ENGG1203: Introduction to Electrical and Electronic Engineering First Semester, 2014–15 Homework 2 Due: (r1.2) Oct 20, 2014, 11:55pm IO N Instruction: Submit your answers electronically through Moodle. In Moodle, you must submit a total of ONE file: 1. Under PDF Submission, submit ONE (1) PDF file containing answers to all questions Your homework will be graded electronically so you must submit your work as a PDF file. To generate PDF file from your computer, you may use one of the many free PDF creators available, e.g. PDFCreator (http://sourceforge.net/projects/pdfcreator), CutePDF Writer(http: //www.cutepdf.com/Products/CutePDF/Writer.asp). Short Questions LU T Question 1 Part(a) Use KVL to compute the (i) voltage across each ressistor and (ii) current flowing through each voltage source. + I1 − 10 Ω SO − + 10 V V R1 10 Ω + + V R2 − 10 Ω V R3 − − 10 V + I2 Using KVL we have: 10 − VR1 − VR3 = 0 (1) VR3 − VR2 + 10 = 0 (2) (3) Also, using KCL, we have: VR2 VR3 VR1 = + 10 10 10 (4) Now, VR2 + VR3 = 10 − VR3 (4) & (1) (VR3 + 10) + VR3 = 10 − VR3 from (2) Therefore, VR3 = 0, VR2 = 10 − 2VR3 = 10 and VR1 = 10. VR2 VR1 = 1, I2 = 10 = 1. Also, I1 = 10 ENGG1203: Introduction to Electrical and Electronic Engineering Homework 2 Part(b) Use KCL to compute the (i) voltage across each ressistor and (ii) current flowing through each voltage source. + + V R1 VR2 10 Ω − 0.5 A 5Ω − I R2 IO N IR1 − + 5V − + 10 V Using KCL at the + node of R1 , we have: 0.5 = IR1 + IR2 (5) Also, the voltage of each branch must be equal as they are parallel, therefore, LU T 10 + IR1 R1 = 5 + IR2 R2 (6) Combining (5) and (6), we have: 1 6 and I2 = 5 3 and VR2 = I1 = − and VR1 = − SO Part(c) 2 3 10 3 Current to Voltage Converter In the following circuit, determine Vo in terms of Iin . R Iin R R/2 Vo + According to the ideal op-amp model, there is no current flowing into the op-amp and v+ = v− . Therefore, Vo = −Iin R r1.2 Page 2 of 11 ENGG1203: Introduction to Electrical and Electronic Engineering Part(d) Homework 2 Voltage to Current Converter In the following circuit, determine Io in terms of Vin . R - Io RL + IO N Vin R R1 LU T SO According to the ideal op-amp model, there is no current flowing into the op-amp and v+ = v− . Therefore, Vin Io = R1 r1.2 Page 3 of 11 ENGG1203: Introduction to Electrical and Electronic Engineering Question 2 Homework 2 Superposition Theorem When analyzing complex circuits, it is sometimes useful to make use of the superposition theorem. Using this theorem, it is possible to decompose a circuit with multiple input sources into multiple circuits with only 1 source. By doing so, it simplifies the analysis and may help to understand the behavior of a circuit. IO N In particular, the superposition theorem states that the response of a circuit with multiple input sources is the sum of the responses from each independent source when acting alone. In practice, to obtain the response due to one particular source S, one would turn off all the sources (voltage sources or current sources) in the circuit except S. Turning off a source can be achieved by: • For voltage sources, replace the source with a short circuit. • For current sources, replace the source with an open circuit. The overall response of the circuit can then be obtained by superpositioning each independent response on top of each other. This question illustrates how superposition theorem works and you will use it to analyze some complex op-amp circuits. Part(a) Circuit Analysis without using Superposition I1 − + 10 V I2 1Ω I3 1Ω 5V − + LU T Compute the current I1 , I2 and I3 in the following circuit. SO Figure 1: Circuit with 2 voltage sources Based on KVL and KCL, we have: I1 + I2 + I3 = 0 10 + I3 = 0 I2 = 5 + I3 Solving the equations yeild I1 = 15, r1.2 I2 = −5, I3 = −10 Page 4 of 11 ENGG1203: Introduction to Electrical and Electronic Engineering Part(b) Homework 2 Circuit Analysis with Superposition It is possible to analyze the same circuit in Figure 1 by decomposing it into the following 2 circuits: 1Ω I2a I1b 1Ω I3b I3a 1Ω 1Ω 5V IO N − + 10 V I2b − + I1a (a) Decomposition A – Turn off right voltage source (b) Decomposition B – Turn off left voltage source