree analysis always
begins with a founder population, in other words, individual
ancestry unknown and presumably unrelated, from which
the population is descended from pedigree (Lacy, 1989).
When the founder population information is not available
(as here), it is assumed that the founders are not related
and are not endogamous (Hedrick and Kalinowski, 2000).
Sollero Paiva and Faria (2009) observed that the Moura
and Monteiro had the lowest genetic diversity among native
Brazilian pig breeds in terms of the effective number of
alleles and observed heterozygosity. Pedigree analysis is
always recommended to allow planning to maximize the
effective size of the reproduction in relation to the total
population size, and consequently, decrease the variability
in the effects of genetic drift (Lacy, 1989).
A few generations were available for the evaluation of the
Moura herd, and time was insufficient to obtain detailed
information of their genealogy. The intervals between generations (Table 5) were considered high for the species compared with studies of Toro Rodriganez and Rodriguez
(2000), who found that a generation interval of 2.44 years
for Iberian pigs. This is probably because the animals
from the Moura herd were not used for commercial purposes and the substitution in the herd only took place
when they became ill or died. The herd size has not
increased during the time period studied, probably due to
the absence of available replacements for the parents and
structural difficulties in maintaining a larger herd.
There was a small difference between Det.r and Stoch.r,
which could indicate low environmental influences on
population (Figure 1). However, the answers given by
the herd curators were considered very optimistic, which
could explain the positive results when the base scenario
was analysed alone. Stoch.r will be smaller than Det.r if
the population suffers wide fluctuations in environment,
catastrophes or genetic instabilities, as well as due to the
demographics of small populations (Miller and Lacy,
2005), as seen here.
To demonstrate the changing pattern of inbreeding coefficient of the herd, the scenario without animal entry was
observed. The maximum value was attained in the first
10 years of the simulation (data not shown). The best performance of this parameter (Figure 2) was when 100 percent of males were available for reproduction. No
significant difference was seen between the base scenario
and that without the true population genetic data. The
inbreeding coefficient is calculated in each year of the
VORTEX simulation and, if no true allele frequency is
provided, the programme determines a unique allele for
each animal in the initial population. The data from the
pedigree analysis with ENDOG, even though not very
deep, are more accurate. VORTEX considers inbreeding
depression solely as increased mortality of animals up to
1 year of age without considering decline in fertility and
prolificacy. This may explain the low difference found
between the base scenario and that without inbreeding
depression, as the mortality rate of piglets reported was
low (8 percent). Figure 3 shows that there was no significant difference in the mean number of alleles between the
base scenario without inbreeding depression, and that with
the analysis of true genetic information from population.
The exception was for the scenario of “no entry” of animals, whose population rapidly went into extinction and,
therefore, the final average number of alleles was 0.
When analysed the impact of increased probability of reproduction in males and females, was observed that increasing
the number of males in reproduction had more impact on the
final average number of alleles than the increase in the number of females (data not shown). This can be explained by
two factors. The information provided by the herd curator
who reported that 80 percent of females and 10 percent
males were available for reproduction. The second is the
method of calculating these parameters by VORTEX. It
was considered that every female of reproductive age has
80 percent chance of reproducing each year. As for the
males, this was only 10 percent. Therefore, any increase
in male number will have a greater impact than female.
Analysing the mortality rates of the base scenario it was
noted that a higher mortality rate of piglets affected the
rate of population growth, the interval between the generations and the final number of animals. These parameters
do not alter the probability of extinction, heterozygosity
or number of alleles. The mortality of piglets had a more
severe effect on the population than adult mortality, and
especially mortality of female piglets (Figure 4).
However, mortality of animals up to 1 year informed by
the curator was low, indicating that the conservation herd
has good management of the offspring.
It was observed that increasing the number of catastrophes
reduced the rate of growth and the final number of animals
in the population, but did not affect the number of alleles
and heterozygosity. Changing other scenarios such as the
frequency and severity of the catastrophe, had greater
effects on the population. The higher frequency of catastrophes had greater impact, with more effect on genetic
diversity. The highest frequency of one catastrophe
affected the population more than the lower frequency
and severity of two catastrophes (data not shown). Thus,
it was inferred that minimizing the consequences of frequent catastrophes in the herd conservation is more important than specific effects of more severe catastrophes.
When the viability of the population was tested for a period
of 500 years, it was noted that the probability of extinction
was small (3 percent), but the population was seriously
compromised at the end of this period, when looking at
the final number of alleles and heterozygosity. The other
parameters were not affected. Figure 5 shows the evolution
of genetic diversity and inbreeding coefficient in this
period, and it is seen that in the first 100 years these parameters remain relatively stable. From the year 100, these
133
134
H. Carneiro et al.
indices are seriously affected. This result demonstrates the
ability of the pigs to adapt to the negative effects of
small population size for a period, but after a certain
point, this control is no longer possible and the population
is seriously compromised. According to Rangel (2012), a
species does not go extinct immediately after the reduction
of habitat or climate change beyond the tolerance limit of
the animals. Extinction can occur several generations
after the initial impact on the population. This initial period,
until effective extinction, creates a window of opportunity
for conservation, in which it is still possible to ensure the
viability of the population (Wearn Reuman and Ewers
2012). Simulations performed for a shorter period of time
may not be sufficient to predict what conservation strategy
is needed to ensure persistence of the population. A population may seem feasible when the simulation considers
only 100 years, but the risk of extinction may increase considerably if a longer period is considered, as observed in
Figure 5. Simulations should therefore be over a long
period of time (over 100 years) or performed for two different periods and check if the results found in the short-term
simulation remain in the long term (Nilson, 2003).
Castro, A.M.M.G., Alvares, E.P., Zocoller-Seno, M.C., Neves, M.F. &
Passipiéri, M. 2001. Morphological study of the small intestine of
Moura pigs (Sus scrofa – Lineaus, 1758) during fetal development.
Braz. J. Morphol. Sci. 8: 95–101.
Castro, S.T.R., Albuquerque, M.S.M. & Germano, J.L. 2002. Census
of Brazilian naturalizes swine breeds. Arch. Zootec. 51: 235–239.
Cavalcanti, S.S. 2000. Suinocultura Dinâmica. Rome, Fep – Mvz Ed,
Contagem. 494 pp.
Fávero, J.A., Figueiredo, E.P., Fedalto, L.M. & Woloszyn, N. 2007. A
raça de suínos Moura como alternativa para a produção agroecológica
de carne. Rev. Bras. Agroecol. 2: 1.
Fimland, E. 2007. Genetic diversity and sustainable management of animal genetic resources, globally. Anim. Genetic Resources Inf. 41: 45–
51.
Garcia, S.K. & Barbosa, A.S. 2005. Conservação e Estudo de raças
suínas brasileiras na UFMG – 12 anos. I Simpósio Brasileiro de
Melhoramento Animal, 295.
Gutiérrez, J.P. & Goyache, F. 2005. A note on ENDOG: a computer
program for analysing pedigree information. J. Anim. Breed Genet.
122(3): 172–176.
Hamann, H. & Distl, O. 2008. Genetic variability in Hanoverian
Warmblood horses using pedigree analysis. J. Anim. Sci. 86: 1503–
1513.
Hedrick, P.W. & Kalinowski, S.T. 2000. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst. 31: 139–162.
Conclusion
The characterized Moura herd has low population size. Only
a few breeders or producers are interested in this breed, a
usual situation in production of Animal Genetic Resources
in Brazil. In the present study, this small effective population
size may cause problems for the population in the near
future, despite the inbreeding coefficient being considered
low. The herd curators should continue to import animals
from other breeders as this is essential for the viability of
this conservation herd, as well as care should be taken to
maintain the reproductive rate of the animals. In conservation programmes with small herds of domestic breeds, it is
important to evaluate the risk of extinction and which management activities should be prioritized to reduce this risk.
However, no specific risk factor is identified in this study.
Acknowledgments
The authors acknowledge CNPq for scholarships and
financial aid and INCT-Pecuária – Informação Genético
Sanitária da Pecuária Brasileira (CNPq/MCT/FAPEMIG),
as well as the farmers and researchers who contributed
with data and access to the animals.
Lacy, R.C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biol. 8: 111–
123.
Machado, L.C.P. 1967. Os suínos. Porto Alegre-RS, Editora A granja
Ltda. 622p.
Mariante, A.S., Albuquerque, M.S.M., Egito, A.A., McManus, C.,
Lopes, M.A. & Paiva, S.R. 2009. Present status of the conservation
of livestock genetic resources in Brazil. Livestock Sci. 120: 204–212.
Mason, I.L. 1996. A World dictionary of livestock breeds, types and varieties, 4th edition. C.A.B International, Wallingford, UK 273.
McManus, C., Paiva, S.R.P., Silva, A.V.R., Murata, L.S., Louvandini,
H., Cubillos, G.P.B., Castro, G., Martinez, R.A., Dellacasa, M.S.L.
and Perez, J.E. 2010. Phenotypic characterization of naturalized
swine breeds in Brazil, Uruguay and Colombia. Braz. Arch. Biol.
Technol. 53: 583–591.
Miller, P.S. & Lacy, R.C. 2005. Vortex User’s Manual. A stochastic
simulation of the extinction process. Version 9.50. Brookfield, IL:
Chicago Zoological Society.
Nilson, T. 2003. Integrating effects of hunting policy, catastrophic events,
and inbreeding depression, in PVA simulation: the Scandinavian wolf
population as an example. Biol. Conserv. 115: 227–239.
Rangel, T.F. 2012. Amazonian extinction debts. Science 337: 162–164.
Sollero, B.P., Paiva, S.R. & Faria, D.A. 2009. Genetic diversity of
Brazilian pig breeds evidenced by microsatellite markers. Livestock
Sci. 13: 1–8.
References
Toro, M.A., Rodriganez, L.S. & Rodriguez, C. 2000. Genealogical
analysis of a closed herd of black hairless Iberian pigs. Conserv.
Biol. 14: 1843–1851.
ABCS – Associação Brasileira de Criadores de Suínos. 2011. Relatório
anual do registro genealógico e provas zootécnicas de suínos.
Available at the website www.abcs.com.br
Wearn, O.R., Reuman, D.C. & Ewers, R.M. 2012. Extinction debt and
windows of conservation opportunity in the Brazilian Amazon.
Science 337: 228–232.
Animal Genetic Resources, 2014, 54, 135–140. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000101
Evaluación del semen criopreservado de toros
Curraleiro Pé Duro, perteneciente al Banco
Brasilero de Germoplasma Animal
I.S. Montesinos1, J.O. Carvalho2, J.V. Malaquias3, E. Arnhold1, G.E. Freneau1, M.A.N. Dode2,
M.C.S. Fioravanti1 y J.R.B. Sereno3
1
3
Universidad Federal de Goiás, CEP 74001-970. Goiânia-GO, Brasil; 2Embrapa Cenargen, CEP 70770-900, Brasilia-DF, Brasil;
Embrapa Cerrados, CEP 73310-970, Planaltina-DF, Brasil
Resumen
Esta investigación tuvo el objetivo de evaluar la calidad del semen criopreservado de 21 toros Curraleiro Pé Duro en banco de germoplasma, categorizando las dosis de los reproductores según parámetros relacionados a la viabilidad espermática, y verificando la capacidad fecundante in vitro de los espermatozoides. Todas las muestras fueron descongeladas y analizadas en cuanto a morfología,
cinética, integridad de membrana plasmática e integridad de acrosoma. Para evaluar las tasas de fecundación, muestras de sólo cuatro
toros fueron utilizadas. Los resultados indicaron que las dosis de semen Curraleiro Pé Duro, almacenadas en el Banco Brasilero de
Germoplasma Animal, mostraron calidad espermática variable y alta capacidad fecundante in vitro, posibilitando delinear estrategias
adecuadas de reproducción asistida para la conservación de este recurso genético brasilero en peligro de extinción.
Palabras clave: conservación ex situ, espermatozoide, razas criollas
Summary
This investigation aimed to evaluate the quality of cryopreserved semen from 21 Curraleiro Pé Duro bulls in a germplasm bank,
categorizing the doses of the sires according to parameters related to sperm viability, and verifying the fertilizing capacity in vitro
of the spermatozoids. All the samples were thawed and analyzed as to morphology, kinetics, plasma membrane integrity and acrosome
integrity. Samples of only four bulls were used for evaluating the fertilization rates. The results indicated that the Curraleiro Pé Duro
semen doses, stocked in the Brazilian Animal Germplasm Bank, showed variable sperm quality and high in vitro fertilizing capacity,
making it possible to design appropriate strategies for assisted reproduction in order to conserve this Brazilian genetic resource, which
is in danger of extinction.
Keywords: creole breeds, ex situ conservation, spermatozoid
Résumé
Cette recherche visait à évaluer la qualité du sperme cryoconservés de 21 taureaux Curraleiro Pé Duro dans une banques de gènes,
categorisant les doses des reproduteurs selon les paramètres liés à la viabilité du sperme, et de vérifier la capacité fecondante
in vitro des spermatozoïdes. Tous les échantillons ont été décongelés et analysés pour la morphologie, la cinétique et la membrane
plasmique et intégrité de l’acrosome. Pour évaluer le taux de fecondation, des échantillons de seulement quatre taureaux ont été
utilisés. Les résultats ont indiqués que les doses de sperme Curraleiro Pé Duro, stokée dans la Banque Bresilienne de Gènes
Animal, ont montré de haute qualité du sperme variable capacité de fécondation in vitro, permettant délimiter les stratégies
appropriés de reproduction assistée pour la préservation de cette ressource génétique bresilienne en voie de disparition.
Mots-clés: créoles races, la conservation ex situ, spermatozoïde
Presentado: 25 Agosto 2013; aceptado: 27 Febrero 2014
Introducción
El bovino Curraleiro Pé Duro es una raza criolla brasilera,
originaria del Bos taurus ibericus, traído por los colonizadores europeos en el siglo XVI, y sometido a constante
Correspondencia: I.S. Montesinos, Universidad Federal de Goiás, Brasil. e-mail:
[email protected]
selección natural y adaptación por más de 400 años. Este
taurino tropical representa un tesoro genético, ya que a
pesar de no tener niveles superiores de producción, es
rústico, resistente al calor, enfermedades y parásitos, y
además aprovecha eficientemente pastos de baja calidad.
Debido a la importación de razas especializadas con
mayor desempeño zootécnico, el Curraleiro Pé Duro fue
descartado de los rebaños, lo que casi provocó su
135
136
I.S. Montesinos et al.
desaparecimiento (Mariante et al., 2009). Gracias a programas de conservación aún existen ejemplares, en el Centro
Oeste y Noreste brasilero, registrando 3.692 animales en el
año 2008, distribuidos entre los estados de Pará, Piauí,
Tocantins y Goiás (Fioravanti et al., 2011). La
conservación consta de dos estrategias: una es la in situ,
donde los animales permanecen en ambientes naturales o
artificiales, y otra la ex situ, criopreservando en bancos
de germoplasma los espermatozoides, ovocitos, embriones
y otras células, como fuente de multiplicación,
regeneración y distribución de una población animal en
extinción (Mariante y Egito, 2002). Según Dode y
Rumpf (2002) técnicas de reproducción asistida son utilizadas en conservación animal, destacando la
inseminación artificial (IA), transferencia de embriones
(TE), producción in vitro de embriones (PIV) e
inyección intra-citoplasmática de espermatozoides (ICSI).
Desde 1983, Embrapa Recursos Genéticos y Biotecnología
(CENARGEN) realiza la conservación ex situ de razas
criollas brasileras, criopreservando diferentes células en
el Banco Brasileiro de Germoplasma Animal (BBGA)
(Mariante y Egito, 2002). Para asegurar el futuro del
bovino Curraleiro Pé Duro (Figura 1) se necesitan más
estudios enfocando parámetros reproductivos, por lo que
objetivamos evaluar la calidad del semen criopreservado
de 21 toros de esta raza, perteneciente al BBGA.
Material y métodos
Esta investigación fue realizada en el año 2011, en las
instalaciones del laboratorio de reproducción animal
CENARGEN (DF). Se utilizaron pajillas de semen de 21
toros Curraleiro Pé Duro, donadas por el BBGA en
número de dos unidades por reproductor, excepto cinco
toros, con diez dosis cada uno. Este material genético se
criopreservó entre 1994 y 2008, mediante protocolos convencionales desarrollados por el CENARGEN. Las dosis
fueron descongeladas por 30 segundos en baño María
(37°C), y el semen depositado en un tubo para
evaluación in vitro.
Evaluación de morfología espermática
La morfología espermática fue evaluada de acuerdo con
Barth y Oko (1989), utilizando microscopio de contraste
de fase (Nikon Eclipse E200) con inmersión y aumento
de 1000x. Se contaron 200 espermatozoides por muestra,
clasificándolos en normales y con defectos (cabeza o
cola), siendo expresado en porcentajes.
Evaluación de cinética espermática
La cinética espermática fue evaluada por el Computer
Assisted Sperm Analysis (CASA), modelo IVOS
Ultimate 12 de la Hamilton Thorne Biosciences, ajustado
(set up) para semen bovino. Se colocó 10 μL de semen
en la cámara de Makler, con selección de tres campos de
lectura, evaluando: motilidad total (MT, %) y progresiva
(MP, %); velocidad de trayecto (VAP, μm/s), rectilínea
(VSL, μm/s) y curvilínea (VCL, μm/s); amplitud lateral
de cabeza (ALH, μm); frecuencia de batimientos de cola
(BCF, Hz); rectilinearidad (STR, %); linearidad (LIN, %)
y células rápidas (RPD, %).
Evaluación de integridad de la membrana
plasmática y acrosoma
La integridad de membrana plasmática fue evaluada
utilizando diacetato de 6 carboxifluoresceína (C-FDA) y
yoduro de propidio (PI) (Harrison y Vickers, 1990). Una
muestra de semen (10 μL) fue diluida en solución colorante (40 μL), compuesta por 480 μL de citrato de sodio
a 3%; 5 μL de formol salina a 1,6%; 5 μL de IP 0,75
mM; y 10 μL de C-FDA 0,46 mg/mL en DMSO. Los
espermatozoides teñidos de rojo se consideraron con membrana plasmática dañada y los de verde con membrana
íntegra. Para evaluar la integridad acrosomal se utilizó la
conjugación isotiocianato de fluoresceína (FITC) con lectina Peanut aglutinin (PNA) y PI (Klinc y Rath, 2007).
Una muestra de semen (10 μL) fue diluida en solución colorante (30 mL), con los mismos componentes usados en la
evaluación de membrana plasmática, excepto C-FDA que
fue substituido por 10 μL de FITC-PNA (1 mg/mL en
PBS). Las células teñidas de rojo se contabilizaron como
muertas. En los espermatozoides vivos el acrosoma
teñido de verde fue considerado como reaccionado, y el
acrosoma sin fluorescencia, íntegro. Ambas evaluaciones
se realizaron en microscopio de epifluorescencia
(Axiophot Zeiss: filtro de longitud de onda 395/420 nm
y 494/517 nm excitación/emisión). Aproximadamente
200 células fueron examinadas en cada muestra y los resultados se expresaron en porcentajes.
Evaluación de tasas de fecundación
Figura 1. Toro Curraleiro Pé Duro en el bioma Cerrado.
Para evaluar las tasas de fecundación fueron utilizadas
dosis de sólo cuatro toros Curraleiro Pé Duro, debido a
la escasez de pajillas disponibles. Se utilizó la
metodología propuesta por Carvalho et al. (2010), con
tres replicas independientes, donde a 18 horas post
Evaluación del semen criopreservado de toros Curraleiro Pé Duro
inseminación in vitro los posibles cigotos fueron retirados
de las gotas de fecundación y transferidos para una gota de
200 μL de tampón fosfato (PBS). Estos fueron desnudados
y fijados en solución de etanol y ácido acético glacial (3:1),
por 24 horas. Después se lavaron y tiñieron con solución
lacmoide a 1% en ácido acético glacial 45%. La lectura
de las láminas fue en microscopio de contraste de fase
bajo inmersión, con aumento de 1000x (Nikon Eclipse
E200). Se utilizó 336 ovocitos, siendo clasificados en no
fecundados (presencia de cromatina femenina y ausencia
de masculina) y fecundados (presencia de cromatina femenina y espermatozoide en el citoplasma, presencia de
cabeza descondensada, pronúcleo, clivaje y polispermia).
Análisis estadístico
Los datos obtenidos en los exámenes espermáticos de las
21 dosis fueron analizados a través del programa R (R
Development Core Team, 2011). Primero se realizó
estadística descriptiva (promedio y desvío estándar).
Después se escogieron parámetros para la construcción
de un dendrograma, mediante el método UPGMA
(Unweighted Pair Group Method with Arithmetic
Means), utilizando la distancia Euclidiana padronizada.
El Cluster formó tres grupos, los cuales fueron comparados
en cada examen espermático a través de análisis de varianza y test Duncan, a nivel de significancia del 5%. Las
tasas de fecundación y estados de cromatina 18 horas
post FIV se compararon por el test Chi-cuadrado.
Resultados y discusión
Evaluación de la calidad espermática
Morfología espermática
Considerando 70% como mínimo de espermatozoides normales para semen descongelado bovino (CBRA, 1998), las
21 dosis Curraleiro Pé Duro presentaron buen promedio
(81,1% ± 13,3%). Individualmente tres dosis fueron inferiores: DT1 (60,2%); DT10 (37,5%) y DT17 (68,2%).
Los defectos mayores (DMA) en una muestra seminal no
deben superar el 20% (CBRA, 1998), a pesar de haber
encontrado cinco dosis con alto porcentaje (DT1, 34,7%;
DT7, 24,3%; DT10, 39,5%; DT16, 22,5% y DT17,
28,1%), el promedio general de DMA era 14,7% ± 9,9%
y los defectos menores 4,2% ± 7,2%. Este promedio fue
mejor al encontrado por Sousa et al. (2004) en ocho
toros Curraleiro Pé Duro (21,1% ± 8,4%). Ciertos DMA
superaron el límite de 5% que relata Freneau (2011) para
anormalidades individuales: cráter (DT1, 21,8%; DT16,
9,0%); contorno anormal (DT1, 5,6%); gota proximal
(DT10, 19,0%); cola fuertemente doblada (DT11, 7,2%);
cola fuertemente doblada con gota (DT7, 7,1%; DT17,
15,1%; DT10, 6,5%) y cabeza piriforme (DT20, 6,5%).
Britto y Mello (1988) obtuvieron individualmente DMA
exacerbados, en el semen de cinco toros Curraleiro Pé
Duro, destacando pouch formation (17,1%). Las alteraciones encontradas pueden tener origen en deficiencias
nutricionales, interferencia climática y escasa selección
de este grupo genético nativo. Además las altas tasas de
gota proximal y cola fuertemente doblada con gota
indicarían problemas de madurez sexual, epidídimo y fertilidad (Rao, Bane y Gustafsson, 1980). Saacke (2008) caracteriza cabeza piriforme, cráter y pouch formation como
defectos no compensables, ya que suelen poseer aberraciones en la cromatina que afectan la fecundación y/o
desarrollo
embrionario,
causando
sub-fertilidad
espermática.
Cinética espermática
Según Kathiravan et al. (2011), altos porcentajes de MP y
RPD revelan resistencia a criopreservación. Además la MP
está correlacionada con MT, y contribuye 62,6% en variaciones de las tasas de fecundación, teniendo como promedio grupal 27,3% ± 9,7% y RPD 35,4% ± 11,4%. En el
promedio individual destacaron las dosis DT5 (MP 45%,
RPD 55%), DT9 (MP 40%, RPD 48%), DT16 (MP
39%, RPD 47%) y DT19 (MP 31%, RPD 51%); contrario
a DT10 (MP 15%, RPD 17%), DT18 (MP 9%, RPD 11%)
y DT20 (MP 13%, RPD 17%) que fueron inferiores. Las
velocidades VAP, VSL y VCL (μm/s) fueron altas en
DT5 (105,6; 88,4; 179,2), DT11 (88,7; 72,1; 156,9),
DT19 (87,2; 60,9; 168,4) y DT21 (91,3; 75,0; 156,5).
Para ALH (μm) obtuvieron tasas superiores DT8 (7,3),
DT14 (7,6) y DT19 (7,7), lo que concuerda con sus
bajos valores en BCF (DT8, 20,4 Hz; DT14, 22,4 Hz;
DT19, 23,6 Hz), STR y LIN (DT8, 67,0%, 39,0%;
DT14, 75,0%, 41,0%; DT19, 70,0%, 38,0%). La DT19
mostró hiperactividad espermática (HE), por sus altos
valores de velocidad; ALH superior en el grupo, así
como BCF, STR y LIN inferiores. La HE conduce a movimientos vigorosos y desordenados, provocando trayectoria
irregulary y curva, situación que sólo ocurre in vivo en el
local de fecundación (Mortimer, 1997; Verstegen,
Iguer-Ouada y Onclin, 2002); mas in vitro podría favorecer
en la penetración del ovocito. La criopreservación origina
mudanzas en membrana plasmática, similares a las de
capacitación. Esa “criocapacitación” post descongelamiento talvez sería responsable por la HE detectada
(Januskauskas et al., 1999).
Integridad de membrana plasmática y acrosoma
Se consideraron la membrana plasmática íntegra (MPI) y
los espermatozoides vivos con acrosoma íntegro (EVAI),
porque reflejan buena conformación estructural y funcional
de la célula (Garner et al., 1986; Graham, 2001). En el promedio general MPI obtuvo 36,7% ± 14,2% y EVAI 34,0%
± 14,4%. Los valores más bajos fueron: MPI (DT10,
15,0%; DT14, 21,3% y DT18, 10,5%) y EVAI (DT2,
18,0%; DT10, 12,5%; DT14, 21,5%; DT18, 9,5% y
DT20, 22,0%). Para Januskauskas, Johannisson y
Rodriguez-Martinez (2003), la integridad de membrana
plasmática es la variable con mayor impacto en la fertilidad, caso contrario a Carvalho et al. (2010) que no identificaron alta correlación con la fecundación. Cabe resaltar
137
138
I.S. Montesinos et al.
comparación al G2. El G2 obtuvo la mayor tasa de defectos morfológicos; no en tanto cinética, viabilidad y células
vivas con acrosoma íntegro aceptables, características que
son propias de espermatozoides con defectos no compensables (Saacke, 2008). G3 obtuvo altos porcentajes de
morfología espermática como G1, pero la peor cinética,
integridad de membrana plasmática y acrosoma, indicando
mayor presencia de espermatozoides muertos, ya que
según Garner et al. (1986) células con membrana
plasmática dañada no poseen movimiento.
Evaluación de las tasas de fecundación
Figura 2. Dendrograma de las 21 dosis de semen.
que la reacción acrosómica prematura disminuye el potencial reproductivo del espermatozoide (Silva y Gadella,
2006). Casi todas las dosis obtuvieron un porcentaje bajo
(≤ 2,0%), para espermatozoides vivos con acrosoma reaccionado, excepto DT17 con 14,5%, que puede estar relacionado a su alta tasa de DMA (28,1%).
Parámetros escogidos para construcción de un
dendrograma
Fueron analizados parámetros que según Amann (1989) son
parte de los atributos espermáticos para fecundación (NRM,
DMA, MP, RPD, MPI y EVAI). Se construyó un dendrograma (Figura 2) utilizando la distancia Euclidiana, para formar tres grupos (G1, G2 y G3). La DT19 y DT10 resultaron
excluidas, por ser consideradas outliers, al presentar valores
muy distantes en relación a las demás dosis (Sartorio, 2008).
Se sabe que la DT19 mostró HE y DT10 obtuvo los valores
más bajos en los exámenes in vitro.
Caracterización de los grupos y comparación
estadística
En los tres grupos formados (Cuadro 1), el G1 alcanzó
altos valores en morfología; la mejor cinética; así como
viabilidad y tasas de espermatozoides vivos con acrosoma
íntegro razonables, mostrando cierta superioridad en
Se utilizaron dosis de sólo cuatro toros Curraleiro Pé Duro
(DT18, DT19, DT20 y DT21), debido al amplio estoque
de pajillas donadas por el BBGA para esos reproductores.
El semen presentó valores NRM y DMA, dentro de los
padrones CBRA (1998). Sólo la DT18 y DT20 fueron
inferiores en cinética y exámenes de fluorescencia.
Previo al uso de las dosis para FIV, estas se seleccionaron
mediante gradiente Percoll (45:90%), eliminando los
espermatozoides con defectos. Después fue evaluada la
MP en el microscopio de contraste de fase, tanto pre
como post pasaje por el gradiente, siendo que
incrementó
considerablemente.
Rodriguez-Martinez
(2005) relata que esa prueba mide la capacidad de
migración espermática, seleccionando las células con
mayor potencial para ultrapasar in vitro la barrera del
Percoll, que simularía el trayecto in vivo hasta el local de
fecundación. Una vez tratadas las dosis seminales para
FIV, se seleccionó e inseminó in vitro 336 ovocitos,
evaluando post 18 horas las tasas de fecundación
(Cuadro 2).
Las tasas de fecundación fueron altas y próximas, sin diferencia estadística significativa, revelando resultados no
esperados antes del Percoll (45:90%). Como fue el caso
de DT18 y DT20, que tenían bajos porcentajes para MP
(33%; 30%), en el microscopio de contraste de fase, y
exámenes de fluorescencia (MPI 10,5%; 28,3% y EVAI
9,5%; 22%), pero post Percoll mostraron buena MP
(70%; 53%) y fecundación ovocitaria (74,4%; 68,8%).
Según Tangue et al. (2002), las tasas de fecundación obtenidas son aceptables (> 60%), revelando la capacidad
espermática in vitro del semen Curraleiro Pé Duro, para
ligar y penetrar la ZP del ovocito, así como promover la
Cuadro 1. Parámetros espermáticos analizados en los tres grupos formados por el dendrograma.
Parámetros espermáticos (%)
Espermatozoides normales (NRM)
Defectos mayores (DMA)
Motilidad progresiva (MP)
Células rápidas (RPD)
Membrana plasmática íntegra (MPI)
Espermatozoide vivo acrosoma íntegro (EVAI)
Grupo 1 (G1)
Grupo 2 (G2)
Grupo 3 (G3)
Promedio
DS
Promedio
DS
Promedio
DS
84,7a
12,0b
34,2a
41,5a
39,1a
36,9a
4,5
5,3
5,3
6,4
8,1
9,0
66,3b
29,0a
25,0b
34,0a
41,6a
35,5a
5,5
5,2
4,5
7,2
9,5
4,9
88,9a
8,5b
15,2c
23,2b
24,9b
22,4b
6,8
4,4
5,2
9,1
9,5
8,5
DS: desvío estándar. Promedios con letra diferente (a,b,c) no son iguales, por el Test Duncan al 5%.
Evaluación del semen criopreservado de toros Curraleiro Pé Duro
Cuadro 2. Tasas de fecundación ovocitaria 18 horas post
inseminación in vitro.
Dosis Toro
DT18
DT19
DT20
DT21
NO
90
87
77
82
Fecundado
No
fecundado
N
%
N
%
67
67
53
66
74,4
77,0
68,8
80,5
23
20
24
16
25,6
22,9
31,2
19,5
industrial con razas comerciales, para otorgar mayor rusticidad y adaptación al trópico brasilero.
P valor X2
Referencias
0,4
2
NO: número de ovocitos; N: número; X : Chi-cuadrado.
Amann, R.P. 1989. Can the fertility potential of a seminal sample be predicted accurately? Journal of Andrology 10 (2): 89–98.
Barbas, J.P. & Mascarenhas, R.D. 2009. Cryopreservation of domestic
animal sperm cells. Cell and Tissue Banking 10: 49–62.
