Research Report from the Nationallnstitute for EnvirortrnentalStudies,Japan.No75,1985. 「乱立公曇朝究所研究報告 第75号 Limnologicaland EnvironmentalSt11dies of Elements in the Sediment of Lake Biwa 琵琶湖底泥中の元素に関する陸水学及び環境化学的研究 Edited byTakejiro TAKAMATSU 高松 武次郎(編) Water and SoilEnvironmentl)ivision 水質土J衰環最部 環境庁 国立公害研究所 THE NAT10NALINSTITUTE FOR ENVIRONMENTAL STUDIES ERRATA Re馳arl:hReportfromtheNationallnstituteforEnvironmenta]Studies.No・75 LiTrnO]ogicalandEnvironmeTltalStudies()fElementsintheSedimentofLakeBiwa Line CorTeatd Iモpad 18 presented dissoIved lewes1 lowest 500m2 25ha appearenCe appearanCe (av.depth=Ca.10m,maX・ deplb:亡8.131山 (depth:Ca.13m) disappearen仁e disappearance refren(:e reference RteIl山oll Re【erltion 6 prsented disoIYed 14 28 29 30 28 nO nOt t O h わ O Prefacefromtheeditor Alakecanbeconsideredto一光anaturalreactionvesselinwhichanepitomeofthe hydrologicaIcycleofeIementsisdemonstratedL Oncetheriverine(orlesserexten亡atmo− spheric)elementshaveenteredalake,mOStOfthemtakepartintheintricatebiological・ chemicalandphysicalprocessesandchangetheirchemicalstatesdependingontheindividua environmentofけ把Iake,Eventually,theyaree】iminatedfrorn】akewaterasaresL血of beingdepositedasedimentatthebottomofthelake,eVapOrationintotheatmosphere・and/ orbeingcarriedawaybytherivers・Afterdeposition,Sincethechemicalstatesofelements oftenchangeasaresuJtofdiagenesjs,SOmeelementsdissoIveandmoveinthesedimentpore waterandsometimesaccumulateintheparticularlayers(e、g.theuppermostoxidizedlayer orthelayerwithmaximumreduction)ofsediment,Redissolutionoftheelementsintothe b。tt。m Water frorn the sedimentis also a Common case.Therefore,the study on the elementalbehaviorinalakeassociatedwithlakeenvironmentandthechemicalproperties ofelementsprovidesusefuHimnoIogica‖nformationnotonlyfortheJocaJinterestbu[also tofindmechanismsoftheglobalhydrologicalcycleoftheelements・ Althoughthere are many approachesin which to conduct a study from the above viewpoint,theeZementaZanalyszsotthesedimentshouldh,aPrOmjsjngway・tN,CauSet distributi。nandthechemicalstates ofelementsinthe sediment oftensuggestthe mech− anismsofthelargenumberofreactionsinlakewateranddiagenesisafterdeposition・A sedjment samp】e a)sohassome analyticaladvantages・Thatis,Since the sediment has highercoccentrationoftheelementscomparedtotheotherenvironmentalsamples−thelos andcontaminationoftheelementsduringthesamplestorageandtheanaIytica10perationdo notgivesignificanterrorstotheanalyticalresults・Therelativelyhighconcentrationof elementsinthesedimentalsomakesitpossibletodeterminetheelementsofmorethan30 speciesbythenondestructiveanaJyticaltechniquessuchasneutronactiva[ionandX−raY fluorescence, Inordertoelucidatethebehaviorofelementsonthebasisoftheelementalanalysisof sediment,itisesserltialtoob〔ainasampJewhichhasnotbeendisturbedbyimTr)eaSurab】e factors.ThesedimentsamplefromLakeBiwa,particularlyfromthecentralregionofthe northempartofthelake,hasnottx:endisturbedappreciablyforthefo1lowingreasoTIS:(1) Thedepthofthewatert光ingmorethan70p−eterSpreVentSthesurfaceofthesedimentfrom beingdisturkdbywind.(2)Thesedimentcompositionisnotinfluenceddirectlybythe inflowofriverineterrestrialrnatterduetolake,slargesize.(3)Atthepresenttime  ̄ 11l一 benthicorganismsonlysparselypopulateonandinthesediment.(4)Thereisnoilldication thatgroundwaterandvoIcanichotspringsareflowingoutfromthebottomofthe?entra] basirLlnaddition,interpretationoftheanalyticalresu】tswillkeasiertocarryoutsince therehasbeenverylittlehumanactivityinthecatchmentareaofthenorthernpartofLake Biwauntilrecent times. Thisreportconsistsofeightchaptersandappendixes.ChapterIisofprimeimpor− tanceasitprovidesf11ndamentaldatatobediscussedinthefo11owlngChapters. Octokr,1984 T.Takamatsu ー lV − CONTENTS Chapter I GeneralDistributionProfilesofThirty−SixElementsin SedimentsandManganeseConcretionsofLakeBiwa… 1 T.TAKAMATSU,M.KAWASHIMAandM.KoYAMA Chapter II TheRoleofMn2+−RichHydrousManganeseOxidein the Accumulation of Arsenic in Lake Sediments T.TAKAMATSU,M.KAWASHIMA andM,KoYAMA Chapter III PhosphateAdsorptionontoHydrousManganeseOxide inthe PresenceofDivalentCatiorlS M.KAWASIlIMA,T.HoRl,M,KoYAMAandT.TAKAMATSU Chapter IV TheRoleofBiologicalDebrisintheRemovalofZnand Cu from a Water Column T.TAKAMATSU,M,KAWASHIMAえndM.KoYAMA Chapter V DepthProfilesofDimethylarsinate,Monomethylarsonate, andInorganicArsenicinSedimentfromLakeBiwa” ‥ 39 T,TAKAMATSU,R.NAKATA,T.YosHIDAandM.KAWASmMA Chapter VI RedoxCycleofManganeseandlronandtheCirculation OfPhosphorusintheDredgedAreaoftheSouthernLake・・・ ・・47 M.KAWASHIMA,T,HoRI,M.KoYAMAandT.TAKAMATSU Chapter VII −Note−ManganeseConcentrationintheSedimentas anIndicatorofWater【kpth,Paleo−WaterDepth duringtheLastFewMi11ionYears T,TAKAMATSU,M.KAWASHIMAandM.KoYAMA Chapter WI NoteTheTotalAmountsofMnandAsAccumulated intheSedimentSurface T.TAKAMATSU.M.KAWASHIMAandM.KoYAMA 7 7 Appendixes 亡U 7 Acknowiedgement SummaryinJapanese l 7 References 3 只U ust ofauthors TakejiroTAKAMATSU SoilEnvironmentSection,WaterandSoilEnvironmentDivision,NIES, TaroHORIandMunetsugt]KAWASHIMA VisitingFellowoftheNationallnstituteforEnvironmentalStudies・ PresentAddress:FacultyofLiberaJArtsandEducation,ShigaUElivers;ty,OtsuShiga 520. M11tSuO KOYAMA VisitingFe1lowoftheNationalInstituteforETIVironmentalStudies・ PresentAddress:ResearchReactorInstitute,KyotoUniversity,SennanOsaka590rO4■ TomioYOSHIDAlandRenpeiNAKATA2 1VisitingFellowoftheNationalInstituteforEnvironmentalStudies■ 2ResearchCollaboratoroftheNationalInstituteforEnvironmentalStudies. Present Address:Faculty of EnvironmentalSciences,Tsukuba University, Sakuramura,NiihariIbaraki305. ー Vl− CHAI}TERI GeneralDistriblltionProfilesofThirty−Six ElemerLtSin SedimentsaTLdManganeseComcretionsofLakeBiwa T.Takamatsu,M.Kawashima and M.Koyama ABSTRACT Thirtysedimentcores(30−40cminlength),47Ekmandredgesediments, andMnconcretionswerecollectedfromLakeBiwa.Theconcentrationsof36 elementsinthesamplesweredeterminedbyinstrumentalneutronactivati(、n,X ray fluorescence,atOmic absorption,and colorimetric analyses,The ele− mentsanalysedincludeMn,P,As.Sb,Fe.Ni,Co,Zn,Cu,Pb,Hg,Cr.Ti, K,Rb,Cs,Mg,Ca.Sr,Ba,Sc.Hf,La,Ce,Sm,Eu,Yb,Lu,U, Brand N,Based onstatisticalconsiderations andcalculation oftheconcen− tration factors of the elements,the features of the elementaldistributionin Lake Biwa sedimentweredetermined. 1.INTRODUCTION From the elementalanalysis oflake sediments,importantlimnologicaland environ− mentalinformationwasobtainedinrelationto(1)theremovalprocessesofelementsinto sedimentfromawatercolumn(Taylor.1979),(2)posトdepositionaltraTISferandfixation ofelementsinttleSediment(Farmer&Cross,1979),and(3)environmentalchatlgeinthe lake,includingthehistoryofnaturalarldanthropogenicinputofelements(Nrjaguet al・, 1979). SinceLakeBiwaisnotonlythewaterresourcefor13mi11ionpeopleinKinkiDistrict, butalsohasalonghistoryofmorethanami11ionyears,theaboveinLormationisofgreat interesttomanyscientists.However,the analyticaldata on thesediments availablefor obtainingthisinformationarelimited(Kobayashiet al.,1976;Kawashima et al・,1978; Kurata,1978;Tatekawa,1979,1980;Takamatsu et al、,1980b;Nakashima&Morii 1982). Thepresentpapersummarizesthedata ontheconcentration anddistributionof36 elementsinLakeBiwasedimentsalongwithabriefdiscussiononthemechaTlismsgoverning −1− thedistributionofelements. 2.METtiODS Co11ectionandsampleprepration:Thesedimentcoreswerecollectedduringtheperiod Aug,1976−Nov,1977from24sitesinthenorthernlake(N−1ake)inadditiontosixcoresfrom thesouthern】ake(Srlake).Thesampljngsitesarei】1ustratedjTIFig・1.1・Agravitycorer equippedwithaplasticcoreliner(3・5cmi・d・)wasusedtoobtainthesamplesof3040cmin length・Mostoftheretrievedcoresshowedthinbrownoxidizedtoplayersoverlyingthepale grayreducedsediment・Thecoresobtainedfromthenearshoreregionoftencontainedsilt andfinesand.Immediatelyaftersampling,thesamplesweretakentothelaboratoryand slicedinto2cm sections.For detailed studies onthedistribution and diagenesis o elements,SeVeralrepresentativecoreswerecutintothinnersections(i・e・0・2,0・50rlcm length)withintheupper2cmlayers・ThesubsampIeswerefreezedried▼grOundtoparticles oflessthanlOO meshindiameter usinganagatemortar,anddried againin an oven at lOOOC for5h. Thesurfacesedimentswerecollectedduringtheperiod Nov.1976−Apr.1977withan ・l−1,・●羞∈苫−さS Fig.1.1SampJingsites (●)sedimentcores;(○)Ekmandredgesediments・ − 2 − Ekmandredgefrom47sitesneartheshore・Afterthewetsampleswerehomogenizedonthe SpOt,aliquotsofthesamplesweretakentothelaboratoryandtreatedinasimilarmanner tothatforthecorestx!foreanalysis, Manganeseconcretio11S,intheform ofirregular friablemassesupto5cmi.d.onth sedimentsurfaceatthecentralsites(G,T,X and H),Were picked upwithtweezers treatedinasimi1armannertothatofthecores(photographoftheconcretionswasshown inAppen.2). AnalyticalprocedureこAnondestructiveneutronactivationanalysISWaSperformedby the flux monitor method according to the previous reports(see Appen,3;Koyama& Matsushita,1980;Takamatsueta/.,1982b),TheelementsanalysedincludedNa,K, Ba,Mn,Fe,Co,Cr,As,Sb,Br,Sc,La,Ce,Nd,Sm,Eu.Yb,Lu,U,Th The XTay fluorescence analysis was perlormed by theinternalstandard method accordingtothepreviousrtports(seeAppen.4;Takamatsu,1978,1980a).Theeleme analysedincludedK,Ca,Ti,Mn.Fe,Ni,Cu,Zn,As,Pb,RbandSr. TheatomicabsorptionanalysisforMn,NaandMgandthecolorirnetricanalysisforP wereperformedafter aciddigestionofthesampleswith HC10.−HF(Kawashima et aL▼, 1978∴Murphy&Riley,1962). Mercurywasdeterminedbyacoldvaportechnique:after Hgwasliberatedfrornthe freeze−driedsamplebycombustion,itwastakenupintheKMnO.−H2SO.solution.TheH wasthenvaporizedagainbyreductionwithSnCl乞befoT:ebeingintroducedintotheabsorption Cellofanatomicabsorptionspectrophotometer. NitrogenwasdeterminedbytheKjeldahlmethod(Kawashimaeta/.,1978)andthelo ofignition(1.L,)wasdeterminedbycombustionofthesampleat550QCfor2h・ 3.RESULTS ANDDISCUSSlON AverageconcentrationsoftheelementsinthecoresandtheEkmandredgesedimentsare presentedinTablel,1alongwiththemaximumandminimumvaluesrecorded,Theresults ofthecoresincludethevaluesfortheupper2cmlayersandthelowerlayers(belowlOcm depth)separately,lnN−1ake,tX:low10cmfromthebottomsurface,theelementalconcen・ trations of the sedimentarylayers arelittle affected by human factorsin view of the sedimentationrates(Kamiyamaetal.,1982;MatsumOtO,1975)andtheearly−diagenesisof elementsafterdepositionispractical1ycomplete.althoughthesituationinS1akemayl光 morecomplicated.Therefore,thevaluesinlowerlayersofN−1akeareconsideredtot光 backgroumdlevelsoftheLakeBiwasediments. ー 3 − Tablel.1ElementalconcentrationsinthesedimentsfromLakeBiwa W.D. l■L. 5−97(66)m 3.41l.4(7.7)% 5−97(66)m 5.6−11.7(9,5)% 1.223(8.2)m 2.54(3、4)m 2.5−4(3.4)m 1.2−8(2.8)m O.9−9.8(4.4)% 9.110.0(9.6)% 9,トIl.0(10.1)% 6.2−14,8(9.7)% Fe % 2.36−5.11(4,57) % 3.335.18(4.53) 0.914.24(3.22) K 2.25−3.53(2,49) 2.03−2.85(2.40) l.894.38(2.68) % % 3,944.66(4.29) 2.252.45(2.35) % 4.04−4,38(4.21) % 2.72−4.75(3.64) 2.15−2.38(2.29) 1.47ノ2.79(2.19) Na O.581.48(0.86) 0.59−1.94(0,93) (0.90) (1.07) Mg O,38l.26(0.96) 0.741,ZO(0.97) (0.84) (0.83) Ti 0.35−0.60(0.45) 0.01−0.60(0.37) 0.420.52(0.47) 0.315、0.51(0.43) 0.26−0.50(0.39) 0.21−0.74(0,37) 0.13−0.94(0.46) 0.28−0.3(i(0.33) 0.36、0.45(0.40) 0.21−1.04(0.47) O.23−0,64(0,50) Ca O240,63(0.34) mg・kg ̄ 12302100(19t10) N P 32(ト1180(83(I) 560r1710(1150) Mn も9031BO(18も0) b9り13900(3760) Ni 8−42(30) Cu l:1一畠8(52) Zn 84187(135) Pb 16−52(32) ー 】」.」2〟,7(】7.8) C(フ CT 6075(70) N.D∴69(31) 4145(42) 別ト79(60) 112−34(〉(203) 1976(51) A− lO8−161(139) 115153(131) 7.7−13.4(10.4) 56−110(72) Ba 570−740(680) 500820(690) Sm 7.7−8.g(83) 6,98.5(7.8) Hf 3.6−6.9(5.2) Eu l.0−1.Z(1.1) La 36.ト52.0(439) Nd 36、67(49) Br 4、12(7) 2.5、4.4(3.4) U Th 14.4、18.8(16.6) Hg o.10−0.1:1(0−12) Ta l.1−1.3(l.2) Au o,01ト0.032(0.018) 78(8) 238(18) 52、76(65) 30311(100) (52) N.D.−16(5) (12.3) 1耶卜149(143) (6.1) 42−149(90) 6483く7(〉) 0・02▲0・07(0▲05) 0.1ト0・13(0.12) 110−899(366) (12.e) 15−28(20) 145155(150) 480−1830(1060) 9154(68) 〔ユ3.9) 77、215(126) mg・kg 1750−5150(3370) 4602980(1130) 25−l−426(336) (70) ト40(13) 1D.614.9(ユ3.4) 9,312.7(IO.8) 79−94(84) 3853(47) 46一朗(67) Rb :Z.ト3.6(3.1) 10、64(30) 150−194(164) (15.7) Cs Yb 17−287(126) 】3.3−2l.&(ユ7,6) 7130(55) Lu O.4〔ト0.56(0.50) 590、750(680) 1460−1630(1540) 42−99(76) 1.73.7(3.2) Ce 800−1020(880) 267¢−5460(3780) Zg、45(3(I) 6−41(23) 62114(76) 180−15(】n(710) 330570(420) m賢・kg 19Z6(Z3) l.4−2.4(1.9) Sr 92−1750(650) mg・kg→ 25ZO2660(2590) N.D∴28(12) Sb 】1′5−ユ6−2(】4′5) 200−3430(1179) 1949(33) As Sc m耳・kg mg・kg 1410420(l(3020) 85−161(128) くG.3) 6594(82) 50Z33(101) 76−92(81) 2.7−3.7(32) 0.41−0.55(0.49) 3.06,9(4.8) 0.91.2(1.1) 35.3−44.9(4().0) 46−61(54) 513(9) 2.84.3(3.5) 14.417.0(15.5) 0.16−0.21(0.19) 0,81.4(l.1) (0014) miniml】m【maXimum(averagel_ N・D・=nOtdetectable=W・D・=Waterdepth;f・L・=ignitionIoss・ *lowerlayers(tx!10WlOcmdepth)ofthesediTTlentCOreS. **upper2cmlayersofthesedimentcores. *■■surfacesedimentscol]ectedwithanEkTnandredgefromtheareaneartheshore 0.18−0.24(0.20) 0.101.42(0.49) WherlCOmpared with the typicalelementalcompositionof theearth’s crust(Taylor、 1964),Shale(Turekian&Wedepohl,1961),andabyssalclay(Sugimura,1972),itisapparent thattheLakeBiwasedimentshavemuchhigherconcentrationsofAs,SbandCs,andlower COnCentrationsofalkalineearthmetalsexceptforBa.TheconcentrationsofUandThare alsomuchhigherthanthoseinabyssalclay(seeAppens.57)_ ThecontentoftheelementsoftheMnconcretionssampledatsiteGarepresentedin Tablel,2.Althoughtheconcretionsusuallycontainedlowerlevelsoftraceelementstha the abyssalconcretions(Dean &Ghosh,1978),highconcentrations of Mn(16,7%),As (721mg・kg▼1)and Ni(340mg・kg.1)are evident_ A comparison with the elementalcom− position of thelake concretions previously reported for Lake Michigan(Edgington & Callender,1970),Lake Ontario(Cronan&Thomas,1972),and Lake Oneida(Dean Greeson,1979)showstheLakeBiwaconcretionstot光Simi1artothbseofLakeMichigan,a the content of U and Th to一光COnSiderably higher.1n addition,the highAs contentis Tablel.2 Elementa】concentrations of Mnconcretions fromthesedimentsurfaceatsiteG 1 00 つJ 2 9 3 7 00 ︵U 3 3 2・4 0 爪U 6 ー 5 − 2 3 つJ ∧U 1 Valuesarebasedonfreeze−dried mateT・ials. DハU 3 ︵U 4 2 7 1 9 つJ ︵U l l 几U ∧U 6 3・4 7 0 5 189 26 2700 721 5.5 14.3 7.5 Zl.5 39.6 28 4.6 2.0 0,27 4.9 9.2 1.9 0.8 6 EIement Concn.,% NaKMgCaTiMnF2封Sl ︵U 7 RbCSSrBaCrC。