FROM OPERATIONAL HYDROLOGICAL FORECAST TO RESERVOIR MANAGEMENT OPTIMIZATION DES PRÉVISIONS HYDROLOGIQUES OPÉRATIONNELLES VERS UNE OPTIMISATION DE LA GESTION DES RÉSERVOIRS September 17 – 19, 2014, Québec, Québec, Canada Program Outline Day 1 Wednesday 17th 8h30 – 10h00 Registration 10h-10h15 Opening Session 10h15 – 11h00 Plenary session 1 Jery R. Stedinger 11h00 – 12h15 Session 1 Reservoir Optimization I 12h15 13h45 Lunch 13h45 – 15h00 Session 2 Hydrological ensemble predictions and Inflow Forecast I Day 2 Thursday 18th Day 3 Friday 19th 8h30 – 9h15 Plenary session 2 John C. Shaake 9h15 – 10h05 Session 4 Hydrological ensemble predictions and Inflow Forecast II 8h30 – 9h15 Plenary session 4 Andrea Castelletti 10h05 – 10h30 Coffee break 10h30 – 11h00 Coffee break 10h30 – 12h10 Session 5 Reservoir Management and Inflow forecast II 12h10– 13h30 Lunch 9h15 – 10h30 Session 8 Reservoir Optimization II 11h00 – 12h00 Panel 13h30 – 14h15 Plenary session 3 François Anctil, Vincent Fortin 15h00 – 15h30 Coffee break 14h15 – 15h05 Session 6 Hydrological ensemble predictions and Inflow Forecast III 15h30 – 16h45 Session 3 Reservoir Management and Inflow forecast I 15h05 – 15h30 Coffee break 17h00 – 19h00 Happy Hour 15h30 – 16h45 Session 7 Reservoir Management and Inflow forecast III 2 Location of Activities The workshop takes places at the Château Laurier downtown Québec city, 1220, Place George-V Ouest, Québec G1R 5B8. All Activities take places at the RC Main Floor “Salle des Plaines A, B and C”. 3 Day #1 Plenary session 1 Chaired by André St-Hilaire 10h15 – 11h00 Value and Use of Forecasts in Hydropower Optimization Models Jery R. Stedinger, PhD, NAE, Dist. M. ASCE School of Civil and Environmental Engineering, Cornell University Research has showed that the use of forecasts is of value in the optimization of hydropower system operations. But what is not clear is the best way to represent inflow forecasts and their uncertainty. Is stochastic programming employing ensemble streamflow forecasts in an simple event tree sufficient, or should such trees have multiple branches, and how many branches? Is much to be gained by a full (sampling) stochastic dynamic programming (SSDP) model employing streamflow sequences and reflecting the evolution of streamflow, forecasts and their uncertainty? Recent results for a small New England system and the large Federal Columbia River system will be described. Also of interest are efforts to extend the range of problems feasibly addressed with SSDP models by focusing on realistic sets of states within the state space and using effective numerical approximations of the cost-to-go function. 4 Session 1: Reservoir Optimization I Chaired by Michel Gendreau 11h00 – 11h25 Dealing with uncertainties in water management systems: from theoretical to practical framework. Bruno Larouche, Jean Paquin, Marco Latraverse and Pascal Côté Québec Power operation, Rio Tinto Alcan Rio Tinto Alcan operates two private hydro electrical systems in Canada to supply energy to its aluminum smelters. The Quebec’s system has an installed capacity of more than 3000 MW and the other system in British-Columbia has an installed capacity of 1000 MW. The presentation shows how the water management group has set up its R&D project in an open innovation mode and how the link between the operational group and the development team has been managed. Some developments regarding inflow forecast and stochastic optimization will be presented. 11h25 – 11h50 Short-term Reservoir Management of Hydropower Reservoirs by Multi-Stage Stochastic Optimization. Dirk Schwanenberg, Divas Karimanzira, Steffi Naumann and Christopher R. Allen We present recent implementations of an open source optimization model for the short-term management of hydropower reservoirs over forecast horizons of 15-21 days. Focus is the generation and assessment of probabilistic ensemble forecasts, its transformation into scenario trees and integration into a novel multi-stage stochastic optimization approach. Use cases include reservoir systems operated by the Brazilian Companhia Energética de Minas Gerais S.A. (CEMIG) in the state of Minais Gerais, Brazil, and the Bonneville Power Administration (BPA) in the Pacific Northwest of the United States. 