Barth, A.D. & Oko, R.J. 1989. Abnormal morphology of bovine spermatozoa. Iowa State University Press, Ames (IA), USA.
fertilización. Este resultado fue algo similar al obtenido por
Obando, Luque y Martínez (2003), en las tasas de FIV (≥
61,9%) de cinco toros de la raza criolla San Martinero en el
trópico colombiano.
Se constató en los cigotos, que los estados de cromatina masculina 18 horas post inseminación in vitro presentaron valores
estadísticamente diferentes. Con tasas superiores para
pronúcleo (> 60%), siendo que la DT19 obtuvo el mayor porcentual, quizás debido a su HE que contribuyó en la FIV, en
cuanto la DT20 el menor, y además un valor elevado para
cabeza descondensada. Según Eid, Lorton y Parrish (1994),
esto revelaría en DT20 una fecundación tardía, posiblemente
debido a sus porcentajes de cabeza piriforme (6,5%), defecto
espermático no compensable, que podría haber ultrapasado el
gradiente de Percoll, y afectaría una futura embriogénesis si
fuese desarrollada. Finalmente, los resultados obtenidos
sugieren que el G1 sea utilizado en la IA a campo, por
tener valores favorables para fecundación in vivo. Diferente
de la DT19, DT10, G2 y G3, que deben utilizarse con prioridad, para evitar mayor deterioro de estas dosis y en estricta
asociación a biotecnologías reproductivas, como el pasaje
por gradiente Percoll y PIV de embriones, que optimizarán
los requisitos espermáticos para fecundación, como ya fue
verificado, sabiendo que sólo espermatozoides competentes
tienen contacto con el ovocito (Barbas y Mascarenhas,
2009). De esa forma se evitará la pérdida de la valiosa variabilidad genética de estas dosis de semen del BBGA, garantizando la máxima producción de becerros y embriones
Curraleiro Pé Duro.
Conclusiones
La calidad seminal encontrada en las dosis del BBGA
presentó variabilidad, mostrando características favorables
y desfavorables para fecundación. Esto indica la importancia de la evaluación espermática para determinar el uso
adecuado de las dosis seminales, tanto in vivo como in
vitro, en asociación a biotecnologías reproductivas que
busquen resultados positivos. Permite así la conservación
del bovino Curraleiro Pé Duro, a través de programas de
recuperación del efectivo poblacional y criopreservación
en bancos de germoplasma, tal como viene siendo ejecutado por instituciones de investigación y criadores de
esta raza. También surge su posible uso en el cruzamiento
Britto, C.M.C. & Mello, M.L.S. 1988. Anomalias de cabeça em
espermatozóides de gado “Pé Duro”. Revista Brasileira de Genética
11 (1): 63–71.
Carvalho, J.O., Sartori, R., Machado, G.M., Mourão, G.B. & Dode,
M.A.N. 2010. Quality assessment of bovine cryopreserved sperm
after sexing by flow cytometry and their use in in vitro embryo production. Theriogenology 74: 1521–1530.
CBRA. 1998. Manual para exame andrológico e avaliação de sêmen animal. 2da edición, Colégio Brasileiro de Reprodução Animal, Belo
Horizonte, Brasil.
Dode, M.A.N. & Rumpf, R. 2002. Produção in vitro de embriões na
espécie bovina. Biotecnologia Ciência & Desenvolvimento 26: 32–37.
Eid, L.N., Lorton, S.P. & Parrish, J.J. 1994. Paternal influence on
S-Phase in the first cell cycle of the bovine embryo. Biology of
Reproduction 51: 1232–1237.
Fioravanti, M.C.S., Juliano, R.S., Costa, G.L., Abud, L.J., Cardoso,
V.S., Carpio, M.G. & Costa, M.F.O. 2011. Conservación del bovino
Curraleiro: cuantificación del censo y caracterización de los criadores.
Animal Genetic Resources 48: 109–116.
Freneau, G.E. 2011. Aspectos da morfologia espermática em touros.
Revista Brasileira de Reprodução Animal 35 (2): 160–170.
Garner, D.L., Pinkel, D., Johnson, L.A. & Pace, M.M. 1986.
Assessment of spermatozoal function using dual fluorescent
staining and flow cytometric analyses. Biology of Reproduction 34:
127–138.
Graham, J.K. 2001. Assessment of sperm quality. En: Proceedings of
the 47th Annual Convention of the AAEP, 24–28 November 2001,
San Diego (CA), USA.
Harrison, R.A.P. & Vickers, S.E. 1990. Use of fluorescent probes to
assess membrane integrity in mammalian spermatozoa. Journal of
Reproduction and Fertility 88: 343–352.
Januskauskas, A., Gil, J., Soderquist, L., Haard, M.G.M., Haard, M.
C., Johannisson, A. & Rodriguez-Martinez, H. 1999. Effect of
cooling rates on post-thaw sperm motility, membrane integrity, capacitation status and fertility of dairy bull semen used for artificial
insemination in Sweden. Theriogenology 52: 641–658.
Januskauskas, A., Johannisson, A. & Rodriguez-Martinez, H. 2003.
Subtle membrane changes in cryopreserved bull semen in relation
with sperm viability, chromatin structure, and field fertility.
Theriogenology 60: 743–758.
Kathiravan, P., Kalatharan, J., Karthikeya, G., Rengarajan, K. &
Kadirvel, G. 2011. Objective sperm motion analysis to asses dairy
bull fertility using computer-aided system – a review. Reproduction
in Domestic Animals 46: 165–172.
Klinc, P. & Rath, D. 2007. Reduction of oxidative stress in bovine
spermatozoa during flow cytometric sorting. Reproduction in
Domestic Animals 42: 63–67.
139
140
I.S. Montesinos et al.
Mariante, A.S. & Egito, A.A. 2002. Animal genetic resources in Brazil:
Result of five centuries of natural selection. Theriogenology 57: 223–235.
Saacke, R.G. 2008. Sperm morphology: Its relevance to compensable
and uncompensable traits in semen. Theriogenology 70: 473–478.
Mariante, A.S., Albuquerque, M.S.M., Egito, A.A., McManus, C.,
Lopes, M.A. & Paiva, S.R. 2009. Present status of the conservation
of livestock genetic resources in Brazil. Livestock Science 120: 204–212.
Sartorio, S.D. 2008. Aplicações de técnicas de análise multivariada em
experimentos agropecuários usando o software R. Dissertação em
Estatística e Experimentação agronômica, Escola Superior de
Agricultura Luiz de Queiroz, Universidade de São Paulo,
Piracicaba, Brasil.
Mortimer, S.T. 1997. A critical review of the physiological importance
and analysis of sperm movement in mammals. Human Reproduction
Update 3 (5): 403–439.
Obando, H., Luque, O. & Martínez, R. 2003. Evaluación de la capacidad fertilizante in vitro del semen de toros San Martinero y Brahman.
ICA Informa 30 (2): 56–62.
Silva, P.F.N. & Gadella, B.M. 2006. Detection of damage in mammalian
sperm cells. Theriogenology 65: 958–978.
R Development Core Team. 2011. R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. Disponible en http://www.r-project.org/.
Sousa, A.P.F., Freneau, G.E., Fioravanti, M.C. & Juliano, R.S. 2004.
Estudo da espermatogênese pelo sêmen e a morfologia testicular do
Gado Pé Duro. Anais do 1° Congresso de Pesquisa, Ensino e
Extensão da Universidade Federal de Goiás, 18–24 Outubro 2004,
Goiânia (GO), Brasil.
Rao, A.R., Bane, A. & Gustafsson, B.K. 1980. Changes in the morphology of spermatozoa during their passage through the genital tract in
dairy bulls with normal and impaired spermatogenesis.
Theriogenology 14: 1–12.
Tangue, S., Van Soom, A., Sterckx, V., Maes, D. & De Kruif, A.
2002. Assessment of different sperm quality parameters to predict
in vitro fertility of bulls. Reproduction in Domestic Animals 37:
127–132.
Rodriguez-Martinez, H. 2005. Methods for semen evaluation and their
relationship to fertility. En: Anais do 16° Congresso Brasileiro de
Reprodução Animal, 1–5 Agosto 2005, Goiânia (GO), Brasil.
Verstegen, J., Iguer-Ouada, M. & Onclin, K. 2002. Computer assisted
semen analyzers in andrology research and veterinary practice.
Theriogenology 57: 149–179.
Animal Genetic Resources, 2014, 54, 141–152. © Food and Agriculture Organization of the United Nations, 2013
doi:10.1017/S2078633613000349
Unique cultural values of Madura cattle:
is cross-breeding a threat?
T.S.M. Widi1,2, H.M.J. Udo1, K. Oldenbroek2, I.G.S. Budisatria3, E. Baliarti3 and A.J. van der Zijpp1
1
Animal Production Systems Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen,
The Netherlands; 2Centre for Genetic Resources, PO Box 16, 6700 AA Wageningen, The Netherlands; 3Department of Animal
Production, Universitas Gadjah Mada, Jl. Fauna no 3, Kampus Bulaksumur UGM, Yogyakarta, Indonesia
Summary
In Indonesia, cross-breeding local cattle with European beef breeds is widely promoted to stimulate beef production. This cross-breeding is threatening local breeds that have often different functions, including cultural roles. This study analysed the cultural values of
Madura cattle and the effects of cross-breeding on local traditions in Madura Island. Bull racing (karapan) and cow conformation contests (sonok) are traditional cultural events on Madura. Since 2001, cross-breeding with Limousin is allowed. The local government also
promotes a conformation contest for cross-bred (madrasin) cattle. Quantitative and qualitative information were collected through
participatory approaches involving farmers (n = 97), government officials, community groups, key informants and through direct
observation of sonok, karapan and madrasin events. Phenotypic characteristics were collected from 184 cows. The Madura cattle population and production systems are not homogeneous. Four cattle types could be distinguished: karapan, sonok, madrasin and conventional Madura cattle. These cattle were found in three discrete areas, differing in land sizes, cropping and cattle keeping in terms of
management practices and importance of specific cultural practices. Sonok and madrasin cows were significantly bigger and had higher
body condition scores than karapan cows and the conventional Madura cows in the madrasin area. Madura cattle participating in cultural events were valued at prices that were 2–3.5 times higher than Madura cattle not participating in cultural events. Cross-breeding
will not directly influence the cultural events or the management practices of Madura cattle in the karapan and sonok areas; however,
outside the karapan and sonok areas, crossbreds are rapidly replacing conventional Madura cattle. The present top-down approach
towards conservation and breeding strategies has to be turned into bottom-up approaches that consider the needs of the sonok and karapan Madura cattle sub-populations. Monitoring and characterization studies have to collect information at different aggregation levels
and have to be aware of the sub-populations. The Madura example shows that the cultural values of livestock can be a main driver for
maintaining relatively small populations of local breeds.
Keywords: Madura, bull racing, cattle contests, conservation, cultural values
Résumé
En Indonésie, le croisement des bovins locaux avec des races bovines à viande européennes est largement promu afin d’augmenter la
production de viande. Cette pratique menace les races locales qui ont souvent différentes fonctions, y compris des rôles culturels. Cette
étude a analysé les valeurs culturelles des bovins Madura et l’impact des croisements sur les traditions locales sur l’île de Madura. Les
courses de taureaux (karapan) et les concours de conformation des vaches (sonok) sont des évènements culturels traditionnels en
Madura. Depuis 2001, le croisement avec la race Limousine est permis. Le gouvernement local promeut également un concours de conformation pour les bovins croisés (madrasin). Des informations quantitatives et qualitatives ont été recueillies suivant une approche participative impliquant des éleveurs (n = 97), des fonctionnaires des gouvernements, des groupements communautaires et des informateurs
clés, et à travers l’observation directe des évènements sonok, karapan et madrasin. Les caractéristiques phénotypiques ont été mesurées
sur un total de 184 vaches. La population bovine Madura et les systèmes de production ne sont pas homogènes. Quatre types de bovins
ont pu être distingués: karapan, sonok, madrasin et les bovins Madura conventionnels. Ces bovins se trouvent dans trois zones distinctes,
qui diffèrent par la taille des terres, les cultures et la production animale en ce qui concerne les pratiques d’élevage et l’importance de
pratiques culturelles spécifiques. Les vaches sonok et madrasin ont été significativement plus grandes et ont obtenu des notations de
conformation corporelle plus élevées que les vaches karapan et les vaches Madura conventionnelles dans la zone madrasin. Les bovins
Madura participant aux évènements culturels atteignent des prix qui sont de 2 à 3,5 fois plus élevés que ceux des bovins Madura qui ne
participent pas aux manifestations culturelles. Les croisements n’influenceront pas directement les évènements culturels ou les pratiques
d’élevage des bovins Madura dans les zones karapan et sonok. Cependant, en dehors des zones karapan et sonok, les animaux croisés
sont rapidement remplacés para des bovins Madura conventionnels. L’actuelle approche descendante dans les stratégies de conservation
et de sélection doit être tournée vers une approche ascendante qui tienne compte des besoins des sous-populations sonok et karapan de
bovins Madura. Les études de surveillance et de caractérisation doivent recueillir l’information à différents niveaux d’agrégation et doivent prendre en considération les sous-populations. L’exemple Madura montre que les valeurs culturelles du bétail peuvent être un levier
important pour le maintien de populations relativement petites de races locales.
Mots-clés: Madura, courses de taureaux, concours bovins, conservation, valeurs culturelles
Correspondence to: T.S.M. Widi, Animal Production Systems Group, Wageningen
University, PO Box 338, 6700 AH Wageningen, The Netherlands.
email: [email protected]
141
142
T.S.M. Widi et al.
Resumen
En Indonesia, el cruzamiento del ganado bovino local con razas europeas de aptitud cárnica es fomentado ampliamente con el fin de
incrementar la producción de carne de bovino. Esta práctica supone una amenaza para las razas locales, que tienen a menudo diversas
funciones, incluidos roles culturales. Este estudio analizó los valores culturales del ganado bovino Madura y el impacto del cruzamiento
sobre las tradiciones locales en la isla de Madura. Las carreras de toros (karapan) y los concursos de conformación de las vacas (sonok)
son acontecimientos culturales tradicionales en Madura. Desde 2001, se permite el cruzamiento con ganado Limousin. El gobierno
local promueve también un concurso de conformación para ganado bovino cruzado (madrasin). Se recogió información cuantitativa
y cualitativa siguiendo un enfoque participativo que implicaba a ganaderos (n = 97), funcionarios públicos, grupos comunitarios y personas de alto rango, y mediante la observación directa de los actos sonok, karapan y madrasin. Las características fenotípicas fueron
evaluadas en 184 vacas. La población de ganado bovino Madura y los sistemas de producción no son homogéneos. Ha sido posible
diferenciar cuatro tipos de ganado bovino: karapan, sonok, madrasin y ganado bovino Madura convencional. Estos tipos de ganado se
encuentran en tres zonas distintas, que difieren en el tamaño de los terrenos, en los cultivos y en la actividad ganadera en relación con el
manejo de los animales y la importancia de prácticas culturales específicas. Las vacas sonok y madrasin son significativamente más
grandes y alcanzan puntuaciones de condición corporal mayores que las vacas karapan y las vacas Madura convencionales en la
zona madrasin. El ganado Madura que participa en actos culturales alcanza precios entre 2 y 3,5 veces mayores que el ganado
Madura que no interviene en estos acontecimientos. El cruzamiento no afectará directamente a los actos culturales o a las prácticas
de manejo del ganado bovino Madura en las zonas karapan y sonok. Sin embargo, fuera de las zonas karapan y sonok, los animales
cruzados están siendo rápidamente sustituidos por ganado bovino Madura convencional. El actual enfoque verticalista descendente en
las estrategias de conservación y mejora debe ser redirigido hacia un planteamiento ascendente que considere las necesidades de las
subpoblaciones sonok y karapan de ganado bovino Madura. Los estudios de seguimiento y caracterización deben recoger información
de los diferentes niveles de agregación y tomar en consideración las subpoblaciones. El ejemplo de Madura muestra que los valores
culturales del ganado pueden ser un factor principal para el mantenimiento de poblaciones relativamente pequeñas de razas locales.
Palabras clave: Madura, carreras de toros, concursos de ganado bovino, conservación, valores culturales
Submitted 3 May 2013; accepted 5 August 2013
Introduction
In Indonesia, population increase is a major driving force
for the rising demand for animal products. To satisfy the
demand for red meat, the government has implemented a
policy to import meat and live exotic livestock. From the
1980s, the government has also promoted an Artificial
Insemination (AI) programme using beef breeds from temperate regions, such as Simmental, Limousin and Angus,
to improve the beef performances of local cattle. At present, the AI organisation uses almost exclusively exotic
semen. Thus, cross-breeding is rapidly progressing.
Many publications state that cross-breeding leads to a loss
of indigenous breeds and loss of adaptation of livestock to
local environments (Anderson, 2003; FAO, 2007). On
Indonesia’s Madura Island, until 2001, cross-breeding
was not allowed to protect the local Madura cattle breed.
Madura cattle developed approximately 1 500 years ago
from crossing wild banteng or Bali cattle and zebu
(Payne and Rollinson, 1976). Continuous selection by
the farmers in Madura created a uniform breed population
(Anonymous, 2003). Its coat is reddish-brown with a nonspecific white pattern on the rump and legs (Anonymous,
2003); see Figure 1. Madura cattle are extremely well
adapted to the local conditions and traditional management. They are reported to be one of the best draught animals in the world relative to their size (Barwegen, 2004).
Since the removal of import restrictions, the local government has allowed crossing with the Limousin breed (which
is also preferred by Madura farmers) because of its red colour, similar to the Madura cattle. As a result, the crossbreeding through AI is threatening the survival of the
Madura breed (Barwegen, 2004).
Currently, the number of cattle in Madura Island is about
600 000. It is not possible to obtain accurate data about
the population of pure Madura cattle as not all regional
government offices separate the data in terms of genetic
group.
Understanding and assessing the cultural values of livestock are important in the implementation of interventions
aiming at conservation and utilization of animal genetic
resources (FAO, 2012). Madurese people have strong cultural ties to their animals, caring for their cattle as if they
are their family members (De Jonge, 1990). The significance of cattle within the culture is also evident from the
appearance of bulls in local folk-tales, proverbs and
wood carvings depicting bulls, and from the horns on traditional houses. Bull racing (karapan) and cow conformation contests (sonok), are important cultural events on
the island (De Jonge, 1990).
Cross-bred cattle are kept primarily for meat production.
Therefore, cross-breeding may be a threat not only to the
existence of purebred Madura cattle, but also for the cultural activities involving cattle in Madura.
In Indonesia, Madura cattle offer a unique opportunity to
study cultural practices involving cattle and the effect of
Unique cultural values of Madura cattle
Figure 1. Colour pattern of the rump and legs of Bali versus Madura cattle (source: Widi, T.SM).
cross-breeding. This paper aims to analyse the cultural
values of Madura cattle and the effect of cross-breeding
on these local traditions.
Materials and methods
Study areas
Madura (Figure 2) is a small, densely populated
Indonesian island located off the northeast coast of Java
Island. It is administered as part of East Java Province
and consists of four districts: Bangkalan, Sampang,
Pamekasan and Sumenep. Besides the mainland, Madura
has some small outer islands. The climate is tropical, exhibiting defined wet (September to February) and dry
(March to August) seasons, with an average annual rainfall
of 1 500–2 000 mm.
Two districts were used in this study (Figure 2). One was
Sumenep, within which is Sapudi, an isolated island that is
demarcated by the national government as a conservation
area for Madura cattle, particularly as a source of karapan
cattle. For the study, Nong Gunong, one of two subdistricts, was used. This study area will be described as
the “karapan” area. The second district was Pamekasan;
Waru, Pasean, Larangan and Pegantenan sub-districts
were used in this study. Waru and Pasean sub-districts
are famous as the source of sonok cattle and are wellknown as areas where the sonok contest started. This
study area will be described as the “sonok” area.
Larangan and Pegantenan sub-districts were selected by
local government as cross-breeding areas owing to
the abundance of crop by-products. Cross-bred cattle
are expected to have larger body sizes than Madura cattle
and, consequently, require more feed. Cross-bred cattle are
not used for draught purposes. All the crossbreds resulted
from Madura cows being inseminated with semen of
Limousin bulls. The farmers named the cross-bred cattle
madrasin. This study area will be described as “madrasin”
area. Since 2007 the local government has promoted a conformation contest for madrasin cattle. Madura cattle in the
madrasin area will be described as conventional Madura
cattle.
The three study areas do not only differ in cattle keeping
practices, but also differ in cropping practices. In the karapan area, cropping conditions are difficult because of
small farm sizes and poor fertility of the soil. In the
sonok area, tobacco is the main crop, which results in a
relatively good income (Smith, 2011). In the madrasin
area, more crop by-products are available mainly because
of the large paddy growing areas in this lowland area.
Data collection
Secondary data collection
Secondary data were collected from the Agricultural
Department of Indonesia, the Animal Husbandry Office
of East Java Province, Pamekasan and Sumenep District
offices, government websites, publications and institutional reports. These provided insights into the local situation and policies.
Participatory observations
Quantitative and qualitative information were collected
through participatory approaches involving farmers (cattle-
143
144
T.S.M. Widi et al.
Figure 2. Map of Indonesia and Madura Island with the three study areas (source: http://geography.about.com/library/cia/ncindonesia.htm).
keepers), government officials, community groups and
other key informants and through direct observation of
sonok, karapan and madrasin events. A historic overview
of the cultural events was based on the secondary data and
open interviews with key informants, comprising of persons well-versed in cattle keeping and cultural events,
such as heads of cultural event groups, experienced farmers or village elders (three persons per study area).
Semi-structured interviews were conducted with three categories of cattle-keepers: 30 karapan farmers, 37 sonok
farmers and 30 madrasin farmers. The farmers were interviewed about their background and motivation, technical
aspects such as cattle management and the economics of
cattle keeping. The input costs and the selling and buying
prices of individual cattle in a farm over a period of one
year (February 2010–January 2011) were estimated by
farmers. The input costs consisted of purchases of forage
and supplements, such as maize and rice bran, and
additional feeds such as herbs, eggs and palm sugar for
animals participating in the cultural events, veterinary services, AI or natural mating, training for and participating in
the cultural events and hired labour costs. The interviews
were used to evaluate the role of cattle in the livelihoods
of Maduranese people, and the special characteristics of
cattle that are important in maintaining local traditions.
Phenotypic characteristics of Madura and cross-bred
cattle
Phenotypic characteristics of cows in the study farms were
determined by taking height at withers, and estimation of
body weight by measuring chest girth, using a measurement tape (FHK Ogawa Seki Co. Ltd, Tokyo, Japan).
The age of each animal (in years) was determined by
inspecting its teeth.
Data analysis
The qualitative data were analysed descriptively. The
quantitative data were analysed using one-way ANOVA
to compare the different areas (Ott and Longnecker,
2001). Ranking was used to determine the level of agreement of farmers’ motivations for keeping cattle. General
Linear Model (GLM) (Ott and Longnecker, 2001) was
used to analyse ranking preferences. The smallest score
of rank meant the most important motivation and the highest score of rank meant the least important motivation.
Unique cultural values of Madura cattle
Results
The history of cultural cattle events in Madura
Island
Karapan
Karapan has a very long history. Noer and Maduratna
(1975) noted that on Sapudi Island, during the twelfth to
thirteenth century, Prince Katandur wanted to make the
soils more fertile. He introduced ploughing using a pair of
bulls. To encourage people to keep cattle, he created a bullracing game, karapan, in which pairs of bulls raced against
each other in a field. The equipment used in the race was
similar to equipment used in ploughing (Figure 3).
Over time, karapan became a favourite game for
Maduranese people, organized after the harvest season.
These are now held in nearly every village in the eastern
sub-districts. In these karapan races, two or three pairs
of bulls are raced over a course of 100–140 m pulling a
sledge with a jockey. The winners and losers of the first
round are assigned to separate categories, after which the
races continue according to the “cup system”: the winners
go on, while the losers drop out. A major competition is
held each year in which all the island’s districts are represented. Since 1982, races for tourists are organized in
western Madura Island.
In the 1970s, local government set some rules for karapan
(Noer and Maduratna, 1975):
(1) Karapan bulls have to be purebred Madura bulls.
(2) The minimum height at the withers of the bulls is 120
cm and the maximum 130 cm.
(3) The minimum age of the bulls is 2 years.
(4) Mistreating bulls during racing is not allowed.
(5) The minimum number of bull pairs having to participate in a sub-district is 40. At that time, there were
20 sub-districts in Madura Island, so 1 600 bulls
had to be used every year.
Nowadays, some of the rules are not respected because of
the limited availability of Madura bulls that fulfil the
Figure 3. Karapan race (source: Schultinga, M).
physical and age criteria for karapan. In 2011, in the biggest racing event, no more than 30 pairs of bulls competed.
The total number of bulls actually participating in karapan
is about 400 pairs on Sapudi Island and 200 pairs in Madura
mainland (Kuswadi, 2010, personal communication).
Sonok
The key events in the sonok have resulted from the common
practice in Madura that, from about 9 am until 1 pm, cattle
are tethered between two pillars, locally named tacek, in
view of the front veranda of the house. The cattle’s forefeet
stand on a platform, a piece of wood about 15 cm high,
while they are tethered. This tethering practice gives farmers
the opportunity to show their great pride in caring for their
cattle. In the meantime, farmers clean the cattle and the
barn, and undertake other activities, such as foot care and
horn shaping. In 1963, a village head became particularly
interested in farmers’ behaviour in caring for their cattle.
He showed cattle of good conformation tethered in the
front of farmers’ houses to high officials who were visiting
his village. This idea to show cattle daily became a routine
activity in the area (Anonymous, 2007)
In 1927, Sommerfeld (1927) described pajengan in which
farmers bring their cattle, especially female cattle, to be
tethered together in a field. In 1967, a local government
official organized pajengan activities twice a week during
the tobacco harvest season. Pajengan is currently still
taking place every month. It gives farmers an opportunity
to meet, showing their good cattle and sharing information
with the extension officers. Year after year, this event is
well supported by farmers (Rudi Haryanto, 2009, personal
communication).
Key informants mentioned that in the 1980s, to make
pajengan more attractive, the competing farmers chose
pairs of good females, harnessed to make them walk in
pairs and dressed with beautiful adornments. The pairs
of cattle, guided by a jockey, have to walk 25 m to reach
a finishing line, designed like a gate, while their forefeet
step in a harmonious manner. Saronen, traditional music,
Figure 4. Sonok contest (source: Widi, T.S.M).
145
146
T.S.M. Widi et al.
is played to accompany the cattle when they walk to the
stage. This event was named sonok; see Figure 4. The
total number of cattle participating in different sonok
events in Madura is about 600 pairs (Rudi Haryanto,
2009, personal communication).
Sonok cattle are judged by conformation traits, such as
height at withers, colour, body conformation, body condition, health and harmonious walking in a pair. Unlike
karapan, there are no winners and losers in this event.
Every contestant farmer receives a gift from the officials
without exception, and there is dancing accompanied by
traditional music. There are juries who provide the audience with information about the farmer, scores of performance during walking and their opinion about the matching
appearance of the pairs. Often the jury consists of influential people, for example, the head of the sonok community
group, the inseminator and the head of the district. Since
there are no winners, there is no gambling. Although
there are no prizes, the contest is very important because
during the contest day many transactions among farmers
take place; farmers can show their cattle and trade them
for good prices. The cows that perform well are very popular for breeding.
Madrasin
In the area where cross-breeding is practiced, farmers,
encouraged by the government, have organized the madrasin contest since 2007. The criteria are body size and body
weight, and, for cows, the conformation of their calves.
The cattle are tied up next to each other in the traditional
way for Madura cattle: rope goes through the nose of the
cattle and is tied between two pillars, and cattle stand
with their front legs on a platform. In the madrasin contest,
the cattle do not parade and are not harnessed or dressed
with adornments; see Figure 5. Responses from the interviews showed that the number of participants and the number of participating cattle are growing every year, but it is
less attractive to spectators than the karapan and sonok
events.
Figure 5. Picture of a winner in madrasin contest (source: Widi, T.S.M).
Livestock farming systems
Table 1 gives selected household and farm characteristics
for the livestock farming systems in the three study areas.
Karapan farmers were relatively older than farmers in the
other two areas. Most of the farmers have crop production as their main source of farm income. Family
size was significantly larger in the madrasin area. More
than half of the farmers in the three study areas only
completed elementary school. Farmers had a long experience in cattle keeping, about 20 years or more; karapan
farmers had significantly more experience than madrasin
farmers.
Cattle are the main livestock (Table 1). Goats, sheep and
chickens are of secondary importance. Even though the
land sizes of farmers in Sapudi Island were quite different from those of farmers in the sonok area, the number
of cattle was not much different. Farmers kept about
three head of cattle. Only in the madrasin area were
the numbers of cattle slightly smaller than in the two
other areas. Farmers in the sonok area will participate
in the sonok contest only if they have pairs of animals
that meet the criteria for participation and if they have
sufficient cash available to pay for the fee to join the
contest. If farmers in the karapan area have a pair of
potential racing bulls, they will first enter this pair in a
village race. If this pair runs well, they will enter the
pair in a regional contest. Again, a farmer will need
sufficient cash to join the race and to cover the additional
costs. When the farmers have insufficient cash to purchase cattle, the farmers join with other farmers.
Around 12 percent of the farmers were sharing cattle
(Table 1). The main occupation of the interviewees
was farming, although in the madrasin area, 23 percent
were traders or businessmen.
Motivations for keeping cattle
As in other areas in Indonesia, in Madura, cattle-keeping
serves various objectives. Table 2 shows the ranking of
the motivations for cattle-keeping in the three study
areas. Farmers mentioned the following motivations:
financial security (saving), income, providing manure, utilization of crop by-products, raising the social status of
their owner, cultural events, draught purposes and hobby.
Most farmers mentioned “saving” as the most important
motivation. Farmers consider saving in terms of being
able to sell cattle to meet unexpected or large expenditures,
such as sending children to school, paying hospital bills for
a family member, financing a wedding party or a pilgrimage to Mekka. Sonok and madrasin farmers gave income
as the second motive. Farmers consider income as the
cash they receive regularly from the annual sale of
progeny.
Karapan farmers ranked manure as the second most
important motive for keeping cattle. Farmers in the karapan area depend on their cattle for ploughing. Since
Unique cultural values of Madura cattle
Table 1. Characteristics of households and farms in the three study areas.
Area
Karapan (N = 30)
Age of household head (year)
Land size (ha)
Family size
Experience in cattle keeping (year)
Number of livestock per farm (n)1
- Cattle
- Cows
- Heifers
- Males
- Calves
- Small ruminants (goat/sheep)
- Chickens
Cattle ownership (%)
- Private
- Sharing
Main occupation (%)
- Farming
- Government official
- Trader/private business
- Labourer
Crops
Sonok (N = 37)
a
Madrasin (N = 30)
b
51.6 ± 13.5
0.31a ± 0.19
3.7a ± 0.3
26. 4a ± 2.7
45.4 ± 10.0
0.56b ± 0.76
4.5a ± 0.3
22. 3a,b ± 1.7
47.1a,b ± 10.7
0.73b ± 0.61
5.7b ± 0.4
20.1b ± 2.1
3 (1–6)
2 (0–4)
1 (1–2)
0 (0–1)
0 (0–2)
0 (0–4)
0 (0–6)
2 (1–6)
2 (1–6)
0 (0–2)
0 (0–4)
0 (0–2)
0 (0–2)
0 (0–10)
3 (1–13)
2 (0–6)
0 (0–2)
0 (0–6)
0 (0–2)
0 (0–6)
0 (0–6)
87
13
89
11
100
0
0
0
Maize, cassava and
groundnut
87
13
73
16
8
3
tobacco, maize, groundnut and
cassava
70
3
23
3
Rice, maize, tobacco and
cassava
a,b,c
Different superscripts indicate significant differences between areas (P < 0.05).