NiCuZ。PbPASSbBrSCb鎚NdSmYbL。UT Element Concn.,mg・kg▲1 COmparabletothatofGreenBayinLakeMichigan,andthehighBacontentiscomparable tothatoffreshwaterlakesatlarge(Edgington&Callender,1970;Mooree[al,,1980) 3.1Vertil・a】djβtrj加】臼on ofe】emeIltS The profiles of elementsin the core sites G and D are shownin Figs.1,2andl.3, respectively.TheprofilesoftheelementsatsiteGrepresenttheprofilesoftheoffshore SedimentsofN−1ake,Whilethoseat site DrepresenttheprofjlesofSLlake.Althoughth profj】esareir】f】uerICedbythechemjca】propertjesof班ee】eme鵬Sal】derlVjronJれerlta】factors affectingthesediments,the elements can be classifiedinto some groups as a result of a statisticalcomparisonoftheirdepthdistribution,aSShowninFig・1.4. Manganese,As,andtoalesserextentNishowedextremelyhighconcentrationsinthe uppermos=hjnlayers and sharply decreased co11Centrationswithjn a few centjmeters. Be]ow10cmfromthetopsofthecores,theconcentrationsoftheelementsremainedalmost constant.lntheoffshoresedimentsofN−1ake,theprofilesofZn,SbandPresembledthos of Mn and As. い ・小 . へ」「■J] 町 恥 U喜 ∈ U る 中 ヽ lh山 伽rll⊥ 卸 「」「」「」「」 Fig,l.2 DistributionofelementsinthesedimentcorefrornsiteG Oneconcentrationunit.otherthan%,ismg・kg】. 一 6 一 芋ノら/よTj 、.. ∈リ・‘且■つ︳iYU 、.・ 、. ㌧■﹂﹁■ Fig.1.3 DistributionofelementsinthesedimenteorefromsiteD Oneconcentrationunit,Otherthan%,ismg・kg ̄l. Hn.As.Ni.Zn. Ⅰ・し.P.Sb ▲U J︸ ∈U.≦計pと8 n︶ Fig.1.4 Verticaldistributionpatternsofelementsinthesediment (A)offshoreTegionofNIake;(B)S1ake, − 7 − TheconcentrationsofCu,PbandHgwerealsohighintheupperlayersofthesediments buttheiruniqueprofilesindicatedthattheelementst㌍longedtoagroupdifferentfromthat OfMnandAs.ZincandPalsohadprofilessimilartothoseofPbandHginS−1ake.The increasedlevelsoftheaboveelementscomparedwiththebackgroundlevelsreachedto a depth of4R5cmin the offshore sediments of N−1ake,While thosein the S−lake sediments reachedtoadepthof15−25cm, Concentrationsoftheotherelementsdidnotvarysignificantlyinthecores_ For a moreprecisedeterminationoftheconcentrationsofelementsin the upper2cm layersofthecores,COnCentrationfactors(F)werecalculatedasfollows.F=(Cx−Cr)/C,, WhereCxandCrrefertotheelementalconcentrationsintheupper2cmlayerandinthelower layer(1x)lowlOcmdepth),reSpeCtively.1nTablel.3,theelementswerearrangedin Of decreasing F.AlthoughtheeffectsofI,L werenot considered,it wasfound that t concentrationsof17elementsincreasedandthoseof18elementsdecreasedintheupper2cm layeroftheN−1akesediment. Furthermore,Fwasalsocalculatedinthesamewayforthesurfacethinner(i.e.01, 00.5andOrO,2cm)layersofthecoresandMnconcretions.Inthecalculation,theconcen− trationsofelementsinthelowerlayersofthecorefromsiteGwereusedasbaselevelsfor theMnconcretions.TheaveragedFislistedinFig.1.5.ItisevidentthatAs,Ni,Sb,P, U and alkaJine earth metaJs(partictIZarJY Ba and Sr)are enrlChedin MTICOnCretioIIS, whereas Zn,Cu,Pb,Fe,Ti,K,Cr,Cs,Rb,Th,Hf and rare earth elements are de comparedtotheunderlyingsediment. Briefdiscussiononseveralelementsisgiveninthefo1lowing, Mn,As,SbandNi:BecausethedistributionprofilesofcomponentssuchasMn,As, possiblySbandEhvalue(Kawashimaet al.,1978)areverymuchalike,early−diagenesi associatedwithredoxprocessesshouldtakeplacewithinthetopseveralcmlayer, ThecyclingofMIlwithinthesedimentarycolumniswellknowninconnectionwiththe redoxconditionsofsediments(Robbins&Ca11ender,1975;F6rstner,1983).Thatis, precipitatesprimarilywithininorganic and organic particles onthelakefloor,andafter txingburried.apartofMnisreducedtoMn2+andsolubilizedintheporewater・TheMn2+・ after diffusing out of the reducedlayer,isimmobilized againby catalytic reoxidation (Delfino&Lee,1968;Sung&Morgan,1981;Uren&Leeper,1978)andbyadsorptiononto oxides(Morgan&Stumm,1964;Murray,1975a;Takematsu,1979)attheoxidizedsediment surfaceand/orinthebottomwater. ThebttomsurfaceofN一】akeismost】ycoveredwjthaoxjdjzed】ayerH】roughoutthe ー 8 、 Tablel,3 Concentrationfactors●ofelementsintheupper2cmlayersofthesediment c(〉reSfTOm Lake Biwa Narthern lake As Mn Sb Hg Pb Zn N Br Southernlake Cu O.253.64(1.34) ()0.03−4.54(0.93) O.2卜1.18(0.66) O.451.10(0.65) O.001.59(0.60) O.09−1.40(0.45) O.15−1,Ol(0.56) (−)0.421.50(0.44) (−)0.101.15(0.36) ()0.14−0.68(0.40) Ⅰ.L. (−)0.2ロ0.45(0.20) P Au Ca Ni Yb U Ba Na Lu K Fe Sr Cs Ce Mg Co Eu Sm Rb Ta Cr Sc Th Hf La Nd Ti 1.14−2,50(1.62) 0,60−0.97(0.77) 0.253.64(1.39) (−)0.03−4.54(0.90) 0.38−1.00(0.67) 0.16−0.71(0.41) 0.59−1.70(1.08) 0.38−1.10(0,66) 0.00−1.59(0,57) 0.091.70(0.55) 0.06−l.1(l(0.46) 0.(略−1,10(0.53) 0.32−1,15(0.66) 0,1卜0.93(0.42) 0.00−0.10(0.05) (一)0.10−1,15(0.41) (一)0.14−0.93(0.40) (一)0.20−0.45(0.18) (0.17) (−)0.32刀.25(0.10) (−)0.41−0.48(0.04) (−)0.060.29(0,21) ()0.08−0.73(0.26) (一)0.32−0.29(0.12) (一)0.41−0.73(0.07) (−)0.03−0.12(0.05) (−)0.150.24(0.04) (−)0.13−0.34(0.02) (−)0.220.21(0.0ユ) ()0.06−0.10(0.00) (−)0.180.09(−0.01) (−)0.11−0.06(−0.02) (−)0.27−0.12(0.04) (−)0.170.14(−0,02) ()0.11−0,05(−0.02) (−)0.120.11(0.03) (−)0.13−0.05(−0.01) ()0.25−0.10(一0.04) (−)0,100.04(0.05) (−)0.190.19(−0.06) ()0.27−0.08(−0.06) (0.19) (−)0.050.00(−0.03) ()0.08−0.03(0.02) (−)0.120.16(0,08) (−)0.180.09(−0.02) ()0.11−0.06(0.02) (−)0,270.16(−0.02) (0.03) (−0.01) (0.18) (−)0.07(−)0.03(一0.05) (−)0.23−0.14(−0.06) (一0.26) (一)0.150.07(−0.08) ()0.22−0.00(0.08) (−)0.190.08(−0,09) (−)0.29−0,07(一0.0釦 (0.12) ()0.19−0.19(−0.06) (▼0−15) (−0.11) (−)0.220.07(一0.12) (−)0.17−0.00(−0.09) ()0.22−0.07(−0.12) millim11m−maXimum(aYerage). ●F=(Cxt,)/C,.Cx:elementalconcentrationinthetlpper2cmIayerofthesediment COre,C,:elementalconcentrationinthelowerlayer(belowlOcmdepth)ofthesediment COre. Mnconcretions い1K、Fe・SrRb・Cl)Cr SrTlCe・Hf・LalTトMg.Ta Fig.l.5 AverageconcentrationfactorsofeIernentsintheupperthinlayersofthe sedimentcoresand Mnconcretions yearbecausethebottomwatercontainsDOofca・4mg・kgrlevenattheendofthesummer stratification(Naka,1973;Kawashimae[al.,1978)L Thecoresretrievedfromthecentral regionofNlakealwaysshowedthin(ca・0・2cm)brownoxidizedtoplayers・Theredox potentiaI(70plOOmV)observedinthereducedsediment(belowO・5cmdepth)ofNLlake (KawashimaetaL.,1978)islowenoughforMnreduction(ca・600mVatpH6;tlem.1972)・ Erladdftion,microorgarlismsin[heJakewa亡ercarlrapidJyoxidizeMn2+亡OMnoxideunder aer。bicconditions(Chap.VI),Therefore,theabovemechanismcanaccoutfortheprof 10− of Mninthesediment of Lake Biwa. Arsenichasaccumulatedtohighconcentrationsinthethinsurfacelayers(00.2andOrO.5 Cmdepth),particularlyinthecentralregionofN1akeandthedepthprofilesofAsisquite Simi1ar to those.of Mn,aS SuppOrted by the highdistribution correlations tx!tWeen both elements(e・g・COrrelationcoefficients,ー=0・986,0・930,0・998atsitesT,ⅩandGrespectively), TheMnconcretionsalsocontainedhighconcentrationsofAsupto721mg・kg ̄1.Thesefacts SuggeStthatthesurfaceaccumulationofAsmayresultfromadissolution−depositioncycle withinthesedirnentarycolurnnassociatedwiththatpreviouslydescril光dforMn.Sincethe redoxconditions(70100mV)ofthereducedlayers(KawashimaetaL..1978)approxima theboundarypotentialofarsenate−arSeniteinterconversion,i.e,83mVatpH6(theauthor’s calculationbasedonthedatacompiledbySi116nandMartell,1964),arSenicshouldpart tkreducedtomobilearseniteinthereducedsedimentthougharseTlateismoredifficulttot光 reducedthanMnoxide(Peterson&Carpenter,1983).Infact,Takamatsu eial.(197 havefoundAspresententirelyasarsenateatthesedimentsurfacebuttheratioofarsenite toarsenateincreasedtoO.76witlldepth,1naddition.Mnoxideisknowntobeapowerful oxidantofarsenite(Oscarson et al.,1981)andMn2+rich Mnoxidefoundintheoxidized Sedimentsurface(seeFig.2,3inChap,II;Kawashimaetal.,1978)isaneffectives Ofarsenate(seeFig・2.2inChapLIl).Therefore,theprofilesofAsmayresultfrompo depositionalmigration of arsenitein the sediment pore water followed by oxidation to arsenate at the sediment surface and adsorption onto Mn2+Lrich Mn oxide(the detailed mechanismisdiscussedinChap,II). AnthnonyhasalsoaccumulatedinthesurfacesedimentandMnconcretions(seeFig. 1.5)・SincetheredoxpotentialofaTltimonate−antimoniteinterconversion,i.e.133mVatpH 6(theauthor’scalculation)issomewhathigherthanthatoftheAscoupleandMn2+一richMn oxide can adsorb antimonate appreciablyin a pH range of6to7(Takamatsu ef al., unpublished),theredoxcycleofSb,SimilartothatofAs,mayCOntributetotheprofile Sb. ThemostextremeinstanceoftheabovemechanismswasshownbytheformationofAs (andSb)−richMnconcretionsonthebottomsurface. AsforNiwhichisalsoconcentratedintheMnconcretions,definiteprofilessuchasMn andAscannott*SeenSOmetimeswhenanalysingbulksediments.Onereasonforthisisthat theaverageconcentrationsofNiinclayrnineralsarehighenoughtoshadetheaccumulatior1 0fNiintheMn−richlayerswithinexperimentalerror■ Zn,Cu,PbandHg:Thehighconcentrationlevelsofthesernetalscontinuetodee匹r −11− partsofthecorest光neaththeEh−minimumswhichhavebeenrecordedataO.5−2cmdepth OfthecoreintheoffshorepartofN−1akeandata68cmdepthinSrlake(Kawashimaetal., 197S)・Inviewofthesedimentationratesofl,2rl.6mm/yforN−1akeand2.4mm/yforS lake(Kamiyamaetal・,1982),thestartofaccumulationoftheelementsshouldgoback30− 40yearsagoinN−1ake,WhileinS−1ake,itgoesbackmorethan60years.Becausethe WaterShedofS−lakewaslanddeveloped,pOpulated,andindustrializedmuchmoreearlier anddenselythanthatofN−1ake,pOllutio−1byhumanactjvjtyshouldbthemostjmportant factorfortheincreasedlevelsofthesemetals(Kurata,1978;Tatekawa,1979,1980)、 AJthoughthefjnedepthprofiJesof亡heelementsaredjstinctfromonear[Otherirlthe metal−richuppersedimetltS,theincreasedconcentrationsofCualwaysreachtothedeepe ZOne亡hanthoseoEZn・Aprocesscar7beproposedrela亡ing亡OSuChdifferencesintheprofiles of Cu and Zn. PhytopZankton(dominantspecies:馳uYaSirum)coIlectedwithanet(NXX25)from LakeBiwacontainedconsiderablyhigherconcentrationsofZn(225mg・kgl)andCu(155mg・ kg−’)andIowerconcentrationsofother25elements(seeTable4,1inChap.IV)compared tothose(seeTablel.1)ofsediments,incontrasttothefactthatveryhighconcentratio and concentration factors(these factors are based on the concentrations of dissoIved elernentsin1akewater)ofllelementsincludingZn,Cuand Pbhavebeenreportedwith respecttophytoplankton(Kurata,1982).Phytoplanktonisrecognizedasamajorsourceof sedimentary organic matter(Ishiwatari,1973;Jackson,1975;Cranwell,1976)and the deposition of metalrrich planktonic debris has been suggested as a significant removal processofmetalsfromthewatercolumn(KempeL al.,1976;Lund,1957;Taylor,1979) Thus,alsoin Lake Biwa,1arge fractions of Zn andCu maysettle on thelake bottomin associationwithplanktonicdebris.DtlringthecourseoLtheear]ydegradatior)Ofthedebris and subsequerlt Slower humification,COpper,Which binds strongly to humic materials (Takamatsu gJβ/.,1983b,ユ983c)mayremairIjnagreateramourlt hsedjmerl【s tharIZn. HighCuconcentrations,Oftendetectedinhumicmaterialsofsediments(Nriagu&Coker, 1980),【endstosuppor=血sprocess(thede亡aiJedmechanismisdiscussedinChap.IV). AsforPbandprobablyHg,aT10therinorganicprocessperhapsshouldbeconsideredsince theconcentrationofPbwasJowinthepJankton. Otherelemettts:TheotheTelementsshowednearlyconstantconcentrationsthTO11ghout thecores,indicatingthattheywerenotmobilizedtoanysignificantextentafterdeposition, AsforFe,Co,UandCr,redoxreactionsdidnotappeartotakeplacetocauseappreciable mobilization.Cobalt,U and certain alkaline earth metals abundantin Mn concretions 【12 SOmetimesshowedslightlyhighcohcentrationsonthesedimentsurface.Elementssuchas Cr,Ti,Hf,Th,SOmealkalimetalsandrareearthelements,SCarCeintheMnconcretions theplanktonandmostlydepositedastheprincipalcomponentsinclayminerals,Showeda Slightdeclineinconcentration toward thesurface,alo11gwith a negativecorrelatiorlWith I.L. 3.2Horizomtalandlot・aldistribution ofelemeれtS Toobtainingihformationonthehorizontalprofilesoftheelements,Variationintheir relativeconcentrationsalongthetransectfromAdoRiveTtOAneRiver(fTOmSitesUtoJ) isgiveninFig,1.6・Althoughmanyelementsshowedslightlyhigherconcentrationsinth nearshoresedimentsalongtheeasternmargincomparedtothewestern(Tatekawa,1979), theconcentrationsofsomeelementsclearlyincreasedfromtheshoretothecentralregion, Whileothersshowedaninversepattern.Theelernentscouldbearrangedintheorderof enrichmentinthecentralregionasfollows:Iif(mostdepletedinthecentralregion)<Na, K≦Rb,Ca,Sr,Cr,Ti,lanthanidesexceptfor Lu and Yb(nearlyconstant overthe region)≦Yb,Lu≦Cs,Fe,Co,Ni,Sc,U,Th≦Sb,Br,P,Pb,Zn,Cu,Ⅰ.L.<M enrichedinthecentralregion),Thisorderisrough1ysimi1artothat ofelementsonthe Sedimentsurface(seeTablel.3). Briefdiscussiononsomeelementsisprsentedasfollows. Mn,AB,andprobablySb:Theaccumulation of theseelementsin thecentraldeeper regionshouldresultfromthesamechemicalpro匹rtiesofelementsandmechanismsasthose responsiblefortheverticaldistrib11tionoftheelements,Thatis,there匹ateddissoluti depositioncycleswithinthesedimentarycolumnandbottom water must have carriedthe elementstothedeeperpart, Zn,Cu ahd Pb:These elements also showed highconcentrationsin the offshore SedimentsalthoughthiswasmorepronouncedforPbintheupper2cmlayer.Amongthe elements,ZnarldCuexhibitedsimilarhorizontalprofilestothatofl.L.,eSpeCiall upperlayer,reflectinggoodcorrelationcoefficientsalongthetransectfromsitesUtoJ(Zn: 0.910,Cu:0.948).Thus,theroleofplanktonicdebrisrichinthesemetalsshoulda emphasizedinthiscase. Alkalimetals:Theorderofincreasingconcentrationofalkalimetalsinthesediment fromthecentralregioncomparedwiththenearshoresedimentwasidenticaltotheorderof increasingatomicnumtx)TSfrom NatoCs;thatis,theconcentrationofCsincreasedfrom theshoretothecentralregion,WhileNaand,tOalesserextent,Kshowedaninversepatt ¶13− ト‘ (Wし侵 l.2 仙 As・・・−− 1.0 0.8 Sb一一 Cu−一 之n一… Pトーーー10g(刷 P一→− 0・6 1■し ̄−−−−・1 0,▲ 0・2 。L叶.