11h50 – 12h15 Performance of Sampling Stochastic Dynamic Programming Algorithm with Various Inflow Scenario Generation Methods. Jennifer Schaffer and Ziad Shawwash We present the implementation of a sampling stochastic dynamic programming (SSDP) algorithm to maximize water value for the BC Hydro hydroelectric system in British Columbia, Canada. This study investigates model performance and outputs with variation of inflow inputs. Sixty years of historical data is used in various methods to generate inflow scenarios including historical sequences, ensemble streamflow forecasts (historical and future), and an autoregressive model with lag-1. Seasonal volume forecast is employed as a hydrologic state variable. We present results of our implementation of the SSDP algorithm including discussion on improved reservoir operation policy and value of water functions. 5 Session 2: Hydrological ensemble predictions and Inflow Forecast I Chaired by Marie-Amélie Boucher 13h45 – 14h10 Ensemble Forecast of Water Levels and Flows in the Lake Ontario - St. Lawrence River System Jacob Bruxer, Rob Caldwell, Yin Fan, Paul Yu The International St. Lawrence River Board of Control ensures outflows from Lake Ontario through the St. Lawrence River meet the requirements of the International Joint Commission’s Orders of Approval. In support of this objective, Board staff produces a bi-nationally coordinated weekly forecast of Lake Ontario water levels and outflows. An ensemble forecasting technique has been developed that employs a time series of historical estimates of weekly net basin supplies derived as a residual from water level and flow data. Each of the historical net basin supply scenarios, along with observed initial conditions, is then used as input to a regulation and routing model, producing an ensemble of simulated water levels and flows throughout the Lake Ontario - St. Lawrence River system. A comparison of probabilistic results of the ensemble forecast compare favourably to the previous forecast method employed by the Board, and the ensemble method more accurately portrays the true variability in water levels and flows throughout the system. 14h10 – 14h35 Ensemble forecasts for the prediction of snowmelt of the Mistassibi watershed Qingxiao Zhou and Marie-Amélie Boucher Snow is one of the most important parameters for hydrological forecasting in northern catchments. The uncertainty on snow measurement and modelling is reflected on the forecasts for the spring freshet (both timing and volume). In this work, a degree-day snow module (CemaNeige) and an energy balance snow module (UEB) are both used in conjunction with the hydrological model CEQUEAU and ensemble meteorological forecasts from Environment Canada. This allows for the assessment of the uncertainty related to spring streamflow forecasts by accounting both for the uncertainty related to meteorological conditions and to completely different modelling schemes for snow processes. 6 14h35 – 15h00 Modeling hydraulics inflows for several plants of a valley Jérôme Collet EDF R&D This study is part of a project to improve hydraulic valleys management practices, in order to improve compliance with environmental constraints. For this, we have to model the behavior of inflows. As years are almost independent one to another, each one is considered as a large observation, which allows modeling seasonal and long-range dependencies. The residual noise is modeled by a homogeneous process. To validate the model, we calculate averages on several plants and several days, comparing their distribution to the observed one. Session 3: Reservoir Management and Inflow forecast I Chaired by Richard Turcotte 15h30 – 15h55 Dealing with probabilistic constraints in EDF river-chains management Simon Fécamp EDF R&D The hydro-electric power plants managed by EDF undergo many constraints that don’t allow feasibility for each water inflows scenario. Nevertheless, for issuing constraints EDF aims at reaching a given probability of respect. To anticipate constraints, we use a “constrained management”: if we don’t fulfill some conditions on the levels of the reservoirs, our decisions are based on a non-economic criteria. We aim at maximizing the expected revenue of the riverchain depending on the commands and the conditions of the constrained management, subject to the expected probabilities of respect of the constraints. We present a heuristic approach to solve this problem. This consists in iterating strategies and associated probabilities of respect calculus. 