Non-significant.
1
Number of livestock is presented in mode and range.
ns
field sizes are small, and land is stony, a bit hilly and
dry, cattle are the best option for ploughing. They use
both pairs of cows or bulls for ploughing. If needed,
they will borrow an animal from a neighbour to match
their own animal. Sonok cattle are rarely used for
ploughing. Sonok farmers said that they are afraid that
ploughing will negatively affect the beauty of their
cattle. They only use cattle that are not participating in
sonok events for ploughing. Madrasin cattle are never
used for ploughing, because of the absence of a hump
(needed for the ploughing harness used) and their limited endurance. Another reason is that hand tractors
are used extensively in the madrasin area, which is a
lowland paddy-growing area.
Time allocation for caring for cattle
Table 3 gives the time spent caring for cattle in the three different areas. Sonok farmers and their family members spent significantly more time per day managing their cattle than
karapan and madrasin farmers. They spent time on cleaning
cattle, sunbathing, foot care and horn shaping. In the sonok
area, significantly more time was spent on these activities
than in the other two areas. Sonok respondents emphasized
Table 2. Farmers’ ranking of motivations for keeping cattle in the three study areas.
Role of cattle
Area
Karapan (N = 30)
Average score
1. Saving
2. Income
3. Manure
4. Social status
5. Cultural values
6. Draught power
7. Utilization of crop byproduct or backyard land
8. Hobby
1
2
1
Sonok (N = 37)
2
Madrasin (N = 30)
Rank
Average score1
Rank2
1.7a ± 0.9
2.4b ± 1.7
4.5c ± 1.8
4.4c ± 2.1
4.9c ± 2.3
7.5d ± 1.1
7.3de ± 1.7
1
2
4
3
5
7
6
2.1a ± 2.1
3.2b ± 2.9
3.4b ± 2.0
6.3c ± 2.4
8.0d ± 0.0
8.0d ± 0.0
7.5de ± 1.3
1
3
2
4
7
7
5
7.3e ± 2.4
6
7.8e ± 2.2
6
Rank
Average score
2.2a ± 2.1
5.1b ± 3.2
2.6a ± 0.9
5.9bc ± 3.0
6.4c ± 2.4
5.7bc ± 2.8
7.5d ± 1.3
1
3
2
5
6
4
7
8.4d ± 1.7
8
1
2
Different superscripts indicate significant differences between reasons (P < 0.05).
Rank = the smallest score of rank (1) means the most important motivation and the highest score of rank (8) means the least important motivation.
147
148
T.S.M. Widi et al.
Table 3. Time allocation per farm in caring for cattle in the three study areas.
Activity (h/day)
Area
1. Cleaning barn
2. Cleaning the cattle, sunbathing, foot caring, horn shape, etc.
3. Gathering feed
4. Offering feedns
5. Training
Total time spent (h/day)
Karapan
(N = 30)
Sonok
(N = 37)
Madrasin
(N = 30)
0.48a ± 0.40
3.40a ± 0.88
2.17a ± 0.48
1.08 ± 1.69
0.30a ± 0.57
7.42a ± 1.69
0.74b ± 0.47
3.94b ± 1.35
2.42ab ± 0.85
1.36 ± 0.43
0.38a ± 0.59
8.84b ± 1.98
0.39a ± 0.27
2.12c ± 0.34
2.50b ± 0.81
1.08 ± 1.98
0.00b ± 0.00
6.08c ± 1.12
a,b,c
ns
Different superscripts indicate significant differences between areas (P < 0.05).
Non-significant.
the cleanliness of their cattle and the surrounding environment, since the daily appearance of sonok cattle, in particular
during the contests and pajengan meetings, is very important.
Madura cattle are very docile and easy to handle. About
once a month, farmers pay attention to horn shape and
foot caring. Farmers have a special preference for horn
shape. They shape the horns when the cattle are around
4 months of age, by punching holes in the two horns
and binding them using a wire: this results in small to medium size horns, curving inwards perfectly symmetrically.
Most farmers shape cattle’s horns, even when the cattle
will not be used for cultural events. They check the
hoofs of cattle participants in the karapan or sonok contest
very regularly. Farmers use simple equipment for foot
caring.
Madrasin farmers spent the least amount of time on caring
for their cattle (P < 0.05). However, per animal, the time
allocation was about the same in the three areas. This
was because the madrasin farmers kept slightly fewer animals than the other farmers, and forage collection took up
a large amount of time for madrasin cattle.
Physical characteristics of the cows
Table 4 shows that cows in the sonok area were higher and
heavier (P < 0.05) than karapan and conventional Madura
cows in the madrasin area. Madrasin cows were significantly higher and heavier compared with their conventional Madura herdmates. Sonok cows, however, were
comparable with madrasin cows in these measurements.
Both sonok and madrasin cows had a significantly higher
body condition score compared with karapan cows and
conventional Madura cows in the madrasin area.
Selling prices, costs and profit estimates
The time to sell cattle varies with the purpose of cattlekeeping. In general, farmers sell animals when they need
cash, but they also sell “surplus” animals because they
keep a specific number of animals in relation to the
feeds available and the time they have available to care
for their animals. Farmers sell weaned cattle for fattening
or breeding, usually at 4–6 months after weaning, mainly
to traders, whereas cattle for cultural events are sold
directly to other farmers who are looking for cattle that
can participate in the cultural events. Sonok farmers said
that sometimes they are looking for cattle whose appearance is well-suited to be paired with one of their own
cattle. Once they find a well-matched animal they are willing to offer a good price. Sonok cows are used not only for
the cultural event but also for breeding, whereas only
excellent karapan bulls are used as breeding bull. Once
karapan bulls cannot be used for racing anymore, for
instance they are already old or injured, they will be sold
for slaughter. During the survey, only two karapan bulls
were used both in the cultural event and for breeding.
Table 5 presents the comparison of cattle prices and input
costs among purposes and areas. The selling prices of animals below 1.5 years indicate that animals used for cultural
Table 4. Physical characteristics of Madura and madrasin cows in each study area.
No.
1.
2.
3.
4.
a,b,c
1
Physical characteristic
Age (year)ns
Height at the withers (cm)
Body weight (kg)
Body condition score (BCS)
Area
Karapan
Sonok
Madura (N = 52)
Madura (N = 61)
Madura (N = 53)
Madrasin cross1 (N = 18)
4.5 ± 1.9
116.4 ± 4.9a
294.3 ± 43.0a
2.6 ± 0.5a
4.3 ± 1.3
128.4 ± 6,1b
392.3 ± 60.4b
3.9 ± 0.7b
4.9 ± 2.7
119.2 ± 10.7c
279.1 ± 89.0a
2.6 ± 0.8a
4.5 ± 0.2
125.7 ± 6.2b
400.1 ± 92.6b
3.8 ± 0.7b
Different superscripts indicate significant differences between areas (P < 0.05).
Madrasin cross: cross of Madura (♀) × Limousin (♂).
Madrasin
Unique cultural values of Madura cattle
purposes fetch much higher prices (P < 0.05) than their
herdmates not used for cultural events. Also, the cash
inputs are considerably higher (P < 0.05) for animals participating in cultural events. At (relatively) the same age and
body weight, Madura cattle used for cultural events were
valued at prices that were 2–3.5 times higher than cattle
not participating in cultural events. Karapan and sonok
farmers spent considerably more money on cattle older
than 1.5 years, which participate in the cultural activities,
86 and 87 percent, respectively, than on their herdmates
with no cultural function. In particular, the additional
feed costs were high for cattle participating in the cultural
events.
The price of madrasin cattle usually depends on body size.
Even when an animal wins the madrasin contest, the
slaughter price is based on its body weight. In 2009, a
800 kg cross-bred bull won the contest, and a butcher
bought it for 22 Million IDR (1 US$ = 9200 IDR), a normal price per kg live weight.
The profits per animal aged more than 1.5 years for cattle
participating in karapan and sonok were 3 and 2 times
higher, respectively, than for their non-cultural herdmates
(Table 5). Madrasin cattle did not show significantly higher
profit than their conventional Madura herd-mate cattle.
Cattle not participating in the cultural event in the sonok
area gave a more-or-less similar profit as madrasin cattle.
Discussion
The introduction of cross-breeding in Madura has highlighted that the Madura cattle population is not homogeneous. There are three cattle production systems, each
in a more-or-less separate area, with now four types of
cattle: karapan, sonok, madrasin and conventional
Madura cattle. The main source area of karapan cattle is
Sapudi Island. Sonok cattle are found mainly in the northern part of Madura Island. Madrasin cattle and the conventional Madura cattle can be found in the rest of Madura
Island. This zonation reflects different cattle production
systems in terms of cattle management practices and cultural activities. These differences also emphasize the
need for different conservation and breeding strategies
for the different Madura cattle sub-populations.
Synergy of culture and cattle farming in Madura
Karapan and sonok events as well as Madura cattle are
unique, as markers of the traditions and culture for
Maduranese people (De Jonge, 1990; Smith, 2011). The
events are famous, not only in Madura itself but also
throughout Indonesia and even abroad. Thus, they are
also a tourist attraction. The total number of spectators in
all events in a year is approximately 20,000–25 000
people. Karapan is much older and better known than
sonok, but the enthusiasm for sonok seems to increase
year by year. Sonok may become as important for rural
tourism as karapan and might be preferred in the future
because there are concerns about cruelty to karapan cattle
and gambling during racing. Even though there is a rule
about not hurting the bulls during racing, in practice, to
get the bulls to run faster, people use nails or thorns, causing wounds and then even pour salt or lemon into the
wounds (Kuswadi, 2009, personal communication). On
Madura, spiritual leaders are already criticizing these practices and the gambling during karapan events.
The cultural practices have a marked effect on cattle husbandry. Cattle used for cultural events are well cared for
and trained. This gives the owners an overall sense of wellbeing. Most writers about Madurese society emphasize the
attention that is given to the animals. The men are said to
be more devoted to their animals than to their wives (De
Jonge, 1990). Karapan and sonok farmers give intensive
daily care and exercise to their animals (about 3 h/day
per animal) to improve their physical appearance and performances. They also spend considerably more money (on
average 46.5 percent) on better quality feeds for the animals that participate in the cultural events.
Alderson (2003) mentioned that breed characteristics that
are important for socio-cultural practices generally relate
to the appearance of an animal, and traits that define the
market value of an animal. Also, in Madura, cultural
values have a strong economic component. Most karapan
and sonok farmers argued that they like the race or contest
because it keeps the prices of cattle high. Karapan and
sonok farmers received more than 50 percent higher prices
for breeding stock than the normal market prices. Not only
the prices of karapan and sonok cattle that participate in
the contests were high, but also the overall input costs
(Table 5). In general, farmers in the sonok area are relatively well-off due mainly to the income generated from
tobacco (Smith, 2011). Part of this income will be invested
in their sonok cattle and the participation in sonok events.
Effect of cross-breeding on culture and cattle
farming
Farmers outside the karapan and sonok areas kept conventional Madura cattle before the introduction of Limousin
semen. These were relatively small in size. This made it
easy for the government to introduce Limousin semen at
that time, as the farmers wanted cattle as big as the
sonok cattle. Almost all madrasin farmers said that they
took more pride in keeping madrasin cattle than conventional Madura cattle. Table 4 shows that cross-breeding
increased the body size of cows to about one-third. The
body condition score of madrasin cows was also much
higher than that of their conventional Madura herdmates.
Cross-bred animals were fed better; this resulted in higher
feeding costs for madrasin cattle (Table 5). Nevertheless,
the selling prices minus the total cash costs for the period
an animal is kept, show that the cash profits of madrasin
animals were on average, 55 percent higher than from conventional Madura herdmates (Table 5). The economic
149
(N = 10:♂ = 10;♀ = 0)
2.86 ± 1.21
1.03 ± 0.08
21.90a ± 8.70
4.30a ± 1.80
0.34 ± 0.16
3.70 ± 1.5 (86.0%)
0.006 ± 0.02
0.01 ± 0.01
0.25 ± 0.20(5.8%)
0.00
4.4 ± 1.8
17.6 ± 7.8
15.9a ± 9.6
>1.5 year
Age (year)
Period of keeping (year)
Selling price (Million IDR)
Total annual input cost (Million IDR)
• Forage
• Additional feed
• Veterinarian
• AI/mating
• Training, racing/contest
• Labour
Total input cost per period of keeping5 (Million IDR)
Estimated profit per period of keeping6 (Million IDR)
Annual profit7
(N = 6:♂ = 0;♀ = 6)
3.00 ± 1.38
1.83 ± 0.91
6.17b ± 0.68
0.08b ± 0.10
0.07 ± 0.10
0.00
0.004 ± 0.01
0.01 ± 0.01
0.00
0.00
0.17 ± 0.3
5.9 ± 0.7
3.9b ± 1.6
(N = 22:♂ = 10;♀ = 12)
0.36 ± 0.21
0.37 ± 0.20
2.85b ± 0.87
0.04b ± 0.11
0.04 ± 0.09
0.00
0.00
0.00
0.00
0.00
2.6b ± 0.9
Animals not in the event
(N = 10:♂ = 0;♀ = 10)
2.21 ± 0.94
1.27 ± 0.34
25.44a ± 4.40
4.66a ± 1.60
0.24 ± 0.22
2.35 ± 0.94(50.4%)
0.009 ± 0.02
0.006 ± 0.01
2.07 ± 0.83 (44.4%)
0.00
6.01 ± 3.1
19.4 ± 5.5
17.8a ± 11.5
(N = 12:♂ = 0;♀ = 12)
0.75 ± 0.29
0.68 ± 0.30
20.38a ± 5.27
2.83a ± 2.16
0.09 ± 0.14
1.12 ± 0.93 (39.6%)
0.01 ± 0.03
0.00
1.50 ± 1.29 (53.0%)
0.03 ± 0.09
18.1a ± 4.3
Animals in the event
(N = 11:♂ = 0;♀ = 11)
2.85 ± 1.34
2.01 ± 0.70
11.59a ± 4.43
1.03b ± 0.50
0.36 ± 0.23
0.66 ± 0.37
0.00
0.007 ± 0.01
0.00
0.00
2.1 ± 1.6
9.4 ± 4.3
5.1b ± 2.5
(N = 18:♂ = 6;♀ = 12)
0.51 ± 0.29
0.48 ± 0.25
5.88b ± 2.26
0.12b ± 0.25
0.06 ± 0.41
0.06 ± 0.11
0.00
0.00
0.00
0.00
5.8b ± 2.1
Animals not in the event
Sonok
Area/category of cattle
(N = 9:♂ = 0;♀ = 9)
3.27 ± 0.87
1.3 ± 0.62
6.59a ± 1.66
0.45a ± 0.39
0.19 ± 0.25
0.24 ± 0.19
0.00
0.06 ± 0.02
0.00
0.00
0.6 ± 0.7
5.9 ± 1.6
4.2a ± 2.2
(N = 4:♂ = 0;♀ = 4)
0.85 ± 0.44
0.77 ± 0.43
5.93a ± 2.79
0.24a ± 0.36
0.14 ± 0.27
0.11 ± 0.88
0.00
0.00
0.00
0.00
5.7a ± 3.0
Madura breed
1
(N = 29:♂ = 16;♀ = 13)
2.65 ± 0.89
1.58 ± 0.49
12.15b ± 4.89
0.91a ± 0.40
0.47 ± 0.27
0.42 ± 0.22
0.003 ± 0.009
0.006 ± 0.02
0.00
0.05 ± 0.18
1.5 ± 0.9
10.6 ± 4.7
7.5a ± 4.3
(N = 16:♂ = 13;♀ = 3)
0.68 ± 0.42
0.64 ± 0.30
7.65a ± 5.53
0.23a ± 0.28
0.11 ± 0.18
0.11 ± 0.14
0.00
0.00
0.00
0.00
7.4a ± 5.2
Madrasin cross2
Madrasin
Different superscripts indicate significant differences between different categories of cattle between areas (P < 0.05).
One US $ = 9,200 IDR.
2
Madrasin cross: cross of Madura (♀) × Limousin (♂).
3
Time needed to keep cattle from purchasing or being born until sold.
4
Feeds that are added into the basal diet (forage), such as concentrate, rice bran, maize bran, palm sugar, herbs, etc.
5
Total input cost per period of keeping (Million IDR) for cattle with age group >1.5 years was calculated by multiplying total annual input cost (Million IDR) and period of keeping (year).
6
Profit per period of keeping (Million IDR) was calculated by deducting total input cost per period of keeping (Million IDR) from selling price (Million IDR).
7
Annual profit (Million IDR) = Profit per period of keeping (Million IDR)/period of keeping (year).
a,b
(N = 13:♂ = 13;♀ = 0)
0.60 ± 0.29
0.47 ± 0.27
14.81a ± 8.1
0.90a ± 0.80
0.04 ± 0.10
0.80 ± 0.69 (88.9%)
0.01 ± 0.02
0.00
0.07 ± 0.08 (7.8%)
0.00
14.2a ± 8.1
Animals in the event
Karapan
<1.5 year
Age (year)
Period of keeping3 (year)
Selling price (Million IDR)
Total input cost per period of keeping (Million IDR)
• Forage
• Additional feed4
• Veterinarian
• AI/mating
• Training, racing/contest
• Labour
Profit per period of keeping (Million IDR)
Age group/
Table 5. Age, period of keeping, selling price, input costs and cash profit per period of keeping of Madura and madrasin cattle based on the age group, area, purpose of keeping cattle and type of
cattle (Million IDR)1.
150
T.S.M. Widi et al.
Unique cultural values of Madura cattle
profit estimates in Table 5 ignore the other benefits cattle
provide, such as manure, draught power and security. A
comprehensive economic analysis is needed to calculate
the overall benefits of the different types of cattle keeping
(Smith, 2011).
Also, cross-breeding contributes to the overall pride resulting from keeping cattle that perform well. The madrasin
contest was initiated by the government and seems a topdown initiative. It attracts in particular farmers; no tourists
attend. The main motivation of farmers for enrolling their
animals in the contest is the expectation that it can result
in a fair price for their animals, since all the participants’
cattle are weighed and the price per animal is based on
the actual weight. In general, when the cattle are sold, the
prices that traders offer are based on visual appraisal only.
Cross-breeding is not only influencing the feeding practices and selling prices of cattle, but also influences the
cattle trade flows. Key informants explained that most
small-scale slaughter-men in Madura do not like to slaughter cross-bred animals as they cannot handle and sell the
products within one day. Therefore, cross-bred slaughter
animals are transported as live animals to the abattoir in
Surabaya, the nearest major city in Java.
Conservation and breeding developments
The different farming systems and the different cultural
events, and consequently the different types of Madura
cattle, show the importance of considering local variation
when developing conservation strategies. Government
bodies that are concerned with livestock conservation
focus primarily on numerical factors (Alderson, 2009).
Also, in Indonesia, the inventory of animal genetic
resources for the FAO world’s animal genetic resources
gives only the total number of Madura cattle
(Anonymous, 2003). It does not distinguish between
different Madura types of cattle.
Although Sapudi is designated by the government as an
in-situ conservation area for Madura cattle (Anonymous,
2003), until now, no specific conservation strategies have
been implemented, except that cross-breeding is not
allowed. In the whole of Madura, there are no reliable
data on numbers of different cattle. There is an urgency
to correct that deficiency, especially in the face of the
rapid change in the genetic structure of the island’s cattle
herd because of the high adoption rate of cross-breeding
in the major part of the island.
Field observations and the discussions with key stakeholders indicated that the populations of cattle in the karapan and sonok areas are relatively small: about 45 000
and 50 000 animals, respectively. However, there is no
immediate threat that these populations will be reduced
by cross-breeding because of the continuing importance
of the cultural values of the karapan and sonok events.
It is unlikely that the ban of importing other cattle, in
particular crossbreds, in Sapudi Island will be lifted.
Nevertheless, the future of the karapan event is at stake.
There is no strict adherence to the government rules for
the karapan race, and the numbers of bulls that can join
a karapan race is going down.
Inbreeding is strictly avoided in the sonok area, by circulating the bulls between villages whereas, in the karapan
area, which is an isolated island, selection to avoid
inbreeding is not done. This may have contributed to the
small size of karapan cows. This requires urgent attention,
as it can be a threat to karapan as well as the capacity for
ploughing on Sapudi Island.
AI was introduced in the late 1990s in Sapudi Island, but it
was never a success. The main reasons were that infrastructure was poor, the availability of AI personnel was limited,
farmers considered AI a sin and an abnormal way of mating
their cattle, and farmers never believed that the Madura
semen used for AI was from a karapan bull.
The phenotypic performances of sonok cattle are comparable with the performances of madrasin cattle. This shows
that through good breeding practices, farmers have maintained good performances of sonok cattle. This guarantees
successful conservation of Madura cattle in the sonok area
in the future.
It can be speculated that, in the future, the great majority of
the conventional Madura cattle will be crossbreds. Farmers
outside the sonok and karapan areas prefer the madrasin
cattle over conventional Madura cattle due mainly to their
heavier body weights and consequently higher market
prices; although farmers said that they are aware that there
is a risk that the second and third generations of cross-bred
cattle will show poorer performances than the present F1
crossbreds. Research is needed on the performances of future
generations of crossbreds to inform farmers about potential
losses in production with continuing cross-breeding.
The governmental breeding centre is promoting crossbreeding in the south of Madura and Madura cattle in
the north. Unfortunately, it does not distinguish between
the sonok and karapan sub-populations. The present topdown approach towards implementing the conservation
of Madura breed has to be turned into support approaches
that involve the livestock keepers themselves.
Assessment of cultural values
Gandini and Villa (2003) developed a framework for
assessing different cultural contributions of livestock
breeds in Europe with the aim of strengthening their conservation. The present study illustrates the complexity
behind assessing cultural values of local breeds in
countries such as Indonesia. Cultural assessments should
not be restricted to identifying cultural functions and estimating market value of cultural products and services; they
have to include the effect of cultural functions on management and specific requirements for animals that have cultural value, and the social and economic contribution of
151
152
T.S.M. Widi et al.
these animals to the livelihoods of the households
concerned.
The Madura example shows that the cultural value of a
specific breed can be related to a complex mix of areaspecific cultural functions that are associated with different animal performances, management practises and
economic benefits. Consequently, participatory research
approaches are needed to unravel such complexities,
with information collection at animal, farm and regional
levels.
farmers community as well as all farmers. Last but not
least, the first author would like to thank the undergraduate
students for their support and assistance in collecting the
data.
References
Alderson, L. 2009. Breed at risk: definition and measurement of the
factors which determine endangerment. J. Livestock Sci. 123: 23–27.
Anderson, S. 2003. Animal genetic resources and sustainable livelihoods. J. Ecological Economics. 45: 331–339.
Conclusions
The Madura cattle example shows that the cultural values
of livestock can be a main driver of maintaining a local
breed. The enthusiasm of people and farmers for maintaining the cultural values attached to Madura cattle, and consequently the high prices for cultural cattle are keys to
conserve the Madura cattle within the areas where the cultural events are maintained. The future of sonok cattle is
better than karapan cattle in terms of performances, and
general preference of people. Cross-breeding will not
directly influence the cultural events and management
practices of Madura cattle in the areas where the cultural
events are important. In the areas where the cultural events
are not important, farmers, however, take more pride in
keeping madrasin than conventional Madura cattle, mainly
because of their growth performance and the resulting
financial benefits. Therefore, cross-breeding is an immediate threat to the future of conventional Madura cattle in the
main part of Madura. Monitoring and characterization of
animal genetic resources studies have to consider cultural
values of livestock breeds and how these values interact
with management practices, animal performances and
economic benefits.
Anonymous. 2003. National Report on Animal Genetic Resources
Indonesia; a Strategy of Development. Department of Agriculture,
Jakarta.
Anonymous. 2007. Riwayat singkat tentang kegiatan sapi cangkean/
pajangan dan sapi sono di kecamatan Waru. Kabupaten
Pamekasan, Pamekasan.
Barwegen, M. 2004. Browsing in livestock history; large ruminants
and the environment in Jawa, 1850–2000. In P. Boomgaard, &
H. David, eds, Smallholder and Stockbreeders; Histories of
Foodcrop and Livestock Farming in Southeast Asia. KITLV Press,
Leiden: 283–306.
De Jonge, H. 1990. Of bull and men: The Madurese aduan sapi.
Bijdragen tot de Taal-, Land-en Volkenkunde 146(4): 423–447.
FAO. 2007. Global Plan of Action for Animal Genetic Resources and the
Interlaken Declaration. FAO, Rome (available at http://www.fao.org/
docrep/010/a1404e/a1404e00.htm).
FAO. 2012. Phenotypic Characterization of Animal Genetic Resources.
FAO, Rome (available at http://www.fao.org/docrep/015/i2686e/
i2686e00.htm).
Gandini, G.C. & Villa, E. 2003. Analysis of the cultural values of local
livestock breeds: a methodology. J. Anim. Breed. Genet. 120(1): 1–11.
Mohammad Noer, D. & Maduratna, Ch. 1975. Kerapan sapi: permainan dan kegemaran rakyat di kepulauan Madura. Kinta, Jakarta.
Ott, R.L. & Longnecker, M. 2001. An introduction to Statisctical
Methods and Data Analysis. Duxbury, Thomson Learning, Inc,
Pacific Grove, CA.
Acknowledgements
Payne, W. & Rollinson, D. 1976. Madura cattle. J. Z. Tierzüch
Zuchtsbiol 93: 89–100.
The first author was supported by a PhD grant from the
Directorate General of Higher Education, Department of
Education, Republic of Indonesia. The first author
acknowledges the support of the DGHE, Gadjah Mada
University and Animal Production Systems, Wageningen
University, the Netherlands, staff members of Livestock
Bureaus in Madura, the leaders of sonok and karapan
Smith, W. 2011. Ecological anthropology of households in East Madura,
Indonesia. Wageningen University, Wageningen (Ph.D. thesis).
Sommerfeld, K. 1927. Das Madurarind, ein hervorragender Typ der
Java-Madura-Sumatra-Rasse, eine kombinationszuchtung zweier
Rinderarten, des Balirindes (domestizierten Bantengs) und des vorderindischen Zebus und seine wirtschaftliche und sonstige Verwendung
und Bedeutung. J. Zeitschrift fur Tierzüchtung und Zuchtungsbiologie
8: 65–112.
Animal Genetic Resources, 2014, 54, 153–162. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000083
Some traditional livestock selection criteria as
practiced by several indigenous communities of
Southern Ethiopia
Sandip Banerjee, Mohammed Beyan and Hiwot Bekele
School of Animal and Range Sciences, Hawassa University, Hawassa Ethiopia
Summary
Livestock husbandry plays an important role in the rural economy of the country in a tangible or intangible way. The livestock are
selected for their functional efficiency and also for their adaptability to the particular agro climate. The study was conducted at two
selected woredas (districts) of Southern Ethiopia and was based on individual interviews; focus group discussion and questioner survey.
The results indicated that livestock are selected based on some traditional methods by the elders of the society. The respondents indicated that they maintained informal pedigree for cattle and horses based on their dam line, while phenotype of an animal viz. presence
or absence of hair whorl, udder and teat length, length of the legs, body length played an important role in selecting the bovines. Tail
type, presence of wattles, leg length and coat colour were considered while selecting the small ruminants. Chickens with single comb
are preferred over the other types. Coat colour played an important role in selection for functional efficiency of cattle. The study indicated that most of these selection attributes had correlation with the production and reproduction efficiency of the livestock as was
explained by several authors. It is suggested that further studies should be carried out to validate the selection methods and incorporate
them in region-wise livestock selection strategies.
Keywords: livestock selection, Southern Ethiopia, traditional methods
Résumé
L’élevage joue un rôle important dans l’économie rurale du pays de façon tangible ou intangible. Le bétail sont sélectionnés pour leur
efficacité fonctionnelle et aussi pour leur capacité d’adaptation au climat agro particulier. L’étude a été menée dans deux woredas
sélectionnés du sud de l’Ethiopie et a été basée sur des entretiens individuels, groupes de discussion sondage de discussion et
poser des questions. Les résultats indiquent que le bétail sont sélectionnés sur la base des méthodes traditionnelles par les anciens
de la société. Les répondants ont indiqué qu’ils maintenaient pedigree informel pour les bovins et les chevaux en fonction de leur
lignée maternelle, alors que le phénotype d’un savoir sur les animaux. La présence ou l’absence de spirale de cheveux, la mamelle
et les trayons longueur, la longueur des jambes, la longueur du corps ont joué un rôle important dans la sélection des bovins. Type
de queue, la présence de barbillons, la longueur des jambes et la couleur du pelage ont été considérés lors de la sélection des petits
ruminants. Poulets avec un peigne simples sont préférés aux autres types. Robe a joué un rôle important dans le choix de
l’efficacité fonctionnelle du bétail. L’étude a indiqué que la plupart de ces attributs de sélection avait corrélation avec la production
et l’efficacité de reproduction du bétail comme cela a été expliqué par plusieurs auteurs. il est suggéré que d’autres études doivent
être menées afin de valider les méthodes de sélection et de les intégrer dans les stratégies de sélection du bétail sages de la région.
Mots-clés: sélection du bétail, méthodes traditionnelles, Sud d’Éthiopie
Resumen
La ganadería desempeña un papel importante en la economía rural del país ya sea de forma tangible o intangible. El ganado es seleccionado en base a su eficiencia funcional y también de acuerdo con su capacidad de adaptación a unas condiciones agroclimáticas
particulares. Este estudio fue llevado a cabo en dos woredas del Sur de Etiopía y para su realización se emplearon entrevistas individuales, grupos focales de discusión y una encuesta. Los resultados indicaron que el ganado es seleccionado por los ancianos del lugar
en base a métodos tradicionales. Las personas encuestadas señalaron que controlan, de manera informal, la genealogía del ganado
bovino y de los caballos, siguiendo la línea materna. Rasgos fenotípicos del animal como, por ejemplo, la presencia o ausencia de
remolinos de pelo, el tamaño de la ubre y la longitud de los pezones, la longitud de las patas y la longitud del cuerpo son criterios
importantes para la selección del ganado bovino. El tipo de cola, la presencia de mamellas, la longitud de las patas y el color de la
capa son aspectos que se tienen en cuenta para la selección de los pequeños rumiantes. En cuanto a las gallinas, se prefieren
aquéllas con cresta sencilla. El color de la capa juega un papel destacado cuando la selección va encaminada a mejorar la eficiencia
funcional del ganado bovino. El estudio mostró que la mayoría de estos atributos de selección estaban correlacionados con la eficiencia
productiva y reproductiva del ganado, tal y como ya había sido observado por varios autores. Se sugiere que los próximos estudios
Correspondence to: S. Banerjee, School of Animal and Range Sciences, Hawassa
University, P.O. Box 05, Hawassa, SNNPRS, Ethiopia. email: sansoma2003@
yahoo.co.in; [email protected]
153
154
S. Banerjee et al.
deberían ir dirigidos a validar los métodos de selección para, a continuación, incorporarlos en las estrategias de selección de ganado de
la región.
Palabras clave: selección del ganado, métodos tradicionales, Sur de Etiopía
Submitted 5 September 2013; accepted 27 February 2014
Introduction
Livestock husbandry plays an important role in shaping
the livelihood among all traditional societies of the
world. Since the advent of agriculture, livestock rearing
has been an integral part of rural development. The livestock species being reared and the type within a species
have been largely selected by rearers keeping in mind
the needs and prevailing agro climate in the region.