抽.止.霊 Fe- Co−−=・ N仁一・一 丁i−−=一 Cr−−− H†一十・ナ ∪−−−一一 丁h−一−一 缶− Sr−一・− Ba−−−−・ トb一−・− K− 一ノニニ主、ノ■′ Rb−−▲ Cs [∠ 巨< ≦ lα ) Fig.l.6 Horizontaldistributionofelementsinthesedimentsa)ongthetransectfrom Ado Riverto Ane River X。_,andU。_2ShowtheelementalconcentrationsintheupperZcmlayeTSateaCh siteandU.respective)y.X】。_andU.。_Showtheelementalconcentrationsinthe lowerlayers(belowlOcTT[depth)ateachsiteandU,TeS匹Ctive]y・ 14一一 Thisorderreflectstlledissolutiontendencyofalkalimetalionsfromclaymineralsandalso theaffinltyfortheseionstobeincorporatedintothesedimentcomponents fromthewater column.TheseprocessesmaybecontrolledbyionLeXChangeprocessest把CauSethedecreas intheionicradiiofhydratedmetalsisrecognizedtoi11duceahigheraffinityofthemetals foranionrexchanger(Kakihana,1970). Lanthanides:Thesedimentfromthecentralregionshowedanappreciableincreasein theconcentrationofheavierlanthanidescomparedwiththenearshoresediment;namely, therewasanincreaseintheratiooftheheavierlanthatlidestothelighteron鶴fromtheshore to thecentralregion.The ratio of solublelanthanides vs.particulate onesis known to increaseperceptiblyfromLatoLuinariver,althoughthisratiohasthesameloworder(ca 1.4%)foralltheelements(Martinefal.,1976).Therefore,itislikelythatthep deprivedofheavierlanthanidessettle near theshore and thatthesoluble fractionrichin heavierlanttlanides remainslongerin solution andis tTanSpOrted to the offshore before deposition.This process may be reflected by the higher(Yb+Lu)/(La+Ce)ratios ob− SerVedintheplankton(0.036;SeeTable4.1inChap.IV)andtheMnconcretions(0.0 comparedwiththose(0.028)inthebulksediment(seeTablesl.1andl.2). Hf:The Hf concentration decreased greatly from the shore to the centralregion, Showi11gahighinversecoTrelationwithMnandthedepthofthewateT.Hafniumshowsa verylowsolubilityofhydroxide(Ksp=1053・▲;Sil16n&Martell,1964;SeeAppens.18and19) andisinsolubleinwater(themaximumsolubilityisca,7.1×10 ̄8pg・kg.1atpH6), AIso, this element cannot be reduced to alower valence statein a naturalenvironment.ThereL fore,rnOStOfthiselementshouldbedepositedasacomponentofterrestrialclayminerals issupportedbythefactthattheratioofelementalconcentrationintheMnconcretionsor theplanktontothatinthebulksedimentislowestforHf(0,36,0.20fortheMnconcretio andplanktonrespective]y;Cf.(Ti)0.58,(Th)0.55,(La)OA9fortheMnconcretions;(Th 0,26.(La)0.25for the plankton).The Hf content jn the sediment may be a promising indicatorofthedepositedamountofallochthonousmatter, Theconcentrationsof16componentsintheupper2cmlayersofcoresandtheEkman dredgesediments arei)1ustrated on the map of Lake Biwa(Figs.1.7tol.10)and the fo1lowingcommentsmayl光made. Zn,Cu,PbandIIg:ThehighconcentrationsofZn,Cu.PbandHgupto899,154,311 andl,LI2mg・kg.1respectivelywererecordedforS1ake.Anareaofveryhighconcentrat alongwiththesouthwesternmarginofthelakeextendedasfarastheoutlettotheSeta River.ThesehighconceTltrationsshouldbetheresultofhumanactivity,aSpOintedoutb 15− Kurata(1978)andTatekawa(1979,1980). CaandSr:TheconcentrationsoftheseelementswerehigherontheeasternshoreofN− lake than on the western side.This js related to the rich source of Ca and Sr from the calcareous bedrock jn the watershed, MnandAs:Pollutionhasnotinfluencedtheamountofeitheroneoftheseelements,eVen inthesurfacesedimentstakenfromthewesternshoreofSlakewherethesedimentshould lx:themostcontaminatedbyhumanactivity.Therefore,theMnandAsaccumulatedinthe Offshoresedimentsof N−1akecant光COnCludedtobemostlyofnaturalorigin, −16− ーー﹃ − Fig.1.7 RegionaldistributionofI▲L・,N,PandHgirlbottom Fig.l.8 RegionaldistributionofK,Rb.CaandSrinbottom surface sediments Surfacesediments く 〉:COntelltin theearth’scrust. く 〉:COntentin theearth’scrust. ーー00■ Fig・1・9 RegionaldistributionofFe,Ti.MnandAsinbottom Surfacesediments く 〉ニCOntentintheearthlscrust. Fig・1・10 RegionaldistributionofNi,Cu,ZnandPbinbottorn Surfacesediments 〈 〉:COntentintheearth,scrust. CHAPTERIl TheRoleofMn2+LRichHydrousManganeseOxideinthe A‘:Cumulatiol10fArseれicim LalieSedjmeIltS T.Takamatsu,M.KawashimaandM・Koyama ABSTRACT Arsenicispresentatllighconcentrations.intheupperlayerofLakeBiwa sedimerltSandshowsadepthprofilesimilartothatofMn.Adsorptionexperi− mentsofAsontosynthetichydrousMnoxide(HMO)inthepresenceofMn2+ andthespeciationofMninthesedimentcores.suggestthattheaccumulation of As at the sediment surface results from post−depositionalmigration of arsenitefn thesediment pore waterEoJZowed byoxidatioTltO arSenateat the sedimelltSurfaceandadsorptionontoMn2しrichl・lMO. l,lNTRODUCTION Arsenic commonly accumulatesin the uppermostlayers oflake sediments.High concentrationsllaVebeenfoundinLakeWashington(Crecelius,1975)andinLochLomond (Farmer&Cross,1979)withreportedvaluesof210and474mg・kg ̄1respectivelyintheupper lcm of the sedimentscomparedto concelltrations of12and18mg・kgLldeeper dowtl、1n LakeBiwa,theconcentrationofAsisalsohighintheuppermostlayersofthesediment,For example,inthecentralbasin,aCOnCentrationof198mg・kgLlAswasfoundinthesurface 2mmlayerofthesedimentcomparedto25mg・kgLllowerdown(seeAppen.15;Takamatsu gJ〟/.,1980b). UptothepresenttimethefixationofAsinlakesedimentshasusua11ytxLenattributed toadsorptionontohydrousFeoxide(Kanamori,1965;Nealetal..1979;Farmer&Cross 1979)becausearsenateischemicallysimilartophosphateandthero]eofhydrousFeoxide in the P dynamics of aquatic environmentsis wellrecognized.This behaviour can be explainedbythefactthathydrousFeoxidehasapHpzc(pointofzerocharge)ofabout8・6 (Schott,1977;Kinniburghetal.,1976)andsohasanetpositivesurfacechargeinnatu lake environments.1n contrast,hydrous Mn oxide(HMO)has a pH。ヱ。Of about2. (Murray.1974;McKenzie,1981)aTld[hereforecarriesanetnegativesurEacechargeatthe 一19− pHofmostlakesediments(pH50rgreater),ThissuggeststhatHMOwouldnotadsorb As.However.strongcorrelationsbetweenAsandMninlakesedimentshavebeenobserved SuggeStingthatAsisassociatedwithMnaswellasFe(Crecelius,1975). Inthischapter,theroleofMnintheaccumulationofAsattheoxidisedsurfaceofL. Bjwa sediments was demonstrated by studying both the adsorption of As onto symthetic HMOand theassociationof MnandAsinthesedimentcores. 2.METHODS A(korptionofarsenateontosynthesisedIIMO:HMOwaspreparedfromtheoxidation ofmanganousionbypermanganate(Murray,1974),Asolution(400ml)containingKMnO (1.149g)andNaOIi(0.368g)wasslowlyaddedtoasolution(400ml)containingMnC12・4H2− 0(2.159g)withconstan[stirring.TheresuJtingsuspension(8pMr102,Murray,19 filtered(MilliporeCX10)andwashedsuccessivelywithdistilledwater.Na2SO。(0,2M),and disti11edwater,tOremOVeeXCeSSK+andMn2+adsort光dontheoxide.Finallythesuspension WaSdilutedto11itretogiveastock suspenSioncontaininglmg Mn・ml1asIiMO,This StOCksuspenSionwaswe11mixedbeforeeachexperiment. TheeffectofdivalentcationsontheadsorptionofarsenateontoHMOwasstudiedby thefollowingprocedure.Asolutioncontainingarsenate(5JJgAs)wasaddedtoasolutio (40ml)containingthestocksuspenSionofHMO(5ml)andonedivalentcation(Oto2mg) e.g.Mn2’,Ni2+,Sr2+orBa2’,ThemixedsolutionwasadjustedtothedesiredpHwit OrHCl,dilutedto50mlwithwaterandallowedtoreachequilibriumbystandingovernight Withgentle stirring undera N2atmOSphere.The solution was then filtered(0.45JJm)to removethe HMO,the pH was measured andthe concentration ofAswasdetermined by atomicabsorptionspectrophotometry. ChemicalforTrLSOfMninsediments:Thesedimentcoreswereseparatedintosections Ofdesiredlengthimmediatelyaftersampling.Thewetsampleswereextractedsequentia11y to produce two fractions:(1)exchLlngeable Mn by extracting the samplewith Na,SO. htjw)1(mo行eudiSr肥けgntcaⅩ占ybお撒α〝〟JCぞ/)2(dnaruoh1,M.0i止s sodiumdithionitesolution(5%)adjustedtopH6,5withcitratebuffer(0_2M).Theresidual Mn,Whichshouldbecontainedmainlywithinthecrystalstructureofunweatheredprimary minerals,WaSeStimatedbysubtracting’fractions(1)and(2)fromthetotalconcentration ofMninthesample・Theextractions(1)and(2)wereperformedin a polyethylene centrifuge tube with continuous mechanicalshaking at room temperature.After each extraction,theleachatewasseparatedbycentrifugationfollowedbyfiltration:Theresidue 一20 waswashed with aminimum volume ofdisti11ed water prior t〔〉the fo1lowingextraction. ManganeseconcentrationsinLthe・1eachatesWere・determinedlbyatomicabsorptionspectro− photometry.The totalconcentration of・Mn was、]analysed■After’acid digestionwith HClO.一HF(KawashimaeL al.,1978). 3.RESULTS AND・DISCUSSION ・ProfilesofAsinthesedimentcoresfrom3sites(T,XandG)nearノthecentralbasin(for sitelocations,SeeFig.1,1inChap.I)arepresentedinFig.2.1(Takamatsueta/.,1980b). Arsenichasaccumulatedtohighcdncentrationsihthethinsurfacelayers(OL2’arldO5mm depth)∴Thesedimentationrate,l,2tol.6mm・y▲1(Kamiyamaeta!.,1982)suggeststhatthe Asーrjchlayersweredepositedwithin/the4yearspriortosamplingbutnodramaticincrease ofAsinilowtothelakehasbeenobservedforthatperiod,Ontheotherhand,thecoincident depthprofilesofAsandMnconcentrationsinthecores,(correlationcoefficients,r= 0.930,0.998atsitesT,ⅩandGrespeCtively)andAsconcentrationsupto721mg・kg1i concretions(Chap.I;Takamatsuetal・,1980b)sugge苧tthatthesurfaceaccumulationofAs mayresultfromadissolutiondepositi6ncyclewithin the sedimentarycolumn associate with that knownto occur for Mn. TheresultsoftheadsorptionexperlmentSareShowninFig.2.2.lntheabsenceofa divalentcation,nOappreCiableadsorptionofarsenateontoHMOoccurredbetweenpH6and 8,a range Often encounteredin aquatic environments.On the other hand,there was a substantialincreaseinthe amount of arsenateadsort光dby HMOin the presence of the 山mqkil(dry叫 0 ■) 80 120100 2q) G 『 Fig,2.1DistributionofA畠insedimentcoresfromL.Biwa ・Dateofsampling:Aug.1976−Nov.1977.Waterdepth(m):G97.T71,X90・ −21 divalentcationsMn2十,Sr2+,Ba2+andNi2+.For example,When Mn2+was added to the experimentalsolutionofHMOpriortotheadditionofarsenate,quantitativeadsorptionof arsenateoccurreduptopI18.Thisresultcanbeexplainedbyachangeinthesurfacecharge of HMO due to the added cation.Divalent cations,SuCh as MnZ+,Co2+,Ni2+,Zn2+,are adsor旭ontotheHMO(Morgan&Stumm,1964;Murray,1975a;Takematsu,1979)and H+isreleasedtosolutionbyexchangeofdivalentcationswithH+ontheoxidesurface,The amount of H+released wasfound tol光about one mole for each mole of divalent cation adsortxd(Murray,1975a;McKenzie,1979),Sincetheratioofchargeequivalentsreleas tochargeequivalentsadsorbedwaslessthanone,theadsorptiく)nOfsuchcationsshouldlead toadecreaseinthenegativesurfacecharge,andfinallytoapositives11rfacechargeonthe HMO.This mechanism was coIlfirmed by electrophoresis experiments(Murray,1975b). Therefore,theHMOwhichispositivelychargedasaresultofbindingsignificantamounts Ofadiva】en亡Cation,hastheabiJitytoremoveanionsfromsolution. 主‡ ̄:_ニニヤニ Fig.2.2 EffectofdlValentcationsontheadsorptlOnOfarsenateonto HMO HMO:5mgMn DIValentcation:(●)none;(○)Mn2+,(▲)Sr2+,(□)Ba2+, (×)Ni2+,1mgforead;〔△)MnZ+、2mg.Ar父1nate:511gAs Totalvolume: 50ml.pH adjustment:HClor NaO11. Fig,2.3showsthefractionationofMnobtainedbyextractionsofthesedimentcores・ Thesamplesanalysedincludedthree(G,X,T)fromthecentralregionandone(γ)fromthe sha1lowsouthernbasinofthelake.ThereactiveMnoxidewasrelativelyenrichedinthe surfacesediments.1tssurfaceenrichmentextendedtoasedimentdepthofca.4cminthe southernbasinandadepthoflor2cminthecentralregion.ExchangeableMn(Mn2+)was depletedinthehigh1yoxidisedsurfacesediment(OrO・2cmlayer)fromthesollthernbasinbut themuchhigherconcentrationsofMn2+(upto40%oftotalMn)werefoundinthesurface sedimentsfromthecentralregion・Thebottomwaterandthesedimentofthesouthernbasin 一22一− 巴OU 0 4088 0 40 D軒り⋮町︺川打u C川﹃⋮什じ川﹃ B愕∪川什U 紺 エ﹃醐﹃ ∈U.‘五〇P S T 0 0.0自0.160 40 S■t−甘m叩 Fig.2,3 FractionationofMnbysequentialchemicalextraction A:tOta)sedimentconcentration(%)ofMn;B:eXChangeableMn/totalMn,%; C:reaCtiveMnoxide/totalMn,%;D:100(B+C),%. usua11yhadhigherlevelsofⅨ)(andEh)thanthoseofthecentralregion.Theslowdecrease OfEhvalues,Observedjustbelowthesedimentsurfaceofthesouthernbasin.indicatedth DOdiffusesintothedeeperlayersofsedimentinthesouthernbasincomparedtothecentral region(Kawashimaetal,1978).Thisshouldbringaboutthedifferencesinthedistributions Of Mn−SpeCies一光tWeen tWO areaS,though a smalldifferencesin the sedimentation rates (Kamiyamaetal.,1982)mayt光arninorfattor.ThecoexistenceoftheabundantMn2+a Mnoxideinthesurfacesedimentsofthec占ntralregionmightcontributetotheadsorption OfarsenateontoHMOandcausethehighsurfaceconcentrationsofAsinthesesediments (seecoresG,X,TonFig.2.1). TheseresultssuggestthefollowingmechanismforthesurfaceaccumulationofAs(Fig. 2.4).Mn2+continuously diffusing upward from the deeper reduced sediment forms a Mn2十−1ichlayer of HMO on the oxidised sediment surface.The redox potentialin the reducedsedimentisnearthatoftheAs5・−As3+couple(Kawashimaetal.,1978)andpartof theburiedAsislikelytot光PreSentaSarSenite.1nfact,Takamatsueial,(1979a)fou presententirelyasarsenateatthesediment surfacebuttheratioofarseTliteto arsenate increasedwithdepth.Therefore,itcantxexpectedthatarsenitedissoIveseasilyinthe −23− waterofreducedsedimentduetothelowcontentofsuIfidesinIakeenvironments(DeueJ& Swoboda,1972).Manganeseムxideis、knowntoreadilyo叫isearsenite(Oscarsonetal. 1981)andarsenitewhichmigratqdtothesedimentsurfaceandcameincontactwithHMO WOuldtx!rapidlyoxidisedtoarsenateandadsorl麗dduetothepositivesurfacechargeinduced byMn2+・Thestabilityofthe’adsorbedAsislikelytobeincreasedbytheformationof insolublearSenateSaltswithMn2+,Ni2+andthealkalineearthcations(Ks,MnlO ̄28■7,Ba lO▼SOl ,Si11さn&Martell,1964;SeeAppen,18). Fig.2.4 MechanismforthesurfaceaccumulationofAs R−】ニbjo】ogjca】and/orca土a】ytjc DXjdatioJlOfM】12+;adsorption of Mが+0雨o HMO.RL2:0女idationofarsenitetoarsenatebyHMO;adsorptionofarsenate onto Mn2+一rich HMO. HigharsenicconcentrationsinMnconcretionsfromL.Biwa,isfurtherevidenceforthe accumulationofAsintotheMn2+rich HMOatthesedimentsurface. WeconcludethathydrousMnoxides,pOSitivelychargedfromthe adsorption ofMn2+ ions,COuldplayasignificantroleintheaccumulationofAsonthesurfaceoflakesediments. 