15h55 – 16h20 An Operational System for Water Supply Forecasts and Reservoir Management Karel Heynert, Matthijs Lemans and Edwin Welles Deltares We present a software system used around the world for operational forecasting and regulations. The Delft Flood Early Warning System (Delft-FEWS) grew up as a platform to support flood forecasting, but has now been implemented for purposes well beyond that, including operational reservoir optimization. The popularity of the Delft-FEWS platform is derived from the flexible architecture it implements. Reservoir optimization and hydrological models are linked synchronously through time series. Parameter storage, model connectivity, basin descriptions, operational work flows and predefined display configurations are all stored by FEWS. Delft-FEWS supports uncertainty estimates via ensemble model runs. It facilitates an integrated forecast and optimization environment. 7 16h20 – 16h45 Reservoir Inflow Forecasting for the Winnipeg River using integrated Distributed Hydrological Modelling and Reservoir Simulation W. Jenkinson, J. Bomhof, M. Serrer, M. DeWolfe The Lake of the Woods Control Board (LWCB) is a Canadian board, formed in 1919 as required under Canadian federal and provincial legislation and a Canada-United States Treaty. The LWCB regulates the water levels of Lake of the Woods and Lac Seul, and the flows in the Winnipeg and English Rivers downstream of these lakes to their junction. Lake levels and river flows are regulated by operating dams at the outlets of Lake of the Woods and Lac Seul, and a number of other dams in the watershed play critical roles in flow and lake level regulation throughout the 150,000 km² watershed. The LWCB seeks to consider all stakeholder interests in the basin, and using the best available measuring, forecasting and information systems, the LWCB aims for solutions that accommodate all interests. The LWCB continually seeks to improve their capabilities in water level predictions and flow forecasting to better serve the stakeholders living and working in the watershed. To this end, the LWCB is developing new forecasting and modelling tools to assist in deterministic prediction to improve dam and hydraulic control operation procedures. As part of a development project lead by the National Research Council of Canada (NRC) and involving Environment Canada and Manitoba Hydro, the LWCB is implementing an integrated inflow and lake/reservoir forecasting and decision support system using a combination of HEC-ResSim (Reservoir Simulation) model to provide real-time decision support of basin regulation and WATFLOOD for hydrological inflow forecasting. The WATFLOOD model is calibrated using the new Environment Canada (EC) precipitation reanalysis product CaPA (Canadian Precipitation Analysis), meteorological station temperature data, EC streamflow and lake level data and integrated into a custom-built flow forecasting system. This novel system of integrated models will provide real-time evaluations of the hydrological state of the watershed and the impacts to stakeholders across the basin. The forecasting framework was designed to run the WATFLOOD model operationally and automatically provide flow forecast estimates to HEC-ResSim operational model. The framework provides users the capability to apply a number of state variable updates including channel storage, lake levels, accumulated snow pack, and precipitation rate adjustments, or any combination of the above, to calibrate flow forecast simulations. Additionally the forecasting framework automatically downloads, transforms and incorporates the Regional and Global Deterministic Prediction System (RDPS and GDPS) forecast model data to provide sub-basin 10-day forecasted inflows. This is the first known operational deployment of WATFLOOD for flow forecasting. Preliminary results show that using CaPA precipitation data, instead of gauge data, improves the temporal and spatial resolution of modelled streamflows. Additionally, the standardized options of state variable updates ensure consistent optimization and thorough documentation of each forecast. This forecast system implementation will provide flows directly to HEC-ResSim to optimize regulation in the basin on a weekly basis, and will also be used to predict flow peaks during high water events. 