MTH 322–Differential Equations Homework Problems Spring 2013 (Subject to Change) Section numbers are from 7th Edition of text Due dates will be announced in class You must show your work for full credit Section Calculus Refresher #1 Calculus Refresher #2 9.1 Algebra Refresher 9.2 Problems Section Handout 17.1 Handout 17.2(a) 1, 2, 3, 5, 7, 14, 16 1–5, 9, 10, 12 17.2(b) 20, 21, 23 Handout 17.3 1, 3, 5, 13, 15 1, 3–6, 14, 21, 22 17.4 1, 3, 5 E&PL Handout 9.3(a) 2, 4, 5, 6, 10, 12, 16 9.3(b) 29, 31, 45, 47 9.5(a) 1–4, 5, 7, 9, 15, 17 9.5(b) Partial Derivatives Exact Problems 2, 4, 6, 10, 11, 18, 20, 23, 27, 28, 29 Matrices Handout Systems Partial Fraction Decomposition Handout Laplace Handout Inverse Laplace Handout Handout Solving IVPs Handout Handout 9.4 1, 4, 5 9.6 2, 3, 6, 8 27, 33 Handout MTH 322–Differential Equations Homework Handout Calculus Refresher #1 Instructions: Find the first derivative. (1) (2) (3) (4) y = −13ex f (ψ) = cos ψ y = sin x y = tan θ Instructions: Z (11) Z (12) Z (13) Z (14) (5) (6) (7) (8) g(φ) = sec φ y = e4x h(r) = r3 e−5r y = ln(3x5 + 2ex + 19) (9) g(x) = 5 sin πx (10) y = tan x sin x Evaluate the integrals. Z x e dx (15) e cos r dr (19) (16) Z dr Z tan ψ sec ψ dψ (17) (20) 1 − y2 dy z −1 dz sec2 y dy Z sin θ dθ 1 p Z 1 dw w −r Z (18) x2 1 dx +1 Calculus Refresher #2 Instructions: Evaluate the integrals. Z 8 dx (1) 5x + 3 Z 11 (2) dw 7w − 2 Z 41 dr (3) 31r + 26 Z Z a (4) dx bx + c Z (5) 10x ke Z dx (9) Z (6) Z cos 2θ dθ Z (7) Z (8) (10) 3 3y 2 ey dy xex dx 1 sin x dx 3 er sin er dr Algebra Refresher Instructions: Simplify 1–4; solve for y in 5–10. (1) y = eln x (5) ln y = 2x3 + 7 (2) y = e7 ln x (6) − ln x (7) ln y = ln 9x + C √ ln y = 3 x + C x4 ln y = +C 4 (3) y = e 1 (4) y = e 3 ln(x 4 +22) (8) (9) (10) x +C 32 tan−1 y = 8x5 + C sin−1 y = Equilibria and the Phase Line (E&PL) Instructions: For each of the following differential equations, (a) Sketch the phase lines for the given differential equation. (b) Identify each of the equilibrium points as a sink, source, or node. (1) dy = y 2 − 10y + 16 dx (4) dx = x3 + 7x2 − 18x dt (2) dy = 24 + 5y − y 2 dt (5) dP = dt (3) dQ = Q2 − 14Q + 51 dt (6) dw = 3(w2 − 4w)2 (2w − 4) dt P 1− 15 P − 1 P3 10 Partial Derivatives Instructions: Find the specified partial derivative. (1) f (x, y) = 3y 7 − 5x2 y 4 ; fx , fy (2) g(r, θ) = 10r3 sin 4θ; gr , gθ (3) R(p, q) = ln(3p5 + 5p2 q 4 − 10q 8 ); Rp , Rq x (4) w = , wx , wy y √ (5) h(x, y) = 3e2x−4y ; hx , hy (6) Q = x2 ln(3y 2 − 7y); Qx , Qy (7) P = 8r6 − 7t; Pr , Pt (8) y = tan(3θ) sec(r4 ); yr , yθ Exact Equations Instructions: Determine whether the given equation is exact. If exact, solve. 1 2 2 −xy (1) (2xy − 3)dx + (2x y + 4)dy = 0 (3) (y ln y − e )dx + + x ln y dy = 0 y (2) 3 3 1 − + y dx + 1 − + x dy = 0 x y (4) x dy = 2xex − y + 6x2 dx Instructions: Solve the initial value problem (IVP). (5) (4y + 2x − 5)dx + (6y + 4x − 1)dy = 0, y(−1) = 2 Matrices Instructions: Calculate the determinant. Find the eigenvalue(s) and eigenvector(s) if they exist. 2 3 2 4 (1) A = (4) A = 2 1 −1 6 1 2 1 3 (2) B = (5) B = − 12 1 3 1 −1 3 1/2 0 (3) C = (6) C = −3 5 1 −1/2 Systems of Equations Instructions: Solve the system. If an initial condition is given, solve the IVP. 2 3 2 4 −1 0 0 (1) x = (4) x = , x(0) = 2 1 −1 6 6 1 2 1 3 3 (2) x0 = (5) x0 = , x(0) = − 12 1 3 1 1 −1 3 1/2 0 3 0 0 (3) x = (6) x = , x(0) = −3 5 1 −1/2 5 Partial Fraction Decomposition Instructions: Find the partial fraction decomposition for the rational functions. 7x + 10 2 x + 3x + 2 17x − 67 (2) g(x) = 2 x − 8x + 15 (1) f (x) = 12x2 + 5x + 2 (3x2 + 3)(x − 2) 45x2 − x + 44 (4) f (x) = (x + 1)(5x2 + 5) (3) h(x) = (5) g(x) = Laplace Transform 1. Compute L{t} using the definition, NOT the table. 2. Find the Laplace transforms of the given functions using the table. (a) f (t) = 15 (b) g(t) = 7t5 + cos 3t (c) h(t) = 10 sin(πt) − 24 sinh(et) (d) f (t) = 4t cos(3t) + t9/2 (e) g(t) = 3 sin(qt) + qt cos(qt) (f) h(t) = −9e5t + 13e4t cos(7t) 9x2 + 4x + 9 x3 + x2 Inverse Laplace Instructions: Find the inverse transform of each of the following. (1) F (s) = (2) G(s) = (3) H(s) = (4) F (s) = (5) G(s) = (6) H(s) = 7 23 s2 − 81 + − 2 s s − 5 (s + 81)2 s2 11s 27 − 2 + 81 s + 81 14 37s − 2 2 (s + 4) − 49 s − 19 8s 18 10 + 2 − + 55 s − 36 7s − 4 5s2 s2 s+3 −s−2 1 (s + 1)(s2 + 1) Solving IVPs. . . Instructions: Solve the following initial value problems using Laplace transforms. (1) y 0 − 5y = 0; y(0) = 2 (2) y 0 − 5y = e5t ; y(0) = 0 (3) y 0 + y = sin t; y(0) = 1 (4) y 00 + 4y = 0; y(0) = 2, y 0 (0) = 2 (5) y 00 − 4y 0 + 4y = 0; (6) y 00 − 9y 0 + 18y = 54; y(0) = 0, y 0 (0) = 3 y(0) = 0, y 0 (0) = −3
© Copyright 2025 ExpyDoc