24− CllAPTERIII Phosphate Adsorption onto Hydrous Manganese Oxide in the Presence of Divalent,Cations M.Kawashima,T.Hori,M.KoyamaandT.Takamatsu ABSTRACT Previ0usStudies showing the ability of hydrous Mn oxide(HMO)to adsorbarsenateatnearneutralpHin the presence ofdivalent cationshave been extended to examine theinteraction of this oxidewith phosphate. A】kalineearthcations,Ba2+,Sr2+,Ca2+,Mg2+,andtransitionmetalions.Mn2+, Co2+,Ni2+,CauSe HMO to strongly adsorb phosphate between p116and9 depending onthe cation.The effectiveness ofthe alkaline earth cations to cause Padsorption was Ba>Sr>Ca>Mg,Whichisthcsame order astheir affinitiesfortheoxide.Changeswithtimewerefoundintheabilitiesofthe transition metals Lo cause P adsorption onto HMO and this may be due to conversion of the adsorbed cation toits oxide. 1.1NTRODUCTION Phosphate which exists as H2PO。 ̄and HPO.2in most freshwaters can be rapidly removedfromaerobicsolutionsbyadsorptionontoinorganicsubstances.HydrousFe(Ill) OXide,hydrousAloxideandclaymineralsarethoughttot光theonlyimportantadsorbents for phosphate since allthese substanceshave positive surface charges at slightly acid to neutralpH andthereforehighaffinitiesforanions(Stumm&Morgan,1970),Ontheot hand,hydrousmanganese oxide(HMO)has negative surface charge at near neutralpH, i.e.itspHpヱ。(pointofzerocharge)isabout2.3(Murray,1974;McKenzie.1981),andhasn beenthoughttoadsorbanions,1tdoes,however,haveahighcapacitytoadsorbcations, lnthepreviouschapterHMOinasolutioncontainingdivalentcations,SuChasMn2+, Ni2+andthe alkalineearthcations,WaSShown to adsorbAsatnearneutralpH.It was concludedthatthefixationofarsenateintheoxidisedsurfacesedimentofLakeBiwacould lxpartlyduetotheadsorptionlOfarsenateontoHMOinthepresenceofMn2’. lnthepresentstudytheabilityofHMOtoadsorbphosphateatnearneutralpH was examined.Inparticular,differentdivalentcationsandthechangeofphosphateadsorp ー25一 withtimewereconsideredinanattempttofurtherelucidatetheadsorptionmechanism・ 2.MATERIALSANDMETHODS HydrousmanganessoxidewaspreparedbyoxidisingMn(II)withpermanganatein alkalinesolution(Murray,1974).The HMO was thenwashed with Na2SO.(0.2M)a WatertOremoveadsorbedK’andMn2+(Chap.ⅠⅠ),Nocoagulationofthestocksuspension occurred for at least three months. The HMO suspension was standardised by atomic absorptionspectrophotometryafterdissolvinganaliquotinascorbicacidsolution, Theadsorptionexperimentswereperformedasfollows:HMOsuspension,phosphate andthedivalentcationwereaddedinthisordertothebuLfersolutioncontainedinateflon beaker■ The HMO suspenSionwas ultrasonicatedjust t光fore use.AfteT Standingfor a 記】∝ted time(20hours forequj】ibrju打】eXperiments or5mjn,2aれd6hours for kjnetic experiments)ataconstanttemperature(250C),thesolutionwasfiltered(0.45FLmMi11ipore). The pH of the filtrate was measured.The precipitates on the filter wasdissoIved with ascorbicacid(0・2M)andphosphateinthissolutionwasmeasuredspectrophotometrically (Murphy&Riley,1962).Whennecessary,phosphateinthefiltratewasalsodetermined experimentsinvolving Ba2+,this cation was removed as BaSO。by centrifuging before measurlngphosphate. ThedivalentcationsolutionswerepreparedfromthecoTreSpOndingchloridesaltsand Standardisedbyatomicabsorptionspectrophotometry, 3,RESULTS Fig.3.1showstheperCent(%)adsorptionofphosphateontoHMOasafunctionofpIL ln the absence of divalent cations,HMO did not adsorb phosphate at near neutraland alkalinepH(Fig,3.1a)butsomephosphatewasadsorl光dasthesolutionbecamemoreacid Additionofalkalineearthcations,e.g.Ba2+,Sr2+,Ca2+andMg2+(Fig.3.la)increasedthe percentadsorptionofphosphatewithamaximumnearpH6,5.Preliminaryexperiments Showed that alkaJjne earth metaJphosphatesdo∫】Ot preCjpjtatebeJowpHlO under these conditions,i.e.phosphate(3.2×10.6M)andcations(2×10 ̄▲M). Transitionmetalionswerealsoeffectiveincausingthe adsorptionofphosphateonto HMOatnearneutralpIi(Fig.3.1b)althoughtheadsorptioncurvesobtainedweresharper anddisplacedtohigherpHthanthoseobtainedforthealkalineearthmetals. Theeffectivenessofthealkalineearthcationstopromoteadsorptionofphosphateonto HMOapDearSfromthedataonFig.3.1totEBa>Sr>Ca>Mg,Thiswasconfirmedby −26− 3 ▲ 5 6 7 PH 8 9 10 11 Fig.3.1Effectsofalkalineearth(a)andtransitionmetalions(b)ontheadsorption ofphosphateonto HMO refuB・M4▲01×2:noilateM.601×23:etahpsoP.M4 ̄01×63:OMH solution:0.OIMNaaCetateOrNH,一N11.Cl.Agingtime:20h(25■C). experimentscarriedoutatconstanttotalcationconcentration.TheresultsinFig.3. thatatallconcentrationsofphosphateinsolutiontheamountofphosphateadsorbedona givenamountofHMOweregreatestfortheadditionofBa2+andleastforMg2’. N宣●呈○壬毒○∈亨星空血 I 2 【ph。SPhqt叫洞5・H Fig.3.2 Adsorptionisothermforphosphateinthesolutionoftheconstantalkaline earth cation concentration Meta=on=2x104M.pnこ6.5(0.005MacetatebuffeT).Agingtime二20h(25.C)・ −27一 lntheabsenceof HMO,theprecipitationofphosphatebythetransitionmetalswas examinedasafunctionofpH(Fig.3.3).Lossofphosphatefromsolutionortheformation ofNi(OH)2WaSnOtdetectedatanytimeaftertheadditionofNi2+.Fiveminutesafter addingCo2+ahighproportionofthephosphatewasprecipitatedt光tWeenpH9andllbut afterstandirLg.for20ho11rSthepercentofphosphateadsort光dhaddecreasedatpH>9.1and increasedbetweenpH8,7and9.l.AlightblueprecipitateofCo(OH)2formedatpIi>8・ after5minutes,butafterstandingfor20hourstheprecipitateinsolutioTISwithpH9turned brown.TheadditioI10fMn2+alsocausedadsorptionofphosphateafter5minutesreaching almostlOO%at pll10.A brown precipitate,preSumably HMO,formedinthis solution After20hours,however,theperCent adsorptionof phosphatewas zero at pHlO and the maximumwasonlylO%occurringatpH9. 9 10 PH Fig.3,31nteractionbetweenphosphateandtransitionmetalionsasafunctionofpH Phosphate=3・2×10−6M・Metalion=2×10−1M・BuffersolutionニOLOIM NaL acetateorNH,NH.Cl.Agingtimeこ5minor20h(25.C), Theadsorption ofphosphate onto HMOin thepresence■Ofdivalent cations was ex− amined as a function of time.With added Sr2+(Fig.3,4a)no changein the percent adsorptionwasfoundbetween2and20hours▲1ncontrasttothis,atpH>7▲5forMn2+and Co2+andpH>8forNi2+phosphateadsorptiondecreasedwithtime(Figs・3・4b,C,d)■ −28一 Fig,3,4 Timedependence ofthephosphateadsorption on HMOafter addition of Sr2+(a),Mn2+(b),Co2十(c)andNi2十(d) .c’52:pmeT.M一01×2:no=ateM.‘01×6.3:OMH.6L01×2.3:etahpsoP 4.DISCUSS10N Theresultsobtainedinthisstudyforphosphatearesimilartothosefoundpreviouslyfor arsenate(Chap・lI).It wassuggestedin theearlier chapterthatthe surfacecharge on HMO.normallynegativeatnearneutralpH,WaSreVerSedbyexchangeofH+ontheHMO Surface for divalent cations from solution.A positively charged surface thus resulted leadingtotheadsorptionofarsenateoTltOtheHMO,Asimilarmechanismseemslikelyfor phosphate with allthe divalent cations tested showing the ability to cause substantial phosphateadsorptiononto HMO.AtpH<51essthan50%ofphosphateinsolutionwas adsorbedinthepresenceofdivalentcations,butforarsenatethecoTTeSpOTldingfigure(see FigL2.2inChap・II)waslOO%:Thisdifferenceappearstoarisefromamuchhigheraffinity OfarsenateforHMOatacidpHintheabsenceofdivalentcations.Forexample,atpH4 approximatelylO%adsorptiorLOfphosphateoccurred(Fig.3.la)while80%ofarsenatewas adsortx)dumdertheseconditions. The order of the effectiveness of alkaline earth metalions to cause adsorption of phoshate′OntOHMOwasBaZ+>Sr2+>Ca2+>Mg2+.Thisorderisthesameastheorderof affinityofthealkalineearthsthernselvesforHMO(PosseltetaL.,1968;Murray,19 ー29 TheadsorptjontehavjourofthesecatioT)SWaSattribu亡edtothesizeofthehydratedradH, Ba2’くSr2+くCa2+<Mg2+,andtheabilityofthesmallerionstoapproachclosertotheactive Surfaceof HMO.Ahigherchargedensitywouldresultwiththesmallerionsandthisis likelytofavouradsorptionofanions. TheadsorptionofcationsontoIIMOisfavouredbyincreasingpH(Murray.1975a)and theadsorptionofphosphateaJsoiT7CreaSedfrompH3.5toapproximateJypfI7.Abovethis pH,however,meChanisrnsoFN!ratetOreducethephosphateadsorptionontoHMO・Either thephosphateinsolutionchangesforme.g_COmplexeswiththecationtoproduceanionwith positivecharge,OrthesurfacechargeontheHMObecomeslesspositiveandfinallyreverses. Thefirstofthesepossibilitiesisunlikelyt光CauSeanyCOmplexesformedwi11probablytx・ anionic_ Themos‖1keJYreaSOrlforthedecreaseinphost)hateadsorptionwithincreaslngpti inthepresenceofthealkalineearthcationsiscompetitionfromhydroxideionseitherby preferentialadsorptioninplaceofphosphateorbytheformationofhydroxycomplexese.g. Ca(OH)+,andhydroxidesonthesurfaceoftheHMO.Thetimecourseexperimentsshowed nochangewitlltimeafteraninitia12l10urperiodintheperCentadsorptionofphosphateonto HMOinasoJutioIICOntainingSr2+.Thisisconsistentwiththeformationofstablehydroxy COmplexesandllydroxidesabovepH7. Asimilarpatternwasfoundwiththetransitionmetals;phosphateadsorptiondecreased withincreasingpH.UnliketheresultsforSr2+,however,thepercentadsorptionatalkalirle pHin the presence of the transition metalsdecreased with time、The decrease within− creasingpH forCo and Niisprobablydue to the formation of hydroxy complexes and hydroxidesonthesurfaceofHMO.Thedecreasingadsorptionwithtimecould一光eXplained bythehydroxidesofthesetwometalschangingtotheoxides,CoOand NiO,Whichmay reduceevenfurtherthetendencyofphosphatetoadsorbtotheHMOsurface,Theinitial formation of Co(OH)2in the absence of HMO andits subsequent change to a browTl precipitate(probablyCoO)atalkalittepnisevide11Cefortheproposedmechanism・lnthe solution containing Cowithout HMO,theincrease with time of phosphate adsorption txtweenpH8.7and9.1doesnothavearLObviousexplanation.Perhapssomeoftheinitially formedCo(OH),SlowiyreactswiththephosphateinsolutiontoformaninsolublesubstarlCe, whereas at higher pH CoOis formed▲ When Mn2+was added to an a】kaline solution containingphosphate,HMOformedimmediately・TheexcessMn2十insolutiongerlerateda positive)ychargedsurfaceontheHMOandphosphatewasadsortxd・Withtime.thesurface adsort㌍dMn2+wasoxidizedautocatalyticallybyO2(Stumm&Morgan,1970)andphosphate thenreleasedbackintosolution.Thesamemechanismexplainsthedecreaseinphosphate −30− adsorptionwithtimeinanalkalinesolutioncontainingaddedHMOandMr12+. Inmostfreshwaters,Ca2+andMg2+arepresentatconcentrationssimi1artothoseused inthisstudy,SuggeStingthat甘MOcouldactasascavengerofphosphateinlakes.Thiswas 一▼01×5.2:+aC(retwiBkL)mF4dlfoOMHntaehybriC M,Mg2+:8×10 ̄5M).HMOinthepresence ofdivalentcationscould,therefore,1x:an important adsorbent of anionsin naturalaquatic systems.Inlakes,thiswi11be most importantintheoxidisedsurfacesediment,becausetheformationofHMOusuallyoccurs herefromtheoxidationofMn(1I)whichhasdiffusedupwardfromthereducedsediment. Totalphosphorus often shows a markedincreasein concentration toward the sediment− Waterinterface(e.g.seeAppen.15)andthisisconsideredto一光duetotheupwardmigration OfdissoIved phosphorusfromthereducedlayer,followed by precipitationin theoxidised layer(Carignan&Flett,1981),TheresultsofthisstudysuggestthatHMOinthepresen Ofdivalentcationscouldbeatleastpartlyresponsibleforthisprecipitation,Thefixation Ofarsenateintothesurfacesedimentwassuggestedtoresultpartlyfromtheadsorptionof arsenateonto Mn2+Trich HMO(Chap.II).Although hydrous Fe(IlI)oxide,hydrous Al OXideandclaymineralsareimportantadsorbentsofphosphateinnaturalwaters.thepresent StudydemonstratesanewroleforhydrousmanganeSeOXideasanadsorl光ntOfanions, 31一 CHAPTEIモ1V TheRoleofBiologicalDebrisimtheRemovalof Zn arLd Cufrom a Water Column T.Takamatsu,M.KawashimaandM.Koyama ABSTRACT ThefinedepthprefilesofZn,Cu,PbandHgaredistinctfromoneanother inmetal−richuppersediment.Althoughthesourceofthesee)ementsshouldt光 attributed to human factors,a prOCeSS has been proposedin relation to the differencebetweenthefineprofilesofZnandCu.Thesepossiblyresultfrom the deposition of planktonic debris rich in these metals and their viability duringtheearly−degradation ofdebris and thesubsequentslower process of humification. 1.INTRODUCTION AsshowninChap,Ⅰ,Zn,Cu,PbandHgwereenrichedintheupperlayersofsediment andhadcharacteristicdepthprofiles.Theincreasedlevelsoftheseelements(exceptZn) reached to a4r5cm depthin the offshore sediments of the northernlake(N−1ake). Accordingtothesedimentationratesofl.2−1.6mm/yobservedinthecentralregionof 1ake(Kamiyamaetal・,1982),aSedimentdepthof4−5cmcorrespondstosedimentdeposited 30−40yearsago.Inthesouthern1ake(Srlake)sediment,themetalrichlayerswere15 25cmin depth and enrichrnent Of the metals must have begun more than60years ago, judgingfromthesedimentationrateof2.4mm/yinthatarea(KamiyamaeLal.,1982). pointedbutforthislake(Kurata,1978;Tatekawa,1979,1980)andmanyothers(Tay 1979;Nriagu et al・,1979;Wahlen&Thompson,1980),theincreaseinanthropoge metalfluxesinthelakemaybethemostplausibleexplanationfortheincreasedlevelsofthe metalstx:CauSethewatershedofS−1akewasland−developed,pOpulated,andindustrialized muchearlier thanthat of Nlake. However,thedetailedprofilesoftheelementsaredistinctfromoneanothereveninthe metalrrichupperSedimentspossiblyduetodifferencesintheremovalprocess ofelements from the water column and subsequeTlt dissolution and fixation mechanismsin the sedi− −33− mentarycolumn. 2.MATERIALS ANDMETHODS Phytoplanktonwascollectedwithaplanktonnet(NXX25)fromS−1akeon90ct.1980 andasubmergedplant,lhllisnertaBiu)aenSis,WaStakenfromSetaRiveron12Sept.198 TheplanktonconsistedofStauYaStnLm(97.2%),CLostenum(1,27%),IWおtrum(0.86%), Melosih2Italica(0.35%),and GloeoりStis(0.33%).Afterthesampleswere air−dried and driedagainat800Cfor5h,theywereanalysedbyneutronactivationandX−rayfluorescence in a similar manner to that for the sediments(Appens.3and4;Takamatsu,1978; Takamatsuet al,,1982b). Theanalytica】dataonthesedimentsusedwerethosedeterminedinChap.E. Acid−1eachablesulfideLS wasdetermined asdescribed previously(Kawashima et al., 1978). HumicacidinthesedimentwasdeterminedaccordingtothemethodofOhba(1964). 3,RESULTS ANDDISCUSSION Fig.4.1showsthedistribution ofelementsin theupperlOcm of the coresat sites G andT(forsitelocations,SeeFig.1.1inChap.