8 Day #2 Plenary session 2 Chaired by Luc Perreault 8h30 – 9h15 Hydrologic Ensemble Prediction: Past, Present and Future John C. Shaake Consulting Hydrologist, NOAA/NWS ret. The first hydrologic ensemble forecasts were made beginning about 40 years ago. These were based only on hydrologic initial conditions, did not use weather nor climate forecasts and were most valuable for medium and longer range predictions. Since then there have been great advances in weather and climate forecasting as well as development of techniques for using them in hydrologic ensemble prediction. We will reflect on how this process has evolved and look at some examples of current operational ensemble forecast systems. This will include discussion of why ensemble prediction (as well as a general manifestation of probabilistic prediction) is important for hydrologic applications. It will include some examples of operational user applications of hydrologic ensemble forecasts. Some of the future opportunities and challenges that remain will be discussed. Many of these are being addressed by participants in the international Hydrologic Ensemble Prediction Project (HEPEX) that held its 10th Anniversary Workshop in June, 2014 at the U.S. National Centers for Environmental Prediction. Some of the results of that workshop will be reviewed. 9 Session 4: Hydrological ensemble predictions and Inflow Forecast II Chaired by François Brissette 9h15 – 9h40 Prévisions d'apports probabilistes à Hydro-Québec Production Claude Gignac, Éric Crobeddu, Louise Rémillard Hydro-Québec Production Hydro-Québec est le plus grand producteur d'électricité au Canada. Il possède 60 centrales pour une puissance installée de 35 900 MW, 26 grands réservoirs ayant une capacité de stockage de 175 TWh, 656 barrages et 97 ouvrages de régulation. Hydro-Québec Production (HQP) est en charge de l'exploitation du parc hydroélectrique et de la planification de la production d'énergie. Les prévisions d'apports sont produites à HQP et servent à (i) optimiser la production d'énergie; (ii) protéger le public contre les inondations; (iii) assurer la sécurité des ouvrages; (iv) garantir l'approvisionnement énergétique de la province et (v) satisfaire les demandes du milieu pour l'usage des rivières et des réservoirs. Le processus opérationnel quotidien à HQP pour générer les prévisions d'apports se déroule comme suit: (1) une prévision météo court terme (variant de 4 à 9 jours) est produite par un météorologue; (2) l'équipe de contrôle de la qualité des données hydroélectriques effectue la validation des données des stations de mesure d'Hydro-Québec et de ses partenaires; (3) enfin, les prévisionnistes d'apports génèrent une prévision d'apports probabilistes pour le court terme (1 à 10 jours), moyen terme (200 jours) et long terme (108 semaines). La qualité des prévisions d'apports probabilistes à HQP est principalement limitée par (i) la densité du réseau de stations hydrométéorologiques; (ii) la qualité de l'historique météo-apports; (iii) l'incertitude liée à la modélisation hydrologique; (iv) la prise en compte de l'incertitude de la prévision court terme du météorologue et (v) l'impact des changements climatiques. Les projets en cours à HQP visant à améliorer les prévisions d'apports probabilistes sont (i) l'ajout de stations météorologiques et hydrométriques; (ii) la révision de l'historique météo-apports; (iii) l'amélioration du modèle hydrologique HSAMI et l'intégration du modèle hydrologique HYDROTEL; (iv) l'intégration de l'incertitude des modèles de prévisions météorologiques et (v) l'intégration de l'impact des changements climatiques. 10 9h40 – 10h05 Modeling rainfall-runoff models uncertainty to improve probabilistic forecasts quality M. Courbariaux, E. Parent, A.-C. Favre, P. Barbillon Probabilistic forecasts aim at accounting for uncertainty by producing a predictive distribution of the quantity of interest to be forecasted instead of a single best guess estimate. With regard to river flow forecasts, uncertainty is mainly due (a) to the unknown future rainfalls and temperatures, (b) to the possible inadequacy of the deterministic model mimicking the rainfallrunoff transformation. The first source of uncertainty can nowadays be taken into account using ensemble forecasts as inputs to the rainfall-runoff model (RRM). However, the second source of uncertainty due to the possible RRM misrepresentation remains. A simple way to integrate it consists in adjusting the forecast's density as much as necessary to get a prediction consistent with the observations. This step is called post-processing. Our work focuses on series of river flow forecasts routinely issued at EDF (Electricity of France). We aim at reducing the sharpness loss in the post-processing step while guaranteeing point-wise and temporal consistency. To do so, we write a joint model on the RRM errors along the whole trajectory to be predicted. Pointwise and temporal consistency are then obtained relying on a Bayesian approach. We also establish a classification of time periods according to their uncertainty level. The set of predictors includes inputs, state variables, outputs' sensibility to parameters choice, and observed errors of the RRM in