Such a delicate balance between need, adaptation and
availability of the livestock species govern the development of a particular type which is further selected both
naturally and by the inhabitants to suit their specific
requirements. In the last century, many temperate livestock breeds were introduced in Asia, Africa and Latin
America which altered the traditional livestock husbandry
practices and also the introduction of modern selection
criteria has led to the dilution of the traditional attributes
of livestock selection in these regions. Result of a study
by Mohanty (2004) indicated that selection of livestock
has been an age old practice in India and the methods
are often made simple by integrating it with the folk traditions, similar observations have also been reported by
Hiwot (2013) from Ethiopia, where she recorded folk
songs sung by the livestock rearers of Southern
Ethiopia indicating the virtues of good cattle, in both
cases the authors have observed that the selection methods are mostly based on the phenotypic description of
the livestock. As indicated by Jena (2007) indigenous
technical knowledge (ITK) is an integral part of the culture and history of local communities. It has evolved
through many years of regular experimentation on the
day-to-day life and available resources surrounding the
community, and is essential for maintenance of the genetic resources for continued survival of the breed/type.
Indigenous knowledge has significance in the designing
of sustainable farming systems including animal husbandry practices thereby improving the livelihood of rural
populations who accept, develop and maintain innovations and interventions (Singh and Kumar, 2012).
Ghosh and Sahoo (2011) were in the opinion that ITK
is essential for the maintenance of genetic resources
(both plant and animal) for the well being, sustenance
and development of the community.
The present study highlights some of the traditional livestock selection methods as practiced by the inhabitants
of two woredas of the Sidama zone of Southern Ethiopia.
Materials and methods
The study was conducted at Arbegona and Lok Abaya woredas situated in SNNPRS region of Southern Ethiopia. The
Arbegona woreda is situated between 6.47′N and 6°82′N
latitude 38°59′E and 38°84′E longitudes. The agro ecology
of the woreda comprises 92percent (highland) and 8 percent mid land although Lok Abaya woreda is situated
West of Lake Abaya (6°17′25″N 37°49′44″E) and the
major part of the woreda is in the lowlands. These two woredas were purposively selected as they were identified by
the Bureau of agriculture to have a large section of agrarian
society practicing traditional livestock husbandry practices.
The two woredas are in contrast to each other as the former
is largely highlands and midlands whereas in the latter a
major part is the lowlands; based on the agro climatic conditions the livestock selection methods too were expected to
be different. The study was conducted using stepwise purposive selection methods. The respondents were selected
from the community based on their history of livestock
rearing followed by their association with livestock husbandry methods, furthermore the selection was narrowed
down to people who practiced traditional methods of selection for the livestock they owned. Thus, five kebeles (villages) were selected based on their proximity to all
weather roads, three villages (Toga, Rooko and Hafurssa
Nameto) were selected from Arbegona woreda, whereas
two villages (Falka and Abaya Zurya) were selected from
Lok Abaya woreda.
The study was based on a semi-structured questionaire followed by focus group discussions and individual interviews. The respondents were also requested to practically
show the selection criteria they followed for their livestock, all the interviews were video recorded. The data
were analysed using simple descriptive statistics (percentage and ranking).
Results
The results of the study indicated that almost all the
respondents were elders (aged above 50 years) and most
of them did not have any formal education, these observations are in accordance with the findings of Mesfin and
Obsa (1994), Fekadu (2010) and Mishra and Patro
(2010) who also reported that the harbourers of traditional
Some traditional livestock selection criteria as practiced by several indigenous communities of Southern Ethiopia
fermented curd) are considered as delicacies in Ethiopian
cusine, thus requiring a lot of dairy inputs. The results
also indicate that the respondents in Arbegona rear livestock to supplement their income while those of Lok
Abaya prefer to rear livestock as a source of tribal pride
and insurance against unforeseen calamities. However,
the study also indicates that the sale of livestock products
such as hide, meat etc., is ranked the lowest as there is a
lack of market opportunities for the sale of such value
added livestock products. It was also observed during the
study that the respondents of Arbegona woreda still barter
dairy products for household commodities like salt, the
findings are in accordance with the results of Fekadu
(1994), from southern parts of Ethiopia and also from
Amhara region by Azage et al. (2010). The uses of livestock
as a source of income and for fulfilling emergency needs are
in accordance with the observations of Iqubal (2013).
Table 1. Various reasons for rearing livestock as indicated by the
respondents.
Purpose of keeping livestock
Milk and milk products
Income source
Pride and insurance
Others (hide, skin, traction, meat etc.)
Arbegona
Lok Abaya
1st
2nd
3rd
4th
1st
3rd
2nd
4th
1 denotes the most and 4 the least important criteria.
knowledge are the elders among the community. The
results from Table 1 indicate the various reasons for
which the respondents prefer to rear livestock. The results
indicate that the primary reason is to meet their requirements of dairy products. Butter is an important product
both for culinary uses like niter kibbeh (clarified spiced
butter used in almost all the dishes) and also as a hair
moisturiser for women. Moreover, Ayib (Ethiopian cottage
cheese prepared from fermented milk) and Ergo (naturally
The results from Table 2 indicate the criteria used by the
respondents for selection of livestock. The results also
Table 2. Criteria used for selection of livestock by the respondents in the study areas.
Criteria
A (percent)
L (percent)
Selection for milking cow and heifer
✓ Small head, thin slender neck in cow
✓ Long teat, well-structured udder
✓ Good milk veins
✓ Large, hollow body cavity
✓ Thin skin denotes high milk yields
✓ Fine tail of a cow, not too long
✓ Docility, hence good lactation and fertility in cows
✓ Hair whorl at the back
✓ Straightened rear flank
✓ Hind loin no flesh
✓ Prominent pelvic girdle and tail bone
55
89
45
32
6
54
44
75
63
56
62
49
91
86
27
66
56
52
4
55
54
44
Selection of bull
✓ Long penis and short and thick neck denotes good fertility in bull
✓ Straight and strong hump
✓ Large scrotum
✓ Strong voice denotes fertility
✓ Broad ear
✓ Long tail
✓ Lengthy and good temperament
86
68
89
67
23
56
77
78
78
90
77
18
43
86
Selection of cattle for fattening
✓ Straight backbone
✓ Straight legs denote good meat production
78
54
86
63
Selection of ox
✓ Body length and muscularity
✓ Castrated
✓ Not very fat
76
45
11
68
61
31
Sheep and goat
✓ Big udder in goat milk production
✓ Long penis and large scrotum denote good fertility
✓ Well-developed wattle
✓ Flat and broad ear
✓ Fat and broad tail in sheep while short for goats
✓ Long and thin legs
✓ Colour
–
45
90
56
54
–
44
78
37
97
68
44
100
Selection of horse
✓ Thin and long leg
✓ Aggressive and muscular
✓ Long tailed
✓ Sire line
✓ Broad hoof
89
78
56
49
87
Selection of poultry
✓ Single comb
78
A, Arbegona L, Lok Abaya.
67
155
156
S. Banerjee et al.
based on its body length and muscularity, it should be
castrated with not much fat, the rankings are consistent;
however, the degree varied between the respondents of
the two woredas.
Figure 1. Dairy traits were used by the respondents of Lokabaya to select a
cow.
indicate that while the primordial criteria for the selection
of milch cattle as was reported by the respondents from
both the studied woredas was the length of the teat and
well-structured udder (Figure 1), followed by prominent
milk veins in Lok Abaya and hair whorls on the back in
Arbegona. The third important criteria as mentioned by
the respondents in Lok Abaya was the presence of thin
skin among the cattle while those from Arbegona preferred
to give importance to straight rear flank and prominent pelvic girdle and tail bones.
The study further indicated that the bulls were selected
based on the size of their scrotum with larger scrotum
denoting better fertility this criterion was similar in both
the studied areas, this was followed by the length of the
penis where it was considered by the respondents that
bulls with longer penis had better fertilizing ability, this
was followed by selection of docile bulls (for better handling) and also the bulls with longer body length were considered to have a better libido. The results also showed that
the respondents selected bulls with hoarser voice, which
they thought denoted muscularity.
The selection of fattening livestock depended on the two
prime criteria which was consistent in both the studied
woredas, the first being straight backbone and legs, while
the respondents indicated that an ox is usually selected
The result of the study further indicated that the goats are
selected based on the presence of wattles, where goats
with wattles are preferred over those not having one, the
observation was consistent in both the woredas. The respondents of Lok Abaya woreda preferred to select does with
good udder capacity, whereas those of the Arbegona woreda
preferred to select bucks with longer penis. The respondents
of Lok Abaya preferred to select goats with long and thin
legs followed by flat and broader ears while it was the primary criteria for selecting goats by the respondents of
Arbegona worda. The study further indicates that respondents of both the woredas preferred to rear sheep with fat
and broader tails, while for goats short tail was preferred.
Selecting small ruminants based on their coat colour was
practiced only among the respondents of Arbegona woreda.
The study further indicated that horses were reared only in
Arbegona woreda, where they were selected based on their
long and thin tail and broad hooves followed by their muscularity, tail length and sire line. The study further revealed
that the respondents (irrespective of the woredas) preferred
single combed chickens.
The results as presented in Table 3 indicate the respondent’s
perception towards selection of livestock based on their coat
colour. The study indicates that while cattle with black coat
colour is preferred in Arbegona woreda (Figure 2), the
respondents of Lok Abaya woreda preferred rearing cattle
with light-coloured coat (Figure 3). The results further indicated that the respondents in both the studied locations preferred to rear cows with reddish brown or red colour coats
for they believe that such cattle are good milk providers,
whereas the respondents in Arbegona woreda prefer to
rear cattle with grey colour coats which they consider to
have beef with high fat percentage.
Discussions
The respondents of the present study preferred to rear
native livestock breeds over the crossbreds, they indicated
Table 3. Selection of cattle based on their coat colour as indicated by the respondents in the study areas.
Coat colour
Black
White (creamy)
Dalecha (grey)
Bure (reddish brown)
Red
Blue
(Percent)
Remark
Arbegona
Lok Abaya
49
–
–
80
7
14
11
10
–
10
6
4
✓ Strong survive the dry season, do not emaciate
✓ High market access
✓ Can resist the hot environment, shiny appearance
✓ High market demand
–
✓ Can give more milk
–
✓ Have fatty meat
Some traditional livestock selection criteria as practiced by several indigenous communities of Southern Ethiopia
The study further indicates that the respondents still prefer
the age old phenotypic selection methods and that the better animals are identified based on the coat colour. The
coat is correlated with the production traits and other similar phenotypic characters, these observations are similar to
those reported by Karthikayan and Gajendran (2005).
The phenotypic selection methods (both qualitative and
quantitative traits) as observed in the study find similarity
with the observations of Ouma, Abdulai and Drucker
(2006), Wurzinger et al. (2006), FABRE (2006), Mbuku,
Isaac and Alexander (2006), Shiferaw (2006), Kakar
(2009), Endashaw et al. (2012) and Shigdaf (2011).
Figure 2. Dark coat color of cattle reared in the Arbegona Woreda.
that the native breeds play a multi-functional role in rural
livelihoods, contributing not only to cash products but
also to manure, and have a cultural importance. The
respondents in the study reported that the crossbred and
exotic breeds of livestock are unable to thrive in the area
due to lack of proper veterinary facilities and feed availability throughout the year. They are also prone to commonly occurring diseases prevailing in the region, while
on the other hand the native breeds have much better tolerance of diseases and are also able to thrive under environmental stress; during the dry season (October–March)
they are mostly under fed and receive water once in several
days. The quality of the feed they receive is also very poor,
just enough for their sustenance.
The results are in consonance with the observations of
Kunene and Fossey (2006) who reported that the farmers
in the Natal region of South Africa prefer native (Nguni)
livestock (cattle, sheep and goats) over the exotic breeds
because of better adaptability and the ability of the native
breeds to thrive on locally available feed resources. Similar
observations as indicated in this study too have been
reported by Raziq and Younas (2007), Raziq, Younas
and Kakar (2008), Bavikatte and Jonas (2009), Kakar
(2009).
Figure 3. Light coat colour of cattle selected at Lok Abaya woreda.
The study also indicated that the mating of the livestock is
by and large panmictic, this is because most of the mating
takes place in the communal grazing lands. The observations are in close agreement with the reports of Shiferaw
(2006) for Kereyu cattle reared in the Fental district of
Oromia region and also of Agere (2008) for Horro cattle
from the Horro Gudru area.
The two prevalent methods of livestock selection are the
phenotypic selection and also an oral tradition of keeping
the pedigree of the calves based on their maternal lineage.
Formal pedigree recording in livestock has been a very old
tradition in many parts of the globe with reports from
Winchester (1977) indicating the presence of such lineage
of horses on clay tablets of Mesopotamia. The study also
indicates that the respondents were aware of the heritable
attributes of the livestock, which included physical, production and behavioural traits. The method of pedigree
in the traditional breeding system has also been reported
by Mathias, Ilse and Jacob (2005) from other parts of
Ethiopia, and also by Aujla, Jasra and Munir (1998),
Kunene and Fossey (2006), Mbuku, Isaac and Alexander
(2006), Raziq and Younas (2007), Raziq, Younas and
Kakar (2008) and Kakar (2009) from different parts of
the world.
The respondents were well aware of the problems associated with inbreeding in any form and try to avoid the
same in cattle and horses as they believe that the offspring
born of such breeding have a weak physical conformation,
are susceptible to diseases and have retarded growth thereby affecting their survivability.
The results presented in Table 2 indicate that the major criteria for the selection of cows is the presence of long teat
and well-structured udder, the long teats facilitate milking
and studies by Morse et al. (1988) have indicated that
cows with longer teat tend to suffer less from mastitis,
the reason being that the teat canal serves as an effective
barrier towards any external infection, as the teat canal
closes within a few minutes of milking and thus shutting
off the link between the external environment and the
udder tissues, the results, as reported by the respondents,
too find similarity with the findings of Kuczaj (2003),
Alphonsus, et al. (2010) and Yakabu (2011). However,
results of studies by Berry, Harris and Winkelman
(2005) and Yamazaki et al. (2009) indicate that cows
157
158
S. Banerjee et al.
with long teats tend to hurt themselves while grazing or
even while lying down and are therefore more prone to
mastitis, whereas Tilki et al. (2005) reported that there
was a negative relationship between teat length and milk
yield. The presence of well-developed milk veins was
also considered as a selection criterion and the results
are in accordance with the observations of Bonsma
(1980). The respondents in Lok Abaya woreda reported
that the cattle with thin skin have better milk producing
ability, the observations are in consonance with the results
obtained by Bonsma (1980) and Hamid et al. (2000).
However, the results of studies by Hammond, Ian and
Terence (1971) indicate that cattle with thinner hide tend
to be more susceptible to tick borne diseases as thinner
skins with high vascularity have blood capillaries near
the skin surface, which in one way helps in dissipation
of heat but on the other hand are exposed to infections
transmitted by stinging pests thereby leading to susceptibility towards many external parasite borne diseases.
Kshatriya, Trivedi and Dhami (2009) in their study concluded that both biometry of udder and skin thickness
were related to milk yield and therefore could be considered as one of the criteria for the selection of dairy
cows. All the above selection criteria are in accordance
with the findings of Endashaw et al. (2012) who reported
that the Musi and Bodi pastoralists of Ethiopia select cows
based on their milking ability, coat colour, fertility and
udder size.
The docility and fertility are of course the primary concern
for the rearers as a cow which is docile can be easily
handled by all the family members followed by good fertility ensuring a higher frequency of lactation and also an
increase in herd size. The observations are in accordance
with the reports of Raziq and Younas (2007), Raziq,
Younas and Kakar (2008) and Kakar (2009) from
Baluchistan where docility was considered an important
criteria for the selection of livestock by traditional camel,
cattle and sheep breeders of tribal areas of Pakistan. The
traits like hind loin which is devoid of flesh with prominent hip and pin bone, as was reported by the respondents,
may be attributed to safe calving and less chances of dystocia, the observations are in accordance with the observations of Bonsma (1980) and Hammond et al. (1971).
Result of a study by Peters, Horst and Kleinheisterkamp
(1982) indicated that coat colour pigmentation can assist
in productive and reproductive ability of various livestock
species especially in the humid and sub-humid environment. Thin skin of cattle is correlated with good milking
ability especially in the lowland areas, where the climate
is usually quite hot. This might be attributed to the low
body fat deposition and the fact that most of the energy
is utilized for milk production. Studies by Foster, Fourie
and Neser (2009) indicated that hide thickness is correlated
with rectal temperature, high rectal temperature depresses
the let down of milk. Similarly, cattle with thick and
dense hair coat can exacerbate the effects of heat stress
(Berry and Shanklin (1961), Finch, Bennett and Holmes
(1984)), thereby the milk productivity of such animals is
expected to be less in the lowland areas besides it may
also affect the reproductive efficiency of the cattle.
As observed in the study, coat colour too plays a primordial role in the selection of small ruminants by respondents
of Arbegona wordea; the observations are in accordance
with the findings of Shigdef (2012) who indicated that
white and red coat colour are preferred in sheep and
goats in the Washera and Ferta districts whereas black is
the least preferred one. The selection of goats on the
basis of their coat colour too has been reported by
Mbuku, Isaac and Alexander (2006) by pastoralists of
Kenya.
The preferences of selecting cattle based on their coat colour as reported by the respondents have been presented in
Table 3. The results indicate that coat colour is considered
an important criteria for selection of cattle especially for
their potential to adapt and production capacity. Coat colour as a selection criterion for cattle has also been well
documented in the folklores of India as reported by
Mohanty (2004). The respondents in this study indicated
that coat colour is related to the adaptability and influences
the disease tolerance of the livestock, they also reported
that coat colour also influences the ability of the livestock
to ward away the evil eye, meat of animals of a particular
coat colour are considered to be tasty and certain coat colours have more market demand than the others. This might
be a fallout, as an animal with a particular coat colour has
better ability to tolerate the environmental variations; these
findings are in close agreement with the results presented
by Ebozoje and Ikeobi (1998) and Sanusi (2008) who
reported better survivability. The observations are in consonance with the findings of Tekleyohannes et al. (2012)
from Ethiopia and Adedeji et al. (2012) from Nigeria.
Results of a study by Bonsma (1980) indicated that at
higher altitudes there are short wave or ultraviolet rays
which are tolerated well by those with dark coat colour,
like black and brown whereas the cattle with white coat
colour tend to suffer from skin burns associated with ultraviolet rays. Although in the lowlands the infrared or long
wavelength rays predominate which is reflected by the animals having white coat colour, similar observations too
have been reported by Finch and Western (1977); Olson,
Lucena and Chase Junior (2003). Studies by Makokha
et al. (2006) indicate that animals with dark coat colour
attract the Tse Tse flies and are therefore not preferred in
the lowland areas such as Lok Abaya and places infested
by stinging insects, which in this case is at Lok Abaya
woreda. Similarly the results as obtained in the study
finds consonance with the observations of Stewart
(1953), Hutchinson and Brown (1969), Finch (1986) and
Hansen (1990) who reported that lighter coat colour
reflect the sunlight and hence beneficial for cattle reared
in the lowlands . This result goes in agreement with the
finding of Ndumu et al. (2008) who reported that the farmers prefer red colour in Ankole longhorn cattle over other
Some traditional livestock selection criteria as practiced by several indigenous communities of Southern Ethiopia
coat colours, Shiferaw (2006) too reported high ranking for
white colour preference for Kereyu cattle owners, the
findings are in consonance with the present study for cattle
selected in the Lok Abaya woreda.
The influence of coat colour on milk yield has also been
reported in folklores by Mohanty (2004) who indicated
that cattle with black coat colour are supposed to be better
in milk yield, the importance of feather colour in selection
of chickens have also been reported by Kassahun (2013)
from Ethiopia and also by Karma (2005) from Bhutan
and Banerjee (2012) from India.
The hair whorl is also one of the important aspects to be
selected according to the respondents. It is also known
that a cow with high hair whorl tends to reach puberty earlier and that they also have high total milk and total solid
yield (Young, McNaughton and Spelman, 2007). Results
of a study by Broucek et al. (2007) also indicate that animals with more hair whorl may grow faster than animals
with a middle or low hair whorl; which can be correlated
to the early development of mammary gland. According
to the results of a study made by Bharadwaj, Sastry and
Yadav (2011), coat colour, shape of head and face, tail
switch, shape of udder and teats and skin thickness were
some of the traits which were associated with milk production. The short and straight femur as reported by the
respondents (straight thigh) can serve as an indication of
its good grazing ability and endurance while grazing or
reaching the watering points. The results are in accordance
with the observations of Kedija (2007) who reported that
farmers preferred cattle with long and straight thighs in
the Mieso district of Ethiopia.
As indicated by the selection of bulls based on penile
length, the farmers correlated long penis with good fertility
as they indicated that if the bull had a short penis there will
be problems associated with its ability to breed, the observations are in accordance with the results obtained by
Bruce (2012), Bonsma (1980) and Hammond, Ian and
Terence (1971). The indication of long penis and fertility
may be associated with the proper function of the cremaster muscle which is responsible for the movement of the
penile sheath and therefore frequent urination and libido
are correlated with the high level of androgen in bulls;
Kedija (2007) from his study in Meiso district too reported
that the farmers selected bulls with long penis. In addition,
scrotal circumference is a measure of the daily and total
sperm production of a bull. Studies agree that neck conformation in bulls is very important by which a good
bull should have a thick crest over his neck as well as a
short neck. Studies by Hammond, Ian and Terence
(1971) too indicate that short neck in bulls are a good indicator of libido and high testosterone levels, as well as larger scrotal circumference (which relate to higher levels of
hormones) and wider, more muscular shoulders.
Short-necked bulls tend to sire wide-rumped (more depth
in the hindquarters) steers and daughters that mature
early, higher levels of testosterone are also associated
with thick bones especially those of scapulae and
metatarsus.
Results of studies by Hammond et al., (1971) indicate that
bulls with thick shoulders have large capacity in the ribcage (where heart and lungs are located) also indicating
masculinity in bull, thicker and coarser muscles associated
with thick shoulders, the observations are in accordance
with the reports of Bonsma (1980). Large and welldeveloped scrotum and testes is also a good indicator for
fertility amongst male livestock, hoarse voice is usually
associated with androgen activity and is an indicator of
muscularity as indicated by Hammond, Ian and Terence
(1971), broad and long ear is a breed character and it is
usually associated with high vascualrity, which may be
related to better dissipation of body heat and thereby better
feed efficiency and also grazing ability.
Long tail is usually associated with an animal’s ability to
get rid of external parasites especially flies and other stinging insects which if the animal is able to overcome can be
correlated with good health of the livestock as a whole.
The results pertaining to selection of livestock for fattening
indicates that those with flat spinous process and long
femur are better for fattening, a common indicator for welldeveloped longissimus muscle, and a long and thick femur
is an indicator for an animal’s ability to walk long distances for fodder and also a thick bone provides large surface area for the attachment of muscles, thus muscle
bundles are large and thick under such circumstances,
the observations are in accordance with the results
obtained by Hammond, Ian and Terence (1971) and
Kedija (2007).
The selection of small ruminants and equine with long legs
is a criteria to select animals which have endurance in travelling long distances. Results of studies by Hafez (1968)
indicate that longer femur and metatarsus are adaptive
means for livestock reared in hot climates, long legs in
one hand help the livestock travel long distances besides
they help protect the vital organs against the solar radiation
from the hard soil surface.
Fat tail of sheep is a breed character but among the animals
of a particular breed those having fatter tails are able to tolerate drought better as they are able to have enough
reserves in the form of fat, even the livestock with fat
deposits have usually better feed conversion efficiency as
excess of energy in feed is converted to fat deposits.
Broad hoof in horses is associated with its stability as a
pack animal especially in the highlands of Ethiopia
where the equines are generally employed as pack animals
and hence strong and broad hoof is associated with stronger planter cushions and tendons and cartilages which are
in accordance with the observation of Hafez (1968).
The selection criteria for small ruminants (sheep and goats)
as observed in the present study agree with the finding of
Estifanos (2010) in the Umbulo watcho water shed of
Southern Ethiopia, the presence of wattle as a selection
159
160
S. Banerjee et al.
criteria for goats as observed in the study are in accordance
with the findings of Odubote (1994b) who reported that
goats with wattles are docile and thermoregulatory mechanism of the goats with wattles are better than those without wattles. Results of a study by Casu, Boyazoglu and
Lauvergne (1970) indicated that ewes with wattles had better fecundity when compared to the non-wattled. Although
Richard et al., (1990) reported that there might be a genetic
linkage between the presence of wattles and disease tolerance with Alphine and Saanen goats. The goats sporting
wattles had significantly lower faecal output of strongyle
eggs than those without wattles indicating a form of genetic tolerance to helminthoses. The result, as assessed in the
present study pertaining to the selection of goats having
wattles and of a particular coat colour, is also in accordance with the observation of Adedeji et al. (2012).
Conclusion
The results from the present study indicate that the respondents in the studied areas practice selection of livestock
based on some predefined physical attributes most of
which have proper scientific justifications and are best suited
to their agro-climatic conditions. Hence, these criteria can
be included in developing selection mechanisms which
can be further coupled with modern selection techniques.
The age old system of livestock selection using phenotypic
markers can be further refined using molecular markers;
hence, it is of primordial importance to properly document
the oral traditions from the elders who practice them.
Acknowledgements
The authors acknowledge the financial assistance received
from Coordinator NORAD project. The authors also
acknowledge the assistance received from the elders and
traditional livestock rearers of both the woredas, the
authorities of the agricultural bureau, head and staff members of the School of Animal and Range Sciences,
Hawassa University.
References
Adedeji, T.A., Ozoje, M.O., Ojedapo, L.O., Fasoyin, O.A., & Ogundipe,
R.I. 2012. Indirect selection amongst small scale holders of West
African Dwarf (WAD) goats based on coat pigmentation and wattle
types in Ogbomoso, Nigeria. Iran. J. Appl. Anim. Sci., 2(1): 21–25.
Agere, M. 2008. Assessment of feed resources, feeding system and milk
production in Horro district, western Oromia, Ethiopia. Presented
to the School of Graduate Studies of Hawassa University, Hawassa,
Ethiopia (M.Sc. Thesis).
Alphonsus, C., Akpa, G.N., Oni, O.O., Rekwot, P.I., Barje, P.P. &
Yashim, S.M. 2010. Relationship of linear conformation traits with
bodyweight, body condition score and milk yield in Friesian ×
Bunaji cows. J. Appl. Anim. Res., 38: 97–100.
Aujla, K.M., Jasra, A.W. & Munir, M. 1998. Socioeconomic profile of
camel herders in South-western mountainous areas of Pakistan. In
Proc. Third Annual Meeting Animal Products under Arid
Conditions, vol 2, pp. 154–174.
Azage, T., Belete, A., Fekadu, B. & Berhanu, E. 2010. Cattle milk and
meat production and marketing systems and opportunities for market
orientation in Fogera woreda, Amhara region, Ethiopia. Improving
Productivity and Market Success (IPMS) of Ethiopian Farmers
Project, International Livestock Research Institute (ILRI), Addis
Ababa, Ethiopia, Working Paper No.19.
Banerjee, S. 2012. Morphological characterization of indigenous chickens of Sikkim and West Bengal, India. Anim. Genet. Res., 51: 57–71.
Bavikatte, K. & Jonas, H. 2009. Bio-cultural community protocols: a
community approach to ensuring the integrity of environmental law
and policy. Natural Justice, United Nations Environment Programme
(available at http://www.unep.org/communityprotocols/PDF/communityprotocols.pdf).
Berry, I.L. & Shanklin, M.D. 1961. Physical factors affecting thermal
insulation of livestock hair coats. Missouri Agricultural Experiment
Station Research Bulletin. 802.
Berry, D.P., Harris, B.L. & Winkelman, A.M. 2005. Phenotypic associations between traits other than production and longevity in New
Zealand dairy cattle. J. Dairy Sci., 88: 2962–2974.
Bharadwaj, A., Sastry, N.S.R. & Yadav, M.S. 2011. Lactation and
mammary system influences on milking behaviour of buffaloes–a
note. Indian J. Anim. Prod. Manage., 3: 129–133.
Bonsma, J.C. 1980. Livestock production: a global approach. Cape
Town, South Africa, Tafelberg Publishers.
Broucek, J., Peter Kisac, S., Tefan, M., Anton, H., Michal, U. &
Vladimir, T. 2007. Hair whorls of holstein friesian heifers and affects
on growth and behaviour. Arch. Tierz. Dummerstorf, 50(4): 374–380.
Bruce, E.E. 2012. Bull, In Male Theriogenology (available at http://
www.vetmed.lsu.edu/eiltslotus/theriogenology-5361/bull.htm),
assessed on 3rd September 2013.
Casu, S., Boyazoglu, J.G. & Lauvergne, J.J. 1970. The inheritance of
wattles in the Sardinian breed of sheep. Annals. Genet. Sel. Anim., 2:
249–261. Contribution to animal production and management.
Review and. Scientific Tech. Off. int.
Ebozoje, M.O. & Ikeobi, C.O.N. 1998. Colour variation and reproduction in the West African Dwarf goats (WAD). Small Rumin. Res., 27:
125–130.
Endashaw, T., Tadelle, D., Aynalem, H., Wudyalew, M. & Okeyo, M.
2012. Husbandry and breeding practices of cattle in Mursi and Bodi
pastoral communities in Southwest Ethiopia. Afr. J. Agric. Res., 7
(45): 5986–5994.
Estifanos, T. 2010. Sheep production system and on farm evaluation of
dry season Ethiopia. Hawassa university. p.104 (M.Sc. Thesis).
FABRE 2006. Sustainable farm animal breeding and reproduction A
vision for 2025. FABRE technology platform. February 2006. 30
p. (available at http://www.fabretp.org).
Fekadu, B. 1994. Present situation and future aspect of milk production,
milk handling and processing of dairy products in southern Ethiopia.
Farm made milk products in southern Ethiopia: 1. Chemical and
microbial quality. Department of Food Science, Agricultural
University of Norway. (Ph.D. Thesis).
Fekadu, F. 2010. Ethiopian medicinal plants in veterinary healthcare. A
mini-review. Ethiopian e-J. Res. Innov. Foresight, 2(1) 48–58.
Finch, V.A. 1986. Body temperature in beef cattle: its control and relevance to production in the tropics. J. Anim. Sci., 62: 531–542.
Some traditional livestock selection criteria as practiced by several indigenous communities of Southern Ethiopia
Finch, V.A. & Western, D. 1977. Cattle colours in pastoral herds: natural
selection or social preference. Ecology, 58: 1384.
Finch, V.A., Bennett, I.L., & Holmes, C.R. 1984. Coat colour in cattle:
effect on thermal balance, behaviour and growth, and relationship with
coat type. J. Agric. Sci. (Camb.), 102: 141–147.
Foster, L.A., Fourie, P.J. & Neser, F.W.C. 2009. Effect of heat stress on
six beef breeds in the Zastron district: the significance of breed, coat
colour and coat type. S. Afr. J. Anim. Sci., 39: 224.
Ghosh, P.K. & Sahoo, B. 2011. Indigenous traditional knowledge.
Orissa Review. 65–70 (available at http://www.orissa.gov.in/
e-magazine/Orissareview/2011/Jan/engpdf/66-71.pdf).
Hafez, E.S.E. (Ed.) 1968. Adaptation of domestic animals, Philadelphia,
Lea & Febiger.