Ⅰ),alongwiththeprofilesofhumicac Sulfide.Zinc,aSinthecaseofMnandAs,eXhibitedasharpdecreaseinconcentrationfrom the surface to a2cm depth but was nearly constantin coneentration at a deeper ZOne. Copperalsoshowedamaximumconcentrationatthesurface.1tsconcentrationdecreased rapidlyfromthesurfacetoalcmdepthandwasgenerallyconstantfromalto2cmdepth (thisconstantlevelcorrespondstoca.50%excessabovethebaselevel).Theconcentration OfCuwasthesameasthebaselevelata45cmdepth.AlthoughtheconcentrationofPb WaSmarkedlyreducedonthesurface,therewasasignificantincreaseinconcentrationata depthofca.1cm・Be】owIcmdepth,theconceJ】tratjorIOfPbdecreasedrapjd】yar】dreacIld tothebaselevelata4−5cmdepth.ObviouslytheindividualprofilesofZn,CuandPbdiffer from oneanother. Theconcentrationsofelementsinphytoplanktonandthesubmergedplantfrom Lake BIWaaregivenin TabLe4.l.TheratiosoftheconcentrationsofeJementsinthe aquatic organismsexceedingtheaveragebaseconcentrationsofelementsintheNrlakesediments (txlowlOcmdepth)areindicatedintheTable,andshowasignificantenrichmentofCuand ZnintheorganislnS,COmparedtothesedjments, Inpreviousstudies,SimilarincreasedIevels ofZn,Cu and Pbwerefoundin diatom 34− 4 6 ︻■b.雲lむP中古U 0 0.025 0.05 Su桐de−S.% Fig.4.1Fineprofilesofelementsinthesedimentcoresfromoffshoreareasofthe northernIake Excess concentratiorlS Of elementsin the uppermostlayer above the average concentrationsofelementsinthelower)ayers(belowlOcmdepth)weT’etakenas lOO%.(●)Pb;(0)Cu;(t)Zn;(△)Mn;(×)As;(◎)Ⅰ・L・ (AsierwneLLa)from LakeWinderrnereanditwassuggestedthatbiologicaluptakeplaysa majorroleintheprocessofthedepositionofmetalsinthelakesystem(KempeLal.,1976; Lund,1957;Taylor,1979).TheaccumulatioT10fmetals(11meta】sincludingZn,Cu Pb)by phytoplankton has been also reportedin Lake Biwa(Kurata,1982),thoughthe reported concentrations are much higher thaIlthosein this study.In addition,phyto− plankton is generally recognized as a major source of sedimentary organic matter (lshiwatari,1973;jackson,1975;Cranwell,1976).ThusinLakeBiwa,WeCanaSSu thatlargefractionsofZnandCusettleonthelakebottominassociationwithplanktonic debris.Afterprecipitation,mOStOftheZnandafractionoftheCuarereleasedwithinthe upperthinlayer of thesediment due to earlymicrobialdegradation of the debris;this coincidestotherapiddecreaseinI.L.observedfromthesurfacetoa2cmdepth・However, theorganicresidues,Whichareresistanttoearlydegradation,CauSethesubsequentslo processofhumification(Kemp&Johnston,1979),Duringthishumification,Cu,kno tcstrongly boundtohumic materials(Takamatsu et aE.,1983b,1983c),remainsi sedimentaryhumatesandaccountsforca,50%oftheexcessCuinitiallyobservedonthe sedimentsurface.However,Zncannotwithstanddjagenesist光CauSeOfthelowstability humate.Theseobservationsaresupportedbythefo1lowingfacts:(1)Humicrnaterials −35− Table4,1Elementa)concentrationsofphytoplankton’and leavesofl匂Ilisnerza BiztlaenSis=andtheratio of thesetotheeIementalconcentrationsofthe sediment‥● Element Phytoplankton l匂JJね刀g7Ⅶβiwg那ね % Concn, Concn.ratio Concn, Concn.ratio 9 l 3.4 9 O T−5 ︵U 4 O ∧U nlU 4 2 5 2 ハリ ナ⊥ ▼ つJ ︵U ﹁〇 八U nU O 4 ︵U ︵U 3 O 3 3 八U 2 7 O 仁U 7 9 2 八U ︵U ︵U.月T 八U つJ 9 ワ︼ 2 爪じ 4 DO 3 ︵U l ハリ りん 7 2 0 1 nU 1▲ 0 れU 6 ∧U R︶ ■ 2 5 O 9 2 6 ∧U 爪U O O 2 O 9 ︵U ワ︼ 0.03 3.71 ハU O ‘U ワ︼ ︵U 3 20.2 N.D. 43.2 183 0.23 3.6 N.D. N.D. N.D. 1.38 26.0 N.D. 0,54 ワん 00 八じ 6 11∴:1 l 4 〇 mg・kg ̄1 3500 6.7 22.1 343 6.1 5.O N.D. 2.1 0.46 n入U nO 9 つJ 0 ワん 6 4 1 00 nU 3 5 0 ユ9,3 4.O 16.8 21.1 O.63 2.90 33.6 2.1 24.3 451 l.85 19.6 l.02 O.10 l.05 ll−1 6.5 l.3 4.31 鑓U 1 mg・kg、1 258 7.8 155 225 00 l U Th O βr 5 ハU つJ 8 2 0 0 り乙 Na托KCa Mn Ni Cu Zn Pb Co Cr As Sb Sc Rb Cs Sr Ba Sm Ce Yb Lu Hf La 0.29 0.22 0.41 0.82 0.03 八U 2 1 Values arebased onmaterialsdried at80’Cfor5h. N,D∴nOtdetectable. ■ PhytoplanktonwascoLlectedwithaplanktonnet(NXX25) fromthesouthernlakeor190ct.1980;SpeCies:Sh2uれかtyum 97.2%.fbd血sJγ〟椚βJMβgO.86%,CわぶJβガ〟椚1.27%, G/og叫拶Jね0.33%,〟eわ5i/♂JねJ∫甜0.35%. =l匂Jlisner紹Btwaensis wascollected fromtheSeta Riveron12 Sept.ユ98仇 ...Averageconcentratior)SOfelementsinthelowerlayers (txlow10cmdepth)ofthesedimentcoresfromthenoTthern lake. 仁U ︵U 3 2 八U ワ︼ 3 2 2 ウル 9 つJ 2 ー36− (humicacid)havebeenfoundataconcentrationexceedingl%throughoutthecorealthough theconcentrationofsulfide,anOthersignificantscavengerofmetals,islessthanlOOmg・kg▼1 below alcm depth.(2)Humic materials extracted fromlake and marine sediments showedahigherconcentration ofCuthanthatinthesediments(Nissenbaum&Swaine, 1976;Nriagu&Coker,1980), Theearly−degradationofbiologicaldebrismaynott光reSpOnSibleforthecharacteristic profileofPbsincetheconcentrationofPbwasfoundtobelowintheorganisms,Inrecent studies.Pbhastcenfoundtol光adsorbedrnuchmorestronglythananyotherdivalentcatio On hydrous Fe oxide and clay minerals(Coggins et aL.,1979;Naruse et a/.,1979)and transportedinriversmostlyinassociationwiththeoxidefractionofthesuspendedmatter (Tessieretal.,1980;Florence,1977).Therefore,SOmeOtherinorganicprocess COnSidered to account for the removalof Pb from the water column andits subsequent fixationin the sediment, 一37− CIIAPTERV DepthProfilesofDimethylarsinate,Monomethylarsonate, andInorganicArsenicinSedimentfromLakeBiwa T.Takamatsu,R.Nakata,T.YoshidaandM.Kawashima ABSTRACT Threesedimentcoreswerecollected from Lake Biwa,and analysed for theirdimethylarsinate(DMA),mOnOmethyIarsonate(MMA),andinorganic arsenic(トAs)content.WeusedananalyticaltechniquethatincludedsoIvent extraction,anionre】くChange chromatography.and firlaldetermination of arsenicbyflamelessatomicabsorptionspectrophotometry.Thesedimentwas foundtocontaintrace)evelsofDMA(undetectable24.7JJg・kg「1)andMMA (20,8−44.1FLg・kg.1)inadditiontoトAswhichtendedtobepresentinthegreatest amount・ThedepthprofilesofDMA,MMA,andトAswerealsoana】ysedin detail, l.INTRODUCT10N Arsenic can tx:methylated to monomethylarsonate(MMA)and dimethy】arsinate (DMA)bycommonfungi,yeaSt,bacteria,andalgae(Challenger,1945;McBride&Wo 1971;Cullenetal,,1979;Andreae&Klumpp,1979;BakereLal.,1983),Theresul methylatedLarSenic compounds arewidely distributedin soils,Sediments,Water,and or− ganisms of the environment(Takamatsu et al.,1982a;Braman&Foreback,1973; Shaikh&Tallman,1978;1versonet al.,1979).Sinceorganicarseniccompounds,p CularlyDMA,areadsorbedtoamuchlesserdegreethanarsenatebysoilsandsediments (Wauchope,1975;Andersonetal.,1978),theycaneasily一光SOlubilizedandtransportedin thehydrosphere.Inaddition,inthe.microbialmethylationcycleofarsenic.theyare precursors of gaseousdimethylarsirte aild trimethylarsine(Cox & Alexander,1973; McBride&Wolfe,1971;Cuuenetal.,1979)whicllmaybetransportedintt妃atmOSpher Therefore,themeasurementsofDMAand MMAintheenvironment mayprovideuseful informationontheglobalcycleofarsenic.Althoughsedimentshavebeenanalysedbysome authors(Iversonetal.,1979;Maher,1981;Takamatsuetal.,1982c),thedepthp OfDMAandMMAhavenevert光endescribedforlakesediments. 一39− 2.MATERIALS ANDMETHODS Threesedimentcores(A.BandC)werecollectedfromthecentralregionofLakeBiwa Wheretheaccumulation of arsenic on the sediment surface hadt㌍en Observedpreviously (Chaps,land11;Takamatsuetal..1980b).ThecoresAandBweretakenon5/28,1982 andCon12/15,1981.ThesitelocationsofthecoresA,BandCcorrespondtothoseofsites G,TandE(seeFig.1.1inChap.Ⅰ)respectively.Agravitycorer,COnSistingofapla coreliner(3.5cmi.d.)was used to obtain samples of 30p40cminlength.The red conditionsinthesesedimentswereessentiallysimilartothosereportedbyKawashimaeta/. (1978).Theretrievedcoresshowedthinbrownoxidizedtoplayers(ca.0,2cminthickness) OVerlying the pale gray reduced sediment_Immediately after collection,the cores were takentothelaboratoryandslicedintoO,5,l,20r5cmlayers.Thesubsampleswerefreeze driedandhomogenizedwithanagatemortar. Thereagents,apparatuS,andanalyticaloperatingconditionswereidenticalwiththo descrit光dinthepreviousreports(Takamatsu elaL.,1982a,1982c).Theanalyticalprocer duresforDMA,MMA,andinorganicarsenic(トAs)determir)atjonarethereforeonJybriefJy outlined, Thesedjmentsamp】e(15g)wasextractedwitha5−io】dvo)ume(5−25mJ)oflOMHCZ byshakingmechanicallyat300C forlh,Adesired aliquot(upto12.5ml)ofextract was takeT)and4.15gofKl,WaterandHCIwereaddedtopreparea25mZsolutioncorltainglMKI and5MHCl.ArseniccompoundsincludingDMA,MMA,andIAswereextractedwithlOml Of benzerle(亡Wice).Then,arSenic compounds were backrextracted with5mIof water containing H202(twice),After the aqueous phaseswere neutralizedwith NarICO,,the soJutionwaswashedwith5mJofbenzene(twice).AportionofthissoIutionwasappliedto .)mrofAetaC,hsm04L2XlxewoD,m51×.di0(nmulocegahxrni DMA,MMA,andトAswereseparatedbyelutingsuccessivelywithO,l%CH3COOH,5%CH3− COOH,andlMHClataflowrateofca.20drops/minandcollectedin130rdropfractions. The eluates were subiected to arserLic analysis by flameless atomic absorption spectro− photometry,afteraddingMg(NO3)2tOprepareO.025%ofMg2十solution. TheassignmentofchromatographicpeakstoDMA,MMA,andトAshasbeendemon・ strated by the authors on the basis of analysis of arsenic compounds spikedin the soil extracts(Takamatsu et al,,1982a)and the elution behavior of arsenic compounds as observedinadifferentchromatography(Takamatsuetal・.1983a).Thegoodaccuracyof analyticalresultshasbeenalsosupportedbytherecoverjes(91103%)ofarseniccompounds spikedinthesoilextracts(Takamatsuelal・,1982a)・ ー40− The totalconcentration of arsenic(T−As)was determined by X−ray fluorescence analysisaccordingtothemethoddescri旭inthepreviousreport(Takamatsu.1978), TtlecarboncotltentWaSanalysedwithanelementalanalyzer(CarloErbaCo.,Model llO6). 3,RESULTSANDDISCUSSION Fig.5.1showsthechromatographicseparationofarseniccoTnpOundsintheextracts fromthetheuppermOSt(0−0、5cm)layersofthecores,Theelutionpatternsconsistedof clear4peaksandwerequitesimi1artothoseof arseniccompoundsinthesoilandpond Sedimentextracts(Takamatsuefal.,1982a,1982c).Threepeakswerefoundtocorresp toDMA,MMA,andトAs.Theother匹ak(Ⅹ)wasassignedtothenewarseniccompound whosetentativestruch∬e(C5H7AsO3H2)hasbeenproposedpreviously(Takamatsueta/., 1982a).AnotherpeakappearinginthesecondfractionpriortotheelutionofDMA.was often obseTVedinthelower sedirnent extracts. Fig.5.1ChromatographicseparationofarseniccompoundsextractedfromtheO− 0.5cmlayersqfthecores A:tneu]E.mrofeta c.hsem04 2.4xlewoD,nm51×.d im01:nmuloC O.1%CH,COOH,B5%CH,COOrI,CIM HCl.Flow rateこ20drops/min. Fractionvolume:130drops/fraction. −41− TheanalyticaldataarepresentedinTable5,1,Althoughagreaterpartofarsenicin thesedimentcorrespondedtoトAs,DMAandMMAcouJdalsobedetectedinmostofthe samples.Thelowlevelsoftheseorganicarseniccompounds,COmparabletoca.0.1%ofト As,WereSimilartothoseobservedinthearsenicrpollutedsoils(Takamatsuet al.,19 The Lake Biwa and pond sediments(Takamatsu et a(..1982c)appeared to have higher coTICentrationsofMMA(20.8r44.1JLg・kg.1)thanDMA(undetectable−24.7J‘g・kg ̄1). TypicalarsenicprofileswereobservedinthecorefromsiteA(Fig,5.2),Theprofi ofthecarboncontent(alargeportionofthecarbonisorganiccarbon)andredoxpotential (Kawashimaetalリ1978)arealsoillustratedinthefigureforreference.IAs(andTAs) werepresentathighconcentrationsintheupperlayerofthecore andtheseprofileswere quiteconsistentwiththosereportedinourprevioussurvey(Chaps.IandII;Takamatsu ef al.,1980b).The accumulation ofトAs at the sediment surface should result from a dissolution、depositioncycleofarsenicwithinthesedimentarycolumnassociatedwiththe redox cycle of manganese(see Chap.II).The profiles of DMA and MMA are here descritxdforthefirsttime;thatis,DMAwaspresentinagreateramountinthesurface(0− 2cm)layeTS,WhereasMMAtendedtodecreasesomewhatinthes11rfacebutincreaseinthe lowerlayerswhereDMAwasnotedtodecrease. Two possible processes,i.e.bacterialor fungous process and algalprocess,may t光 responsiblefortheconfigurationoftheseprofiles.(1)Themechanismsforthebiological reductionandmethylationofarsenicarenotknownindetail(WongeEal.,1977;WooIson, 1983),buttwomodelshavebeenproposed.Thefirst(M1)isbasedonastudyofanaerobic bacteria andinvoIves the transfer of methylcarbanions(CH,)from methylcobaramin (McBride&Wolfe,1971;Wood,1974),Thesecondmodel(M−2)isbasedonastudyof aerobicfungiandinvoIvesthetransferofcarboniumions(CH。+)fromS−adenosylmethionine (Challenger,1945;Cullenetal.,1977).Ineithermodel.thepathwayfromMMAtoDMA includesareductionstepwiththegainoftwoelectrons,i.e.CHヨAs3+0(OH)2→(CH3)2Asl+0− (OH)inM−10rCH,As5+0(OH),→CHヨAs3+(OH)2inM−2.Therefore,thepathwayfrom MMAtoI)MAmightberelativelyacceleratedir)SedimentJayersatadepthofO.22cmwhere thelowest redox potentialwas recorded althoughthe production of MMA and DMA by microorganisTnSmaybepromotedbythelargeamountofcarboninthesurfacesediment (Takamatsueta).,1982a,1983a).TheproductjonrateofMMAfromarsenitemayprocee steadilywithoutaccelerationbyloweringtheredoxpotentialsincethisstepinMpl,i.e.As3+− 0(OH)→CH3As3+0(OH)2,invoIvesnoredoxprocessaTldthatinM2,i.e.Asユ+(OH),→CH,・ ehtcniS,ojda.mO亡cinesro【ph止wsecornitadxsj,2)JfO(0ナ5A 一−42一 Table5,1Concentrations.ofarseniccompoundsin thesedimentcoresfrom Lake Biwa 9 6 hU 00 2 2 2 1 1 7 1 3 6 1 ﹁D 3 3 1 4 6 2 l 1 ワ︼ 3 ワ︼ 1 1 1 1 4 り︼ 3 3 2 ワ︼ 5 9 ウJ 3 3 4 nU.4▲ 5 り山 7 3 2 1 ■4 ︵U 2 1 1 nO 5 ︻/ 6 3 7 6・・4 2 ■4 つJ 7 3 7 ワ︼ ワ︼ 2 00 00 2 0D 2 5.d.︵∠ 3 ワ] 2 2 RU 7 1 7 2 9 3 ︵U l 1 1 00 2 9 9︶ 1仁U ■■2 ﹁ q QU 9 4 2 9 1 ワ︼ 2 2 ﹁〇 3 4 6 ワ︼ 2 5 つJ ウ︼ ?︼ 2 6 2 2 7 7 2 3 1.4 nO 5 3 ▲4 4 3 3 7 3 3 3 2 ウん 896438394440卸3131詣30312826詑 2 l5 ∧U 1 39 9 9 7.4 3 2 ワ︼ l <U ウ︼ 3 ワ︼ 2 1 1 1 1−▲ l 1 1・−1 1 1 1 ●Valuesarebasedonthefreeze−driedrnateriaIs,andshowtheaveragesoftwo 9 2・24 2. ︵4 U 7 2 1 0ノ 1 3 4 長V 3 5 6 3 2 ∧U RU ︵U 5 1 7 RU 5 6 7 qレ l ワ︼ 2 2 ワ︼ 2 2 n O 6 4 4・4 Jq 3 3 2 ワレ 2 2 2 ワ︼ ヘユ り︼ ワ︼ 0 3 ワ︼ 1 3 2 2 仁V ﹁〇 9 7 6 QU ︵U q︶ ▲LU 5 q︶ q︶ OU ︵U 7 ワレ。4 34. 4 44 5 3 4 ︵b 5・4 3.4 5 5 .4 4 ■4 ワレ 7 ﹂’5 9 人U 9J ︻ 3/ 3l・ 3・4 3・・ 24 39 5ワ交 ︼じ 3 3 爪U 9 2 4 6 ▲4 5 ∧U ︻n 5 <U qU 6 1 亡U 7 1 1 00 q︶ 5 5 3 3 3 りん 2 3 2 ワ︼ 2 3 1 3 2 6 5 4 ︵U 史U nO ■4・q 7 5 7 6 ︵U 3 ワん 3 2 O 4 3 1 ー43 3 9 ∧‖︶ 4 lヽll持 5 ︵U 5 3 5 4 0 †Weightedaveragevalues.††Urldetectable(<1JLg・kgLり % mg・kg ̄】 〃g・kg▼− ‘U 5 2 6 1 1−2 23 3−4 46 6−8 8−10 1015 15−20 2025 25−30 30−35 3540 ■■T ︶ 36.