simulation mode. Conditioning on that classification should result in simpler RRM models of errors and should help reduce sharpness loss. 11 Session 5: Reservoir Management and Inflow forecast II Chaired by Annie Poulin 10h30 – 10h55 État d'avancement des activités de prévision hydrologique en support à la gestion des barrages publics du Québec Richard Turcotte, Julie Lafleur Centre d'expertise hydrique du Québec Le Centre d'expertise hydrique du Québec (CEHQ) exploite 761 barrages dont une centaine pouvant nécessiter des opérations. Parmi les barrages opérables, 40 font l’objet d’une gestion en temps réel. La gestion des barrages des systèmes hydriques du lac Kénogami, du Haut-SaintFrançois et de la rivière du Lièvre présente des exemples décrivant les principaux défis de gestion du CEHQ. Depuis la fin des années 90, le CEHQ opère un système de prévision pour l’aide à la gestion des barrages qui s'appui sur les observations du réseau météorologique coopératif du Québec, du réseau nivométrique et du réseau hydrométrique du Québec, sur des prévisions météorologiques déterministes d'Environnement Canada et sur le modèle hydrologique Hydrotel. Des outils de simulation des impacts de décision de gestion sur les niveaux et les débits sont aussi disponibles. Depuis 2013, le mandat du CEHQ s’étend aussi à la réalisation et à la diffusion sur l’Internet de prévisions pour des stations d’intérêt en sécurité publique non influencées par l’opération des barrages. La synergie entre les besoins de la prévision en sécurité publique et en gestion des barrages a mené à l’accroissement du nombre et de la formation des prévisionnistes et a enclenché un cycle d’amélioration de l’environnement informatique. Le CEHQ s'intéresse à la prévision d'ensemble et à des outils d'optimisation stochastiques de la gestion bien qu’aucun produit opérationnel ne soit disponible actuellement. Pour la prévision d'ensemble, le CEHQ s'est associé à différents partenaires (Université Laval et Environnement Canada) pour obtenir des réponses à des questions de recherche préalables au passage aux opérations. Les principaux obstacles à l’utilisation de la prévision d’ensemble sont dorénavant liés à des défis technologiques et informatiques. En parallèle, des outils d'optimisation complémentaires au système de prévision ont émergé au cours des années suite à des projets d’étude ad hoc. Une revue de ces outils sera présentée brièvement en mettant en évidence les défis à relever pour en augmenter la pertinence et l'usage. 12 10h55 – 11h20 Des outils d'aide à la gestion de réservoirs qui valorisent l'information hydrométéorologique historique Charles Poirier et Martin-Pierre Lavigne Pour la gestion des barrages publics, le CEHQ produit des prévisions hydrologiques à court terme avec le modèle HYDROTEL. En hiver, l’évolution du couvert nival simulée est corrigée à posteriori par une interpolation de données nivométriques à une fréquence généralement bihebdomadaire (Turcotte et al., 2007). Cette méthodologie a été reprise en mode étude pour produire une banque historique d’ÉEN aux 24h sur la majeure partie du territoire au sud 50ième parallèle (Poirier et al., 2014 – à préciser).Parallèlement à ces travaux, le CEHQ produit également sur demande des prévisions hydrologiques à moyen terme, en recourant à des scénarios probabilistes historiques (ESP – extended streamflow predictions). Il est classique pour ce faire d’utiliser des scénarios météorologiques, constitués généralement de la précipitation P et la température T. Sur un territoire enneigé, cette pratique revient à laisser le modèle hydrologique simuler lui-même l’évolution du couvert nival à partir d’un état initial donné. Or, les résultats d’analyses récentes indiquent que l’évolution de l’ÉEN simulé par HYDROTEL seulement à partir de P et T historiques peut différer significativement de l’évolution de l’ÉEN simulé avec P, T et les données nivométriques historiques, lorsque l’horizon de simulation s’étend au-delà d’une période relativement courte au printemps. Ces résultats mènent à quelques constats. Premièrement, le caractère quasi-indispensable des données nivométriques ressort nettement. Ensuite, la période relativement courte au-delà de laquelle HYDROTEL dérive significativement dans ses estimations d’ÉEN au printemps incite à la prudence en regard de l’usage de ce modèle pour réaliser des ESP. Enfin, pour le CEHQ, il s’avère pertinent d’amorcer une recherche visant des solutions alternatives au modèle de fonte d’HYDROTEL dans sa forme actuelle. Dans ce contexte, le CEHQ a amorcé le développement d’outils d’aide à la décision valorisant l’information hydrométéorologique historique, et particulièrement la neige. La présentation exposera un aperçu de la méthodologie de recherche d’états de neige voisins et la déclinaison des outils d’analyse qui en découlent. 