Hamid, M.A., Husain, S.M.I., Khan, M.K.I., Islam, M.N. & Biswas,
M.A. 2000. Skin thickness in relation to milk production in crossbred
cows. Pak. J. Biol Sci., 3(9): 1525–1529.
Hammond, J. Jr., Ian, L.M. & Terence, J.R. 1971. Hammond’s farm
animals. U.K., Edward Arnold.
Hansen, P.J. 1990. Effects of coat colour on physiological responses to
solar radiation in Holsteins. Vet. Rec., 127: 333.
Hiwot, B. 2013. Assessment of indigenous knowledge in livestock rearing practices at Arbrgona and Lokabaya woreda of Sidama Zone of
Southern Ethiopia. Submitted to School of Graduate Studies,
Hawassa University, Ethiopia (M.Sc. thesis).
Hutchinson, J.C.D. & Brown, G.B. 1969. Penetrance of cattle coats by
radiation’. J. Appl. Physiol., 26: 454–464.
Iqubal, M.A. 2013. Livestock husbandry – a sustainable livelihood in
Ethiopia. Int. J. Econ. Manage. Soc. Sci., 2(8): 603–607.
Kenya. Contributed paper prepared for presentation at the International
Association of Agricultural Economists Conference, August 12–18,
Gold Coast, Australia (available at http://ageconsearch.umn.edu/bitstream/25752/1/cp060765.pdf); accessed on, September 5 2013.
Mathias, E., Ilse, K.-R. & Jacob, W. 2005. Pastoralists, local breeds and
the fight for livestock keepers’ rights. Prepared for the PENHA 15th
Anniversary Conference “Pastoralism in the Horn of Africa:
Surviving against all odds” on Thursday, 29 September 2005. London.
Mbuku, S.M., Isaac, S.K. & Alexander, K.K. 2006. Identification systems and selection criteria of pastoral goat keepers in northern Kenya
– implications for a breeding programme. Conference on International
Agricultural Research for Development. University of Bonn, October
11–13: 2006.
Mesfin, T. & Obsa, T. 1994. Ethiopian traditional veterinary practices
and their possible contribution to animal production and management.
Rev. Sci. Tech. Off. Int. Epiz., 13(2): 417–424.
Mishra, D. & Patro, L. 2010. Ethno veterinary practices among the rural
people of Ganjam district Orissa (India) : a case study on some common veterinary ailments. Bioscan., (3): 739–746.
Mohanty, R.B. 2004. Traditional wisdom on livestock selection and management in folk proverbs of Orissa. Indian J. Tradit. Knowl., 3(1): 92–95.
Morse, D., DeLorenzo, M.A., Wilcox, C.J., Collier, R.J., Natzke, R.P.
& Bray, D.R. 1988. Climatic effects on occurrence of clinical mastitis. J. Dairy Sci., 71: 848–853.
Ndumu, D.B., Baumung, R., Hanotte, O., Wurzinger, M., Okeyo, A.
M., Jianlin, H., Kibogo, H. & Sölkner, J. 2008. Genetic and morphological characterisation of the ankole longhorn cattle in the
African great lakes region.Genet. Select. Evol., 40: 467–490.
Jena, M. 2007. Community Health Knowledge Register. Tradit., 5: 6–10.
Odubote, I.K. 1994b. Influence of qualitative traits on the performance of
West African Dwarf goats. Nigerian J. Anim, Prod., 21: 25–28.
Kakar, A.R. 2009. Assessing the potential of the indigenous livestock
breeds of Baluchistan. A Drynet Science and Technology Expertise.
59 p. (available at http://www.comap.ca/kmland/display.php?
ID=144&DISPOP=VRCPR) assessed on 3rd Sep 2013.
Olson, T.A., Lucena, C. & Chase Junior, C.C. 2003. Evidence of a
major gene influencing hair length and heat tolerance in Bos taurus
cattle. J.Anim. Sci., 81: 80–90.
Karma, N., Penjor, D.P., Gurung, R., Arasta, P. & Moran, C. 2005.
Genetic structure of the indigenous chickens of Bhutan. SAAR
J. Agric., 3: 69–89.
Karthikayan, S.M.K. & Gajendran, K. 2005. Traditional technologies
in the improvement of breeds of livestock in Tamil Nadu. Indian J
Tradit. knowl., 4(3): 303–306.
Kassahun, H. 2013. Evaluating poultry production system and egg quality parameters of village chickens at Hawassa zuria woreda of southern Ethiopia. Hawassa University, Ethiopia. (M.Sc. Thesis).
Kedija, H. 2007. Characterization of milk production system and opportunity for market orientation: a case study of Mieso district, Oromia
region, Ethiopia. Haramaya University. (M.Sc. Thesis).
Ouma, E., Abdulai, A. & Drucker, A.G. 2006. Pastoralists preferences
for cattle traits: letting them be heard. pastoralism and poverty reduction in East Africa: Nairobi, Kenya, A Policy Research.
Peters, K.J., Horst, P. & Kleinheisterkamp, H.H. 1982. The importance of coat colour and coat type as indicator of productive adaptability of beef cattle in a sub-tropical environment. Prod. under Arid
Conditions., 2: 154–174.
Raziq, A. & Younas, M. 2007. Socioeconomic profile of camel in
Suleiman mountainous region of Balochistan, Pakistan: in Recent
trends in camelids research and future strategies for saving camels.
In: Proc. International Camel Conference Rajasthan, India, February
16–17, pp. 123–128.
Kshatriya, P.S., Trivedi, M.M. & Dhami, A.J. 2009. Association of
udder biometry and skin thickness with milk yield in Kankrej and
Crossbred cows. Indian J. Field Vet., 5(1): 11–13.
Raziq, A., Younas, M. & Kakar, M.A. 2008. Camel – a potential dairy
animal in difficult region of Balochistan, Pakistan: in recent trends in
camelids research and future review Ethiopian e-journal for research
and innovation foresight. Health Issue, 2(1) 48.
Kuczaj, M., 2003. Analysis of changes in udder size of high yielding
cows in subsequent lactations with regard to mastitis.
Electron. J. Pol. Agric., 6(1), #02. (available at http://www.ejpau.
media.pl/volume6/issue1/animal/art-02.html).
Richard, S., Cabaret, J. & Cabourg, C. 1990. Genetic and environmental factors associated with nematode infection of dairy goats in north
western France. Vet. Parasit., 36(3–4): 237–243.
Kunene, N.W. & Fossey, A. 2006. A survey on livestock production in
some traditional areas of Northern Kwazulu Natal in South Africa.
Livestock Research for Rural Development. Volume 18, Article
#113. Retrieved September 3, 2013, (available at http://www.lrrd.
org/lrrd18/8/kune18113.htm).
Makokha, S.N., Karugiab, J., Staalc, S., & Kosura, O. 2006. Valuation of
cow attributes by conjoint analysis: a case study in Western
Sanusi, A.O. 2008. Effects of coat colour genes on heat stress and tolerance to Haemonchus contortus among West African dwarf sheep.
University of Agriculture, Abeo (M.Sc. Thesis).
Shiferaw, G. 2006. In-situ phenotypic characterization of Kereyu cattle
type in Fentalle district of Oromia region, Ethiopia. M.Sc. Thesis.
Presented to the School of Graduate Studies of Haramaya
University, Haramaya, Ethiopia.
161
162
S. Banerjee et al.
Shigdaf, M. 2011. Performance evaluation of Washera, Farta and their
crossbred sheep in the Western highland of Amhara Region,
Ethiopia. Bahir Dar University, Ethiopia (MSc. Thesis).
Singh, G. & Kumar, J. 2012. Traditional knowledge on some less
known wild edible plants used among Munda tribe of Jharkhand.
Ecoscan., 6(3&4): 153–155.
Stewart, R.E. 1953. Absorption of solar radiation by the hair of cattle.
Agric. Eng., 34: 235.
Winchester, A.M. 1977. Heredity: an introduction to genetics. New
Delhi, India, Oxford & IBH.
Wurzinger, M., Ndumu, D., Baumung, R., Drucker, A., Okeyo, A.M.,
Semambo, D.K., Byamungu, N. & Sölkner, J. 2006. Comparison of
production systems and selection criteria of Ankole cattle by breeders
in Burundi, Rwanda, Tanzania and Uganda. Trop. Anim. Health
Prod., 38: 571–581.
Yakabu, A. 2011. Path analysis of conformation traits and milk yield of
Bunaji cows in small holder herds in Nigeria. Agricultura Tropica et
Subtropica., 44(3): 152–157.
Tekleyohannes, B., Jamroen, T., Sayan, T., Girma, A., Asrat, T. &
Somkiert, P. 2012. Purposes of keeping goats, breed preferences
and selection criteria in pastoral and agro-pastoral districts of South
Omo Zone. Livestock Research for Rural Development. Volume 24,
Article #213. Retrieved September 5, 2013, (available at http://www.
lrrd.org/lrrd24/12/berh24213.htm).
Yamazaki, T.H., Takeda, A., Nishiura, & Togashi, K. 2009.
Relationship between lactation curve and udder disease incidence in
different lactation stages in first lactation holstein cows. Anim. Sci.
J., 80: 636–643.
Tilki, M., Inal, S., Colak, M. & Garıp, M. 2005. Relationships between
˙
milk yield and udder measurements in brown swiss cows. Türk
Veterinerlik ve Hayvancilik Dergisi. 29: 75–81.
Young, S.K., McNaughton, L.R. & Spelman, R.J. 2007. Hair whorl
patterns are related to age at puberty and milk-production traits in
dairy cattle. Proc. N. Z. Soc. Anim. Prod., 67: 130–135.
Animal Genetic Resources, 2014, 54, 163–170. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000034
Phenotypic characterization and description of
production systems of autochthonous sheep breeds
in Kosovo
H. Bytyqi1, R. Baumung2, H. Mehmeti1 and B. Fuerst-Waltl2
University of Prishtina – Faculty of Agriculture and Veterinary, Prishtina, Kosovo; 2Department of Sustainable Agricultural Systems,
Division Livestock Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
1
Summary
Considering about 13.9 percent of total surface under pastures and meadows and big demand for milk and meat, sheep are considered
as an important livestock species in Kosovo. Hence, the overall objective of this study was to provide the characterization of autochthonous sheep breeds and sheep production systems in Kosovo. Breed characterization and proper economic management schemes,
selection for most economically important traits and best animals in the flock will assist farmers in increasing the feeding efficiency,
reproduction and productive traits and thus profit. Including Bardhoka (BAR), Balusha (BAL), Sharri (SHA) and Kosva (KOS) sheep
breeds, for a period of 1 year (September 2009–August 2010) the study was concentrated in 20 sheep farms in different regions of
Kosovo. The least-squares means show that for milk yield and milk content, breed differences were significant (P < 0.05). The highest
average daily milk yield for BAR (0.63 kg) exceeded the milk yield of BAL, KOS and SHA with 0.09, 0.14 and 0.18 kg milk per day,
respectively. For milk butterfat and protein SHA ewes obtained the highest rate compared with other three breeds for 9.4–19.9 percent.
Milk dry matter among different breeds ranged between 18.4 and 19.3 percent. Voluntary disposal of ewes mainly occurred at lactation
4 and 5. Considering a standard yield at 1st lactation specific to the breeds, the highest production is reached at 3rd lactation.
Keywords: breed characterization, economic traits, sheep breed, least-squares mean
Résumé
Compte tenu du fait que près du 13.9 pour cent de la superficie totale correspond à des pâturages et des prairies et qu’il existe une
grande demande en lait et viande, les moutons constituent une espèce animale importante au Kosovo. Ainsi l’objectif principal de
cette étude a été de caractériser les races ovines autochtones et les systèmes de production ovins au Kosovo. La caractérisation des
races, la description des schémas de gestion économique les plus pertinents et la sélection des paramètres les plus importants sur le
plan économique et des meilleurs animaux du troupeau serviront aux éleveurs pour augmenter l’efficience alimentaire, les performances reproductives et productives, et par là même les bénéfices. L’étude, qui a duré un an (de septembre 2009 à août 2010) et a
été menée sur 20 exploitations ovines de différentes régions du Kosovo, a compris les races ovines Bardhoka (BAR), Balusha
(BAL), Sharri (SHA) et Kosva (KOS). Les moyennes par moindres carrés ont décelé des différences significatives (P < 0.05) entre
les races pour la production laitière et la composition du lait. La production moyenne journalière de lait la plus élevée de la race
BAR (0.63 kg) a dépassé de 0.09, 0.14 et 0.18 kg journaliers de lait la production laitière des races BAL, KOS et SHA, respectivement.
Pour ce qui est des taux butyreux et protéique du lait, les brebis SHA ont atteint les pourcentages les plus élevés, qui ont dépassé de 9.4
à 19.9 pour cent les trois autres races. La matière sèche du lait a varié entre 18.4 et 19.3 pour cent selon la race. La plupart des brebis
sont retirées du troupeau à la quatrième ou cinquième lactation. Si la première lactation est considérée comme étant la production standard propre aux races, la production la plus élevée est atteinte à la troisième lactation.
Mots-clés: race ovine, caractérisation raciale, moyenne par moindres carrés, paramètres économiques
Resumen
Teniendo en cuenta alrededor de un 13.9 percent de la superficie total bajo pasturas y praderas y gran demanda de leche y carne, ovino
son considerados como una importante especie de ganado en Kosovo. Por lo tanto, el objetivo general de este estudio es proporcionar a
la caracterización de las razas ovinas autóctonas y sistemas de producción ovina en Kosovo. Sistemas de gestión económica adecuada
caracterización de razas y la selección de rasgos económicamente más importantes y sus mejores animales en el rebaño serán ayudar a
los agricultores a aumentar la eficiencia de la alimentación, la reproducción y las características productivas y por lo tanto los beneficios. Incluyendo Bardhoka (BAR), Balusha (BAL), Sharri (SHA) y Kosva (KOS) razas ovinas, por un período de un año (09 2009
hasta agosto 2010), el estudio se concentró en 20 granjas de ovejas en diferentes regiones de Kosovo. Los medios mínimos cuadrados
muestran que para la producción de leche y el contenido de la leche, las diferencias entre razas fueron significativas (P < 0.05). La
producción diaria de leche promedio más alto para BAR (0.63 kg) superó la producción de leche de BAL, KOS y SHA, con 0.09,
0.14 y 0.18 kg de leche por día, respectivamente. Para la grasa de mantequilla leche y proteína de ovejas SHA obtener la tasa más
Correspondence to: H. Bytyqi, Faculty of Agriculture and Veterinary, Animal
Science Department, University of Prishtina, Rr “Lidhja e Pejes” 10000,
Prishtina, Kosovo. email: [email protected]
163
164
H. Bytyqi et al.
alta en comparación con otras tres razas de 9.4 a 19.9 percent. Leche de materia seca entre diferentes razas varió entre 18.4 y 19.3
percent. Entrega voluntaria de las ovejas se produjo principalmente en la lactancia 4 y 5. Considerando un rendimiento estándar en
primera lactación específica a la cría, la producción más alta se alcanza a tercera lactancia.
Palabras clave: Raza ovina, breed caracterización, por mínimos cuadrados medios, los rasgos económicos
Submitted 2 October 2013; accepted 7 January 2014
Introduction
Maintaining local sheep breeds is a complex problem. It
integrates economic, social, environmental and technical
aspects, and involves many different actors. These actors
are the direct users, such as farmers and consumers and
other indirect users to benefit, such as tourism industry,
extension services, etc. Domestic animals make a major
contribution to human requirements for food in the form
of meat, milk, milk products, eggs, fibre and fertilizer for
crops as well as draught power. Approximately 4 500
breeds drawn from 40 or more animal species are listed
in this context (FAO, 2007). Nowadays, it is well known
(Dillon et al., 2003; Hayes et al., 2003; Bytyqi et al.,
2005) that animals best adapted to their environment,
show the best overall trait performance (i.e. survival, production, reproduction, etc.). However, even though
Kosovo is a rather small area, most breeds of sheep that
originated in the different regions perform very differently
and have gone through diverse selection focuses. Breed
characterization, including selection and breed performance reactions to environment should thus be a part of
all management and breeding decisions in sheep production enterprises.
Kosovo has a long tradition in sheep farming, but like
other sectors of Kosovo economy it has experienced a period of decline. Sheep production reached a peak during the
beginning of the 1960s (644 000 sheep). A dramatic
decrease started after 1996 and accelerated during the
war declining to a minimum of less than 90.000 head, in
the year 1999. Currently, the number of sheep has started
to grow again and it is estimated to be of about 127 000
animals (Ministry of Agriculture Forestry and Rural
Development-MAFRD, 2012).
Normally, the sheep are kept in the barn from the end of
November until the end of March (winter period) independent of breed.
The grazing period for sheep normally starts in April, close
to farms. Mountain grazing time takes place from end of
May until September, where sheep production is solely
dependent on grass feed (summer period). After that,
sheep graze on low land close to the barns again.
Concentrated feed is given to the lactating sheep only during the winter period at the amount of 0.20–0.50 kg per
ewe. Small diversity of feed sources, poorly constructed
barns, and low level of hygiene make intensive sheep
production difficult. Owing to small size of land owned
by the sheep farmers, about 1.5 ha land per farm
(MAFRD, 2012), cultivation of such feedstuffs is often
fragmented in 6–10 plots and located at large walking distances from the house. Following their normal seasonal
state of lambing, sheep in Kosovo are seasonally bred
(summer) and offspring are born at the time of
December and January, mostly. So far, limited attempts
were made to change this breeding practice in Kosovo.
There is an obvious lack of education and awareness concerning sheep breeding and proper management despite
the efforts made by local authorities and some of donor
organizations in this regard. Farmers need to be trained
to be familiar with breeding schemes specific to sheep
farms in Kosovo in order to be qualified to manage their
flocks and, in particular, to distinguish productive from
non-productive animals.
There are not yet, proper breeding and selection schemes
that will assist farmers in increasing the feeding efficiency,
reproduction and productive traits. Thus, their breeding
strategy was focused clearly to the “methodical selection”
criteria. All sheep breeds in Kosovo are classified in the
long tail group and share triple purpose breed characteristics, milk–meat–wool (Bytyqi and Mehmeti, 2006).
Milk production is in the focus of all sheep breeds in
Kosovo but performance testing does not exist yet. Thus,
a survey including detailed milk performance testing was
carried out in eight sheep farms to describe the production
level of ewes. Additionally, to receive a first insight into
growth and non-production traits, 20 sheep farms (including the eight farms with milk recording) were integrated in
an investigation regarding various other traits in sheep
flocks. Hence, the overall objective of this study was to
provide the necessary information regarding characterization of autochthonous of sheep breeds and sheep production systems in Kosovo.
Material and methods
Sheep production and management
characteristics in Kosovo
After cattle, the sheep production is the most important
segment of the economy in rural households in Kosovo.
The sheep production includes various breeds and
Production systems of autochthonous sheep breeds in Kosovo
categories of sheep. To date, sheep production in Kosovo
can be clearly defined as an industry consisting of small
and large farms ranging from 40 to 1 000 ewes producing
for home consumption and the market. The sheep production of Kosovo has many characteristics typical for sheep
production in developing countries, as it depends almost
exclusively on the resources locally available on the farm.
Production characteristics
Most of the quantity of sheep’s milk produced in the
Kosovo is turned into cheese, and is rarely consumed as
fresh milk. Therefore, the quality of the sheep milk should
refer to its ability to be transformed into milk products.
Milk is frequently being processed following the traditional way of milking ewes only after the weaning period,
which occurs about 90 days after lambing. Very little
investments were made in regard to milking and processing infrastructure. Lambs and culling ewes are usually
sold as a live animals and no specific commodity has so
far been developed to increase added value of sheep
meat. There is almost no farm that has any connection to
milk or/and processing unit or market chain. The milk is
being processed at farm gate and sold locally (green market), just a small proportion of farmers sell their products
to retailer shops or gross shop houses. The usual price
for cheese ranges from 5 to 6 €/kg. Almost, there is no
sheep meat process habit among farmers in Kosovo.
Mostly, lambs (a part of those kept for breeding) are
sold at an age of about 150 days, at spring time before
the mountain-grazing period. The price ranges from 3 to
4 €/kg live weight. Mature animals are being sold at no
specific period at lower prices about 2.5 €/kg live weight.
Minimum attempts were made to promote sheep products
as a tool to increase profitability and production.
History of breeds of sheep in Kosovo
The sheep population in Kosovo mainly consists of triplepurpose breeds of widely different body sizes and production capacities, i.e. Bardhoka (BAR), Balusha (BAL),
Sharri (SHA) and Kosva (KOS).
BAR sheep
For centuries this sheep breed has been bred in the
Southwest of Kosovo, mostly (Figures 1 and 2). The
name originates from the word (Albanian language)
“Bardhe-White”, as the fleece colour of this sheep is completely white. These sheep have a share of 19.6 percent of
the total number of sheep bred in Kosovo (Table 1). The
BAR sheep are kept for triple purpose, milk–meat–wool.
However, through natural and selective breeding this
sheep breed became one of the most yielding sheep for
milk among the long tails sheep in the Balkan Peninsula
(Cinkulov et al., 2008; Bytyqi, 2009). On average, the
height at withers for mature animals is 64 cm. Although
the grease fleece weight ranges between 2.5and 3.5 kg, it
is of very poor quality with an average fibre diameter of
Figure 1. Living area for different sheep breeds in Kosovo.
42.5 μm (Mehmeti et al., 2007). The males are horned
and the females are polled, usually. This strain is well suited to a grazing production system, calm, easily milked
and easy to work with.
BAL sheep
The area in which these sheep are kept and bred is also in
the southwestern part of Kosovo sharing the same region
with BAR breed, named Dukagjini plane (Figure 1). The
name originates from the word (Albanian language)
“Bale-Spot”. The total number of this breed is about 9
900 animals bred in Kosovo, and covers about 7.8 percent
of the total sheep population (Table 1). As in the case of
BAR breed, BAL sheep have also been going through
breeding selection with special focus on milk production.
This strain is well adapted to natural grazing abilities and
easy milking. BAL is bred as triple purpose sheep
Figure 2. Bradhoka sheep breed.
165
166
H. Bytyqi et al.
Table 1. Breed structure, number of sheep per breed and breed
proportion.
Sheep breed
Number per breed
Proportion (%)
72.628
24.780
10.649
9.894
8.641
126.592
57.37
19.57
8.41
7.82
6.83
100.00
SHA
BAR
KOS
BAL
Others
Total
Source of data: Identification and registration unit of Kosovo 2011.
(milk–meat–wool) of the medium size. The height at
whithers for mature animals is on average about 65 cm.
BAL sheep have a black head (Figure 3), whereas the colour of the fleece and the legs are white. The grease fleece
weight for females and males averages 2–2.5 and 3–3.5
kg, respectively. The quality of the fibre is coarse with
an average fibre diameter of 43 μm. Usually, the males
are horned and the females are polled (Bytyqi, 2009).
SHA sheep
This strain is well adapted to natural hardiness, grazing
abilities, and is well adapted to the cold mountain climates.
The breeding region for these sheep is mainly in the Sharri
Mountain, in the western part of Kosovo, from where the
name originates (Figure 1). This breed represents approximately 53.4 percent of the total sheep population (Table 1).
SHA sheep are primarily kept for milk production, although
quality of carcass and wool gives this strain a triple purpose
status. Regarding body size, SHA is one of the smallest
breeds in Kosovo. The mean height at withers for mature
animals is about 62 cm. SHA sheep have a white colour
of the fleece, the face and the legs (Figure 4). The grease
fleece weight for females and males averages 1.5–2 and
2.5–3 kg, respectively. The mean fibre diameter is 37 μm
(Bytyqi and Mehmeti, 2006). The males are horned and
the females are polled, usually.
Figure 4. SHA sheep breed.
total population of sheep this breed represents about 8.4
percent (Table 1). This strain has advantages of natural
hardiness and grazing abilities. The Kosovo sheep is characterized with its triple milk–meat–wool, purpose. The tail
is long; the colour of the head and the legs is black, while
the fleece is of white colour (Figure 5). Some individuals
can also be found having black or grey spotted faces.
The grease fleece weight for males and females averages
1.5–2.5 and 2.5–3.5 kg, respectively. The mean fibre diameter is 37 μm (Bytyqi and Mehmeti, 2006). In accordance
to the other sheep breeds of Kosovo males are normally
horned while females are polled. The mean height at withers for mature animals is about 62 cm.
Other sheep represent about 6.8 percent of the total population, mainly composed by unknown crosses.
Data recording in selected herds
The name of this breed comes from the Kosovo plane,
where it has its area of distribution (Figure 1). From the
For a period of 1 year (September 2009–August 2010),
eight sheep farms in different regions of Kosovo were
included in a study regarding dairy performance. Each
sheep breed (SHA, KOS, BAR and BAL), was represented
by two farms, respectively. The average herd size was 114,
94, 92 and 143 animals for SHA, KOS, BAR and BAL
breeds, respectively. The milking sheep in the flock were
selected randomly, resulting in 1 010 milk test day yield
(TDY) samples, which were taken during evening and
morning milking. An amount of 40–50 ml milk was put
Figure 3. BAL sheep breed.
Figure 5. Kosova sheep breed.
KOS sheep
Production systems of autochthonous sheep breeds in Kosovo
in sterile preserved bottles (Azidol), stored in mobile coolers at a temperature of 4 °C and transferred to the laboratory for analyses of milk contents. Recording cards
containing information (i.e. animal ID, lambing date,
lamb weight at different stages, test day milk yield, stillbirth, lambing characteristics, etc.) were developed and
distributed in order to enable farmers to record further
traits. Two types of scales (from 1 to 30 kg and 30 to
100 kg) were used to record lamb live weight at different
stages (birth, 3, 6 and 12 months of age). The milk yield
was measured individually by manual milking. For accurate performance recording, farmers were trained and monitored monthly.
In order to receive more information for relevant traits (e.g.
milk production, lamb growth rate, lambing characteristics,
fertility traits, survival rate, mating type, feeding, price,
costs, culling characteristics, etc.), farmers of 20 sheep
farms (including the eight previously mentioned farms)
were interviewed. Results were processed and stored
electronically.
Statistical data analysis
All results referring to daily milk yield and component
traits refer to actually recorded milk samples at the eight
farms. All other averages and proportions represent results
of interviews made in all 20 farms.
For milk and milk composition the JMP-starter business
unit program of SAS, (Institute SAS Inc. Sall, Lehman
and Creighton, 2004) was used to analyse the data for
the least-squares means and significant variances.
Variations between different variables were tested using
the Duncan test (Steel and Torrie, 1980). The same ewes
were sampled for milk production during the whole year.
Owing to small number of farms included, the only
breed and lactation effects were included in the milk
model.
Results
In Table 2, the results of the descriptive analysis for the
four Kosovar sheep breeds in 20 different farms and different disposal reasons are shown. The proportion of ewes in
different lactations depended on the percentage of culling
for infertility, for involuntary or voluntary reasons. With
small variations among different breeds, the ewes’ voluntary culling mainly occurred at 4th, 5th and 6th lactation,
ranging from 4.6 to 26.0 percent. Culling for involuntary
reasons occurred in 1st, 2nd and 3rd lactation, respectively
and ranged from 2.4 to 7.8 percent. Culling for infertility
tends to be constant across all lactations, ranging from
0.1 to 2.0 percent. Most of ewes in lactation >6 were disposed for voluntary reasons.
Arithmetic means for milk yield and their standard deviations for lactations are listed in Table 3. The highest yield
in the first lactation was recorded for BAR, followed by
BAL, SHA and KOS breeds, yielding 0.62, 0.54, 0.42
and 0.41 kg/day milk. For all sheep breeds, highest milk
yields were registered for the 3rd lactation with 0.72,
0.65, 0.51 and 0.49 kg/day for BAR, BAL, SHA and
KOS sheep, respectively. Comparing milk yield between
ewes in the 3rd and those in the 5th lactation, a decrease
of about 22.9, 33.8, 33.3 and 20.6 percent for BAR,
BAL, SHA and KOS breed becomes obvious. The
least-squares means results (not shown) for lactation number differences, were significant (P = 0.0103)
Based on milk yield results in eight farms and the interviews in 20 sheep farms, results of a descriptive analysis
are stated in Table 4. Lactation production length ranged
from 190 to 280 for different breeds. Owing to longer production, BAR and BAL ewes produce more milk in their
1st lactation (174.0 and 135.0 kg) compared with KOS
and SHA (82 and 80 kg, respectively). The age at first
lambing and minimum days open were about the same
in all breeds.
Table 2. Proportions for different disposal reasons in the four sheep breeds of Kosovo according to interviews in 20 Kosovar farms.
Breed
BAR
BAL
SHA
KOS
Reason for disposal
Voluntary culling
Involuntary culling
Infertility
Total culling
Voluntary culling
Involuntary culling
Infertility
Total culling
Voluntary culling
Involuntary culling
Infertility
Total culling
Voluntary culling
Involuntary culling
Infertility
Total culling
Proportion in lactations (%)
1
2
3
4
5
6
>6
Total
2.1
7.0
1.1
10.8
1.5
2.7
0.4
4.6
1.8
3.8
1.0
6.6
1.7
5.7
0.6
8.1
0.5
7.8
1.5
9.8
1.1
2.4
0.1
3.6
1.3
4.5
0.6
6.4
2.3
5.7
0.4
8.5
4.3
6.4
1.1
11.8
2.2
3.3
0.8
6.3
1.6
4.1
0.7
6.4
2.8
6.0
0.1
8.7
10.7
5.4
0.1
16.2
11.3
6.3
2.2
19.8
4.6
5.7
1.2
11.5
10.6
5.7
0.4
16.9
18.9
8.1
0.1
27.1
17.1
16.2
5.0
49.0
14.0
7.7
0.3
25.1
22.3
7.7
0.6
30.6
16.2
2.7
0.0
18.9
9.1
6.1
0.0
15.2
26.0
8.9
1.1
36.0
16.8
7.0
0.0
23.8
8.1
0.0
0.0
8.1
2.2
0.0
0.0
2.2
7.3
0.6
0.0
7.9
3.0
0.0
0.0
3.0
60.8
37.4
3.9
100.0
54.5
37.0
8.5
100.0
56.6
35.3
4.9
100.0
60.1
37.8
2.1
100.0
167
168
H. Bytyqi et al.
Table 3. The average daily milk yield and its standard deviation (SD; in brackets) per lactation in the breeds.
Breed
Average milk yield (SD) in kg/day in lactations
1
BAR
BAL
SHA
KOS
0.62
0.54
0.42
0.41
2
(0.01)
(0.02)
(0.04)
(0.02)
0.68
0.61
0.47
0.43
3
(0.02)
(0.02)
(0.05)
(0.04)
0.72
0.65
0.51
0.49
4
(0.02)
(0.03)
(0.05)
(0.02)
0.61
0.52
0.47
0.43
Depending on breed, stillbirth rate was reported to range
between 1.8 and 2.5 percent, whereas survival rate
between born live and mating for breeding lambs was
about 94 percent.
The proportion of male lambs kept for breeding for different breeds ranged between 6.8 and 20.0 percent.
Proportion of single/twin/multiples born was for BAR
(78.5/21.0/0.5 percent), BAL (77.0/20.0/3.0 percent),
SHA (84.5/15.0/0.5 percent) and KOS (82.6/16.4/1.0 percent). Survival rate of ewes from the 1st to 2nd lactation
was higher than 93.7 percent. Birth weight of lambs varies
depending on breeds, type of lambing (single/tweens/triple) and gender, and ranges from 2.5 to 4.2 kg. For all
breeds, the body weight is considered to be medium.
