Course 1

Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
early qtz-alun
lithocap ??
retrograde
pyroph
paleosurface?
~42 Ma
late qtz-alun bx
(diasp-pyroph)
encapsulated
potassic, sulfides
2M1 musc
El Salvador, looking ~SE
Erosion at El Salvador:
Exposing white mica overprint of potassic alteration
Sillitoe, 2010
Economic Geology
J.W. Hedenquist
20
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Looking east over Superior, Arizona
dashed - base of Apache Leap dacite tuff
Magma mine, Arizona: 1875~1990s; Ag, cc
hm-py-cp-bn
(gn-spl) mantos
1.34 Gt @ 1.51% Cu, 0.04% Mo
2008 JORC Inferred Resource
J.W. Hedenquist
cc-en-bn vn,
ser (dk-zy)
Ballantyne, 2003
http://riotinto.msgfocus.com/q/1cRLO25OxfDl/wv
21
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Manske and
Paul, 2002
H
E
MB-20A (from surface, 1958 m):
discovery hole, 1.75 % Cu, >375 m
Deposit identified by
underground drilling. S27E
(Feb 1995, subhorizontal)
cut sericitized rocks with
pyrite and hypogene
chalcocite veins (1 m bncc-dg vein, 38% Cu, >385
g/t Ag); porphyry copper
potential recognized.
S27H (Jan 1996, inclined)
cut sericite-pyrite
alteration, then biotitealtered rocks with
chalcopyrite. The last 43
m of S27H averaged
1.94% Cu.
105 XCS, 3600 L (ft) =
~ sea level (1200 m deep)
Manske and
Paul, 2002
J.W. Hedenquist
22
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Manske and
Paul, 2002
Manske and
Paul, 2002
1998 resource:
455 Mt at 1.2 %
Cu, 0.02 % Mo
1250-1550 m
below surface,
1050 x 365 x
305 m
J.W. Hedenquist
23
Porphyry systems: transition to lithocaps
N.B: High Cu grades
near 1) limestones
or 2) Fe-rich rocks
Geneva, 13th October 2014
All ages ~63.5-65 Ma, indicating: 1) Magma
vein and related mantos, 2) Superior East
deposit, and 3) Resolution deposit are all the
same age (M. Einaudi, pers. comm., 2003)
1.34 Gt @ 1.51% Cu, 0.04% Mo
2008 JORC Inferred Resource
Ballantyne, 2003
http://riotinto.msgfocus.com/q/1cRLO25OxfDl/wv
Sulfide zoning in porphyries:
Greys = potassic
Dashed = sericitic overprint, D vns
Marco
Einaudi,
2002,
unpub.
J.W. Hedenquist
24
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Porphyry Assemblages I
Potassic
Phyllic
Cp, chalcopy
CuFeS2
Bn, bornite
Cu5FeS4
Dg, digenite
Cu9S5
Cc, chalcocite
Cu2S
Tn, tennantite
Cu12As4S13
En, enargite
Cu3AsS4
Cv, covellite
CuS
Grey = low
s n state;
yellow, int.;
orange, hi;
red, v. high
Mt, magnetite
Hm, hematite
Py, pyrite
Inan et al., 2002
Einaudi et al., 2003
Porphyry Assemblages type II
‘Early’, higher temp
‘Late’, lower temp
pyrite Phyllic
Potassic no pyrite
Bingham
(bn-cp)
bn-cp
py-cp-(tn)
Chuquicamata
dg-bn-(cp)
(dg-bn)-cp
mt-cp
Potrerillos
(mt)-bn-cp
bn-cp
cp-py
py-cp-tn
El Salvador
mt-bn-cp
mt-cp-py
bn-cp
py-cp-bn,
py-bn
py, tn, en
cp-py
py-cp
Gibraltar
(mt-bn-cp)
Sungun
Ann Mason
cp
Silver Bell
Sierrita-Esperanza
(bn)-cp
cp-py
(bn)-cp
cp-py
cp-py
bn-cp
bn-cp,
cp-py (SC)
py-hm-(cp)
cp
cp-py
py
cp-py
cp-py (C)
py-cp
mt-cp-py (SC) py, cv, dg,
bn, cp, en
py-cp (S)
mt-cp-py
(EDM)
Butte
bnss + cp,
dominant
J.W. Hedenquist
py-en,
py-bn
py, cv, dg,
en, cp
dg-bn-cp
cp + py
ore
assemblage
Bn, bornite
Cp, chalcopy
Dg, digenite
Tn, tennantite
En, enargite
Cv, covellite
Mt, magnetite
Hm, hematite
Py, pyrite
Inan et al., 2002
Einaudi et al., 2003
25
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Porphyry styles: Cu introduction and alteration
•
Porphyry type I:
• early high T potassic with low to inter. sulf n state sulfides
• most Cu introduced early, with magnetite (lower redox)
• minor late high sulf n sulfides + advanced argillic
alteration
•
Porphyry type II:
• less Cu introduction during early high T, low sulf n state
• more Cu in later lower T phyllic stage, w/out magnetite
• pyrite plus inter. to high sulf d state sulfides common
• more abundant advanced argillic alteration
• more oxidized magma (abundant SO2)?
