MATH 3321 Quiz 3 1. The general solution of y 0 − 2xy = 2xex 2 (a) y = x2 ex + Cex 9/5/14 2 is 2 2 (b) y = 2xex + C 2 (c) y = x2 ex + C 2 (d) y = xex + Cex 2 (e) None of the above. 2. The general solution of x2y 0 − 5xy = −6x3 is 6 5 −3 (b) y = x + Cx−5 (a) y = Cx5 + (c) y = 2x2 + Cx5 (d) y = −2x3 + Cx6 (e) None of the above. 3. The general solution of dy xy 2 − x = is dx y (a) ln |y 2 − 1| = ln x + C (b) ln |y 2 − 1| = Cex 2 (c) y 2 = Cx2 − 1 2 (d) y 2 = Cex + 1 (e) None of the above. 4. The solution of the initial-value problem y 0 + y = 2 ln 2 1 + ex ln(1 + ex ) ln 2 y= + x ex e x e ln 2 y = ln − x x 1+e e ex − ln 4 y= 1 + ex None of the above. (a) y = (b) (c) (d) (e) 1 1 , 1 + ex y(0) = ln 4 is 5. If y = y(x) is the solution of the initial-value problem xy 0 + 2 y = ln x , y(1) = 1, x then lim y(x) = x→∞ (a) 0 (b) 1 (c) 2 (d) Does not exist. (e) None of the above. 6. The general solution of y ln x y 0 = (a) y = √ y2 + 1 is x Cx2 − 1 (b) y 2 = C(ln x)2 − 1 (c) y 2 = C(ln x) − 1 (d) y = q (ln x)2 + C (e) None of the above. 7. If y = y(x) is the solution of the initial-value problem xy 0 + y = 2 cos x, y(π) = 0, then lim y(x) = x→0 (a) 0 (b) 1/2 (c) 2 (d) ∞ (e) None of the above. 8. The general solution of yex dy = e−y + e−2x−y is: dx (a) ey = C + e−x + 31 e−3x (b) yey − ey = C − e−x − 13 e−3x (c) yey = e−x − 13 e−3x + C (d) yey + ey = C − e−x + 13 e−3x (e) None of the above. 2 9. The general solution of (1 + x2 + y 2 + x2y 2 ) dy = 2xy 2 is dx y2 − 1 = ln(1 + x2 ) + C y (b) tan−1 y = ln(1 + x2 ) + C (a) y2 + 1 = tan−1 x + C y y2 − 1 x2 − 1 (d) = +C y x (e) None of the above. (c) 10. The solution of the initial-value problem (y + 1)y 0 = x2y − y, y(3) = 1 is (a) ln |y + 1| = 31 x3 − x + 6 − ln 2 (b) y = 13 x3 − x − 5 (c) y + ln |y| = 13 x3 − x − 5 (d) y − ln |y| = 13 x3 − x + 5 (e) None of the above. 11. The general solution of ex−y dy = is dx 1 + ex (a) y = ln [ ln (1 + ex)] + C (b) y = ln [(1 + ex ) + C] (c) y = ln [C(1 + ex)] (d) y = ln [ ln C(1 + ex )] (e) None of the above. 12. The solution of the initial-value problem xy 0 − y = 2x2 y, 2 (a) y = xex + 1 − e (b) y = xex (c) y = ex 2 −1 2 −1 (d) y = xe x2 −e +1 (e) None of the above. 3 y(1) = 1 is
© Copyright 2025 ExpyDoc