The mature female individual on average weighs 65, 73,
67 and 65 kg for BAR, BAL, SHA and KOS, respectively.
The ram mature live weights are 110.0, 113.0, 107.0 and
95.0 kg.
In Table 5, the least-squares means with corresponding
standard errors and level of significance on test-day milk
yield records are given. For milk production, breed differences were significant (P = 0.0033; Table 5). The highest
average daily milk for BAR, exceeded the milk yield of
BAL, KOS and SHA with 0.09, 0.14 and 0.18 kg milk
per day, respectively (Table 5).
Breed showed a significant effect on butterfat content in
milk (P < 0.05; Table 5), with the highest percentage
obtained by SHA ewes (6.68 percent), followed by KOS,
5
(0.01)
(0.03)
(0.04)
(0.04)
0.51
0.43
0.34
0.34
6
(0.01)
(0.02)
(0.04)
(0.02)
0.37
0.36
0.29
0.31
>6
(0.02)
(0.01)
(0.04)
(0.02)
0.37
0.33
0.29
0.31
(0.02)
(0.01)
(0.04)
(0.02)
BAL and BAR with 6.23, 6.05 and 5.51 percent,
respectively.
The SHA sheep also had significantly higher protein content in milk compared with other three breeds (P < 0.05;
Table 5). SHA ewes had the highest protein rate on milk
(5.49 percent), followed by BAL (5.29 percent), BAR
(5.07) and KOS sheep (4.54 percent).
For milk dry matter content breed differences were not
significant (Table 5). However, BAL sheep produced
slightly more (5.02, 4.92 and 3.88 percent) dry matter
milk content compared with the other three breeds.
Discussion
Even though there have been some movements in improving overall management in recent years, sheep farms are
managed mostly traditionally and new technologies take
place at very minimum in the sheep industry in Kosovo.
It should be pointed out that among all four breeds, definition of clear breeding objectives will be a need for the near
future.
Ewes can survive in the flock till the seventh lactation at
maximum. This is a rather empiric selection method,
which might be associated with a decrease in milk production and incapability of sheep to graze well (long walking
distance) in their later lactations. Therefore, due to tradition, sheep farmers in Kosovo prefer to cull their sheep
Table 4. Descriptive statistics per trait in the breeds based on interviews in 20 Kosovar farms.
Trait (unit)
Min. lactation length (day)
Age at first lambing (day)
Min. days open (day)
1st lactation yield (kg/lact.)
Stillbirth rate (%)
Single/twin/multiples (%)
Male lambs for breeding (%)
Fattening period (day)
Male birth weight single/twin/multiples (kg)
Female birth weight single/twin/multiples (kg)
Ewe mature weight (kg)
Ram mature weight
Survival rate between born live and mating (%)
Survival rate ewes from 1st to 2nd lactation
Breeds
BAR
BAL
SHA
KOS
280
365
85
174.0
2.5
78.5/21.0/0.5
15.0
150
4.1/3.5/2.6
3.9/3.3/2.5
65.0
110.0
93.0
93.7
250
365
95
135.0
2.3
77.0/20.0/3.0
20.0
150
3.8/3.3/2.7
3.4/3.1/2.5
73.0
113.0
94.0
96.0
190
365
120
80.0
2.2
84.5/15.0/0.5
9.0
150
4.2/4.0/3.1
4.1/3.6/2.8
67.0
107.0
94.0
95.2
200
365
120
82.0
1.8
82.6/16.4/1.0
6.8
150
4.1/3.6/2.5
3.9/3.5/2.5
65.0
95.0
94.0
93.7
Production systems of autochthonous sheep breeds in Kosovo
Table 5. Number of observations and least-squares means ± SD for breeds and the traits daily milk yield, as well as fat, protein and dry
matter percentage (within a line different letters indicate significant differences, P < 0.05).
Traits
Milk yield
N
Milk yield (kg/day)
Milk contents
N
Fat (%)
Protein (%)
Dry matter (%)
Breed (N )
BAR
BAL
SHA
KOS
Pr > F
258
0.63 ± 0.04a
233
0.54 ± 0.05ab
278
0.45 ± 0.04b
241
0.49 ± 0.05b
0.0033
252
5.51 ± 0.23b
5.07 ± 0.39ab
18.36 ± 0.73a
227
6.05 ± 0.22ab
5.29 ± 0.36a
19.33 ± 0.68a
268
6.88 ± 0.20a
5.49 ± 0.33a
18.60 ± 0.66a
233
6.23 ± 0.24ab
4.54 ± 0.41b
18.38 ± 0.71a
0.0375
0.0481
0.2760
voluntarily rather at higher ages than in other, more intensively kept sheep populations (e.g. Fuerst-Waltl and
Baumung, 2009).
At present, no artificial insemination is used in Kosovo
sheep breeding. As a consequence, the breeding ram is
supposed to breed about 28 ewes per breeding period.
However, due to small populations per breed and narrow
breeding replacement stock cycle (exchange of rams
between small number of flocks usually grazing together
for many years), inbreeding could be one area of concern.
Compared with the milk yield at the 1st lactation, the highest production is assumed to be reached at the 3rd
lactation.
Ewes of BAR, BAL, SHA and KOS breed tend to produce
more milk in the 3rd lactation compared with the 1st for
about 16, 20, 21 and 5 percent, respectively. The decrease
in average daily milk yield from the 3rd to 4th lactation
ranged from 7.9 percent for SHA to 20.0 percent for
BAL sheep. Consistently, for all breeds lactation further
milk yield decreases occur after the 4th lactation. In
some dairy breeds, an increase of lactation yields was
reported until the 4th or 5th lactation (e.g. Ploumi,
Belibasaki and Triantaphyllidis, 1998; Ploumi and
Emmanouilidis, 1999; Fuerst-Waltl und Baumung, 2009).
No information was available on individuals regarding the
milk samples, therefore was not able to include the permanent environmental effect or a stage of lactation effect
for daily milk yield.
The milk production data show that BAR and SHA ewes
produce more persistently all over the lactations compared
with other two breeds (BAL and KOS sheep). Therefore,
breeding programme of selecting individuals for a better
persistent milk production in sheep could be one alternative of increasing profit of farmers of the latter breeds.
Besides, milk content traits are important under Kosovar
conditions as hardly any sheep milk but mainly cheese is
consumed. The BAR breed was observed to produce the
highest milk and SHA breed for protein and fat content.
However, it is still below other breeds in the Balkan
region. For Dalmatian Pramenka, fat and protein contents
of higher than 7 and 6 percent were reported (e.g.
Matutinovic et al., 2011). As Morand-Fehr et al. (2007)
pointed out, sheep production systems based on grazing
strongly affect milk composition and thus in turn the
cheese produced. While an increased milk yield may be
achievable by intensive farming, the “typical” cheese product may not be producible. Hence, farmers should aim at
sufficient milk yield while also including milk content
traits in their breeding goals. Apart from the genetics, management measures should be taken in order to guarantee
certain standards.
For some traits, i.e. lactation length, yield per lactation, there
were huge variations between breeds living in Dukagjini
valley (BAR and BAL) compared with SHA and KOS
breeds managed under other regions in Kosovo. Although
not far living distance from one region to another for all
four breeds, according to Figure 1, it seems that a better
environmental conditions (more fertile soil, irrigation of
land) in Dukagjini valley has led BAR and BAL breeds to
gradual milk yield improvement, for centuries.
Apart from dairy production traits, farmers were also questioned with regard to functional traits in their herds. In
generally, stillbirth rate was reported to be low having a
positive economic impact on sheep farms in Kosovo. As
to other breeds of Pramenka (long tail) sheep in Balkan
Peninsula (Porcu et al., 2006), the twinning rate tends to
be very low for all Kosovo breeds as well, therefore breeding improvements might take place in this trait, considering in details factors that affect this trait (inbreeding,
feeding, etc.).
Some other traits (i.e. days open, seasonal lambing, lambfattening period, proportion of male lambs sold for
breeding, etc.) are set mainly due to sheep traditional management characteristics in Kosovo. The lambs for meat
consumption are sold mostly as live animals and except
a few visual indications and observations, no meat grading
rate is taking place in Kosovo.
Conclusions
This is first approach used to get a first insight into the
actual breed characterization and management situation
169
170
H. Bytyqi et al.
of sheep farms in Kosovo. Sheep production in Kosovo
seems to be characterized by being predominately semiextensive. In this environment, focus in breed selection
should not only be only on increased production, but
also on how well the breeds are fitting to the local environment. The establishment of clear breeding objectives and a
recording system to enable breed characterization has been
a challenge for all sheep breeders in Kosovo. The present
study has considered describing a sheep-breeding system
that meets the current farmer demand and is a great contribution for development of the sheep sector and rural economy as a whole. A further research for each trait is required
in order to get a maximum profit from different sheep
breeds and breeding systems in Kosovo.
The sheep farmers showed detailed knowledge of the
actual situation, therefore the prerequisites for collecting
reliable data are considered to be very good.
Acknowledgements
The authors acknowledge the support of Austrian
Development Agency (ADA and Kosovo Austrian
Institutional Partnership (KAIP) project for fanatical support. Special thanks to farmers, KVFA laboratory staff
and others who contributed to this research.
References
Bytyqi, H. 2009. Within the Kugler Waltrud – rare breeds and varieties
of the Balkan Atlas. Monitoring Institute. Stuttgart, Germany,
Heidehof Foundation, pp. 97–105.
Bytyqi, H. & Mehmeti, H. 2006. Identification and Conservation of
Animal Genetic Resourcesin South Eastern Europe. Catalogue of
West Balkan Pramenka Sheep Types Breed – Bardhoka Strain.
Skopje. ISBN 9989-845-23-9, pp. 45–53.
Bytyqi, H., Klemetsdal, G., Ødega rd, J., Mehmeti, H. & Vegara, M.
2005. A comparison of the productive, reproductive and body condition score traits of the Simmental, Brown Swiss and Tyrol Grey breeds
in smallholder herds in Kosovo. Anim. Genet. Res. Inf., 37: 9–20.
Cinkulov, M., Popovski, Z., Porcu, K., Tanaskovska, B., Hodžic´, A.,
Bytyqi, H., Mehmeti, H., Margeta, V., Djedovic´, R., Hoda, A.,
Trailovic´, R., Brka, M., Markovic´, B., Važic´, B., Vegara, M.,
Olsaker, I. & Kantanen, J. 2008. Genetic diversity and structure
of the West Balkan Pramenka sheep types as revealed by micro satelite and mitochondrial DNA analysis. J. Anim. Breed. Genet., 125(6):
417–426.
Dillon, P., Buckley, F., O’Connor, P., Hegarty, D. & Rath, M. 2003. A
comparison of different cow breeds on a seasonal grass-based system
of milk production. 1. Milk production, live weight, body condition
score and DM intake. Livest. Prod. Sci., 83: 21–33.
FAO. 2007. The state of the World’s Animal Genetic Resources for Food
and Agriculture – in brief, edited by Daffyd Pilling & Barbara
Rischkowski. Rome (accessible at http://www.fao.org/docrep/010/
a1250e/a1250e00.htm).
Fuerst-Waltl, B. & Baumung, R. 2009. Economic values for performance and functional traits in dairy sheep. Ital. J. Anim. Sci., 8:
341–357.
Hayes, B.J., Carrick, M., Bowman, P. & Goddard, E.M. 2003. Genotype
and environmental interaction for milk production of daughters
of Australian dairy sires from test-day records. J. Dairy Sci., 86:
3736–3744.
Matutinovic, S., Kalit, S., Salajpal, K. & Vrdoljak, J. 2011. Effects of
flock, year and season on the quality of milk from an indigenous breed
in the sub-Mediterranean area. Small Rumin. Res., 100: 159–163.
Mehmeti, H., Hysen, B., Skender, M. & Imeri, B. 2007. Breeding strategy for small ruminants in Kosovo. Scientific session. “Indigenous
breeds traditional products, as potential for economic growth rural
areas, Albania, Kukes 24–25 September.
Ministry of Agriculture Forestry and Rural Development. 2012.
Mid-Term Evaluation Report of the ARDP 2007–2013. Livestock
numbers, pp. 36–62.
Morand-Fehr, P., Fedele, V., Decandia, M. & Le Frileux, Y. 2007.
Influence of farming and feeding systems on composition and quality
of goat and sheep milk. Small Rumin. Res., 68: 20–34.
Ploumi, K. & Emmanouilidis, P. 1999. Lamb and milk production traits
of Serrai sheep in Greece. Small Rumin. Res., 33: 289–292.
Ploumi, K., Belibasaki, S. & Triantaphyllidis, G. 1998. Some factors
affecting daily milk yield and composition in a flock of Chios ewes.
Small Rumin. Res., 28: 89–92.
Porcu, K., Dzabirski, V., Popovski, Z., Andonov, S. & Tanaskovska,
B. 2006. Identification and Conservation of Animal Genetic
Resourcesin South Eastern Europe. Catalogue of West Balkan
Pramenka Sheep Types Breed – Bardhoka Strain. Skopje. ISBN
9989-845-23-9, pp. 55–61.
Sall, J., Lehman, A. & Creighton, L. 2004. JMP start statistics. A guide
to statistics and data analysis using JMP and JMP IN software, 3rd
edition. USA, SAS Institute, p. 491.
Steel, R.G.D. & Torrie, J.H. 1980. Principles and procedures of statistics. New York, McGraw-Hill.
Animal Genetic Resources, 2014, 54, 171–178. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000022
Evaluation des pratiques paysannes de conservation
in situ du taurin Baoulé au Sud-Ouest du
Burkina Faso
L.Y. Mopaté1, M.J-B. Kamuanga2, S. Hamadou3 and C-Y. Kaboré-Zoungrana4
1
Laboratoire de Recherches Vétérinaires et Zootechniques de Farcha (LRVZ), B.P: 433 N’Djaména (Tchad), chercheur associé au
LERNSE de l’UPB, Burkina Faso. Email: [email protected]; 2Consulting Agricultural Economist. 8082 Whispering Wind Lane.
20111 Manassas, VA (USA). Ancien Responsable de l’Unité Elevage et Environnement au Centre International de
Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso (Burkina Faso); 3Ancien chercheur à l’Unité
Elevage et Environnement au CIRDES, Bobo-Dioulasso (Burkina Faso); 4Laboratoire d’études et de recherches des ressources
naturelles et des sciences de l’environnement (LERNSE), Université Polytechnique de Bobo-Dioulasso (UPB), Burkina Faso
Résumé
L’étude a évalué les pratiques paysannes mises en œuvre par les éleveurs pour assurer la conservation du taurin Baoulé. Elle a porté sur
52% des 636 producteurs recensés, répartis dans 54 villages ciblés qui constituent 7% du total des villages des provinces de Poni et de
Noumbiel au Burkina Faso. L’enquête transversale et rétrospective doublée des observations des pratiques a été réalisée. Les modalités
des fréquences des actes et des coefficients qui y sont affectés ont été transformées en variables quantitatives. L’adhésion à un éventuel
projet de conservation, à la vie associative et la scolarisation induisent des actes de conduite et de gestion, de soins de santé et des
activités sociales positifs à la conservation mais négatifs à la reproduction (croisement). L’appartenance à l’ethnie Lobi contribue à
la conservation du Baoulé. La possession d’un attelage favorise les actes de conduite et gestion, de soins de santé et des activités
sociales conservatoires mais les actes de reproduction ne contribuent pas à la conservation. De plus, la possession d’un troupeau exclusif de Baoulé, la castration d’autres mâles non Baoulé, la prise individuelle des décisions de gestion et l’appartenance à l’ethnie Lobi
sont favorables à la conservation du Baoulé. Le bilan global positif des pratiques mises en œuvre en pays Lobi burkinabè montre un
faible développement du métissage du Baoulé. Les variables quantitatives obtenues par transformation constituent une nouvelle
approche, permettant de quantifier les pratiques de conservation des races animales en milieu naturel.
Mots-clés: Pratiques Conservation in situ, Taurin Baoulé, Pays Lobi, Burkina Faso
Abstract
The study evaluated the small farmers’ practices implemented by cattle breeders to ensure the conservation of the Baoulé breed. The
study involved 52% of the 636 known producers from the 54 targeted villages, which constitute 7% of the total villages of the Poni and
Noumbiel provinces in Burkina Faso. The transverse and retrospective survey was carried out and was combined with direct observation. The modalities of the frequencies of various actions and the coefficients that affected them were transformed into quantitative
variables. Adhesion to a possible project of conservation, participation in farmers’ groups and other associations and schooling induce
positive acts of conduct, health care and social activities for conservation but have a negative effect on reproduction (cross breeding).
Membership of the Lobi ethnic group contributes to the conservation of Baoulé cattle. The possession of draught animals promotes the
activities of conduct, management, health care and social activities that are protective but active management of reproduction does not
contribute to conservation. Moreover, the possession of an exclusive herd of Baoulé cattle, the castration of males from other cattle
breeds, the taking of individual decisions of management and the membership of Lobi ethnic group are all favourable to the conservation of Baoulé cattle. The positive total assessment of the practices implemented in the Lobi region of Burkina Faso shows the limited
development of Baoulé cattle crossbreeding. The quantitative variables obtained by transformation constitute a new approach, making it
possible to quantify the practices of conservation of the animal breeds in their natural environment (in situ).
Keywords: In situ conservation practices, Baoulé taurine, Lobi Region, Burkina Faso
Resumen
El estudio ha evaluado las prácticas implementadas por los ganaderos para asegurar la conservación del ganado bovino Baoulé. El
estudio fue llevado a cabo con el 52 por ciento de los 636 productores censados, repartidos entre 54 pueblos que constituyen el 7
por ciento del total de pueblos de las provincias de Poni y Noumbiel en Burkina Faso. Se realizó una encuesta transversal y retrospectiva pareada sobre las prácticas observadas. Las modalidades de acción y los coeficientes correspondientes fueron transformados en
variables cuantitativas. La adhesión a un determinado proyecto de conservación, a la vía asociativa y a la escolarización conlleva
acciones de dirección y gestión, de atención sanitaria y de actividades sociales, positivas para la conservación pero negativas para
la reproducción (cruzamiento). La pertenencia a la etnia Lobi contribuye a la conservación del ganado Baoulé. La posesión de una
yunta favorece las acciones de dirección y gestión y de atención sanitaria y las actividades sociales conservacionistas pero las acciones
Correspondence à envoyer à: L.Y. Mopate, Laboratoire de Recherches Vétérinaires et
Zootechniques de Farcha (LRVZ), B.P: 433 N’Djaména (Tchad), chercheur associé
au LERNSE de l’UPB, Burkina Faso. Adresse électrorique: [email protected]
171
172
L.Y. Mopate et al.
de reproducción no contribuyen a la conservación. Asimismo, la posesión de un rebaño exclusivamente de raza Baoulé, la castración de
los machos de otras razas, la toma individual de las decisiones de gestión y la pertenencia a la etnia Lobi ayudan a la conservación del
ganado Baoulé. El balance global positivo de las prácticas implementadas en el territorio de los Lobi en Burkina Faso muestra un
escaso mestizaje del ganado Baoulé. Las variables cuantitativas obtenidas por transformación representan una nueva aproximación
que permite cuantificar las prácticas de conservación de las razas animales en su medio natural.
Palabras clave: prácticas de conservación in situ, ganado bovino Baoulé, territorio de los Lobi, Burkina Faso
Soumis: 18 L’octobre 2013; admis: 10 Le janvier 2014
Introduction
En Afrique de l’Ouest, notamment au Burkina Faso, les
menaces d’absorption (par le sang zébu) des taurins à
courtes cornes des savanes ont été évoquées par plusieurs
auteurs (CIPEA, 1979; Thiombiano, 1993; Rege, Aboagye
et Tawah, 1994; Camus, Landais et Poivey, 1981; Lhoste,
1995; Sigué et Kamuanga, 1997; Moazami Goudari et al.,
2001). Ces menaces s’inscrivent dans un processus global
des perturbations climatiques intervenues depuis les
années 1970 et 1980. Des changements dans les zones pastorales ont été observés, avec un déplacement progressif de
l’élevage zébu des zones du Nord vers les zones du Centre et
du Sud (Maillard et al., 1992). En plus des sécheresses, s’y
ajoute la pression foncière croissante dans le Nord pour le
Burkina Faso (Ouédraogo, 2002). La concentration importante de la biomasse animale dans ces zones constitue une
menace pour les races taurines adaptées à leur milieu. En
effet, la cohabitation étroite entre zébus et taurins favorise
des croisements passifs. De plus, pour accroître les formats
des taurins sources de prestige aux yeux des paysans,
améliorer l’aptitude au travail et le rendement en viande,
les agriculteurs des savanes se sont lancés dans des croisements actifs depuis les décennies 1980 et 1990 (Landais,
1983; Chupin, 1994). Par ailleurs, la multiplication des animaux trypanotolérants constitue l’une des stratégies d’utilisation et d’exploitation des parcours infestées par les
glossines (Achukwi et Musongong, 2009).
Les travaux d’identification des pratiques et stratégies paysannes de conservation in situ du taurin Baoulé (Figure 1)
au Burkina Faso sont rares. Ce taurin constitue le seul
bovin trypanotolérant bien implanté en pays Lobi de ce
pays (Maillard et al., 1992; Thiombiano, 1993).
Il est admis que l’étude et l’évaluation des pratiques
concrètement mises en œuvre par les agriculteurs s’imposent et constituent un passage obligé, pour qui s’intéresse
aux conséquences matérielles de l’activité agricole dans
un milieu donné (Landais et Balent, 1993). Il est donc
indispensable pour mieux appréhender la reproductibilité
de systèmes d’élevage du taurin Baoulé dans le
Sud-Ouest du Burkina, de mener des investigations dans
ce sens afin de mieux cibler les actions de développement.
L’objet de l’étude est d’identifier et d’évaluer les pratiques
paysannes mises en œuvre par les éleveurs du taurin
Baoulé, dans la gestion individuelle ou collective des animaux pour assurer la conservation de cette race.
Matériel et Méthodes
Site d’étude
La région d’étude au Sud-Ouest du pays est la partie
burkinabé du pays « Lobi », nom de l’ethnie dominante
à cheval entre le Burkina Faso, la Côte d’Ivoire et le
Ghana. Elle est considérée comme le berceau du taurin
Baoulé appelé encore bovin « Lobi ». Elle est limitée à
l’Est par le fleuve Mouhoun, frontalier avec le Ghana, à
l’Ouest par la province de la Comoé, au Nord par celle
du Bougouriba et au Sud par la Côte d’Ivoire (Figure 2).
Elle est située entre 9°25 et 10°35 de latitude nord et entre
2°30 et 4° de longitude ouest et couvre 10 361 km², soit
3,2% du territoire national (Kienou, Sanou et van
Bronswijk, 1996). Elle comprend les provinces du Poni et
Figure 2.
Figure 1. Troupeau taurin Baoulé dans la zone de Gaoua (cliché: MOPATE).
Situation de la zone d’étude et principale aire de répartition du taurin Baoulé
au Burkina Faso, en Côte d’Ivoire et au Ghana en Afrique de l’Ouest. (Fond
gratuit de Carte Google Map).
Evaluation des pratiques paysannes de conservation in situ du taurin Baoulé
du Noumbiel avec respectivement Gaoua et Batié pour chefslieux. La région est à une altitude moyenne de 400 m. Le climat est de type soudanien, caractérisé par l’alternance d’une
période pluvieuse de mai à octobre et d’une période sèche
de novembre à avril (Guinko, 1984). Les températures diurnes
moyennes varient entre 24,9°C et 30,2°C, avec une amplitude
moyenne de 5,3°C. C’est une zone agroclimatique
subhumide avec une pluviométrie variant de 900 mm à
1400 mm entre 1992 et 2001 (Lankoandé, 2002).
Echantillonnage et méthodes de collecte de
données
La base de sondage a été constituée de 636 propriétaires
détenteurs surtout de bovin Baoulé, recensés dans les
deux provinces. Sur cet effectif, 52% ont été choisis au
hasard dans 54 villages ciblés, soit 7% du total de 769 villages dans les deux provinces. Les axes principaux à partir
de Gaoua et Batié ont été concernés dans un rayon moyen
de 25 km autour de chaque centre, afin d’accroître la
variabilité des situations tout en limitant le coût de la logistique. L’objectif final a été d’établir un échantillon assez
large (>300 répondants) pour améliorer la représentativité
de la population détentrice de bétail Baoulé et prendre en
compte les refus et absences au démarrage des enquêtes.
L’étude a été réalisée par enquête informelle et formelle
complémentaires et appropriées pour améliorer la connaissance des systèmes d’exploitation agricole (Hubert, 1992;
Vianney et Palm, 1999). Ces enquêtes ont été menées en
deux phases distinctes:
• Une pré-enquête pour recenser les propriétaires du taurin
Baoulé afin de disposer d’une base de sondage; consulter
et discuter avec des groupes de personnes afin de
connaître le milieu et les pratiques de production et
réaliser une étude bibliographique sur le milieu.
• Une enquête (formelle) transversale et rétrospective,
doublée des visites multiples pour améliorer les estimateurs.
Des interviews et observations auprès d’un échantillon
d’exploitants propriétaires du taurin Baoulé ont été menées.
Les questions fermées ont porté sur les pratiques d’élevage
liées à la conservation in situ. Il s’est agit ici d’identifier au
cours de l’année qui s’est écoulée (12 derniers mois), les
actes posés par l’éleveur en terme de pratiques réalisées
ou des événements observés en relation avec la conservation de son taurin Baoulé. Le nombre d’animaux concernés
et les fréquences de ces événements et actes posés. Ainsi,
quatre groupes de pratiques ont été visés:
• Pratiques de conduite et de gestion: elles renfermaient le
pâturage, l’abreuvement, la traite, la traction animale,
la complémentation minérale, en fourrages/résidus et le
parcage des animaux.
• Pratiques de reproduction: elles ont été subdivisées, en
événements observés relatifs aux avortements survenus,
aux morts-nés, aux naissances vivantes, aux mortalités
naturelles et en un témoignage de l’éleveur. Ces
témoignages ont concerné la monte d’une vache Baoulé
par un taureau Baoulé, d’une vache Baoulé par un taureau
Zébu ou Métis, un croisement favorisé de façon active
entre Zébu ou Métis et Baoulé, tout comme l’abattage, la
réforme, l’achat de Zébu. Les croisements passifs
(mélange des troupeaux, divagation et confiage) ont été
concernés, tout comme les actes encourageant la conservation du Baoulé par l’achat d’un taureau pur, la castration
des mâles de race Zébu ou Métis du troupeau.
• Pratiques sanitaires: elles ont été orientées sur la participation à la lutte contre les glossines, les traitements aux
trypanocides, aux anthelmintiques, aux acaricides et
aux soins traditionnels.
• Activités sociales liées à l’utilisation des animaux tels
que l’abattage des taureaux pour les sacrifices, ceux
remis en dot, en dons (divers), présentés aux concours
d’éleveurs, les vols enregistrés et les contacts ou
l’accessibilité à des agents d’élevage.
Analyse de données
Les saisies et les traitements ont été effectués par le logiciel Statistical Package of Social Science (SPSS). Un
codage en modalités de quelques variables issues des questions ouvertes a été effectué. Les pratiques (événements et
actes) ont été quantifiées par des coefficients allant de – 3
à + 3, selon le poids « objectif » que la pratique accomplie
apporte en termes d’impact favorable ou pas pour la conservation in situ de la race.
L’importance d’un acte est la variable quantitative résultante
de la multiplication du coefficient affecté à l’acte (variant de
– 3 à + 3 suivant sa contribution à la conservation), par la
modalité de la fréquence de l’acte posé (aucune fois = 0;
moins fréquent = 1; fréquent = 2 ou très fréquent = 3).
Les avortements, naissances vivantes et mortalités qui sont
considérés comme plus subis par les chefs d’exploitations
et les actes posés (conduite au pâturage et abreuvement)
régulièrement réalisés dans la quasi totalité des exploitations
et touchant également la quasi totalité des effectifs, n’ont pas
été pris en compte. Seule l’importance des autres actes de
conduite et gestion (traite, complémentations, traction et
parcage), de reproduction (croisements) et de conservation,
de soins de santé et d’activités sociales a été considérée. Une
agrégation générale de l’importance des ces actes posés
seuls et des pratiques (événements et actes compris) a été
effectuée, afin de tirer des bilans généraux (positifs ou
négatifs) de la conservation au niveau de la région.
Un premier tri à plat a été effectué pour sélectionner des variables à croiser, à soumettre en analyse de variance (ANOVA).
Le test de Bonferroni a été appliqué pour les comparaisons
multiples (plus de deux groupes) des moyennes.
La régression linéaire simple des déterminants de la participation ou contribution financière à un éventuel projet
de conservation et de l’importance des actes posés par
les Chefs d’Exploitation a été effectuée. Pour cela, la
méthode d’estimation par les moindres carrés ordinaires
(MCO) a été utilisée. L’adéquation d’ensemble du
173
174
L.Y. Mopate et al.
Tableau 1. Importance des actes entre les Chefs d’Exploitation (CE) avec troupeaux purs et mixtes et entre ceux décidant seul de la
gestion unique et à plusieurs.
Importance des actes
Conduite
Reproduction
Santé
Activités sociales
Type de troupeau
Centre de décision
Pur
N = 287
Mixte
N = 38
P
Unique
N = 278
Multiple
N = 47
P
2,83 ± 3,18
3,27 ± 3,54
1,04 ± 1,72
0,39 ± 2,06
7,81 ± 3,91
−4,73 ± 6,34
4,57 ± 2,07
1,89 ± 2,58
***
***
***
***
3,65 ± 3,62
2,16 ± 4,83
1,56 ± 2,17
0,70 ± 2,16
2,03 ± 3,49
3,36 ± 4,83
0,82 ± 1,44
−0,23 ± 2,07
**
ns
*
**
***p < 0,001; **p < 0,01; *p < 0,05; ns = non significatif.
modèle est mesurée par le coefficient de détermination
(R²), le R² ajusté et le test de Fisher. Le modèle fonctionnel
obtenu permet de légitimer l’impact des variables explicatives considérées prises individuellement sur la participation ou l’importance des actes posés qui sont des
variables à expliquer. On considère l’hypothèse alternative
qu’au moins un des coefficients du modèle est différent de
zéro. Les variables explicatives des déterminants de la participation financière ont été choisies parmi les données
socio-économiques des CE et de leur exploitation. Quant
à celles des déterminants de l’importance des actes des
CE, elles découlent des critères retenus pour leur analyse.
Résultats
Importance des actes posés par les éleveurs
Troupeaux purs ou mixtes et prise des décisions
de gestion unique ou multiple
Les moyennes de l’importance des actes de conduite et
gestion, des soins de santé et des activités sociales sont
significativement plus élevées dans les exploitations avec
des troupeaux mixtes que dans celles avec des troupeaux
purs. En revanche, les actes en matière de reproduction
ont une moyenne significativement plus élevée dans les
troupeaux purs (Tableau 1); où il y a absence des croisements avec d’autres races ou des actes favorisant activement ou passivement ces croisements. Pour la nature des
centres de décision, les moyennes sont plus élevées et
significatives pour les décisions de gestion relevant
uniquement du propriétaire en matière de conduite et gestion, de soins de santé et des activités sociales.
Degré de participation1 à la conservation et
appartenance ou pas à un groupement
Pour les actes de conduite et gestion, des soins de santé animale et des activités sociales liées à l’élevage du Baoulé,
l’importance de ces actes est significativement plus élevée
chez les CE ayant annoncé une participation élevée à un
projet éventuel de conservation du Baoulé. Il en est de
même des actes de conduite et gestion et les soins de santé
des CE membres d’un groupement (Tableau 2).