β 0.5−1 3 6.9 5.3 34.0 7,6 42,3 7.3 34.O N,D. 30.9 2.1 6.3 33.3 .3.9 4,5 29.9 N.D. 1.8 5.6 26,6 4.7 30.9 N.D. 2.1 20.8 N.D. 4.2 22.2 1.2 3.0 22,2 N.D. 3.2 27.6 N.D. (4.5) (27.1) (− 31.7 C O0.5 7 † 1−2 2−3 3−4 46 6−8 810 10−15 1520 20−25 25−30 つJ l 几U 8・4 9 5 3 † 0.5−1 6.2.4.4.3.1.3.1.3.3.2.3.3.1.4.9.〇.6.5.6.5.5.6.42札付118.9.6.8. 1−2 23 3−4 4−6 6−8 81(1 10−15 1520 20−25 2530 30−35 97733 B O0.5 3 2 ■4 几U 1 0.5−1 79685272956352 711013345.9.4m.9 A O0.5 トAs T−As Carbon X DMA MMA As.吋kす1 ▲s・mO■kす1 0 20 40 の &) 0 1D 刀 コ0 ■0 0 2 c.ヽ 3 Fig,5.2 DepthprofilesofarseniccompoundsinthecorefromsiteA *:baseconcentrations(averagesinlO35cmlayers). concentrationofarsenite(reactantoftheaboveprocess)detectedinthereducedsediment, e.g,7,9mg・kg ̄1AsintheO.5−2cmlayerand4.3mg・kg▲1Asinthe24cmlayer(Taka etal,,1979a),ismuchhigherthanthatofMMA(product),theproductionrateofMMAf arsenite should be held approximately constant regardless of a little change of arsenite concentration.Therefore,theenl1anCedtransformationofMMAtoDMA,Whichoccursin thesedlmentwithmaximum reductionimmediatelybeIowtheuppermOStthin(ca.0.Zcm) 0Ⅹidizedlayer,Should resulti11depletion of MMAin the upper2cm sediment.Thisis consistentwiththevariationsintheDMA/MMAratiocorrespondingtochangesintheredox potentiaJinthearsenic−pOllutedpaddysoiJs.InthesoiIs,theamountofDMAincreased thatofMMAdecreasedwithloweringtheredoxpotentialunderfloodedconditionsalthough the totalconcentration of methylated−arSenic compounds was approximately con亭tant. (Takamatsuetal.,198Za).(2)Themethylatedrarseniccompoundswerefoundonlyin euphoticzoneofmarineenvironment andplanktonic algaeweresuggestedtobethe most importantproducersofthesecompounds(Andreae,1978,1979).Inaddition,reCentS ShowedthatfreshwatergreenalgaeasweIlasmarineaIgaearehighlycapableofmethylating arsenic andtheresultingDMA and MMA are containedinthosealgalcells(Andreae& Klumpp,1979;Baker et al・,1983)・Planktonis generally recognized as animportant sourceofsedimentaryorganicmatter(Jackson,1g75;rShiwatari,1g77).Itisthusli thatthebiologicaldebrisrichinDMAandMMAsettleonthelakefloor,andthen upon burial,DMAdecomposesto MMA andsubsequentlytolAswithincreasingdepth.The 吊− differencein the decomposition rates of DMA and MMA(the rate:DMA>MMA)may accountfortheconfigurationoftheprofiles, ThejnfJowofagriculturalchemicalsmayl光anOtherconceivablesourceofmethylated− arseniccompounds,lnordertopreventtt妃incidenceofsheathblightofrice,derivative ofMMA,i.e.ironandcalciumsaltsofMMAandbis(dithiocabamate)methanearsinehave beenoccasionally11Sedinthepaddyfieldsofthewatershedsince1957,thoughDMAwasnot usedatall_ TheagT・iculturaluseofsucharsenicaIswasbegunatmost25yearsagobefore samplingofthecores,andthisperiodcorrespotldstothesedimentdepthof3−3.5cmbecau thesedimentationratesatthelakebottomnearsiteAarel,2−1.4mm/y(Kamiyama etal. 1982).However,theincreasedconcetltrationsofMMAaboveitsbaselevelsareextending tothedeeperzone(ca.8cmdepth)ofthecoreandtheupper2cmsedimentswhichdeposited within the recent ca,15years containless amounts of MMA compared to the deeper sediments.Therefore,WeCOnCludedthattheinfluenceofagriculturalchemicalsisnegligible inthiscase. Althoughatthistimeitisdifficulttosaywhichoftheaboveprocesses,(1)and(2), ispredomitlantinthislake,thehigherlevelsofDMAandMMAdetectedwithintheupper lOcmsedimentmayplayasignificantroleindeterminingthet光haviorofarsenicinbottom Water andsediment. − 45 CIIAPTER VI RedoxCycleofManganeseandIronandtheCirculation OfPhosphorusina DredgedAreaoftheSouthern Lake M.Kawashima,T.Hori,M.KoyamaandT.Takamatsu ABSTRACT TheverticaIdistributionoftemperature,disoIvedoxygen(DO),manga− nese,iron,phosphorus,Silicate,ammOnium.nitrate,Sulfate and sulfide was investlgatedin a dredged area of the eutrophic southernlake,Lake Biwa (period:198lL1982)・Thereducingconditionsinthehypolimnionproceeded With decreasein the relative electron activity(pe)are as fo】lows:(1) COnSumptionofDO−reductionofhydrousMnoxide(accumu]atiorlOfammo− nium),(2)reductionofnitrate,(3)reductionofhydrousFeoxide(re)easeof phosphateandsilicate),and(4)productionofsulfide. ImmediatelyabovethefrontofDO(i.e_thelewestepilimnion),Clearpeaks OfparticulateMnand Fe,Whichwereseparatedeachother.wereobserved. Thepersistenceofthesepeaksisattributedtotherotationofthe”manganous Wheel’’andtt鳩t<ferrouswheelMbetweenthelowerepilimnionandhypolimnion. The”manganouswheelりwithasmallradiusrotatedmorerapidlythanthe <’ferrous wheel”with a big radius.The precipitation of Mnin thelower epilimnionwasfoundtoresuItfromthemicrobialoxidationandadsorptionof Mn2十ontohydrousMnoxide. ThecircuIationofphosphoruscanbemainlyexplainedbycoupllngtOthe redoxcycleofFe,buthydrousMnoxiderichinMn2+.Ca2十andMg2十appre・ CiablyinfIuencesthePcycleastheadsorbentofphosphate. 1.INTRODUCTION OurpresentconcernisthecirculationmechanismsofelementsinLakeBiwa,eSPeCially thosebetweenthesediment andbottomwatet・. Recently,atthesouthernlakeofLakeBiwa,aSquarebottom(ca.500m2)wasdredge toobtainearthandsandforbuildingaman−madeisland,reSultingintheappearenceofa Squarewaterpillar(av.depth:Ca,10m,maX.depth:Ca.13m).Thisarea,inwhi StratifiedI光dectlyfromJun.toearlySept.(Terashima&Ueda,1982);prOVidedasuitable fieldforourstudy. 47− ln this paper,Weinvestigate(1)the seasonalchangein co11Centrations of several COmpOnentS(reducedsubstancesandnutrients)inthedredgedarea,(2)theredoxmecha− nismsofMnandFedependingonDOlevelsandthemicrobialactivityinthewater,and(3) thecirculationofPassociatedwithplanktonicactivityandtheredoxcycleofFeandMn, 2.MATERIALS ANDMETIiODS さamplecoIJection:Fig・6・1showstheJocationofthedredgedarea・WatersampJes WereCO11ectedatdepthsofevery2musingavanDornsampler(madeofPVC):Duringthe Stratification periodin the summer of1982,Water Samples were collectedwithin50cm intervals near the front of dissoIved oxygen(DO)(i.e.near the boundary between the epilimnionandthehypolimnion)by pumpingupthe water,tO Observethedetail緑distrr iblltionofelements・Analiquot(ca・11)ofthe sample wasfiltered(0.45FLm.Mi11ipore HAWP)intoapolyethylenebottlecontaining8mlof12MtLICl,immediatelyafterco11ection_ Fig・6▲1MapofLakeBjwa,Showjngthe】oca南口of抽edredgedarea t Analytica,1procedure:DOwasdeterminedbytheWinkler−aZidemethodandinsituwith a DOmeter(TOA,ModeJIB).TheconcentrationsofthedissoJvedeJements weredeter− minedfromanalysisofthefilteredsample.Theconcentrationsoftheparticulateelements were given by differencesin concentrations of the dissoIved elements and totalconcen− trationsobtainedfrom analysisoftheunfilteredsample.Solublephosphate(PO.−P)was determined bythemolytxlateaSCOrbic acidmethodincludingsoIvent extraction ofa blue colorcomplexwithiso−butanol(Murphy&Riley,1962)▲ TotalphosphoruS(T−P)was 48− determinedinthesamewayasthatofPOrPafterdigestionofthesamplewithHNOsHユー SO.−HF・Ferrousionwasdeterminedbytheferrozinemethod(Gibbs,1979)immediatel aftercollectionofthesample・TotalFe(TFe)wasanalysedinthesamewayasthatof Fe2’withtheacid(HNO3−H2SO.−HF)digestedsarnple・Manganese,Na,K,MgandCa thefilteredsamplewereanalysedbyatomicabsorptionspectrophotometry.TotalMn(T Mn)wasanalysedafterdigestionofthesamplewithHNO3HF.Sulfateandsilicatewere determined by the turbidimetric method(APHA.1975)and molytxlenumblue method, respectively,uSingthefilteredsample・Ammoniuminthefilteredsample(glass−fit把rfilter. Whatmann GF/C)was determined by the thymolmethod(Koyama e[aL,,1976).Th COnCentrationofnitratewasobtainedfromthedifferenceinconcentrationofnitritedeter. minedbytheGriess−Romijnmethodandtotalconcentrationofnitrateandnitritedetermined bythezincpowderreductionmethod(Nishimura&Matsunaga,1969).Fordetermination Ofsulfide,methyleneblueproducedbythemethodofCline(1969)wasmeasuredcolorimetri− Cally. lonicconcentratioTtSOfthesample:Concentrationsofthemajorionsintheepilimnion WerePraCticallyconstantthroughouttheyear,typicalvaluest光ing:(Na+)0.28mM,(K+) 0,04mM,(Mg2十)0.09mM,(Ca2+)0.23mM.(Cl ̄)0.25mM,(HCO, ̄)0.55mM,(SO−2 ̄)0.08mM. andtheionicstrength(Ⅰ)1.4×10 ̄3.In the hypolimnion of the dredged area during the stratificationperiodinsummer,thereleaseofcations(Fe2+,Mn2+,NH.+)fromthesediment Withacommensurateincreaseincarbonateconcentrationandreductionofsulfatebrought aboutachangeinionicconcentrations:(Fe2+)0.05mM,(Mn2+)0.05mM,(NIL+)0.09mM, (HCOユ▲)098mM,(SO.2)0.01mM,and(1)1,7×10/3. 3,RESULTS ANDD【SCUSSION Figs.6.2and6.3showtheisoplethsofthe water temperature and DO,reSpeCtiv inthedredgedarea(period:Apr.1981LOct.1982).Thewaterinthisareastratifiedduring Apr.rSept.The DOinthebottom watert妃gan tO decrease from early Apr.and anoxic WaterapPearedinthehypolimnion(txllowca.8mdepth)duringJun.early Sept.Simil findingshavebeenreportedbyTerashimaandUeda(1982).Thecompletedisappearenceof DOin the hypolimnion may be promoted not only by abundant organic matters(e.g. planktonicdebris,fecalmatters,etC.)intheeutrophicsouthernlakebutalsobytheh Water temperature(max.220C)in this area.The bottom wateT Of the northernlake (temperatureisapproximatelyconstantthroughouttheyear,Ca,70C)containsoxygeneven attheendofthesummerstratification(lateNov.)althoughthestratificationI光riodofthe 一49− northern1akeislongerthanthatofthisdredgedarea. Fig・6・4showstheisoplethofT−Mn・TheMnconcentrationtx・gantOincreaseinthe hypolimnionatalmostthesametimeasDObegantodecreaseandreachedmorethanlmg・ 1 ̄1underanoxicconditions.T−Mnintheanoxichypolimnio11WaSidentifiedasdissoIved Mn(DJMn,prObablyMn2+)filtrablebyO.45FLmMi11iporefilterandnoparticultateMn(fL Mn)wasdetectedinthiswaterlayer(seeFigs.6.12atof). Figs・6.5and6.6showtheisoplethsofammoTliumandnitrate,reSpeCtiveJy.Ammo・ nium,prObably produced by the decomposition of organic rrlatter,alsoincreased with decreasingDOandthemaximumconcentrationjntheanoxicwaterreachedmore亡hanlmg・ 1」.Contrarytothecaseofammonium,thenitrateconcentrationdecreasedunderanoxic COnditjons.Thedecreaseinnitrateconcentration,Observedin[heupperepiJimnionandthe lowerhypolimnion,mayreSult from assimi1ationby plankton and denitrification,reSPeC− tiveIy. Figs.6.7,6.8and6.9showtheisoplethsofT−Fe,mOnOmericsilicate(M−SiO2) TrP,reSPeCtively.WherLDOwasconslmedcompletelyinthehypolimTlion,TrFe,M−SiO2 andT−Paccumulatedinthebottomwater.1tiswellknownthatFe2+isreleasedfromthe Sedimenttothehypolimnionunderreducedconditionsasaresultofthereductionofhydrous FeoxidetoFe2’.TheproductionofFe2+anditssubsequentreleasefromthesedimenttake placelater thanthoseof Mn2+(Mortimer,1942),due tothelower redox potentialof the Fe%十−Fe2’couplethanthatofMn4+rMn篭+(Stumm&Morgan,1970).Theconcentrationof TpPincreasedinthe bottom water at almost the same time as the concentration of TrFe begantoincreaseaJthoughphosphatesholユ】dbereleasedwhenammonjumisprodueedbythe decompositionoforganicmatter.M−SiO2,apartOfwhichisprobablyproducedbydecom− posjtior10f debrjs such as dia〔om,e【cリdjdJ10亡increasein corICentra亡ion untH[he T−Fe concentrationkgantoincrease,SincephosphateandsilicateareoftenoccludedinTlatural hydrousFeoxides,theymaybereJeasedintothehypolimnionwhenthehydro11SFeoxides arereducedtoFe2+anddissoIvewhiledecreaslngtheredoxpotentialofthesedimentandthe bottomwater(Kato,1969;Stumm&Morgan.1970)、 Figs.6.10and6.11show theisopleths of sulfate and sulfide,reSpeCtively・1n the middleofJun.,thesulfateconcentrationtxgantodecreaseandtheproductionofsulfidew detectedintheanoxicbottomwater.Thisshowsthatthesouthernlakecanbringabouta highlyreducedconditionwheresulfatereductioncanoccur,ifthestagnationofwaterperSists asinthecaseofthisdredgedarea. BasedonFigs.6.2to6.11,ttlereductionprocessesapl妃artOprOCeedinthehypolim ー50− inthefollowingorder:(1)consumptionofDO−reductionofhydrousMnoxidetoMn2+ (accumulationofammoniun),(2)reductionofnitrateprobablythroughdenitrificatiotl, (3)productionofFe2+byreductionofhydrousFeoxide(releaseofphosphateandsilicate), and(4)reductionofsulfatetosulfide.Thisorderwasthesameasthatofthereactions Whichoccuredinassociationwithadecrea?einrelativeelectronactivity(pe),aSrepOrted byStummandMorgan(1970)・ThecomponentsproducedatahigherlevelofpE COuld diffuseintoahigherandmoreaerobicwaterlayerthanthoseproducedatalowerlevelof pe・AmmoniumandMn2+diffusedintothelowerepilimnionbeyondthefrontofDO. W.T lg81 1982 Fig,6.2Isoplethofwaterternperature,凸C DO lg81 1982 Fig,6.3lsoplethofdissolvdoxygen,% −51− Fig・6・4Isoplethoftotalmanganese.JLg・1−l Fig・6・5Jsoplethofammoniumnitrogen,JLg・l−1 一52一 NO5−N 19も1 1982 A M JJA S O N D JF M A M JJ A S(〕 盲︶王dむ凸し¢︼ロ≧ Fig・6.6IsoplethofnitratenitrogenlFLg・11 Fig・6.7lsoplethoftota=ron,〟g・ILl 1 53− Fig・6・81soplethofmonomericsilicate,mg・1−1 Figr6・91soplethoftota】phosphorus,JLg・11 ー54− Fig.6.101soplethofsulfatesulfur.mg・1 ̄1 SuLfide−S 8 盲ニーd占﹂空盲≧ 2 Fig・6.111soplethofsulfidesulfur,mg・1l き、1Thettmang乱n叫SWheel”andt−ferr(l鴨Wheel” ThetypicalverticaldistributionofMn(D−MnandP−Mn)andFe(DTFeandPFe) duringtheI光riodofsumrnerstratificationi畠showninFig■6.12alongwiththeprofilesofDO・ DMndecreasedincorlCentrationrapidlyanddisappearedwithinawaterlayerofca・0・5m immediatelyabovethefrontofDO.PLMnwasproducedwithasharpconcentrationpeak inthethinwaterlayer(ca.1m)whereDMndisappeared.Thepersistenceofthis匹ak impliesthattheapparentdynamicequilibriurnismaintainedbetweentheupwardfluxofD− 55一 50 100 〕00 200 (F亀M巾 く 8 ⊂ \ DO i __▲【づノ8ノ Fig.6.12 VerticaldistributionofIX),dissolvedFeandMn(l:)−FeandI)一Mn),and partjcu】ateFear】dMn(P−FeandPMr】) Concentrationunit:(1XI)%,(ott、erS)〃g・11、 Samplingdate:(a,b=uly14, 1982,(c,d)Ju】y22,1982,〔e.f)Al】g.ユ1.