13 11h20 – 11h45 Post-processing of multi-model hydrological forecasts for the Baskatong catchment Fabian-Tito Arandia Martinez, Marie-Amélie Boucher, Jocelyn Gaudet and Maria-Helena Ramos This study focuses on the Baskatong catchment exploited by Hydro-Québec for hydro-power generation. Operational streamflow forecasts used by Hydro-Québec are compared to a new mul-ti-model ensemble forecasting system. This new system involves meteorological ensemble fore-casts from three meteorological agencies, obtained though the TIGGE database. The new multi-model ensemble forecasting system explicitly accounts for uncertainties related to the choice of an atmospheric model and also to those related to the initial condition of the atmosphere. The uncertainty linked to the choice of the hydrologic model and to the parameterization of those models are still uncultured and therefore, the raw forecasts are initially under-dispersive. Conse-quently, there is a need for statistical correction of the bias and spread in the raw forecasts. Here we present and compare the results for four possible methods for post-processing: a regression method, the best member method, the weighted kernel dressing method of Fortin et al. (2006) and the Bayesian Model Averaging method of Raftery et al. (2005). 11h45 – 12h10 Caractérisation de l'influence des conditions initiales sur un ensemble multimodèle Antoine Thiboult, François Anctil La prévision hydrologique d'ensemble offre la possibilité d'apprécier dynamiquement l'incertitude liée à la prévision. Cependant, bien qu'une approche multimodèle permette de quantifier et réduire l'incertitude structurelle et paramétrique, l'incertitude sur les conditions initiales est fréquemment sous-estimée. L'utilisation de techniques d'assimilation telle que le filtre d'ensemble de Kalman (EnKF) permet de coupler les observations et la prévision afin d'estimer plus précisément les conditions initiales. Un ensemble multimodèle est composé à partir de 20 modèles choisis pour leur diversité structurelle et conceptuelle. Grâce à une étude approfondie, une implémentation optimale d'EnKF est identifiée pour chaque modèle ce qui permet la constitution d'un ensemble multimodèle présentant une résolution et une fiabilité accrue, facilitant ainsi une potentielle prise de décision. 14 Plenary session 3 Chaired by Marco Latraverse 13h30 – 14h15 Ensemble forecasting at Environment Canada: living with uncertain weather and enjoying it F. Anctil1, V. Fortin2, N. Gagnon3 and S. Bélair2 1 Département de génie civil et génie des eaux, Université Laval, Québec, Canada 2 Meteorological Research Division, Environment Canada, Dorval, Québec, Canada 3 Meteorological Service of Canada, Environment Canada, Dorval, Québec, Canada Over the last few years, ensemble predictions systems (EPS) have become more and more important at Environment Canada. From one hour to the seasonal time scale, the Canadian Meteorological Centre (CMC) is now issuing ensembles of atmospheric forecasts that consist typically twenty scenarios. The horizontal resolution ranges from 15 km (regional EPS) to 300 km (seasonal coupled atmospheric-ocean systems CANSIPS). Operational ensemble data assimilation is performed using the ensemble Kalman filter (EnKF) approach. EnKF is used for both atmospheric data assimilation and land data assimilation (soil moisture, soil temperature and snow on the ground). Recently, the range of the global EPS (GEPS) was extended to reach 32 days. An exciting new feature of the latest GEPS is the fact that an operational reforecast is produced routinely with the forecast. This procedure is generating historical forecasts (from 1995) with the current operational GEPS but with a simpler initialization and a smaller ensemble size. The objective is to allow CMC as well as end users to improve the post-processing of model forecasts by having access to a comprehensive database of past forecasts in order to assess the skill and reliability of the current operational system, which can lead to more optimal decisions. The seasonal system CANSIPS is also provided with a hindcast of 30 years. A summary of the various configurations of Environment Canada’s ensemble prediction systems is given, as well as an evaluation of the forecast skill against observations of temperature, precipitation, snowpack and streamflow. 