Niveau d’alphabétisation/d’instruction des CE et
leur catégorie d’âge
Les CE alphabétisés et scolarisés ont significativement les
moyennes les plus élevées pour les actes de conduite et
gestion, de soins de santé et des activités sociales. En
revanche, la moyenne des actes liés à la reproduction
pour ce groupe est plus faible et négative que celle des
non-alphabétisés (Tableau 3). Les CE âgés de moins de
40 ans posent plus d’actes des soins de santé que ceux
de 40 ans et au-delà, dont les actes de reproduction sont
significativement plus élevés.
Durée dans la pratique de l’élevage et
appartenance ou pas à l’ethnie Lobi
Les exploitations qui ont moins de 15 ans de pratique de
l’élevage bovins ont des moyennes de l’importance des
actes significativement plus élevées en conduite et gestion
et en activités sociales (Tableau 4). Le groupe Non-Lobi
(migrants) pose significativement plus des actes de conduite,
de santé et des activités sociales. En revanche, les actes liés à
la reproduction des bovins y sont négatifs. Le groupe Lobi a
la moyenne la plus élevée pour les actes de reproduction.
Possession ou pas d’un attelage dans
l’exploitation et provinces concernées
Les chefs d’exploitation (CE) possédant un attelage dans
leur exploitation ont significativement les moyennes les
plus élevées pour les actes de conduite et gestion, de
soins de santé et des activités sociales (Tableau 5). En
revanche, ceux sans attelage ont la moyenne de l’importance des actes de reproduction plus élevée.
Selon les provinces, seuls les actes de reproduction montrent une différence significative. Noumbiel a effectivement la moyenne la plus élevée par rapport à Poni.
Déterminants de l’importance des actes posés par
les Chefs d’Exploitation
1
Le degré de participation à un éventuel projet de conservation du taurin Baoulé est
la volonté exprimé par les chefs d’exploitation d’y contribuer de façon élevée (au
moins 1 000 F CFA) ou faible (moins de 1 000 F CFA) à ce projet dans les deux
provinces concernées. 1U$ = 500 F CFA
Le test de Fisher (F) pour le modèle de régression linéaire
simple utilisé est significatif au seuil de 1%. Ce qui indique
que l’ensemble de coefficients du modèle est
Evaluation des pratiques paysannes de conservation in situ du taurin Baoulé
175
Tableau 2. Importance des actes entre CE annonçant une participation élevée et moins élevée et entre CE appartenant à un groupement
ou pas.
Importance des actes
Conduite
Reproduction
Santé
Activités sociales
Participation à la conservation
Membre de groupement
Élevée
N = 137
Faible
N = 188
P
Oui
N = 208
Non
N = 117
P
4,73 ± 3,82
2,03 ± 4,66
2,16 ± 2,44
1,02 ± 1,92
2,45 ± 3,18
2,56 ± 4,77
0,95 ± 1,67
0,22 ± 2,29
***
ns
***
**
4,11 ± 3,67
2,29 ± 5,13
1,83 ± 2,25
0,57 ± 2,51
2,17 ± 3,24
2,41 ± 3,90
0,80 ± 1,54
0,54 ± 1,41
***
ns
***
ns
***p < 0,001; **p < 0,01; ns = non significatif.
Tableau 3. Importance des actes posés entre CE alphabétisés ou pas et entre CE de moins de 40 ans et de 40 ans et plus.
Importance des actes
Conduite
Reproduction
Santé
Activités sociales
Alphabétisation
Catégorie d’âge
Oui
N = 47
Non
N = 278
P
Moins de 40 ans
N = 208
40 ans et plus
N = 117
P
6,19 ± 4,11
−0,48 ± 6,55
3,40 ± 2,54
1,65 ± 2,38
2,94 ± 3,34
2,82 ± 4,17
1,13 ± 1,82
0,38 ± 2,09
***
***
***
***
4,07 ± 4,12
1,09 ± 4,06
1,92 ± 2,50
0,98 ± 1,70
3,29 ± 3,52
2,57 ± 4,81
1,37 ± 2,00
0,48 ± 1,70
ns
*
*
ns
***p < 0,001; **p < 0,01; *p < 0,05.
Tableau 4. Importance des actes des CE de moins de 15 ans de pratique d’élevage et de 15 ans plus et entre ceux Lobi et Non-Lobi.
Importance des actes
Conduite
Reproduction
Santé
Activités sociales
Durée dans la pratique d’élevage
Groupe ethnique
−de 15 ans
N = 173
15 ans et +
N = 152
P
Lobi
N = 313
Non-Lobi
N = 12
P
3,93 ± 3,85
2,30 ± 4,21
1,63 ± 2,20
0,79 ± 1,89
2,82 ± 3,30
2,38 ± 5,26
1,28 ± 1,96
0,30 ± 2,4
**
ns
ns
*
3,25 ± 3,56
2,66 ± 4,39
1,31 ± 1,98
0,50 ± 2,16
7,66 ± 3,31
−6,08 ± 5,58
5,16 ± 1,58
2,08 ± 2,19
**
**
**
**
***p < 0,001; **p < 0,01; *p < 0,05.
Tableau 5. Importance des actes entre CE possédant un attelage et ceux n’en possédant pas et entre les provinces.
Importance des actes
Conduite
Reproduction
Santé
Activités sociales
Possession d’attelage
Province
Oui
N = 121
Non
N = 200
P
Poni
N = 168
Noumbiel
N = 157
P
6,45 ± 3,41
0,69 ± 5,59
2,85 ± 2,16
1,45 ± 2,12
1,61 ± 2,35
3,31 ± 3,72
0,63 ± 1,55
0,03 ± 2,03
***
***
***
***
3,67 ± 3,72
1,76 ± 5,45
1,43 ± 2,17
0,38 ± 2,25
3,14 ± 3,54
2,96 ± 3,72
1,49 ± 2,01
0,76 ± 2,07
ns
*
ns
ns
***p < 0,001; *p < 0,05; ns = non significatif.
significativement différent de zéro. L’équation du modèle
de l’importance des actes (IMPACTES) est:
Impactes = ß0 + ß1 AGE + ß2 ATT + ß3 MEM + ß4 PTP +
ß5 TTB + μ
où les ß sont des paramètres à estimer et μ le terme d’erreur ou de perturbation aléatoire.
AGE = âge; ATT = attelage; MEM = membre; PTP = participation; TTP = total bovin
La valeur de R² ajusté montre que les variables considérées
expliquent 28% de l’importance des actes (Tableau 6). Les
variables attelage, participation et membre ont une influence significative et positive sur l’importance des actes.
Elles ont une influence individuelle respective de 99% et
95% dans l’importance des actes. En revanche, l’âge et
le nombre total de bovins de l’exploitation ont une influence significative mais négative. Ces variables influencent
respectivement l’importance des actes dans 90% et 95%
des cas.
176
L.Y. Mopate et al.
Tableau 6. Estimation de l’importance des actes des CE dans
l’ensemble des deux régions.
Variable
Constance
Age (AGE)
Attelage (ATT)
Membre (MEM) binaire
Participation (PTP) binaire
Total bovin (TTB)
F
R²
R² ajusté
Coefficients
t de student
3,625**
−0,040*
4,988***
1,402**
0,004***
−0,048**
22,342***
0,297
0,283
2,418
−1,711
7,979
2,226
4,559
−2,188
***p < 0,001; **p < 0,01; *p < 0,05.
Bilan des actes et des pratiques (événements et
actes) au niveau régional
La moyenne de l’importance générale des actes est de 7,78
± 6,28, avec un minimum = 5 et un maximum = 30. Celle
des pratiques (événements et actes posés) est de 8,83 ±
6,93, avec un minimum = 8 et un maximum = 34. Cette
moyenne générale positive indique que les actes posés
participent globalement à la conservation du Baoulé.
La différence de moyenne entre la province du Poni
(7,52 ± 5,88) et celle du Noumbiel (8,35 ± 6,68) n’est pas
significative au seuil de 5%. Il en est de même de
celle des pratiques à Poni (8,56 ± 6,69) et à Noumbiel
(9,66 ± 7,44).
Corrélation de l’importance des actes entre eux
Les actes de conduite et gestion sont corrélés positivement
aux actes de santé et des activités sociales. Il en est de même
entre actes de santé et activités sociales (Tableau 7).
En revanche, les actes liés à la reproduction sont
négativement corrélés avec tous les autres actes.
Discussion
Les variables quantitatives obtenues par transformation des
modalités des fréquences des actes et des coefficients qui y
sont affectés sont une nouvelle approche permettant de
quantifier les pratiques des producteurs. Ici, il s’agit des
pratiques de conservation des races animales, notamment
le bovin Baoulé, en milieu naturel. Les coefficients
affectés bien que subjectifs, restent basés sur une connaissance des actes et leurs poids respectifs dans la
conservation in situ de la race. Toutefois, ils gagneraient
à être davantage améliorés par une investigation
préliminaire auprès des éleveurs et autres producteurs ou
agents de terrain. Ce qui permettrait d’élucider le poids
réel accordé à tel ou tel acte préjudiciable ou favorable à
la préservation de la race, afin de parvenir à une certaine
objectivité. L’aspect quantitatif des coefficients permet
de faire un bilan global (négatif ou positif) des pratiques
conservatoires d’une race dans une zone, de discriminer
les acteurs, d’identifier les liaisons ou les déterminants
de certains actes posés et leur impact sur la conservation
en milieu naturel.
Le bilan global positif des actes seuls et celui des pratiques
en pays Lobi burkinabè montre un faible développement
du métissage du Baoulé. Les actes de croisements interraciales (Zébus/Métis X Baoulés) ou ceux favorisant activement ou passivement ces croisements y sont très faibles.
La moyenne des actes de reproduction plus élevée à
Noumbiel a été en rapport avec la faible présence des
métis dans cette province. La conservation de la race
Baoulé y serait mieux assurée.
L’importance des actes (conduite, santé et activités
sociales) plus marquée chez les Chef d’Exploitation (CE)
avec des troupeaux mixtes serait liée à leur pouvoir
d’achat. En effet, seuls les moyens financiers permettent
de complémenter (achat de minéraux et fourrages) les animaux, de côtoyer les agents vétérinaires pour leurs soins et
de s’équiper en traction animale. Les corrélations positives
entre les actes de conduite et de santé (r = 0,607), entre
actes de santé et activités sociales (r = 0,500) et entre la
conduite et les activités sociales (r = 0,379) expliquent
les liens entre ces actes. Les contacts pris avec les agents
de l’élevage expliquent l’importance des activités sociales
de ceux avec des troupeaux mixtes. Une certaine similarité
se dégage dans l’importance des actes posés entre ce
groupe et les migrants. Ces derniers ont surtout des troupeaux mixtes et disposent également des moyens. Cette
possibilité explique aussi l’importance élevée de ces
actes chez les CE qui possèdent un attelage. Néanmoins,
les actes de reproduction plus faible dans ce groupe
témoignent de la pratique du métissage. Il en est de
même des CE avec des troupeaux mixtes et les migrants,
où la cohabitation de plusieurs races dans les exploitations
entraîne des croisements actifs et passifs, préjudiciables à
la préservation. La préférence affichée des autochtones
du pays Lobi burkinabè pour le Baoulé (Tano et al.,
2001) et la réticence des Lobi ivoiriens (Camus, Landais
Tableau 7. Corrélation de l’importance des actes entre eux.
Actes
Conduite/Gestion
Reproduction
Santé
Activités sociales
Conduite/Gestion
Reproduction
Santé
Activités sociales
1,000
−0,366***
0,607***
0,379***
−0,366***
1,000
−0,391***
−0,231***
0,607***
−0,391***
1,000
0,500***
0,379
−0,231
0,500
1,000
***p < 0,001.
Evaluation des pratiques paysannes de conservation in situ du taurin Baoulé
et Poivey, 1981) et Burkinabé (Maillard et al., 1992) au
métissage contribuent à accréditer le faible penchant de
la grande majorité des Lobi pour le métissage. Toutefois,
l’émergence des autochtones avec des troupeaux mixtes
(à visées spéculatives) constitue des menaces réelles qui
planent sur le Baoulé (Mopaté, 2003). En effet, des
études récentes dans les régions Nord de la Côte d’Ivoire
proche de la province de Noumbiel, indiquent que 86 à
90 % des élevages présentent des signes de métissage
(Sokouri et al., 2007; Sokouri et al., 2009).
L’amélioration du format des Baoulé qui diffère significativement du Méré (croisé Zébu et Baoulé) en est la raison.
Ce Métis utilisé comme animal de trait, se vend deux fois
plus que le Baoulé.
La prise des décisions de gestion par une seule personne a
une influence positive sur les actes de conduite, de santé et
les activités sociales. Ce qui confirme que les pratiques
restent liées à l’opérateur (Teissier, 1979) qui agit selon
les références qu’il s’est construites par expériences personnelles et celles communiquées par les membres de sa
communauté (Landais, 1992; Pleine, Schmithüsen et
Sorg, 1995; Lalba, Badini et Kleene, 1999). On ressent
cette influence globalement au niveau de la région où domine le groupe ethnique Lobi. Les membres de ce groupe
appartiennent à la même communauté et gèrent seuls en
majorité leur troupeau. Les actes de reproduction positifs
chez les Lobi indiquent qu’ils préservent mieux la race
Baoulé du métissage, contrairement aux Non-Lobi
caractérisés par des actes de reproduction négatifs. Ces
actes affectent gravement la conservation de la race dans
ce groupe. Les peuls gardiens des bovins Baoulé des autochtones appartiennent au groupe Non-Lobi. La multiplication des centres de décision de gestion par des acteurs
(propriétaire, copropriétaire et gérant) appartenant à
différentes ethnies induirait des actes contradictoires qui
ne favorisent pas la préservation de la race.
L’importance des actes (conduite, santé et activités
sociales) plus élevée chez les CE ayant annoncé une participation élevée à la conservation du Baoulé a été probablement liée aux moyens, aux objectifs et à la préférence
accordée à cette race. Ces considérations liées à l’éleveur
influencent la gestion du troupeau (Lalba, Badini et
Kleene, 1999). Les actes de conduite et de santé élevés
des CE membres des groupements contrairement aux
autres, montrent que l’ouverture à la vie associative est
un facteur positif de conservation de la race Baoulé.
Ceux qui y adhèrent marquent leur volonté de progrès
social. On note l’influence de l’ouverture d’esprit chez
les alphabétisés qui se sont démarqués par des actes (conduite, santé et activités sociales) plus fréquents que chez
les analphabètes, favorables à la conservation. Le souci
d’amélioration de l’élevage du Baoulé à travers les actes
posés explique probablement cette différence. Il en été
de même des CE qui pratiquent l’élevage du Baoulé depuis
moins de 15 ans avec des actes de conduite et activités
sociales plus élevés, favorisant la conservation que ceux
de 15 ans et plus. Néanmoins, les actes de reproduction
faibles et négatifs des alphabétisés indiquent la pratique
du métissage, préjudiciable à la préservation de la race
malgré l’importance notoire des autres actes posés.
L’influence de l’âge sur les actes de reproduction montre
que les CE plus âgés (de 40 ans et plus) préserveraient
mieux la race Baoulé que ceux de moins de 40 ans. On
peut faire des rapprochements sur les actes de reproduction
avec le groupe des CE alphabétisés qui se retrouvent surtout dans la classe d’âge de moins de 40 ans. Ce groupe
a une moyenne des actes de reproduction très faible et
négative indiquant une tendance au métissage.
Les déterminants de l’importance des actes par l’analyse
de régression renforcent les critères analysés et confirment
que les facteurs socio-économiques de l’exploitation conditionnent la conservation in situ de la race.
Conclusion
Les pratiques d’élevage du taurin Baoulé mises en œuvre
en Pays Lobi du Burkina Faso participent globalement à
la préservation de cette race, au regard du bilan positif
des actes et pratiques conservatoires. Les troupeaux
Baoulés purs majoritaires en gardiennage individuel et la
castration systématique des mâles d’attelage achetés sont
des stratégies de conservation mises en œuvre.
L’importance des actes et leurs déterminants indiquent
l’influence des facteurs socio-économiques qui concourent
à la préservation ou pas du Baoulé. Les actes de conduite,
santé et activités sociales participent à la préservation chez
les CE ayant annoncé une participation élevée, ceux gérant
seuls leur élevage, ceux âgés et ceux membres d’un
groupement. Leur importance plus nette chez ceux avec
des troupeaux mixtes, les migrants, les alphabétisés et
ceux avec attelage ne favorise pas la conservation car l’importance des actes de reproduction y est faible ou négative.
La stratégie d’accumulation de richesse par la constitution
des troupeaux mixtes s’amplifiera dans la région, augmentant ainsi la menace d’extinction du Baoulé. Les comportements et intentions des chefs d’exploitation tendent vers
l’adoption du métissage dans l’avenir. Le conservatisme
Lobi a contribué à préserver le Baoulé du métissage.
Mais des changements socioculturels et économiques
prévisibles modifieront le comportement de la jeune
génération vis–à–vis de ce bétail. Ainsi, l’élevage du
Baoulé ne s’inscrira pas seulement dans une optique socioculturelle ayant contribué à sa préservation. Il faut à l’instar
du taurin N’Dama qui fédère le Mali, la Guinée, le Gambie
et le Sénégal autour d’un projet de développement et de
préservation, envisager des actions similaires pour le taurin
Baoulé en pays Lobi. Les Lobi, principaux éleveurs de
taurin Baoulé, se partagent entre le Burkina Faso, la Côte
d’Ivoire et le Ghana. Les facteurs ethnique et linguistique
constituent un atout capital, favorisant l’organisation des
éleveurs autour du taurin Baoulé pour sa préservation.
177
178
L.Y. Mopate et al.
Remerciement
Les auteurs tiennent à remercier les différents bailleurs qui
ont contribué financièrement à la réalisation de cette étude,
ainsi que les responsables scientifiques du CIRDES et de
l’UPB à différents niveaux pour leurs appuis multiformes,
les enquêteurs et les agro-éleveurs qui n’ont ménagés leur
temps pour ce travail.
Références bibliographiques
Achukwi, M.D., Musongong, G.A. 2009. Trypanosomosis in the Doayo/
Namchi (Bos taurus) and zebu White Fulani (Bos indicus) cattle in
Faro Division, North Cameroon. Journal of Applied Biosciences 15:
807–814.
Camus, E., Landais, E., Poivey, J.P. 1981. Structure génétique du cheptel bovin sédentaire du Nord de la Côte d’Ivoire. Perspectives d’avenir
en fonction de la diffusion croissante du sang zébu. Revue d’Elevage
et de Médecine Vétérinaire des Pays Tropicaux 34(2): 187–198.
Chupin, D. 1994. Le rôle de la biotechnologie de la reproduction pour la
conservation des ressources génétiques animales. Animal Genetic
Resources Information 14: 13–26.
CIPEA (Centre international pour l’élevage en Afrique). 1979. Le
bétail trypanotolérant d’Afrique occidentale et centrale. Tome
I. Situation général, Étude de systèmes, Addis - Abeba, Ethiopie, 155.
Hubert, J.P. 1992. Enquête informelle versus enquête formelle? Cas des
paysannats de Impo au Nord du Burundi. Annales de Gembloux 98:
195–205.
Guinko, S. 1984. Végétation de la Haute-Volta. Thèse de Doctorat d’État
ès sciences naturelles. Université de Bordeau III, France, 318 +
annexes.
Kienou, J.D., Sanou, H., van Bronswijk, P. 1996. Monographie provinciale du Poni, étude du milieu. Ministère de l’Économie et des
Finances, Ouagadougou (Burkina Faso), 176.
Lalba, A., Badini, O., Kleene, P. 1999. Etablissement des priorités
géographiques de recherche et développement en élevage par combinaison d’études de diagnostic informelles et formelles: Burkina Faso.
In: Roeleveld et Broek (éds.), les systèmes d’élevage: orienter la
recherche. Institut royal des tropiques et Centre technique de
coopération agricole et rurale (Cta), 83–97.
Landais, E. 1983. Analyse des systèmes d’élevage bovin sédentaire du
Nord de la Côte d’Ivoire. Thèse Doctorat d’Etat IEMVT,
Maisons-Alfort, France. 2 vol., 759.
Landais, E. 1992. Principes de modélisation des systèmes d’élevage:
approches graphiques. Cahiers de Recherche-Développement 32(3):
82–95.
Landais, E., Balent, G. 1993. Introduction à l’étude des systèmes
d’élevage extensif. In: Landais (éd.), pratiques d’élevage extensif :
identifier, modéliser, évaluer. INRA, Études et Recherches sur les
Systèmes Agraires et le Développement 27: 13–35.
Lankoandé, Y.F. 2002. Développement des bovins trypanotolérants au
Burkina Faso: défis - potentialités - opportunités. Mémoire d’Ingénieur
de développement rural, option Elevage, IDR - Université
Polytechnique de Bobo-Dioulasso (Burkina Faso), 68 + annexes.
Lhoste, Ph. 1995. Sélection génétique. In: Daget et Godron (coordonnateurs), Pastoralisme: Troupeaux, espaces et sociétés. Hatier - Aupelf Uref (éds.), 322–324.
Maillard, J.C., Congo, I., Bassinga, A., Cuveillier, J.F. 1992.
Immunogénétique du taurin Baoulé en Pays Lobi (Burkina Faso). 1.
Environnement de cette population trypanotolérante. Revue d’Elevage
et de Médecine Vétérinaire des Pays Tropicaux, 45(1): 63–68.
Moazami Goudari, K., Belemsaga, D.M., Geriotti, G., Laloë, D.,
Fagbohoun, F., Kouagou, N. T., Sdibé, I., Codja, V., Crimella,
M.C., Grosclaude, F., Touré, S.M. 2001. Caractérisation de la race
Somba à l’aide des marqueurs moléculaires. Revue d’Elevage et de
Médecine Vétérinaire des Pays Tropicaux, 54(2): 129–138.
Mopaté, L.Y. 2003. Conservation In Situ du bovin Baoulé: pratiques paysannes et stratégies en «Pays Lobi» du Burkina Faso. Mémoire du D.
E.A en Gestion Intégrée des Ressources Animales, option « Systèmes
de Productions Animales ». Institut de Développement Rural (IDR),
l’Université Polytechnique de Bobo-Dioulasso (UPB), Burkina
Faso, 89.
Ouédraogo, D. 2002. Analyse socio-économique des pratiques de gestion
de la trypanosomose animale et les facteurs associés au
développement de la chimiorésistance dans la province du
Kénédougou (Burkina Faso). Thèse de Doctorat Unique ès Sciences
Économiques, UFR/SEG, Université de Ouagadougou, 210.
Pleine, T., Schmithüsen, F., Sorg, J-P. 1995. Logiques paysannes et
reboisement: le cas d’Andohavary sur les hauts plateaux de
Madagascar. Cahiers de Recherche-Développement, 42: 62–76.
Rege, J.E.O., Aboagye, G.S., Tawah, C.L. 1994. Shorthorn cattle in
West and Central Africa. I. Origin, distribution, classification and
population statistics. World Animal Review 78(1): 2–13.
Sokouri, D.P., Loukou, N.E., Yapi-Gnaoré, C.V., Mondeil, F.,
Gnangbe, F. 2007. Caractérisation phénotypique des bovins à viande
(Bos taurus et Bos indicus) au centre (Bouaké) et au nord (Korhogo)
de la Côte d’Ivoire. AGRI 40: 43–53.
Sokouri, D.P., Yapi-Gnaoré, C.V., N’Guett, A.S.P., Loukou, N.E.,
Kouao, B.J., Touré, G., Sangaré, A., Kouassi, A. 2009.
Utilisation et gestion des races taurines locales sous la pression des
croisements avec les zébus dans les régions Centre et Nord de la
Côte d’Ivoire. Journal of Animal & Plant Sciences 5(2): 456–465.
Sigué, H., Kamuanga, M.J.B. 1997. Le secteur de l’élevage et le politique de la santé animale au Burkina Faso: Revue et perspectives.
Document de travail 2, 36.
Tano, K., Kamuanga, M.J.B., Faminow, M.D., Swallow, B.M. 2001.
Adoption and demand for trypanotolerant cattle in the subhumide
zone of West Africa. Journal of Agriculture and Environment for
International Development 95(2–3): 213–235.
Thiombiano, D. 1993. La banque de semence du Centre de Recherche
sur la Trypanosomose Animale (CRTA). In: Chupin, Wagner et
Wilson (éds.), amélioration génétique des bovins en Afrique de
l’Ouest. FAO, Collection Production et Santé Animal 110. Actes de
l’atelier tenu à Banjul (Gambie) en octobre 1992, 193–198.
Teissier, J.H. 1979. Relations entre techniques et pratiques. Bulletin
INRAP 38.
Vianney Labé, Rudy Palm. 1999. Statistique, empirique, informelle:
quelle enquête pour la collecte d’information sur les exploitations
agricoles. Cahiers Agricultures 8(5): 397–404.
Animal Genetic Resources, 2014, 54, 179–184. © Food and Agriculture Organization of the United Nations, 2014
doi:10.1017/S2078633614000010
Influence of coat colour on Chamarita sheep
phenotypes, behaviour, welfare and performances
M. Pascual-Alonso1, G.C. Miranda-de la Lama2, L. Aguayo-Ulloa1, M. Villarroel3, S. Alierta1 and
G.A. Maria1
1
Department of Animal Production and Food Science, Faculty of Veterinary Medicine, University of Zaragoza, Miguel Servet 177,
E-50013, (50013) Zaragoza, Spain; 2Group of Animal Welfare and Sustainable Livestock Production, Department of Food Science,
Metropolitan Autonomous University, UAM-Lerma, State of México, México; 3Department of Animal Science, E.T.S.I.A. Polytechnic
University of Madrid, Madrid, Spain
Summary
Many rustic breeds under low levels of genetic selection maintain variations in coat colour, which local farmers link to production
traits, but few quantitative analyses have been made of the effect of coat colour on several zootechnical parameters of importance.
The aim of the study was to describe differences in morphology, production, behaviour and welfare of adult sheep ewes (n = 50) in
a Chamarita breed flock in terms of coat colour. The wool and skin colour of Chamarita sheep are quite variable, with white,
black and galana sheep. Morphological measurements (weight, body length, height at withers and thorax circumference) were not significantly different for different coat colours but white sheep tended to be larger. Average litter size (1.29 lambs per ewe) was also similar, but white coated sheep gave birth to larger lambs. White-mother lambs also had a higher average daily growth during the milking
period, although final weaning weight was similar to black ones. Most (>70 percent) of all the aggressive interactions observed were
performed by white sheep, while affiliative interactions (friendly interactions that promote group cohesion) were similar among coat
colour. Regarding the welfare assessment, most indicators were similar among sheep with different coat colour except for glucose in
blood plasma, which was higher in white sheep. Chamarita ewes are relatively small compared with other breeds, and well adapted to
their environment, including the production system and harder climatic conditions. Their performance is within the average of local
breeds and still has margins for improvement, which underline the importance of their conservation.
Keywords: Chamarita ewes, coat colour, morphology, social interactions, stress response
Résumé
Beaucoup de races considérées comme rustiques et ayant été soumises à une faible pression de sélection génétique conservent des variations dans la couleur de leur robe que certains éleveurs associent à des caractères productifs. Cependant, l’effet de la couleur de la
robe sur des paramètres zootechniques d’importance n’a guère été étudié. L’objectif de cette étude a été de décrire les différences en
morphologie, production, comportement et bien-être selon la couleur de la robe de 50 brebis adultes de la race Chamarita. Les mesures
morphologiques (poids, longueur, hauteur au garrot, circonférence thoracique) n’ont pas différé significativement entre les couleurs de
robe même si les brebis blanches ont tendu à être plus grandes. La prolificité (1.29 agneaux/brebis) a aussi été similaire mais les brebis
blanches ont eu des agneaux plus grands. Les agneaux de mères blanches ont aussi eu un gain moyen quotidien plus élevé, bien que le
poids final ait été similaire à celui des agneaux de mères noires. La plupart (>70 pour cent) des interactions agressives observées ont été
réalisées par des brebis blanches, alors que le pourcentage d’interactions affiliatives a été similaire pour les deux couleurs de robe. En ce
qui concerne l’évaluation du bien-être, aucune différence n’a été décelée entre les couleurs de robe pour la plupart des indicateurs,
hormis le glucose sanguin qui a été plus élevé chez les brebis blanches. Les brebis Chamaritas sont relativement petites par rapport
à d’autres races et sont bien adaptées à leur environnement productif. Leurs performances productives sont satisfaisantes et peuvent
encore être améliorées, comme quoi la conservation de cette race s’avère importante.
Mots-clés: brebis Chamaritas, couleur de robe, morphologie, réponse au stress, interactions sociales
Resumen
Muchas razas consideradas rústicas y sometidas a poca presión de selección genética mantienen variaciones en el color de capa que
algunos ganaderos relacionan con caracteres productivos, pero se han realizado pocos estudios respecto al efecto del color de capa en
algunos parámetros zootécnicos de importancia. El objetivo del presente estudio es describir diferencias en morfología, producción,
comportamiento y bienestar de ovejas adultas (n = 50) de raza Chamarita en cuanto a color de capa. Las medidas morfológicas
(peso, largura, altura a la cruz, circunferencia torácica) no resultaron significativamente diferentes entre colores de capa aunque las
ovejas blancas tendían a ser más grandes. La prolificidad (1.29 corderos/oveja) también fue similar pero las ovejas blancas tuvieron
corderos más grandes. Los corderos de madres blancas también tuvieron una mayor ganancia diaria (ADG), aunque el peso final
fue similar al de los corderos de madres negras. La mayoría (>70 percent) de las interacciones agresivas observadas fueron ejecutadas
Correspondence to:
M. Pascual-Alonso
email: [email protected]
179
180
M. Pascual-Alonso et al.
por ovejas blancas, mientras que las interacciones afiliativas resultaron similares en ambos colores de capa. En cuanto a la evaluación
del bienestar, la mayoría de los indicadores no presentaron diferencias entre colores de capa excepto la glucosa en sangre que fue mayor
en las ovejas blancas. Las ovejas Chamaritas son relativamente pequeñas comparadas con otras razas, y están bien adaptadas a su
ambiente productivo. Sus caracteres productivos son razonables con un buen margen de mejoría, demostrando la importancia de su
conservación.
Palabras clave: ovejas Chamaritas, color de capa, morfología, respuesta de estrés, interacciones sociales
Submitted 25 September 2013; accepted 16 January 2014
Introduction
Many local breeds under low selection pressure maintain
large variations in coat colour, which the farmers link to
production traits, but a few quantitative analyses have
been made to substantiate the effect of coat colour on differences in morphology, production, behaviour and welfare. Chamarita sheep are a breed from La Rioja (Spain),
included in the Official Catalogue of Spanish Livestock
Breeds under Endangered Native Breeds. The Chamarita
population size is about 10 000 sheep and it is officially
recognized as an endangered breed to be preserved. The
herd book was created in 2007 by the Chamarita Sheep
Association of La Rioja (or AROCHA as it is known by
its Spanish acronym), which has an official recognition to
promote and control the breed. Most herds are found in
the mountains of lower La Rioja and in the Cidacos and
Linares valleys (Warren, 2011). Animals are small in size
(adult rams 55–65 kg, ewes 35–40 kg; Barrio, Falceto
and Doménech, 1991), probably as an adaptive response
to their hard living conditions and in their extensive and
sustainable production system, which uses local resources
(Álvarez and Arruga, 2007).
Figure 1. Differences in coat colour in Chamarita sheep.