Sulfidation states
Hm
Cp
Mt
Einaudi, Hedenquist
and Inan, 2003
J.W. Hedenquist
26
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Sulfidation state evolution
Arc
magmas
cv
Lithocap
Einaudi, Hedenquist
and Inan, 2003
Early to intermediate (potassic to phyllic), high to low
T, progressively higher sulf d state in porphyry; -metals introduced early or intermediate
residual qtz (alunite) host
phyllic
potassic
illite
Einaudi, Hedenquist, Inan, 2003
J.W. Hedenquist
27
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Mankayan district, Philippines
Mohong Hill
quartz-alunite
lithocap
dacite pyroclastics
volcaniclastic
basement
Lepanto high-sulfidation ores
Most ore (~70%)
in root zone of
lithocap, in
Lepanto fault or
its splay branches
Lepanto
fault
Hedenquist et al., 1998;
Chang et al., 2011
J.W. Hedenquist
28
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Late Oligocene to midMiocene Apaoan
volcaniclastics
Young
cover:
Slightly younger Balili
volcaniclastics
Imbanguila
dacite
porphyry (3.31.8 Ma)
CretaceousPaleogene
Lepanto
metavolcanics
<1.2 Ma
12-13 Ma Bagon
intrusive complex
Imbanguila
pyroclastics
(3.3-1.8 Ma)
Bato pyroclastics
(1.2 Ma)
Bato dacite
porphyry (1.2 Ma)
Qtz diorite
porphyry
1 km
Lapangan Tuff (0.19
Ma)
Chang et al., 2011
Dickite
kaolinite
Quartzalunite
Dickite
kaolinite
1 km
NW end of lithocap:
qtz-alunite cliffs at
unconformity, with
kaolinite halo
Chang et al., 2011
J.W. Hedenquist
29
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
< 50 ppb Au
X
1 km
Silicic
structures,
1-4 g/t Au
Breccias
Chang et al., 2011
Lepanto HS:> 0.9
Mt Cu & 102 t Au
Alteration and
Mineralization
Buaki
porphyry
FSE porphyry: 650
Mt @ 0.65% Cu &
1.2 g/t Au
Victoria veins, 11 Mt
@ 7.3 g/t Au + AgCu-Pb-Zn
Guinaoang
porphyry, 500
Mt @ 0.4% Cu
& 0.4 g/t Au
Teresa veins, 0.8 Mt
@ 5.74 g/t Au
Nayak veins
1 km
J.W. Hedenquist
Mohong Hill
porphyry + HS
Chang et al., 2011
30
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Lepanto - Far Southeast deposits
1.8-2.2 Ma
2 cm
1.45 Ma
1 g/t Au
Mo
0.7% Cu
Concepcion and Cinco, 1989; Garcia, 1991
Lepanto - Far Southeast deposits
500 m
X-section
1) Residual qtz (early, barren)
2) Breccia-hosted enargite +
Au (sericite stage)
Long section along Lepanto fault
Garcia, 1991; Arriibas et al., 1995; Hedenquist et al., 1998
J.W. Hedenquist
31
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Arribas et al., 1995; Hedenquist et al., 1998
1.41 Ma
pyroph
1.35 Ma
1.42 Ma
Hedenquist et al., 1998; Chang et al., 2011
500 m
Residual (vuggy) qtz
Qtz-alun (py), dick-kaol
What information can we get from a
barren lithocap?