15 Session 6: Hydrological ensemble predictions and Inflow Forecast III Chaired by François Anctil 14h15 – 14h40 Evaluating the Efficacy of Enhancements to BC Hydro's Operational Hydrologic Ensemble Forecast System Adam Gobena BC Hydro Since its first implementation in 1980 for operations planning of the Kinbasket Reservoir on the Columbia River system, BC Hydro's ESP based long-range water supply forecast system has undergone several enhancements with the aim of improving forecast accuracy and reliability. These enhancements include snow data assimilation, simulation bias correction, considerations of parameter uncertainty (via multi-parameter set modeling) and input forcing uncertainty (via augmentation with synthetic weather sequences). However, little has been done to date to quantify the value added by these enhancements due to data and resource limitations. This presentation will discuss the efficacy of some of the enhancements by comparing the performance of archived operational forecasts and limited hindcast experiments. 14h40 – 15h05 Development of a Flood Forecasting Model for the St. John River Watershed using the Raven Modelling Framework Hossein Babaei, Wayne Jenkinson, Alex Mineault-Guitard The Inland Water Resources group at the National Research Council of Canada has recently developed a flood forecasting model for the St. John River watershed using the Raven hydrological modelling approach. Raven is a semi-distributed, physically-based model, which is being used by Lake of the Woods Control Board, BC Hydro, and TransAlta for streamflow forecasting purposes. The new model provides an alternative tool for streamflow forecasting for the New Brunswick (NB) Department of the Environment, which is currently using Streamflow Synthesis and Reservoir Regulation model. This presentation will focus on the details of the modelling approach including identification of hydrological response units, flow routing algorithms, model calibration, and performance evaluation. The new model is currently being evaluated in both on- and off-line modes at the NB flood forecasting center located in Fredericton. 16 Session 7: Reservoir Management and Inflow forecast III Chaired by Robert Leconte 15h30 – 15h55 Utilisation des prévisions d’ensemble pour améliorer les règles de gestion du réservoir de la rivière Nechako, C.-B., établies à l’aide de la programmation dynamique stochastique Alexandre Martin1, Pascal Côté2 et Robert Leconte1 1 Département de génie civil, Université de Sherbrooke Énergie Électrique, Rio Tinto Alcan 2 Pour maximiser la production électrique de la centrale Kemano tout en respectant les contraintes de gestion de la rivière Nechako, Rio Tinto Alcan a développé un algorithme de programmation dynamique stochastique (PDS) qui optimise les règles de gestion du réservoir en fonction d’une séquence historique d’apports et d’une variable hydrologique. Afin d’améliorer la performance des règles, ce projet étudie l’utilisation de prévisions d’ensemble pour caractériser la variable hydrologique et compare les résultats à ceux d’un banc d’essais en horizon roulant qui effectue une mise à jour des règles à chaque trois jours en utilisant des prévisions d’ensemble sur les apports. 15h55 – 16h20 Un outil de prévisions et d'optimisation de la gestion des eaux de sites miniers Simon Dagher, Zoubir Bouazza AMEC Amec, en collaboration avec CliffsNR ont développé un outil dédié à la gestion des eaux de sites miniers. L’outil de simulation en temps différé et d’aide à la décision intègre des modules capables de générer des scénarios météorologiques et de prévoir les apports hydriques aux retenues d’eau. Des conditions météorologiques normales, sèches, humides ou complètement stochastiques peuvent être générées moyennant des algorithmes simples. Quelques scénarios de gestion seront présentés pour démontrer l’utilité de l’outil pour le choix des consignes d’opération et pour la planification des travaux de construction au site minier étudié. Les scénarios couvrent la période de crue printanière. 17 16h20 – 16h45 The effects of Ensemble streamflow prediction methods on hydropower generation Richard Arsenault1, Jie Chen1; François Brissette1 and Pascal Côté2 1 École de technologie Supérieure, Montréal Quebec Power Operation, Rio Tinto Alcan 2 A testbed was created to simulate the hydroelectric power generation on the SaguenayLac-St-Jean water resources system under various Ensemble Streamflow Prediction (ESP) scenarios. Different methods to generate ESPs were compared and fed to the testbed, which uses stochastic dynamic programming to generate reservoir management rules based on the predicted and historic inflows. The simulator then uses the rules to estimate the hydroelectric output based on the observed data. The results show that the selection of an ESP method can significantly increase power generation and can assimilate trends in non-stationary conditions to further increase output. 