Figure 2: Two decompositions of circuit in Figure 1 with each of the voltage source replaced by a short circuit. LU T In Figure 2(a), the 5 V voltage source is replaced by a short circuit while keeping the 10 V source intact. On the other hand in Figure 2(b), the 10 V is replaced by a short circuit, leaving the original 5 V source intact. Calculate the values I1a , I2a and I3a from Figure 2(a), and I1b , I2b and I3b from Figure 2(b). I1a = 20 A I2a = −10 A I3a = −10 A SO I1b = −5 A I2b = 5 A I3b = 0 A Part(c) According to the superposition theorem, the overall response of the circuit can be obtained by summing the contribution from each independent sources. Compute the 3 values I1 = I1a + I1b , I2 = I2a + I2b , I3 = I3a + I3b . Are they the same as the results you have obtained from Part (a)? I1 = I1a + I1b = 20 + (−5) = 15 I2 = I2a + I2b = −10 + 5 = −5 I3 = I3a + I3b = −10 + 0 = −10 The resulst are the same as Part (a). r1.2 Page 5 of 11 ENGG1203: Introduction to Electrical and Electronic Engineering Homework 2 Part(d) In the following circuit, calculate the values of R1 and R4 in terms of R2 and R3 such that Vo = V1 − 10V2 . To take advantage of the superposition theorem, set V1 = 0 and V2 = 0 in turn. R1 V1 R2 R3 + VO = V1 - 10V2 R4 LU T Vo IO N V2 Replace the voltage source V1 with a short circuit, i.e., set V1 = 0, then: V2 −0 0−Vo R2 = R1 Vo = −10V2 SO Solving the above gives: R1 = 10R2 (7) Now, replace voltage source V2 with a short circuit, i.e., set V2 = 0, then: ( R4 R4 0− R +R V1 R3 +R4 V −Vo 3 4 = R2 R1 Vo = V1 Solving the above yields: R1 R4 = R2 R3 Now, combinging (7) and (8) results in ( R1 = 10R2 R3 = 10R4 r1.2 Page 6 of 11 (8) ENGG1203: Introduction to Electrical and Electronic Engineering Question 3 Homework 2 Delta Star Transformation When simplifying complex resistance network, it is sometimes useful to recognize and transform between a delta topology by a star topology, which are shown below. A A R 3 R1 IO N Ra Rc C B R2 (a) Delta C R b B (b) Star LU T Figure 3: Delta and star resistor networks are equivalent if the resistor values are chosen correctly. While the 2 topologies may look quite different, by choosing the correct resistor values, it can be shown that the two networks can be equivalent. This exercise helps you to deduce the correct resistor values. Part(a) Delta SO Consider the delta topology in Figure 3(a). Define Rab , Rbc , and Rca as the equivalent resistances between terminal A and B, B and C, and C and A respectively. Express Rab , Rbc , and Rca in terms of the 3 resistors R1 , R2 and R3 . Using the notation Rx k Ry to means a parallel combination of Rx and Ry , then Rab = (R3 + R2 ) k R1 = (R3 + R2 )R1 R1 + R2 + R3 Rbc = (R1 + R3 ) k R2 = (R1 + R3 )R2 R1 + R2 + R3 Rca = (R1 + R2 ) k R3 = r1.2 (R1 + R2 )R3 R1 + R2 + R3 Page 7 of 11 ENGG1203: Introduction to Electrical and Electronic Engineering Part(b) Homework 2 Star IO N Now, consider the star topology in Figure 3(b). Similarly define Rab , Rbc , and Rca as the equivalent resistances between terminal A and B, B and C, and C and A respectively. Express Rab , Rbc , and Rca in terms of the 3 resistors Ra , Rb and Rc . The resistances can be simply be obatined by the series combination of the resistors, i.e.: Rab = Ra + Rb Rbc = Rb + Rc LU T Rca = Ra + Rc Part(c) Transformation SO For the delta and star topology to be equivalent, the values for Rab , Rbc , and Rca must be the same in both cases. Using your results from above, express Ra , Rb , Rc in terms of R1 , R2 , R3 . Combining the results from Part (a) and (b), equating on the values of Rab , Rbc and Rca gives: (R3 + R2 )R1 = Ra + Rb R1 + R2 + R3 (R1 + R3 )R2 = = Rb + Rc R1 + R2 + R3 (R1 + R2 )R3 = = Ra + Rc R1 + R2 + R3 Rab = Rbc Rca Subtracting (10) from (11) and adding the result to (9): (R1 + R2 )R3 − (R1 + R3 )R2 + (R3 + R2 )R1 R1 + R2 + R3 R1 R3 Ra = R1 + R2 + R3 2Ra = Similarly, we can obtain: Rb = R1 R2 R1 + R2 + R3 Rc = R2 R3 R1 + R2 + R3 and r1.2 Page 8 of 11 (9) (10) (11) ENGG1203: Introduction to Electrical and Electronic Engineering Question 4 Homework 2 Rotating Motor One key component of your project is the light tracker. In this question, you will explore some of its circuit function. Your light tracker is mount on top of a motor and is able to rotate left or right such that it is always facing directly toward the light source. To detect the direction of light, it uses 2 light-sensitive resistors that are placed at ±45◦ with respect to centerline of the device as shown below. 