The CHOMPTT Precision Time Transfer CubeSat Mission

The CHOMPTT Precision Time
Transfer CubeSat Mission
John W. Conklin*, Paul Serra, Nathan Barnwell, Seth
Nydam, Maria Carrascilla, Leopoldo Caro, Norman Fitz-Coy
*[email protected]
Background and Motivation
•
GPS constellation
Common View
Non-common View
T2L2 mission [P. Guillemot et al 2006]
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
2/14
CHOMPTT: CubeSat Handling Of Multisystem
Precision Time Transfer
GPSA
GPSB
tgpsA +
positionA
tgpsB +
positionB
Ground
Station
SLR
Facility
Clock discrepancy
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
3/14
Concept of Operations
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
4/14
Satellite Overview
Antenna, GPS, Radio (UHF/VHF)
ADCS (active magnetic)
EPS
Batteries
CDH (MSP430)
OPTI
MAC
CSAC
Instrument Boards
Retroreflector, Light Collectors
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
5/14
Optical Precision Time-transfer Instrument (OPTI) Demo
SLR Emulator
Laser,
Pulse driver
Space Segment
tground
CSAC
Beam Splitter
Event Timer
APD
t0 ground
tcubesat
CSAC
APD
t2 ground
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
Event Timer
APD
t1cubesat
6/14
Atomic Clocks (Microsemi)
Characteristic
Chip Scale Atomic Clock
(CSAC)
Miniature Atomic Clock
(MAC)
Standard
Cesium
Rubidium
Allan Deviation
(time error)
3.3x10-12 @ 6000 sec
(20 nsec)
9.5x10-13 @ 6000 sec
(6 nsec)
Power
0.12 W
5W
Mass
35 g
85 g
Size (LxWxH)
40.64 x 35.31 x 11.42 mm
51 x 51 x 18 mm
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
7/14
10 ps Event Timer
•
•
Time-to-digital converter – measures fine time
•
Measurement based on propagation delay
•
Autonomous temperature compensation using DLL
•
Low power (132 mW)
•
10 ps single shot accuracy (12 ps measured)
MSP430 microcontroller - course time
TDC-GPX
PD
TDC Start
TDC time (fine time)
TDC Stop
Clock
True time
Pulse counter
(coarse time)
Counter
reading
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
Ti MSP430
8/14
Optics & Light Detection
•
•
•
PLX retroreflector
•
25 mm diam, 50˚ FOV
•
Space capable
Avalanche photodetectors (2)
•
Si (532 nm, 1064 nm): 500 ps rise
•
InGaAs (1064 nm): 140 ps rise
APD
PLX Retroreflector
Light collection
•
Light collected by optical
fiber on nadir face
•
•
12˚ max incidence
GRIN lens focuses
light onto APD
APD electronics
Fiber coupler / TEC
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
9/14
Timewalk Correction
•
Apparent timing variations due to
pulse amplitude variations
•
•
0.5 V to 2.5 V
→ Δt = 230 psec
Atmosphere, attitude, range, …
Solution: Time both rising and
falling edges of pulse
Time-to-digital
converter
Threshold
Start
Pulse
Amplitude
Signal
Time
Clock
Time
Stamp
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
Stop 1
Stop 2
10/14
Measured Performance
•
Clock difference (2 CSACs) measured using OPTI breadboard
•
Several “glitches” filtered in software
χ (nsec)
50
0
–50
–100
0
5
10
15
Elapsed time (ksec)
20
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
25
5
11/14
Timing Error Budget
Timing error, ∆t (nsec)
102
GPS Time (20 nsec)
101
10 nsec
Predicted
Timing Budget
1 nsec
100
10–1
100
Breadboard
101
One Orbit
102
103
Averaging time τ (sec)
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
104
12/14
Laser Communication
•
2-Pulse Position Modulation (2 slots per pulse)
•
Synchronization string provides phase, rate, and masks SLR delays
•
Fine time required only for first ‘timing’ pulse
Synchronization string
Timing data (20 bytes) Checksum (2 bytes)
Timed laser pulse
Repeated if low link quality
TRUE/1
FALSE/0
Sync.
error
Comm. Loss
or sync. error
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
13/14
Status and Future
•
Prototype OPTI (silver) fabricated and tested Summer 2014
•
OPTI integrated into CHOMPTT satellite Fall 2014
•
Qualification testing at NASA KSC
•
Vibration, Shock
•
Thermal Vac (at UF)
•
Selected for ELaNA launch in 2016-2017
•
Developing SLR collaborations
•
Starfire optical range at Kirtland AFB, NM
•
NGSLR managed by Goddard, MD
Next Generation Satellite Laser
Ranging System (NASA)
Starfire Optical Range (AFRL)
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
14/14
Backup slides …
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
15/14
Future applications
•
Concept of Disaggregated
Navigation System:
1.
Command station performs time
transfer with reference satellite
2.
Satellite with atomic clock
synched with time standard
3.
Navigation satellites synced to
atomic clock using rf
(no ionospheric effects)
4.
Navigation receivers determine
location and time from navigation
satellites
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
16/14
Payload Overview
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
17/14
SLR Emulator
Laser Collimator
Focusing Lens
APD Box
t2ground
De-focusing Lens
Clock
Event Timer
Beam Splitter
Laser and Pulser
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
APD Box
t0ground
18/14
Space Segment
Event Timer
Clock
Focusing Lens
APD Box
Retroreflector
John W. Conklin, 2014 Spring CubeSat Developers’ Workshop, Cal Poly
19/14