Ⅰ982. M11diffusingfromtheupperhypolimnionandthedownwardfluxofP−Mnsinkingfromthe lower epiJlmnion(Spencer&Brewer,1g71).Both the oxidation of D−Mn(Mn2十)and dissolutionofP−Mn(hydrousMnoxide)shouldoccurrapidlywithinathinwaterlayer(ca. 1minthickness)nearthefrontofDO. ThedistributionofD.FedifferedfromthatofD−Mn:theconcentrationgradientofD− FewasalwaysgreaterthanthatofD−Mnthroughoutthestratificationperiodinthewater layerofca・20r3mdirectlyabovethebottom(seeFigs,6,12aandc).PFealsoforTneda sharppeaknear[hefrontofDO,butthepeakpositionofPrFewasJocatedinadee一光rWater layerthanthatofPMn.Thispeakseparationshouldresultfromfractionalprecipitation inthecourseoftheoxidationofMn2+andFe2+.TheredoxpotentialofMn一しMn2+couple ishigherthanthatofFe3LFe2+,Therefore,WhentheparticuZa[eforms(hydrousMnoxid andhydr.ousFeoxide)weresinkingintotheanoxichypolimnionthroughthefrontofDO, hydrous Mn oxide was reduced anddissoIved more rapidly thanhydrous Fe oxide・ln addjtjon,Mn2+carldiffuseinthemoreupperJayeroEthewaterthanFe2+beEoreoxidatjon (Krauskopf,1957)_ TheredoxcyclesofMnandFe.observedinthewatercolumnofthedredgedarea.have txetlreferredtoasthet’manganouswheel”(Mayer et al.,1982)andthettferrouswheel” ー56− (Campbell&Torgersen,1980),reSPeCtively.SincethepeakofP−Fewassomewhatbro thanthatofP−MnandtheredoxpotentialofFelowerthanthatofMn,the ttmanganous Wheel”appearedtorotatemorerapidlywithasmallradiuscomparedtothettferTOuSWheel” With a big radius.These two ttwheels”may also have the effect of enhancing water respiratorymetabolisminthedredgedarea(Mayereial.,1982). PrFeincreasedagaininconcentrationlxIowalOmdepth(Figs.6.12bandd).Assulf wasproducedintheanoxicbottomwaterbelowca.10mdepth(seeFig.6.11),theP−Few presumedtoconsistofinsolubleferroussulfide.Theexistenceofsulfidewassupportedby thefactthattheblackprecipitateonthefilter(OA5JLm),COllectedfromthebottomwaterjust after sampling,turned brown upon exposure to air.The molar ratios of S/Fein these precipitatesrangedfromO,7tol.00nJuly.14andfroml.2tol.60nJuly,22.Thatthe ratiosaTeapprOXimatelyunitysupportstheexistenceofFeSbuttheexcesssulfurmaybe duetothepresenceofco1loidaIsulfurproducedbyoxidationofsulfidenearthefrontofIX). Theionicactivityproducts(1AP)werecalculatedfromtheconcentrationdataobtained inthehypolimniorl(pH:6.8)onJuly,14andJuly,22.Theconcentrationofthedisso totalsulfidewasapproximatedasthedifferencebetweentheconcentrationsoftotalsulfide andP−Fe,.Sinceanyothersulfide,OtherthanFeS,SCarCeIycontributedtotheconcen oftheparticulatesulfide(thetotalconcentrationofCu,Pb,HgandZnwerelowerthan3× 10,8M,2×10 ̄8M,lx101OMand8xlOLBM,reSPeCtively;Cf,theconcentrationorderoffしFe: 106M).Theequilibriurnconcentrationof S2wascalculatedusingthe acid dissociation constantsof H2S.Beforecalculating,thepKvaluesof H2S(pKl=7,22andpK2=14. I=0;Smith&Martell,1976)were corrected for theionic strerlgth of the actualwater sarnple(Ⅰ=1,7×10 ̄3),uSingtheGtintelbergequation(Stumm&Morgan,1970)andthe vaIuesofpK】=7.ZOandpK2=14.28werethusobtained.Theactivitycoefficientsuse IAPcalculationswereobtainedbytheextended DebyeHtlCkelequationatI=1.7×10 ̄3. Consequently,thelAPvaluefor FeS,i,e,(activityofD−Fe)×(activityofS2),Were calculatedtobeca.10.17・6andfoundconsistentwiththoseforpyrrhotite(10.18・9),freshly precipitatedFeS(10「16・郎−1017・06)andmackinawite(10 ̄17・6)(Berner,1967),Thevaluealso agreedwithlO.161し10.1705,meaSureddirectlyinthelakewater(Davison&Heaney, andlOL17・7forthepondsedimentincIudingmackinawite(Doyle,1968). TheIAPof6×10−18,CaIculatedforMnS,WaSmuChlowerthantheKs。OfMnS(3,16× 10Lll,at250C,Ⅰ=0)(Smith&Martell,1976)andsuggestedtheabsenceoftheprecipitate OfMnSinthehypolimnion, TheIAP va】ue between Fe2+and CO,2 ̄was calculated so as to determine whether 一57− Sideritewasproducedinthehypolimnion・Thecalculationwasdoneusingthemaximum ValueoftheD−Fe(5・4×10▲SM)andalkaJinjty(0,9meq・1 ̄l)duTiTlgthestratifjcationperiod Thevalueobtained,9・9×1012,WaSSma11erthantherangeofKspvalues,2.2×甘11−1×10rlO (Mayeretal・,1982),andthustheformationofFeCO,didnotappeartoocccurinthisar TheabsenceofMnCO,preCipitation(rhodochrosite),aSevidentfromtheabsenceofthe Mninthelowerhypolimnion(seeFigs▲6.12b,dandf),alsoindicatedFeCO3nOttOt光 producedsincethecarbonateshadalmostthesamevaluesof KspL Manyauthorshave reportedthatthesolubilitiesofFe云ndMnmaytx:regulatedbycarbonateformationjn anoxichypolimnions(Delfino&Lee,1968;Hoffmann&Eisenreich,1981;Verdouw& Dekkers,1980;Mayeretal.,1982).Althoughthehypolimnionofthisareaisnotsatur withrespecttoFeCO3andMnCO3atpreSent,theincreaseofalkalirlityandtheconcentrati OfFe2+andMn2+alongwiththeprogressofeutrophicationmayprovideformationofthese carbonates. 3.2 Circulationmechani8mOfphosphortLS ItisweJlknownthatphosphateaccumulatesintheanoxichypolimnion(seeFigs,6.9. 13aandc)accordingtothefollowingmechanisms‥(1)decompositionofbiologicaldebris, and(2)reductionofhydrousFeoxideincludingphosphate(Stumm&Morgan,1970),Th Verticald;stributionofP(Fig・6.13)suggestedthereJeaseoEphosphatefromthesediment SurfaceaswellasinthedissolutionprocessofPFerichinphosphate・TheprofilesofD−Fe andPO一PinthelowerhypolimnionandthepeakprofilesofPLFeandparticulateP(P−P) nearthetror)tOfDOwerequitesimi1artoeachotheT,reS匹CtiveJy■ Thescavengingprocess OfphosphatebyhydrousFeoxideiswellrecognized(Mayeretal.,1982;Tessenow,1974 thatis,phosphateprecipitatesintheforrnofpartiallyhydrolyzedferricphosphateuntilthe phosphatecor)teT)tisexhausted,andsubsequent】yhydrousFeoxideprecjpitates.Theretore, thisprocessshouldberesponsibleforthecoincidentdistributionofPandFeinthedredged area・ThepeaksofP−P(seeFigs.6.13bandd)weresomewhatbroad,relativetothoseo theP−FeandtheyspreadovertheformationregionoffしMn一 Asdescrjtx)dir)Chap hydrousMnoxidewhichadsort光dlargeamountsofdivalentcationscanadsorbphosphate・ Ca2+(0.23mM)andMg2+(0.09mM)arethemajorcationsinthewaterofLake Biwa and Mn2+diffuses continuouslyinto thelower epilimnion from the anoxic bottom water. Therefore,inthewaterlayernearthefrontofDO,hydrousMnoxide.richinCa2+,Mg2+ MnZ+,isproducedandshouldactasaneffectivescavengerforphosphate.Thismechanism maycontributetobroadeningthepeakofPP. 、 58− ム 8 盲〓l詠D﹂α−p≦ 12 0 Fig・6・13 Vertica】distributionofDO,phosphatephosphoruS(PO.一P),andparticu− 】atephosphoruS(PLP) Concentrationunit:(IX))%,(POrPandP−P)FLg・J ̄l.Samplirtgdate:(a.b) July14,1982,(c,d)July22,1982,(e,f)Aug.11,1982. HighconcentrationsofP−Paround4mdepthappearedrelatedtotheactivityofphyto・ planktonlSincethesedistributionsofP−Pwereinagreementwiththoseofchlorophyu−a, thoughthedataonchlorophylトaarenotshownhere.PhosphateandorganicPproducedby decompositionofplanktonicremainsintheupperepilimnionprobablydiffusedownwardinto thewaterlayerswhereP−MnandPFeareproduced.andthismaytx:anOtherreasonwhy thepeaksofPPwerebroad. TheresultsofAug.11,1982(Figs.6.12e,fand6.13e,f)wereobtainedafterth DOsuddenlywentdownfrornca−an8rntoll.5mdepthbyatyphoonwithheavyrain(see Fig・6.3)・ComparedwiththedistributionshowninFigs.6,12a,Cand6.13a,C,th trationsofD.FeandPO一−Pdecreasedinthehypolimnion,WhilealargeportionofDLMn remained■ ThesuddensupplyofIX)totheanoxichypolimnionbroughtaboutthesedimen− tationofferricphosphateandhydrousFeoxide,andthustheclearpeaksofPFeandPP disappearednearthefrontofDO・SincethereductionofhydrousMnoxidetoMn2+was easyandrapid,the’tmanganouswheel‖wasstilloperatingascanl麗SeenfromtheperSistent PeakofP−MnaroundlOmdepth. −59− 3.3 0Ⅹidation mel:hami8m80f Mれ2+amd Fe2+ TomaintainthepeaksofP−MnandPFenearthefrontofDO,therapidoxidationof Mn2+andFe2+isnecessary.TherapidoxidationofFe2+proceedschemicallyinapHrange fromneutraltoalka】ineunderaerobicconditions,andthekineticsofthisreactionarefirst− Orderwith respect to the concentrations of Fe2+and DO and secondporder for OH ̄ (Stumm&Lee,1961).Therefore,inthelowerepilimnionofthedredgedarea(pH:Ca. Slightlyaerobic),thechemicaloxidationofFe2+toFe3+shouldtakeplacerapidly.This reactionmaybeacceleratedbythepresenceofphosphatediffuslngfromthehypolimnion,aS pointedoutbyStummandMorgan(1970). TheoxidationofMn2十occursonlyinapHrangeofhigherthan8,5(Po,=0,2atm)and isautocatalyticwithrespecttothehydrousMnoxidegenerated(Stumm&Morgan.1970; Pankow&Morgan,1981).Since the pH of the hypolimnion waterislow and constant throughout the year(ca.6.8),the above a11tO−0Ⅹidation mechanism of Mn2+in alkaline Solutioncannotberesponsibleforthiscase.ThePpMnshouldbeproducedbyanotherrapid OXidationmechanismsuchasamicrobialorinorganiccatalyticreaction. TheoxidationmechanismsofMn2+havet光enStudiedinvariousnatura】environments, e.g.soils(vanVeen,1973;Uren&Leeper,1978;Douka,1980),marinewaters(Ar Ehrlich,1979;Nealson&Ford,1980),tilelines(Meeketa/,,1973),COldsprings(Mustoe, 1981),andinlets(EmersoneIal.,1982).1twasfoundthatmicroorganismscanoxidizeMn2+ tohydrousMnoxidesaerobicallyevenat apH of68andthisoxidationproceedsmore rapidlythananynonbiologicalreaction. Figure6.14(curvesAlA3)showsthechangeofDMn(Mn2+)concentrationswhenthe unfilteredwatersobtainedfromtheanoxichypolimnionwereaerated.Mn2+decreasedat thernostrapidrateinthesamplefromthewaterlayernearthefrontofDO(curveAl). However,prOductionofPMncouldnott光detectedwhenthewatersamplewasfiltered (0.45FLm,Millipore)immediatelyafterco11ection(curveB)andNa2SO−OrNaCIwasadded totheunfilteredsample(curveC).Theadditionofchloroformortoluene(finalconcen− tration:0.5%v/v)alsopreventedMn2+fromt光ingoxidized,aSShowninFig.6.15(curveC). TheseresultsindicatethattheoxidationofMn2+wasinhibitedbythesteriIizationofwater orremovalofparticulatematter.Therefore,theprecipitationreactionofMninthewater samplesshouldt光1inkedtomicrobialoxidationandadsorptionofMn2+ontothehydrousMn oxidegenerated・SincetheoxidationofMn2’occurredeveninwatercontainingchloroform or toIuene on raising the pflofthe waterLligher[han g,[he ca亡alytic activLty ofmicro− organismsseemedunnecessaryfortheoxidationofMn2+atthispH・ 60− 50 −1(〕O Time(h) Fig.6.14 AeTationexpeTimenttoestimatetheoxidationratesofMn2十 Watersamp】es=anOXichypolimneticwaters,(pH)6.8−7.2,(Temp)25PC,(sam plingdate)June12,1981.(A)OxidationofMn2+intheutlfilteredsamples; (Al)[Mn(ⅠⅠ)]0=102FLg・11,takenfrom10mdepth;(A2)[Mn(ⅠⅠ)]。=270fLg・ 1 ̄1,takenfrom12mdepth;(A3)[Mn(II)]。=750F,g・1 ̄L,takenfrom13mdepth. (B)OxidationofMn2+inthefilteredsarnple.(C)OxidationofMn2十inthe unfilteredsamplewithO.1MNa2SO−OrO.1M NaCl. 妄巳三三︵巳三言 3 0 (0 20 て ■ 80 Time(h) Fig.6.15 AerationexperimenttoestimatetheoxidationratesofMn2+andFe2十 Watersamples:anOXichypoIimnetic(12mdepth)water,(T)H)6.8L7.0.(Temp) 25口C,(sampIingdate)Aug.20,1982.[Mn(ⅠⅠ)]。=3.04mg・1Ll.[Fe(Il)]。=2.19 mg・r).(A)OxidationofFe2+withorwithoutchloroformandtoluene.(B) OxidationofMn2’withoutchloT・oformandtoluene.(C)OxidationofMn2+with chlorofom ortoluene. 一61− TheoxidationofFe2+didnotnecessitatethecatalyticactivityofmicroorganismsand Otherparticulatematter,aSShowninFig.6,15(curveA).OnthecurvesBandCinFig.6 14andCinFig.6.15,PrMnisnotdetectedinthesamplesinspiteoftheformationofP−Fe (hydrousFeoxide),WhichdemonstratesthathydrousFeoxidedoesnoto匹rateeitherasa Catalyzerforoxidationoradsort光ntOfMn2+underthegivenconditions,Thenoninter− actjon t光tWeen hydrous Fe oxide and Mn2十at pH6.8appeared to t光the major factor bringingabouttheclearseparationofthepeakofPrMnfromthatofPFenearthefrontof DOduringthestratificationperiodinsummer(seeFigs.6.12bandd), −62− CHAITRRⅥⅠ,−Note− ManganeseConcentrationintheSediTttent asanIndicatorofWaterDepth, −Paleo−WaterDepth血ringtheLastFewMillionYears− T.Takamatsu,M.KawadlimaandM.Koyama ABSTRACT GoodquadraticcorrelationswereobservedbetweenMn(orAs)concenr trationsintheshortcoresandwaterdepthatsitesatwhichthesecoreswere Sampled.ByapplyingthesereIationstotheconcentrationsofelementsinthe threelong(200,1000,and1400m)coresdrilledbyHorieetalリthepaleo−Water depthduringthelastca.2mi11ionyearsatthedrillingsitescouldbeestimated. TheresultsindicatethatthelakebottomnearsiteEhasremainedunderwater depthconditiDnS(ca.60m)similartothoseofthepresentforthelastca.0.4 m.y.Fromca.2toO,4m.y.agotheareahadfrequentlybeenshallow・The lOOOmcbretakenatthemouthofYasuRiverwasfoundtoconsistprlmarilyof littoraIsediments. Threelong boring cores(200,1000.and1400mlength)were taken by Horie et aL. (Yokoyama&Horie,1974;Yokoyamaetal.,1976)toinvestigateenvironmentalchang inLakeBiwaduringthepastfewmi11ionyearsnotonlyoutoflocalinterestbutfromaglobal viewpointaswell.The200mand1400mcoresweredrilledatthe匹IaglCpartOfthelake (nearsiteE,SeeFig.1,linChap.I)in1971and1982,reSpeCtively,andthelOOOmf: themouthofYasuRiverin1976.FTOmanalysisofthecores,neWinformationrelatingto manybranchesofseienceincludinggeology,biology,limnology,geOChemistry,geOph and meteorology wasobtained.Theinformation on waterdepthhas beenof particular interesttogeologists.Althoughparticlesizedistributiotlinthecoresshouldbeveryuseful forestimatlnghistoricalchangeinwaterdepth,anOtherpromisingmethodbasedontheMn (orAs)rwaterdepthcorrelationisproposedhere. Fjg.7.1showstheconcentrationsofMnandAsinthelowerlayers(1x)lowlOcmdeptl一) oftheshortcoresfromthenorthernlakeasafunctionofwaterdepthatthesamplingsites. −63− Theconcentrationoftheseelementsincreasedremarkablywithincreasingdepth.Below lOcm from the bottom surface,the sediment appeared toIx・unCOntaminated and any extensivechangeinelementalcompositionbyearlydiagenesisto have alreadybeencomr pleted▲ Therefore,the concentrations of Mn andAsintheselayers should t光1ixed to preserveinmuchdeeperzonesofthesediment, Fig_7.1Relationshipbetweenmanganese(A)orarsenic(B)concentrationinthe lowerlayers(belowlOcmdepth)oftheshortcoresandwaterdepthatsites wllerethecoresweresampled ThedataindicatedbyopencircleswereexcludedforcomptltationoftheregresL Sion印uations. Datapointswerefittedtoquadraticpolynominalfunctionswithgoodcorrelationcoef・ ficieIltSOfO.975for MnandO,937forAsasfoIIows: WD=−1476.6X㌫n+915.2ⅩM。4臥7 WD=−0.045Xまs+4.710XAs18.501 WDisrelatedtowaterdepth(meter).XMntOtheconcentrationofMn(%),andXAStO theconcentrationofAs(mg・kgLl), 【nthecaseofMn,deviationsindatapointsfromthecalculatedcurvearewithinseveral perce血InmOStCaSeSandthewaterdepthofsamplingsitecanbeestimated(romtheabove c。