18 Day #3 Plenary session 4 Chaired by Amaury Tilmant 8h30 – 9h15 On the direct use of hydroclimatic information to better inform water reservoir operation Andrea Castelletti Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan, Italy It is generally agreed that more information translates into better decisions. For instance, the availability of inflow predictions can improve reservoir operation; soil moisture data can be exploited to increase irrigation efficiency; etc. However, beyond this general statement, many theoretical and practical questions remain open. Provided that not all information sources are equally relevant, how does their value depend on the physical features of the water system and on the purposes of the system operation? What is the minimum lead time needed for anticipatory management to be effective? Is the data-predictions-decision paradigm truly effective or would it be better to directly use hydroclimatic data to take optimal decisions, skipping the intermediate step of hydrological forecasting? A procedural approach addressing these issues was recently developed and applied in different hydrological contexts. Numerical results on the development of the procedure for re-designing the operation of a regulated lake in a snow-dominated catchment in northern Italy will be presented. 19 Session 7: Reservoir Optimization II Chaired by Pascal Côté 9h15 – 9h40 Use of hydrologic data to optimize Canadian dams on the Columbia River Tim Blair BC Hydro The Columbia River originates in Canada, where most of the storage resides, and has most of the power generation downstream in the U.S. The operation of Columbia basin storage reservoirs is coordinated under the Columbia River Treaty, with the dual purpose of providing flood control while maximizing hydropower generation. There is flexibility for each country to re-optimize its own hydroelectric generation beyond the requirements dictated by the treaty. This talk will cover how hydrologic data is incorporated into Treaty planning and implementation, and how BC Hydro incorporates hydrologic forecast uncertainty into the optimization of the Mica/Arrow reservoir operations in Canada. 9h40 – 10h15 Gestion de réservoir par programmation dynamique Michel Denault, Olivier-Meunier, Simonato HEC We investigate the optimum control of a hydro storage power plant, in the presence of both exogenous (control-independent) stochastic state variables and endogenous (control-dependent) state variables. Our solution approach relies on simulations and regressions with respect to the state variables, but also grafts the endogenous state variable into the simulation paths. That is, unlike most other simulation approaches found in the literature, no discretization of the endogenous variable is required. The approach is meant to handle several stochastic variables, offers a high level of flexibility in their modeling, and should be at its best in non time-homogenous cases, when the optimal policy structure changes with time. We provide numerical results for a storagebased hydropower application, where the exogenous variable is the stochastic spot price of power, and the endogenous variable is the water level in the reservoir. 20 10h15 – 10h30 The Role of Hydrologic Information in Stochastic Dynamic Programming: a Case Study of Kemano Hydropower system in British Columbia Quentin Desreumaux1, Pascal Côté2, Robert Leconte1 1 Department of civil engineeing, Sherbrooke University Quebec Power Operation, Rio Tinto Alcan 2 We present the value of various hydrological variables in stochastic dynamic programming (SDP) to solve the optimization problem of managing a hydropower system with a study case. The system studied here, namely the Kemano hydroelecric system located in British Columbia, Canada, is subject to large streamflow volumes due to significant snow cover during winter. Results indicate that for the system herein, maximum snow water equivalent (SWE), which is the highest levels of SWE observed from the start of winter to the current decision period, prove to be best for effective, safe management, compared to a Markov or order p autoregressive models . 11h00 – 12h00 Panel 21
© Copyright 2024 ExpyDoc