0◦ IO N light source θ RL RR tracker head LU T The resistance of the light-sensitive resistor decreases when light is shined on it and increases when there is no light. Therefore, when the light is on the left of the centerline, RL decreases and RR increases. Similarly, when the light is on the right of the centerline, RR decreases and RL increases. In addition, the motion of the tracker head is controlled by the motor it is attached to. The rotational speed of the motor, ω, depends linearly on the voltage across its two input terminals Vm = Vmp − Vmn , provided that it exceeds a certain threshold. That is, ( km Vm if Vm > 2 ω= (12) 0 otherwise, where km is a motor dependent constant. SO When Vm is positive, the motor turns clockwise. When it is negative, the motor turns counterclockwise. Part(a) First Attempt Armed with the above information about the light tracker head, your project partner has designed the following circuit to control the light tracker: Vdd RR Vmp motor +− Vmn − + RL Vdd /2 Figure 4: First Attempt Motor Control Circuit Your partner’s idea is that when the light is on the right of the centerline, RR decreases, making Vm increases, turning the motor clockwise and toward the light. Similarly, when the light is on the left of the centerline, RL decreases, making Vm decreases, turning the motor counter-clockwise so it will point back to the light source. While the design of the circuit in Figure 4 may seem fine, it does not work as expected when you test it in the lab. Explain why it does not work according to the design by considering the voltage Vm when light is on left and on right of the centerline. Assume the resistance of the r1.2 Page 9 of 11 ENGG1203: Introduction to Electrical and Electronic Engineering Homework 2 light-sensitive resistor is 100 Ω when there is light and 10 kΩ when there is no light. Also assume the voltage sources has 0 resistance, and the internal resistance of the motor is 4 Ω. Vdd is 5 V. Part(b) IO N When the light is on the right, RR ≈ 100, RL ≈ 10000. Therefore, Vmp ≈ 2.6 V and Vm ≈ 0.1 V. When the light is on the left, RR ≈ 10000, RL ≈ 100. Therefore, Vmp ≈ 2.4 V and Vm ≈ −0.1 V. As a result, the motor WILL NOT WORK according to what is expected because |Vm | < 2. Second Attempt LU T You search the laboratory again find some op-amps. You then modify the circuit as shown below: Vdd Vdd RR Vp + Vmp + − Vmn − SO − + RL Does this circuit function correctly? That is, does it correctly track the direction of the light source? Explain your answer. This circuit functions correctly. The introduction of a buffer using the op-amp allows Vp to change as expected – When light is on right, RR RL , therefore, Vp ≈ Vdd . When light is on left, RL RR , therefore Vp ≈ 0. Using the op-amp as a voltage follower, Vmp = Vp . Therefore, light is on right, Vm > 0 and the motor turns clockwise toward the light. When light is on the left, Vm < 0 and the motor turns counter-clockwise toward the light. Part(c) Armed with your experience in constructing potential divider using resistors, you try to produce the voltage Vdd /2 using two identical resistors R as shown below: r1.2 Page 10 of 11 ENGG1203: Introduction to Electrical and Electronic Engineering Homework 2 Vdd Vdd Vdd RR R + Vp Vmp + − Vmn − RL IO N R LU T Unfortunately, the circuit is no longer behaving the same as before. Explain why the motor does not rotate the same way as before. Hint: What is the volgate Vmn in the circuit? Because of the lack of buffer on the negative end of the motor, the voltage at Vmn tends to follow that of Vmp . As a result, there’s still not enough voltage (power) delivered into the motor. SO Part(d) Show how you may further revise the design above so it functions as desired. Vdd Vdd Vdd RL Vdd R + Vmp + − Vmn − + Vp Vn − RR Your Circuit r1.2 Page 11 of 11 R
© Copyright 2024 ExpyDoc