The wool and skin colour of Chamarita sheep are quite
variable, with white, black (roya) and rarely galana (a
combination of white, black and brown skin with white
and black/roya wool) coats (Figure 1). The roya sheep is
born black but their wool turns in reddish-black with
age, looking like brown. This type of coat is locally called
roya. The black skin is mainly located in the face. It is likely that, as with other breeds in the region, breeders have
selected for hardiness (through fertility and morphological
characteristics) and adaptation to the environment and less
for pure white wool. Nowadays there are many black sheep
in herds, since it is associated with positive zootechnical
traits (Doménech et al., 1992). Black animals usually
have a white spot on the nape (crowned), and another at
the distal end of the tail ( puntiblancos). Sometimes, the
spot of the neck extends over the head, forehead and
nasal area (caretos).
Currently, Chamarita sheep are mostly used for meat
production, both for suckling lamb (12–14 kg live weight)
and a weaned lamb with a short indoor fattening period
(20–22 kg live weight; Doménech et al., 1992). The
Chamarito lamb was recognized as a quality brand in
Influence of coat colour on Chamarita sheep phenotypes, behaviour, welfare and performances
April 2010 (PROCORCHA). Thus, farmers now used a
production system that ensures compliance with strict animal welfare health programmes, respecting the origin of
sheep fed on extensive pastures and lambs produced in
La Rioja on their mother’s milk. In this study, we describe
the morphological, productive and welfare traits of adult
female Chamarita sheep and the influence of coat colour
on these traits.
Materials and methods
A flock of 50 Chamarita adult ewes were transported from La
Rioja to the Animal Experimentation Support Service (SAEA)
of the University of Zaragoza, Aragón (41◦41_N). All sheep
used were raised, transported and slaughtered according to current regulations of the European Community Commission
(1986) for Scientific Procedure Establishments. All the protocols were approved by the Animal Experimentation Ethics
Committee of the University of Zaragoza. This study was the
collaboration between the Autonomous Regions of Aragon
and La Rioja (Spain).
Mouton®). A platform with a seat 3 m above the ground
was used to observe the flock from a distance. The ewes
were observed 6 h daily, from 8:00 to 10:00 h, 12:00 to
14:00 h and 16:00 to 18:00 h for 16 consecutive days (96
h of observation) by the same trained observer. A behaviour
sampling technique was used to record all social interactions
(agonistic and non-agonistic behaviour). Agonistic interactions with contact included butts (when the ewe used the
front of her head to make contact with another ewe), pushes
(when a ewe used other parts of her body to make contact
with another ewe) and bites (when one ewe bit another
ewe’s body using her teeth). Agonistic interactions without
contact included threats (when a ewe turned towards or
approached another individual with her head down and
then lunged without making contact), and chase (when a
ewe actively moved towards another individual, causing
the latter to walk or run away). Non-agonistic interactions
with contact included licking (when a ewe passed her tongue
over the body of another individual) and grooming (when a
ewe groomed another ewe’s body using her teeth).
Non-agonistic interactions without contact included sniffing
(when a ewe sniffed another ewe’s body) and the flehmen
response (when a ewe retracted the upper lip, wrinkled the
nose and bared the gums in the presence of another ewe).
Animals
The adult multiparous ewes were housed in pens during
pregnancy and lactation (2 m2 per ewe), fed twice a day
(at 08.00 and 15.00) with pellet concentrate (11.5 MJ
ME per kg DM and 15.5 percent crude protein; 0.3 kg
per ewe) and ad libitum lucerne chaff (Medicagosativa).
The pen was equipped with a metallic water trough
(1.5 m × 0.60 m) and two metallic feeders (4.5 m × 0.80
m, 27 cm per ewe) and a lick stone for minerals.
Most ewes were inseminated by controlled natural mating
before leaving the source farm and lambed at the
University a few weeks after arrival. The lambs were kept
together in the same pen with their mothers (2 m2 per
sheep and lamb). Flock prolificacy was calculated as the
total number of lambs born per total ewes lambing. Lambs
were weighed at birth (BW) and at weaning (WW).
Pre-weaning average daily gain (ADG) was estimated by
the difference WW−BW divided by the total milking period
(30 days).
Morphological measurements of ewes
One day before blood sampling, body length (BL), height
at withers (HW) and thorax circumference (TC) were measured as in Miranda-de la Lama et al. (2011), and each ewe
was weighed using a portable digital weighing scale.
Social behaviour
Social behaviour was evaluated by direct observation. All
ewes were individually identified and marked with 30
cm-high numbers and letters painted on the sides and rump
with washable paint for sheep marking (PeintureMarquage
Physiological welfare indicators
Blood samples were taken by jugular venipuncture with
vacuum tubes during the dry period to evaluate physiological responses to stress (two 10 ml tubes per animal, with
and without anticoagulant, Ethylenediaminetetraacetic acid
EDTA-K3). Blood was sampled using the necessary precautions to avoid sampling error on stress indicators. Samples
were kept on ice for a maximum of 2 h and taken to the laboratory for routine haematological measurements. EDTA plasma
and serum were centrifuged at 3 000 rpm for 10 min and
aliquots were frozen and kept at −30 °C until analysed.
An automatic particle counter (Microcell counter F-800
and auto dilutor AD-260, SysmexTM both) was used to
count red blood cells (RBC) and white blood cells
(WBC) (number per mm3), haemoglobin (g/dl) and haematocrit (percent). The leukocyte formula was estimated
from blood swabs on clean slides. Staining was performed
by the rapid panoptic method using dyes from
QuímicaClinicaAplicada Inc. With an optic immersion
microscope we counted and identified 100 leucocytes per
sample (neutrophils, lymphocytes, eosinophils, basophils
and monocytes). The neutrophil/lymphocyte ratio (N/L)
was used an indicator of chronic stress (Lawrence and
Rushen, 1993). Serum samples were used to determine the
concentration of glucose (mg/dl, Ref. Glucose AE2-17),
and the activity of creatine kinase (CK) (UI/L) (Ref. CK.
NAC AE1-13) with a multianalyser ACE® (Clinical
Chemistry System) and reagents from Alfa Wasserman.
Serum concentration of non-esterified fatty acid (NEFA)
levels was analysed by a multianalyser ACE® (Clinical
Chemistry System of the Alfa Wasserman), with commercial
181
182
M. Pascual-Alonso et al.
kits (NEFA C Ref. 994-75409 of the Wako). The concentration of cortisol was determined from plasma (EDTA-K3) by
enzyme immunoassay using an “in home-kit” (validated by
Chacón et al., 2004). Each sample was determined in duplicate from 50 μl of plasma and the results were expressed in
nmol/l, with the corresponding controls. Variation coefficients of the analysis, inter- and intra-assay, were 7 and 8
percent, respectively. The concentration of lactate was determined using a Sigma Diagnostic kit (lactate no. 735-10) and
spectrophotometer (Lambda 5, Perkin Elmer).
Data analysis
Data were analysed using the least squares methods of the
GLM procedure using SAS/STAT (9.1 SAS Inst. Inc.,
Cary, NC, USA) by SAS (1998), fitting a one-way
model with a fixed effect of coat colour (two levels) within
the ewe data. The general representation of the model used
was: y = Xb + e, where y was an N × 1 vector of records, b
denoted the fixed effect in the model with the association
matrix X and e was the vector of residual effects. A probability of P < 0.05 values was considered statistically
significant.
Results and discussion
The proportion of coat colours frequencies, according to
the association of breeders statistics, are 45 percent white
coat and 55 percent non-white coat (including the minority
galana coat). According with the genetic study performed
by Álvarez and Arruga (2007), the Chamarita phenotypes
are considered to be as a unique population.
Morphological measurements
Coat colour had little effect on morphological measurements (Table 1). Live weight of the adult ewes averaged
44.26 (±6.74) kg with no significant differences between
white and black sheep. The average TC was 104.05
(±4.58) cm, HW 65.72 (±3.7) cm and BL from chest to
tail 72.93 (±4.25) cm. The average live weight and HW
were higher than described by Barrio, Falceto and
Doménech (1991) (live weight 36.6 kg, HW 59.8 cm).
Chamarita sheep may have a lower body weight after
food shortages in extensive systems, which was not the
case in our experimental herd where sheep were fed
twice daily with concentrate and had water and straw ad
libitum. However, BL was shorter than in Barrio, Falceto
and Doménech (1991) (90.5 cm), but the latter authors
did not find differences between body measurements of
white and black sheep. Although body weight was not
significantly higher in white ewes, there was a tendency
for black sheep to be lighter.
The small size of Chamarita ewes compared with more
productive breeds (e.g. Rasa aragonesa: 45–50 kg;
Manchega: weighing over 45 kg; Merino: 50–70 kg; and
Table 1. Least-square means (±S.E.) for the effect of coat colour
on morphological, physiological and behavioural traits in
Chamarita sheep.
Whole flock
Morphological measurements
Bodyweight (kg)
44.26 ± 6.74
TC (cm)
104.05 ± 4.58
HW (cm)
65.72 ± 3.7
BL (cm)
72.93 ± 4.25
Physiological measurements
Cortisol (nmol/l)
27.59 ± 29.2
Glucose (mg/dl)
72.97 ± 33.91
Lactate (mg/dl)
18.57 ± 13.91
NEFA (nmol/l)
0.098 ± 0.098
CK (UI/l)
131.89 ± 77.6
Ratio N/L
0.81 ± 0.37
WBC (103/mm3)
8.14 ± 4.0
RBC (103/mm3)
8.85 ± 1.28
HTC (%)
28.8 ± 4.27
Social interactions
Agonistic
163.88 ± 107.03
Affiliative
18.74 ± 21.55
White ewes
Black ewes
46.23 ± 1.72
105.18 ± 1.11
66.55 ± 0.89
73.82 ± 1.03
43.36 ± 1.16
103.47 ± 0.79
65.28 ± 0.64
72.47 ± 0.74
27.32 ± 7.62
87.2 ± 8.48a
18.53 ± 3.63
0.07 ± 0.03
144.4 ± 20.13
0.80 ± 0.09
8.42 ± 1.04
8.96 ± 0.33
29.45 ± 1.11
27.72 ± 5.14
66.51 ± 5.72b
18.6 ± 2.45
0.11 ± 0.017
126.21 ± 13.57
0.83 ± 0.06
8.01 ± 0.7
8.79 ± 0.23
28.5 ± 0.75
226.12 ± 23.78a
19.58 ± 5.28
131.82 ± 17.06b
18.3 ± 3.79
Different letters (a, b) represent significant differences ( p < 0.05) between
groups. NEFA, non-esterified fatty acid; CK, creatine kinase; Ratio N/L,
neutrophil/lymphocyte ratio; WBC, white blood cells; RBC, red blood
cells; HCT, haematocrit.
Assaf: 60–70 kg) is consistent with the morphology
and weights of most breeds considered rustic and well
adapted to a harsh environment (Catalogue Livestock
Breeds in Spain). Such is the case of Ojalada (between
35 and 45 kg of body weight), Mallorquina (30–40 kg of
body weight) or Gallega (25–35 kg in the mountain ecotype). This adaptation is due to food shortages, thereby
reducing their energy needs (Álvarez and Arruga, 2007),
allowing them to make use the resources at their disposal.
In that regard, black sheep that tended to be smaller than
white sheep may be more adapted to a harsh environment
than white sheep (Álvarez and Arruga, 2007).
Productive traits
The average litter size of the whole flock was 1.29 (±0.36)
lambs born per ewe lambing with no significant differences between coat colours (Table 2). Litter size is slightly
higher than in Doménech et al. (1992), who found a tendency for single births (1.1 lambs per ewe). However,
Table 2. Least-square means (±S.E.) for the effect of coat colour
on productive traits in Chamarita sheep.
Prolificacy
BW of lambs (kg)
ADG of lambs (g)
WW of lambs (kg)
Whole flock
White ewes
Black ewes
1.29 ± 0.36
3.63 ± 0.59
215.56 ± 48.56
11.95 ± 2.12
1.25 ± 0.09
3.86 ± 0.16a
236.49 ± 13.04a
12.46 ± 0.59
1.3 ± 0.07
3.53 ± 0.1b
206.18 ± 8.73b
11.72 ± 0.39
Different letters (a, b) represent significant differences ( p < 0.05) between
groups. BLW, birth weight; ADG, average daily gain during the milking
period; WLW, weaning weight.
Influence of coat colour on Chamarita sheep phenotypes, behaviour, welfare and performances
the latter authors suggested that an increased food supply
could increase prolificacy to 1.5 lambs per ewe and delivery. These data confirm the potential for improvement of
the Chamarita sheep when environmental conditions are
optimal. The lambs weighed 3.63 (±0.59) kg at birth,
and those born to white mothers were significantly (P ≤
0.05) heavier than these born (+9 percent) black ones.
Balda, Chavarri and Doménech (1981) reported a birth
weight of 2.6 kg in pure lines and 3.6 kg in industrial
crossings. In our study, the herd was pure and the crosses
were with Chamarito males, so probably the increased
birth weight in lambs may be due to higher feeding rate
in our experimental group. The fact that lambs from
white females weighed more at birth than those from
black females is probably due to larger body size of their
mothers is associated with higher consumption of concentrate. This hypothesis partially corroborates the data on
blood glucose levels and social interactions of the herd,
which suggest that white sheep were dominant (see
below). Similarly, lambs from white ewes had a higher
ADG during the milking period (+14.7 percent, P ≤
0.05), compared with the ADG of the whole herd 215.56
(±48.56) g. The ADG data support the hypothesis that
white females could eat more and therefore produce
more milk for their lambs. However, the average weaning
weight of the lambs (11.95 ± 2.12 kg) was not significantly
different among different coat coloured mothers. That
implies that a homogeneous product can be obtained at
weaning regardless of coat colour.
Physiological welfare indicators
Physiological and haematological variables can be used to
assess the welfare of animals subject to acute and/or chronic stress (Barnett and Hemsworth, 1990). The results of
physiological measurements are presented in Table 1.
Cortisol levels averaged 27.59 (±29.2) nmol/l, glucose
72.97 (±33.91) mg/dl, lactate 18.57 (±13.91) mg/dl,
NEFA 0.098 (±0.098) nmol/l and CK 131.89 (±77.6)
IU/l. The N/L ratio averaged 0.81 (±0.37), which suggests
there was no immune suppression (Lawrence and Rushen,
1993). None of the sheep had clinical signs of illness. The
WBC count was 8.14 (±4) 103/mm3, RBC count 8.85
(±1.28) 103/mm3, and haematocrit percentage was 28.8
(±4.27). All physiological measures were within normal
ranges for sheep during routine handling procedures and
do not suggest that welfare was compromised
(Hargreaves and Hutson, 1990). Glucose was the only
physiological variable that was significantly higher (P ≤
0.05) in white sheep (by 31.1 percent) than black sheep.
Plasma glucose levels increase after acute stress when
adrenaline induces muscle glycogen catabolism for its
use in gluconeogenesis in the liver (Apple et al., 1995).
However, in our case, the higher glucose levels in white
sheep could have been the result of their higher feed
intake. White sheep tended to be heavier and be the dominant animals in the herd, as reflected in levels of aggressive social interactions, all of which imply higher energy
costs. However, we did not find a difference in stress levels
between black and white sheep, probably since the group
was quite stable and had abundant resources.
Social behaviour
Of the 163.88 (±107.03) aggressive interactions observed
(Table 1), most were performed by white sheep (+71.5 percent, P ≤ 0, 05). That suggests a higher dominance status for
white sheep (Orgeur, Mimouni and Signoret, 1990; Barroso,
Alados and Boza, 2000), tied with the fact that they were
heavier and larger (Miranda-de Lama et al., 2011).
Dominance is a mechanism that regulates social behaviour
and priority access to available resources, since high dominance animals have priority access to resources in intensive
production conditions (Barroso, Alados and Boza, 2000).
That coincides with the higher glucose levels in white
sheep. The levels of aggressive interactions observed within
a stable herd are consistent with the idea of Doménech et al.
(1992) that Chamarita behaviour is more like goat behaviour, with a lively temperament and instinct for survival,
linked to foraging behaviour and browsing. Affiliative interactions totalled 18.74 (±21.55) for the whole herd, with no
significant differences regarding coat colour. Affiliations
are a very important part of the social cohesion of a group
(Miranda-de la Lama and Mattiello, 2010), but under conditions of social competition for limited resources, animals tend
to do without them (Miranda-de la Lama et al., 2011). It is
likely that an adaptation to very scarce resources has led to
Chamarita to favour aggressive interactions in detriment of
affiliative ones in the context of the social group.
Conclusions
White ewes of the Chamarita breed are slightly larger than
the black-coated ewes and give birth to larger lambs. They
also behaved more aggressively and had higher plasma
concentrations of glucose, underlying their more dominant
character. Overall, the productive traits of Chamarita ewes
and lambs were quite good compared with other sheep and
taking into consideration their small size. Owing to their
strong adaptation to the harsh environment of La Rioja
sierra, using grazing resources within a sustainable
production system, Chamarita breed should be preserved.
Appropriate selection and conservation practises will
help to improve their performance and help contribute to
rural development and sustaining the local agro-ecosystem,
preserving a valuable cultural and gastronomic heritage of
the Community of La Rioja.
Acknowledgements
This study was funded by the Spanish Ministry of Science
and Innovation (projects AGL-2009-10794/GAN and
AGL2012.37219). Many thanks to the Autonomous
183
184
M. Pascual-Alonso et al.
Community of La Rioja for the Scholarship PhD Programme
(Programa de AyudasPredoctoralesdelGobierno de la
Rioja) of M. Pascual-Alonso. Special thanks to AROCHA
and PROCORCHA associations for their support and their
invaluable help. This appreciation is special for the veterinary
responsible of these associations, Don José Antonio González.
Thank you very much to the staff of the Animal Research
Centre of the University of Zaragoza (SAEA).
Barroso, F.G., Alados, C.L. & Boza, J. 2000. Social hierarchy in the
domestic goat: effect on food habits and production. Appl. Anim.
Behav. Sci. 69: 35–53.
Chacón, G., García-Belenguer, S., Illera, J.C. & Palacio, J. 2004.
Validation of an EIA [enzyme immunoassay] technique for the
determination of salivary cortisol in cattle. Span. J. Agric. Res. 2: 45–51.
Doménech, J.M., Barrio, A.R., Falceto, M.D. & González Jiménez, J.A.
1992. La oveja Chamarita. Serie Estudios no 25, Gobierno de La Rioja.
Logroño, La Rioja, España.
European Commission. 1986. Scientific procedure and breeding of animals for use in scientific procedure establishments. Directive 86/609/
ECC 1986.
References
Álvarez, L. & Arruga, M.V. 2007. Caracterización de la oveja
Chamarita mediante marcadores microsatélites. Estructura genética,
genotipado del gen Scrapie y creación de un banco de ADN. Beca
de estudios Arnedanos.
Apple, J.K., Dikeman, M.E., Minton, J.E., McMurphy, R.M., Fedde,
M.R., Leith, D.E. & Unruh, J.A. 1995. Effects of restraint and isolation stress and epidural blockade on endocrine and blood metabolite
status, muscle glycogen metabolism, and incidence of dark-cutting
longissimus muscle of sheep. J. Anim. Sci. 7: 2295–2307.
Balda, I., Chavarri, J.B. & Doménech, J.M. 1981. La oveja Chamarita
I Jornadas Técnicas de ganado ovino en La Rioja-Logroño.
Barnett, J.L. & Hemsworth, P.H. 1990. The validity of physiological
and behavioural measures of animal welfare. Appl. Anim. Behav.
Sci. 25: 177–187.
Barrio, A.R., Falceto, M.D. & Doménech, J.M. 1991. La raza
Chamarita: Estudio etnológico y morfométrico. XVI Jornadas
Científicas de la S.E.O.C.
Hargreaves, A.L. & Hutson, G.D. 1990. The effect of gentling on heart
rate, flight distance and aversion of sheep to a handling procedure.
Appl. Anim. Behav. Sci. 26: 243–252.
Lawrence, A.B. & Rushen, J. 1993. Stereotypic animal behaviour: fundamental and application to welfare. UK, CAB International.
Miranda-de la Lama, G.C. & Mattiello, S. 2010. The importance of
social behaviour for goat welfare in livestock farming. Small Rumin.
Res. 90: 1–10.
Miranda-de la Lama, G.C., Sepúlveda, W.S., Montaldo, H.H., María,
G.A. & Galindo, F. 2011. Social strategies associated with identity
profiles in dairy goats. Appl. Anim. Behav. Sci. 134: 48–55.
Orgeur, P., Mimouni, P. & Signoret, J.P. 1990. The influence of rearing
conditions on the social relationships of young male goats, Capra hircus. Appl. Anim. Behav. Sci. 27: 105–113.
Statistical Analysis System Institute. 1998. SAS/STATS user’s guide
(Release 6.03). Cary, NC, SAS Institute.
Warren, J. 2011. Chamarito Lamb Promoted among Restaurant Owners
and Butchers. http://www.foodsfromspain.com.
Animal Genetic Resources, 2014, 54, 185. © Food and Agriculture Organization of the United Nations, 2014
Recent Publication
The camels of Kumbhalgarh. A biodiversity
treasure
I. Köhler-Rollefson, H. Singh Rathore and A. Rollefson
Edited by K. Hardy
Lokhit Pashu-Palak Sansthan, Sadri
Published in 2013, pp 48.
ISBN 81-90164-1-4
Available at http://www.lpps.org/wp-content/uploads/2013/10/
Camels_Of_Kumbhalgarh_web.pdf
doi:10.1017/S2078633614000216
This publication describes the roles of the camels in the
Kumbhalgarh region in Rajastan, India, ecologically sustainable camel herding system of unique biocultural heritage. The publication highlights the importance of the
camel herding in the culture and livelihoods of the Raika
people, traditional keepers of the camels. The two camel
breeds present in the Kumbhalgarh are one-humped or
dromedary camels (Camelus dromedarius), sub-set of the
“Marwari” breed. The book provides descriptions of the
camels, their feeding behaviour (the book includes an
appendix of preferred forage plants containing their medicinal and other uses) and their roles in the functioning of
the agro-ecological system, daily routine of the herders
and the migration routes, as well as the importance of
the traditional knowledge about the ecosystem. The annual
cycle of the camel breeders and the management activities
are presented, highlighting the unique character of this
breeding system. However, a number of problems are
threatening this system and these problems are named
and discussed. Due to declining incomes and camel populations, urban migration of the members of the herder families and the plans of Rajastan government to declare the
part of traditional herding lands as a National Park, this
system is threatened by the loss of its agro-ecological
and socio-cultural heritage values. However, the authors
describe the options which can ensure that the herding
system can exist as an integral part of the planned
National Park, attract visitors interested in ecological tourism and provide a diversity of camel products such as
camel milk, camel milk soap and camel dung paper. The
publication concludes with presenting the legal documents
which are important to ensure the camel breeders’ rights
and recommendations for enhancing the potential of the
camels to contribute to the diversity of the Kumbhalgarh
Protected Area.
185
Animal Genetic Resources, 2014, 54, 187. © Food and Agriculture Organization of the United Nations, 2014
Recent Publication
Caractérisation phénotypique des ressources
génétiques animales
Directives FAO sur la production et la santé animales No. 11
Publication de la version française en 201, pp. 151.
E-ISBN 978-92-5-207843-2
Available at http://www.fao.org/docrep/019/i2686f/i2686f.pdf
doi:10.1017/S2078633614000228
Les Directives sur la caractérisation phénotypique des
ressources génétiques animales ont été publiées en
français en 2013. Ces Directives font partie d’une série
de publication produites par la FAO pour aider les pays
à mettre en œuvre le Plan d’action mondial pour les
ressources zoogénétiques, qui reconnaît qu’«une bonne
compréhension des caractéristiques des races est
nécessaire pour guider la prise de décision en matière de
programmes de développement et de sélection des animaux d’élevage» (FAO, 2007).
Ces directives sur la caractérisation phénotypique des
ressources génétiques animales s’adressent à la Priorité
stratégique 1 du Plan d’action mondial: «Caractérisation,
inventaire et surveillance des évolutions et des risques
associés». Elles complètent, en particulier, les directives
sur la caractérisation génétique moléculaire et sur la
réalisation d’enquêtes et de suivi pour les ressources
génétiques animales. En effet, les trois types d’informations
– phénotypique, génétique et historique – sont nécessaires
pour caractériser les ressources génétiques animales. Les
informations fournies par les études de caractérisation sont
primordiales pour planifier la gestion des ressources
génétiques animales au niveau local, national, régional et
mondial.
Ces directives permettent d’identifier des différentes races et
de décrire de leurs caractéristiques externes et de production
dans un environnement et un cadre de gestion donnés, en
tenant compte des facteurs socio-économiques qui les affectent. Pour cela, elles se concentrent sur la collecte et l’utilisation de l’information phénotypique. Par ailleurs, les
activités de caractérisation phénotypiques sont difficiles à
mettre en œuvre d’un point de vue logistique et technique.
Ainsi, les directives donnent des conseils sur la façon de
mener une étude de caractérisation phénotypique bien
ciblée et rentable qui contribue à l’amélioration de la gestion
des ressources génétiques animales dans le cadre de la mise
en œuvre du Plan d’action mondial au niveau des pays. De
plus, un aperçu des concepts et des approches qui soutiennent les études de caractérisation phénotypique est suivi
de conseils pratiques sur la planification et la mise en
œuvre des activités sur le terrain, ainsi que sur la gestion
et l’analyse de données. Enfin, les annexes comprennent
des formats génériques de collecte de données pour la
caractérisation phénotypique des principales espèces
d’élevage, ainsi qu’un cadre pour l’enregistrement de
données sur les milieux de production des races.
187
Animal Genetic Resources, 2014, 54, 189. © Food and Agriculture Organization of the United Nations, 2014
Recent Publication
Cattle husbandry in Eastern Europe and China.
Structure, development paths and optimisation
Edited by A. Kuipers, A. Rozstalnyy and G. Keane
Wageningen Academic Publishers
Published in 2014, pp. 280
ISBN 978-90-8686-785-1
doi: 10.3920/978-90-8686-785-1
doi:10.1017/S207863361400023X
This book presents an analysis of the dairy and associated
sector developments in Eastern Europe and China. The
transition in cattle husbandry in Eastern Europe, resulting
in enormous structural changes, but not in an increased
production volume, is different from emerging countries,
like China, where traditional small scale farming goes
together with the remodelling or start of mega farms.
Capacity building by means of cooperation appears to be
hindered by historical experience.
Farm development paths were studied in more depth in
Poland, Lithuania and Slovenia using detailed farmer surveys. Farmers’ strategies, availability of resources, and
opportunities and threats were analyzed, and interactive
group trainings in strategic management were part of the
analysis. The results are presented here. Although farmers
showed similar wishes concerning farm development, the
local environment and policies determines the degree of
achievement. Farm fragmentation, the high percentage of
rented land and availability of suitable labour are major
constraints. Future EU policies are a concern but new technologies are embraced.
This book is a must for those interested in the transition in
Eastern Europe. It is indispensible to consultants,
marketers, companies, farm leaders and government
officials in agriculture.
189
CONTENTS
Editorial ................................................................................................................................................................i
Phenotypic and morphological characterization and reproduction attributes of native pigs in Bangladesh
C.H. Ritchil, M.M. Hossain and A.K.F.H. Bhuiyan ....................................................................................................1
Caractéristiques phénotypiques de la chèvre du sahel au Niger par analyse des indices de
primarité et des paramètres qualitatifs
M. Mani, H. Marichatou, M. Issa, I. Chaïbou, A. Sow, M. Chaïbou and J.G. Sawadogo ............................................11
Caractérisation de la chèvre du sahel au Niger par analyse des indices biométriques et des paramètres
phénotypiques quantitatifs
M. Mani, H. Marichatou, M.M.M. Mouiche, M. Issa, I. Chaïbou, A. Sow, M. Chaïbou and J.G. Sawadogo ................21
Morphological, reproductive and productive characteristics of Sudanese native chicken
C.E. Wani, I.A. Yousif, M.E. Ibrahim, H.H. Musa and K.M. Elamin ..........................................................................33
Phenotypic characterization of indigenous chicken ecotypes in the north Gondar zone, Ethiopia
Addis Getu, Kefyalew Alemayehu and Zewdu Wuletaw ............................................................................................43
Studies on morphometrical traits of Boran bulls reared on two feedlots in Southern Ethiopia
Sandip Banerjee, Mohamed Beyan Ahmed and Girma Tefere ..................................................................................53
Analysis of the body structure of Djallonke sheep using a multideterminant approach
Peter T. Birteeb, Sunday O. Peters and Michael O. Ozoje ........................................................................................65
Variation in qualitative traits in Bhutanese indigenous chickens
T. Tashi and N. Dorji ............................................................................................................................................73
Genetic polymorphism of S1 casein in Guéra and Sahel goat
D. Traoré, Y. Sanogo, R. Fané, A. Touré, O. Cissé and A.H. Babana ..........................................................................79
Estimación de heredabilidad de la curva de crecimiento en el borrego de raza Chiapas en México
A.C. Méndez-Gómez, R. López-Ordaz, M. Peralta-Lailson, R. Ulloa-Arvizu, P. Pedraza-Villagómez,
F.J. Ruiz-López, J.M. Berruecos-Villalobos and C.G. Vásquez-Peláez ......................................................................85
Caracterización genética de la población bovina criolla de la Región Sur del Ecuador y su relación
genética con otras razas bovinas
L. Aguirre Riofrio, G. Apolo, L. Chalco y A. Martínez ............................................................................................93
Genealogical and population viability analysis of a conservation nucleus of Brazilian Bergamasca sheep
H. Carneiro, S.R. Paiva, H. Louvandini, R.M. Miranda and C. McManus ..............................................................103
Population structure and genealogical analysis of the Brazilian Crioula Horse
F.C. Maciel, C.D. Bertoli, J. Braccini Neto, J.A. Cobuci and S.R. Paiva and C.M. McManus ....................................115
Pedigree and population viability analyses of a conservation herd of Moura pig
H. Carneiro, S.R. Paiva, M. Ledur, E.A.P. Figueiredo, V.H. Grings, F.C.P. Silva and C. McManus ............................127
Evaluación del semen criopreservado de toros Curraleiro Pé Duro, perteneciente al Banco Brasilero de
Germoplasma Animal
I.S. Montesinos, J.O. Carvalho, J.V. Malaquias, E. Arnhold, G.E. Freneau, M.A.N. Dode, M.C.S. Fioravanti y
J.R.B. Sereno ......................................................................................................................................................135
Unique cultural values of Madura cattle: is cross-breeding a threat?
T.S.M. Widi, H.M.J. Udo, K. Oldenbroek, I.G.S. Budisatria, E. Baliarti and A.J. van der Zijpp ................................141
Some traditional livestock selection criteria as practiced by several indigenous communities of
Southern Ethiopia
Sandip Banerjee, Mohammed Beyan and Hiwot Bekele ........................................................................................153
Phenotypic characterization and description of production systems of autochthonous sheep
breeds in Kosovo
H. Bytyqi, R. Baumung, H. Mehmeti and B. Fuerst-Waltl ......................................................................................163
Evaluation des pratiques paysannes de conservation in situ du taurin Baoulé au Sud-Ouest du Burkina Faso
L.Y. Mopate, M.J-B. Kamuanga, S. Hamadou and C-Y. Kaboré-Zoungrana ............................................................171
Influence of coat colour on Chamarita sheep phenotypes, behaviour, welfare and performances
M. Pascual-Alonso, G.C. Miranda-de la Lama, L. Aguayo-Ulloa, M. Villarroel, S. Alierta and G.A. Maria ..............179
Recent Publications
185