放射光を活用したグリーンデバイス分光解析と分析手法開発

永村
助教
直佳
Naoka NAGAMURA
Assistant Professor
東北大学多元物質科学研究所
Institute of Multidisciplinary Research for Advanced Materials Tohoku University
サステナブル理工学研究センター
Research Center for Sustainable Science & Engineering








放射光分光解析
その場観測
原子層デバイス
二次電池電極活物質
Synchrotron radiation X-ray microscopy
In-situ /operando spectroscopy analysis
Atomic layer devices
Electrode active materials of secondary batteries
放射光を活用したグリーンデバイス分光解析と分析手法開発
Spectroscopy analysis of green devices and development of analytical methods
using synchrotron radiation X-ray
私たちの暮らしを支えるデバイスは日々進歩を遂げています。さらなる高みを目指し、真にサステナブルな未来を実現する
デバイスの開発には、材料の機能発現原理の厳密な理解に基づく効率的なデバイス設計が欠かせません。実デバイスの動作
中非破壊超高分解能分析を可能にする分析ツールとして今、放射光が注目されています。
Various kinds of devices support our lives and make rapid progress. To aspire higher performance and realize a truly
sustainable society, devices should be designed efficiently based on deep understanding of the mechanism in functional
materials. Recently, synchrotron radiation X-ray attracts great interest as a helpful probe to perform nondestructive
ultra-high-resolution analysis of real devices during operation.
高輝度放射光の特長を活かし、従来の測定手法では分析が難しい「デバイス動作中の反応過渡過程その場観察」
「ナノ空間分
解能の顕微分光イメージング」
「埋もれた界面の非破壊状態分析」などを通して、新奇エネルギーデバイスの材料開拓に貢献
することを目指します。また、原子層ナノデバイスや全固体電池などの実デバイス分析に適した新たな分析手法や装置の開
発にも取り組んでいます。
Utilizing characteristics of high-brilliant synchrotron radiation X-ray, we aim to contribute to the development of new
materials for innovative energy devices by spectroscopy techniques: in-situ measurements of transient phenomena
during device operation, spectromicroscopy for nanoscale imaging, and nondestructive analysis of buried interfaces.
Furthermore, we engage in developing novel techniques and equipment to investigate next-generation actual devices.
Fig.1. Photo and schematic image of a scanning
photoelectron microscopy system, “3D nano-ESCA”
at SPring-8. We have developed this system.
Fig.2. [Graphene field effect transistor] Line profile
for the binding energy peak position of the
graphene sp2 component in C 1s core level spectra
taken along the dashed white line shown in the
inset mapping image. This spatial distribution
shows the evidence for the charge transfer region
at a graphene/metal interface.
Fig.3. [Cathode material for Li ion battery]
Fe 2p-3d resonant PES spectra of
LixMn0.5Fe0.5PO4 measured at the photon
energy of Fe 2p-3d absorption edge.
Sci. Rep., 4, 5173 (2014). Appl. Phys. Express, 7, 065101 (2014), Phys. Rev. B, 89, 125415 (2014), Appl. Phys. Lett., 103, 193114 (2013),
Appl. Phys. Lett., 102, 241604 (2013), J. Power Sources, 226, 42 (2013), Rev. Sci. Instrum., 82, 113701 (2011).
[email protected]
http://www.tagen.tohoku.ac.jp/modules/laboratory/index.php?laboid=76