J.W. Hedenquist
32
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Alunite peak increases closer to intrusive center
High Na/(Na+K)
alunite forms at
higher temperature,
closer to intrusion
Chang et al., 2011
•
Co. Cocañez: Barren
quartz-alunite lithocap (16.1
Ma alun); related to Perol
porphyry?
•
Perol porphyry: (15.8 Ma,
bt): 641 Mt @ 0.3% Cu, 0.69
g/t Au (10 km east of
Yanacocha (5-12 Ma)
J.W. Hedenquist
33
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Yanacocha district,
Kupfertal valley:
High-sulfidation and
porphyry deposits,
~10-11 Ma
Fault contact between epithermal and porphyry
alteration at Kupfertal
Epithermal
185.3m: pyrophyllite,
minor alunite
210.6m:
205.6m: pyrophyllite,
pyrophyllite,
alunite
kaolinite
Porphyry
Porphyrystyle quartz
veins with
phyllic
alteration
215.3m:
Muscovite
Fault
contact
Breccia: from 181.5m
Pyrophyllite, alunite,
kaolinite
DDH KUP-3
J.W. Hedenquist
34
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Watanabe and Hedenquist, 2001
Two origins (environments)
of hypogene pyrophyllite:
1) Vapor condensation
Lithocap environment (roots)
Silicic (vuggy), alunite halo,
hotter pyrophyllite (below)
2) Simple fluid cooling
Cooling: muscovite (A) to
pyrophyllite (B) (gusano
replacement of silicic) to
dickite (C)
2. Cooling
2
2 KAl3Si3O10(OH)2 + 2 H+ + 6
SiO2 = 3 Al2Si4O10(OH)2 + 2 K+
1
1. Vapor
condensation
Milagros:
Garcia,
2009
Porphyry evolution:
High to low T alteration
magmatic input
Early
Intermediate
After magma
crystallization:
heat, but only
meteoricwater clay
overprint
Sillitoe, 2010
J.W. Hedenquist
35
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Patchy
pyrophyllite
Replacement
///
Sericite
Petelovo
Milagros
•
Variable interval between
base of lithocap and top of
porphyry
•
Rapid syn-hydrothermal
uplift causes lithocap to
overprint Ppy (telescoping)
Wafi-Golpu, PNG
Wafi telescoped
porphyry Cu-Au
Sillitoe, 1999
Cp replaced by py due to phyllic overprint,
then bn-dg-cc-cv sulfidation caused by
late advanced argillic overprint
J.W. Hedenquist
36
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Co. Catedral
Al 13.5 0.5 Ma
vein zone
Al 13.89 0.04 Ma
Co. Casale
Bt 13.91 0.04 Ma
Sillitoe, 1990
Co. Casale
and Co.
Catedral:
relationship?
Largely eroded (barren?) qtz-alunite lithocap
of Co. Casale, with roots preserved, or…?
?
J.W. Hedenquist
37
Porphyry systems: transition to lithocaps
Geneva, 13th October 2014
Potential for deeper
porphyry Cu deposit if
lithocap eroded, or on
shoulder
Sillitoe, 2010
Assess level of erosion…
Barren, eroded lithocap:
patchy pyrophyllite base?,
white mica,
veinlets?
Porphyry
Cu-Au?
Porphyry systems
High-sulfidation Au-Cu
Co. Catedral
(barren)
Lepanto
Intermediate
sulfidation
Au-Ag (Pb-Zn)
Victoria Resolution
Base of lithocap
Cerro
Casale
El Salvador
FSE
Porphyry
Cu-Au
Sillitoe, 2010
Economic Geology
J.W. Hedenquist
38