rrelationwithinastandarddeviationof6.03m.TheAs−Waterdepthcorrelationisalso seenbutdeviationsindatapointsfromthecalculatedcurvebecomemuchlargerthaninthe caseofMn(standarddeviation:9.64m). −64− Itshouldtx:pOintedoutthattheserelationsofMnandAswithwaterdepthareonly empiricalor phenomenologicalonesderivedfrom chemicalcompositioTISOf a recent era (backtoca.300B.P.)whenthelakeenvironmentshouldhave一光enthesameasthatofth presentin ageologicalsense.There must beseveralimportant factors whichinfluence directlyorindirectlytheconcentrationsofMnandAsinthesedimentand,inmostcase,ar not understood. The possible factors are asfollows:(1)size of watershed,(2)1akesizein area, volume and water depth,(3)soiland rock composition of the watershed,(4)mean residencetimeoflakewater,(5)biologicalactivityaroundandwithinthelake,(6)sudden heavydepositionofvoIcanicashorclaymineralsbyviolentflood,bothofwhichshutdown theinteractionbetweenthelakewateTandsedimentatthetx)ttOrnSurface,(7)masswater flowinsedimentlayers,i.e.springwellingupfromthelakebottom,and(8)changein oflake bottom water. Someofthesefactorsmayhavechangedconsiderablyduringthepastca.2m.y,,andth consequentchangeofMn(orAs)Waterdepthcorrelationisalsolikely.Therefore,itis anxiouspoi11tin our approachthat therecent relations of Mn(orAs)LWater depth,i.e. equations(1)and(2),Canapp】ytowhatdepthofthecores. Afterthelongcoreshadkendividedintosublayersofrough1yequallength,thesediments collectedfromeverylayerweresubjectedtoelementalanalysisbyXrayfluorescenceand neutronactivation(Koyamaetal.,1977a,1977b;TakamatsueLal.,1979b)▲ Table7.lshowstheconcentrationsofMnandAsrecordedinthelorlgCOreSalongwith Table7.1ConcentrationsofMnandAsinthelongcoresandwater depthcalculatedaccordingtoequations(1)and(2) 200 m lODO m Concentration(m numberofsubsamples range aVerage CV(%) -As 158 275 141 38 137 37 720−4360 2494343 21ト3590(1136−2685) 2.2−27.9(13.727,9) 1143 (1765) 12,4 (22.3) 16与3 651 60.5 (23.5) 57,4 (15.2) 32.2 71.8 yat即dep血(m) range 9.5−92,7 aVerage 58.1 CV(%) 28.5 0−93.1 0−90.6(36.2−90.6) D−77.9(37.6−77.9) 1,4 29.6 (64.3) 122.8 (23.郎 30.8 (63.5) 79.0 (14.8) 1761 Parenthesesshowthevaluesfortheupper200mof1400mcore. −65一 thewaterdepthcalculatedfromequations(1)and(2).Therelativefrequencies(RF)of thecalcu】atdwa亡erdeptわjnthecoresarea】sogjvenjれFig.7.2. 0 Reb仙e f忙ql鰐nCy.% 20 40 60 Fig.7.2 Histogramofthecalculatedwaterdepthinthelongcores (A)200mcore,(B)1000mcore,(Cl)thewho]eof1400mcore,(C2)theupper 200mpartof1400mcore, −66一 AlthoughtheMnconcentrationsanalysedinthe200mcorerangedfrom720to4360mg・ kgLIwithanaverageconcentrationof1653mg・kg.1,mOSt(ca・75%)oftheMnconcentrations werewithin1200−2000mg・kg1,COrreSpOndingtoawaterdepthof40−75m,ThepaleoWate depthatthecoresitehadusuallytxenabout60m,eXCeptOnSeVeraloccasions(RF<2%) ofawaterdepthoflessthan15m. Thedrillingsiteofthe1400mcorewasnearthatofthe200mcore.However,theMn concentrationinthe1400mcorewerelowerthanthoseinthe200mcore.Thisisaresultof thehighRF(ca.40%)oflowMnconcentrationsCOrreSpOndingtoawaterdepthoflessthan 15m.Thisis particularly the case at a core depthlxLIow200m.Althoughthe samples analysedwerelimitedtoasmallnumtxr,intheupper200mofthe1400mcore,Waterdepths CalculatedfromtheMnandAsconcentrationswereessentiallythesameasthoseinthe200m COre. Basedonagedeterrnination(Yokoyama et al.,1982),thelakebottomnearsiteE apparentlyremainedunderwaterdepthconditionssimilartothoseofthepresentforthelast Ca.0.4m_y.althoughtheareahadfrequentlytxensha1lowfromca.2toO,4m,y.agO. The Mnconcentrationsinthe1000mcoreweregenera11ylessthan500mg・kg.1and a Waterdepthsha1lowerthan15mfoundinRfofca.80%,implyingthecoretoconsistprimari Oflittoralsediments.Inthiscore,therewereseveralsamplescontainingveryhighconcen− trationsofMn.Onesampleconsistedmainlyof organicsubstancesandseveralothersof fineclay.Evidencefromotherfieldsinregardtoparticlesizeanalysis,Organiccompou etc.wil=光rleededtodeterminewhetherthesehighconcentrationsofMnarereallydueto thewaterdepthwhenthesedimentsaredeposited.However,thesedifferentcorescertai provideabasisforapplyingtheMn(orAs)−Waterdepthrelationtotheanalysisofthepast historyoflakesedimentsingeneral. ー67一 Cf王APTERⅧ,−Ⅳote− TheTotalAmounts of Mn andAs Accumulated in the Sediment Surface T.Takamatsu,M.KawashimaandM,Koyama ABSTRACT The totalamounts of Mn and As accumulatedin the surface of thelake floor were calculated from the differences ofthe elementalconcentrationsin theupper(0−2cm)andloweil左yersofthecores(tx}low10cmdepth).The amountswerefoundtobe4350and73metrictonsforMnandAs,reSPeCtively. ThesurfaceoxidizedsedimentofLakeBiwaaccumulateslargeamountsofMnandAs intheformofMnoxideandbytheadsorptionofMnandAstoMnoxideasdescritx:din Chaps.IandII.Sincethebottomwatercontainsca.4mg・lLlofdissoIvedoxygenevenat theendofthesummerstratification(Naka,1973;Kawashimaetal.,1978),athinoxid layercoversnearJytheentiretx)ttOmSurfaceandcon亡ribu[es亡OefficientZyaccumuZa亡ingMn andAs.1ftheconcentrationofdissoIvedoxygeninthebottomwaterundergoesacontinued reductionduetopo11utionandeutrophication,aSpOintedoutbyNaka(1973),theoxidized layer at a water depth below the thermocline(ca.20m depth)may possibly disappear, CauSingthereleaseofMTlandAsintothelake. AssumingaverageconcentrationsofMnandAsinthenorthernlakecores(seeTablel. 1inChap.Ⅰ)tobeapproximatelythoseinthesedimentfromawaterdepthbelow20m,the excessconcentrationsofMnandAsaccumulatedintheupper2cmlayerofthesedimentcan beestimatedbythedifferencesintheconcentrationsintheupI光r2cmlayer(Mn:3760,As: 55mg・kg1)andinthelowerlayer(Mn:1860,As:23mg・kg ̄1)tobe1900and32mg・kg1, respectively.Ifweassumethewatercontentofthesedimenttot光78%andthedensityof drysediment2,62g・Cm,3(Yamamoto,privatecommunication)intheupper2cmlayer,t excessofMnandAsshouldamountto4350and73metrictonsrespeCtivelyinthelakefloor utlder the thermocline(ca、458km2)、The volume of waterin Lake Biwais27.6km3 Therefore,ifalltheexcessMnandAsweretotx)dissoIvedandmixedperfectlyinthelake −69− Water.additionalcoTICentrationswouldtxapproximately160FLg・1LlforMnand2,7JLg・1 ̄1for As. Althoughsuchasituationisunlikely,thesecorlCentrations,eSPeCia11ythatofMn,Should begivendueconsiderationinviewoftherecommendedvaluesforMnandAs(50JLg・1 ̄l)in dri−1kingwater(FWPCA,1968). −70− REFERENCES AmericanPublic HealthAssociation(1975):StandardMethodsfortheExaminationofWaterand Wastewater,1JIthed. Anderson,M,A,,T.R.Holm,D,G.1versonandR.R.Stanforth(1978):Project Environ・Res・Lab・Athens,Georgi争・ Andreae,M.0.(1978):Deep−SeaRes,,25,391−402. Andreae,M.0_(1979):Limnol.Oceanogr.,24.440−452. Andreae,M.0_andD,Klumpp(1979):Environ.Sci.Technol..13,738−741. Arcuri.E.).andH.L,Ehrlich(1979):Appl.Environ.Microbiol..37,916923. Baker,M_D.,P,T.S,Wong.Y.K,Chau,C.1.MayfieldandW.E.lnniss(1983):Can・J.F Sci_、4012541257. Berner,R.A_(1967):Am.).Sci,,265,773−785. Braman,R_S.andC.C.Foreback(1973):Science,182,1247. Campt光I),P,andT.Torgersen(1980):Can.J.Fish,Aquat.Sci.,37,13031313. Carignan,R.andR.),Flett(1981):Limnol.Oceanogr.,26,361−366, Challenger,F.(1945):Chem.Rev.,36,315361. Cline,).D.(1969)ニLimnol.OceanogT,,14,454−458. Coggins.A.J..K.D,TuckwellandR,E,Byrne(1979):Environ.Sci.Technol.,13,128l− Cox,D.P.andM.Alexander(1973):Appl,Microbiol_,25,408−413. Cranwell,P.A.(1976):EnvironmentalBiogeochemistry(J.0.Nriagued,),AnnArborScienc 88. CTeCelius,E.A.(1975)二Limnol.Oceal10gr,,加,441−451. Cronan,D.S.and R.LThomas(1972)ニGeol.Soc.Am.Bull.,83.14931502, Cu]]en,W.R.,C.L.Froese,A.Lui,B,C.McBride,D,],Patmore and M.R Organomet.Chem.,139,6ト69. Cullen,W.R..B.C.McBrideandA二W,Pickett(1979):Can.).Microbiolリ25,120ト1205. Davison,W.andS▲l・Heaney(1978):Limno].Oceanogr.,23.11鋸卜1200. Dean,W.E.andS・K.Ghosh(1978):J.Res,U.S.Geo].Survey,6,231240, Dean,W.E.andP,E.Greeson(1979):Arch.Hydrobiol.、86,181−192. Delfino.J.J.andG.F.Lee(1968):Environ.Sci.Technol.,2,1094−1100, Ikuel,L.E.andA.R.Swoboda(1972):SoilSci.Soc,Am.Proc.,36,276−278. 一71 Douka,E.(1980):Appl,Environ.Microbiol.,39,7480. Doyle,R.W.(1968):Am.J.Sci.,266,980994, Edgington,D.N.andE.Callender(1970):EarthPlanet:Sci.Lett,,8,97−100. Emerson,S.,S,Kalhorn,L.Jacobs,B,M.Tebo,K.Il.NealsonandR.A,Rosson( Cosmochim.Acta,46.1073、1079. Farmer,J.G.andJ.D.Cross(1979):Radiochem.Radioanal.Lett.,39,429−440. F】orence,T.M:・(1977):WaterRes.,11,68ト687. F6rstrler,U.(1983):MetalPollutionin the Aquatic Environment.(U,F6rstnerand G.TL W・ Wittmanned.),Springer−Verlag,250258_ FWPCA(1968):Report of the Committee on Water Quality Criteria,Govt.Print.Office, Washington,234. Hem.J.D,(1972):Geol.Soc.Am.Bull.,140,17−24. Gibbs.M.M,(1979):WaterRes.,13,295297. Hoffmann,M.R.andS.].Eisenreich(1981)ニEnviron.Sci.Technol.,15,339−344, Ishiwatari.R.(1973):Chem.Geol,,12,113p126. 1shiwatari,R.(1977):Proc.JapanAcad.,53,47p50. 1verson,D,G.,M.A.Angerson.T.R.HolmandR.R.Stanforth(1979):Environ.Sci.Techno 1491Ⅰ494. Jackson,T.A,(1975):SoilSci,,119,5665, Kakihana,H,(1970)二lonKokanZyushi.(M.Honda,H・KakihanaandY・Yoshinoed.)∴Hirokawa 12−16. Kamiyama,K.,S.OkudaandM.Koyama(1982):Jap.}.Limnol.,43,3538. Kanamori,S.(1965):].EarthSci.,Nagoya Univ.,13,46p57. Kato,K.(1969):Geochem.J.,3,87r97. Kawashima,M.,T.Nakagawa,M.Nakajima,A.Shiota.T.Taniguchi,0.Itasaka, Matsushita,M.KoyamaandT.■Hori(1978):Mem.Fac.Edu,,ShigaUniv..28,13−29・ Kemp,A.LW.andL.M.Johnston(1979):J.GreatLakesRes.,5,110, Kemp,A.L.W.,R.L.Thomas,C.Ⅰ.DellandJ,M.Jaquet(1976):).Fish,Res・BoardCan, 462. Kinniburgh.D,G.,M.L・JacksonandJ▲K・Syers(1976)=SoilSci・Soc,Am.J・,40.796799・ Kobayashi,J.,F,Morii,S−Muramoto,S・Nakashima,H・TeraokaandS・Horie(1976)ニBer・Oh lnst.Landw.Biol.,OkayamaUniv.,16.147163・ Koyama,M.,T.HoriandY・Kitayama(1976):IARCReports,2,1114・ Koyama,M,andR.Matsushita(1980):Bull・1nst・Chem=Res・,KyotoUnivリ58,235−243・ ー72一 Koyama.M,,R∴Matsushita.M.KawashimaandT.Takamatsu(1977a):Paleolimnolo BiwaandtheJapanesePleistocene(S.Horieed.).Vol.5,174180L Koyama,M,,R.Matsushita,M.Kawashima,T.Takamatsu,K.Okamoto,K.Fuwa,S andT,Fujinaga(1977b):PaIeolimnologyofLakeBiwa andtheJapanesePleistocene(S. Horieed,).Vol.4,276−296. Krauskopf,K.B.(1957):Geochim・Cosmochim.Acta,12,61−84▲ Kurata,A.(1978):Biwako to sono Shusuiikino Kankyo Dotai・’1Kankyo Kagaku’’Kenkyu Hokokushu,B2R121,5467. Kurata,A.(1982):SuionnoKenkyu,26,19−28, Lund,J.W.G,(1957):Proc.Linn.Soc.London,167,165r171. Maher,W.A,(1981):Anal.Chim.Acta,126,157−165. Martin,J.M,,0.HogdahlandJ.C_Philippot(1976):].Geophys・Res,,81,3119−3124▲ Matsumoto,E.(1975):J.Geo].Soc.Japan,81,301−306. Mayer,L.M.,F.P.LiottaandS.A.Norton(1982):WaterRes・,16,11891196. McBride,B.C.andR.S.Wolfe(1971):Biochemistry,10.4312−4317, McKenzie,R.M.(1979):Geochim,Cosmochim.Acta,43.1855L1857, McKenzie,R,M.(1981):Aust.J.Soi)Res.,19,41−50. Meek,B.D.,A.L.PageandJ.P.Martin(1973):SoilSci.Soc.Am,Proc.,37, Moore,W,S,,W,E.Dean.S.KrishnawamiandD,Ⅴ.Borole(19SO):EarthPlanet.Sci.Lett. 200. Morgan,].J,andW.Stumm(1964):J.ColloidInterfaceSci.,19,347−359・ Mortimer.C,H,(1941):J.Ecol.,29,Z80329. Murphy,J.andJ.P.Riley(1962):Anal_Chim.Acta,27,3136. Murray,].W.(1974):J.ColloidInterfaceSci.,46,357371・ Murray,].W.(1975a):GeochimLCosmochim.Acta,39,505519・ Murray.J.W.(1975b):Geochim・Cosmochim・Acta,39,635647・ Mustoe,G.E.(1981):Geol.Soc,Am.Bull.,PaTtI,92,147153. Naka,K.(1973)こJap.,.Limnol.,34,41−43. Nakashima,S.andF.Morii(1982):NogakuKenkyu,59.189−201・ NaruSe,Y.,R.Ando,F.TsuchiyamaandH.Sugiyama(1979):Bu11.Jpn.Soc,Sci.FishL.45 Neal,C,,H.Elderfieldand R.Chester(1979):Mar.Chem,,7,207219. Nealson,K.H.andJ.Ford(1980):Geomicrobiol,)..2,2137. Nishimura,M.andKMatsunaga(1969)こBunsekiKagaku,18、154−158・ Nissenbaum,A.andD.J.Swaine(1976):Geochim.Cosmchim.Acta,40,809816・ 一73− Nriagu.J.0.andR.D.Coker(1980):Environ.Sci.Technol.,14,443−446, Nriagu.】.0..A.LW,Kemp,H.K.T.WongandN.Happer(1979):Geochim.Cosmo 43,247−258. Ohba.Y.(1964):Pedologist,8,108rl16. Oscarson,D.W,,P.M.Huang,C,DeffosseandA.Herbillon(1981):Nature,291,505l・ Pankow,J.F.andJ.J.Morgan(1981):Environ.Sci,Technol,,15.1306r1313. Petersorl,M,L.andR,Carpenter(1983):Mar.Chem..12,295321. Posselt,H.S.,F.].AndersonandW.].Wetnr,Jr.(1968):Environ.Sci.Technol.,2, Robbins,).A.andE.Callender(1975):Am.,.Sci.,215,512−533. Schott,H.(1977):].Pharm.Sci.,66,1548−1550. Shaikh,A.U.andD.E.Ta11man(1978):Anal.Chim.Acta,98,251259. Sil16n,L.G.andA.E.MartelI(1964):StabilityConstantsofMetaトionComplexes,Spec・Publ, 17,TheChemicalSociety,London. Smith,R,M.andA.E.Martell(1976):CriticalStabilityConstants.Vol.4,1norganic comple Plenum. Spencer,D.W.andP.G.Brewer(1971):J.Geophys.Res.,76,5877−5892− Stumm,W.andG.F.Lee(1961):Ind.Eng.Chem..53,143146, Stumm.W.andJ.).Morgan(1970)ニAquaticChemistry.JohnWiley&Sons,Inc, Sugimura,Y.(1972):Taisekibutsu no Kagaku,Kaiyokagaku Kisokoza12,(Y,Miyake ed・)▲ TokaidaigakuPress,Chap.2,40and59. Sung,W.andJ.,.Morgan(1981):Geochim.Cosmochim,Acta.45.2377−2383▲ Takamatsu,T.(1978):BunsekiKagaku,27,193198, Takamatsu,T.(1980a):Res.Rep.Natl.1nst.Environ.Stud.(K.Okamotoed,),18,54−59・ Takamatsu,T.,H,AokiandT,Yoshida(1982a):SoilSci.,133,239246. Takamatsu,T..H.AokiandT.Yoshida(1983a):Res.Rep.Natl.Inst.Environ.Stud..47,1 Takamatsu.T.,M.KawashimaandM.Koyama(1979a):BunsekiKagaku.28.596−も01. Takamatsu.T,,M.KawashimaandM,Koyama(1979b):Paleo)imnologyof LakeBiwaan JapanesePleistocene.(S・Horieed・)・Vol・7,264−274・ Takamatsu,T.,M.KawashimaandM.Koyama(1980b):Paleolimnologyof LakeBiwaand JapanesePleistocene・(S・Horieed・)・Vol・8,187221・ Takamatsu,T.∴M.Kawashima,R.Matsushita and M.Koyama(1982b):Res・Rep.Natl・lnst. Environ.Stud.(K.Okamotoed.),38,6880, Takamatsu,T,,R.KusakabeandT.Yoshida(1983b):Res・Rep−Nat】・Inst・Environ・Stud■,47,249 −265. 74 Takamatsu,T,,R.KusakabeandT.Yoshida(1983c):SoilSci.,136,371−381. Takamatsu.T.,R.NakataandT.Yoshida(1982c):BunsekiKagaku.31,540542. Takematsu,N,(1979):J,Oceanogr,Soc,Jpn..35,36−42. Tatekawa,M,(1979):KansaiShizenHogokikoKaiho,No,3,1r26. Tatekawa,M,(1980):AnIntroductionto LimnologyofLakeBiwa.(S.Moried.).Kyoto,3541 Taylor,J.H,(1979):Environ.Sci.Technol..13,693p697. Taylor,S.R.(1964):Geochim.Cosmochim.Acta,28,1273−1285. Terashima,A.andT.Ueda(1982):Jap,J,Limnol▼,43,8187, Tessenow.u(1974):Arch.Hydrobiol.Suppl.,47,ト79, Tessier.A.,P.G.C.CampbeI】andM,Bissor)(1980):Can.J.EarthSci,,17,90−105. Turekian,K.K.andK.H.Wedepohl(1961):Bull.Geol.Soc.Am..72.175p192. Uren,N.C.andG.W,Leeper(1978):SoilBiol.Biochem.,10,85r87. vanVeen,W_L.(1973):AntonieLeeuwenhoek.39,657r662. Verdouw,H,andE,M,),Dekkers(1980):Arch.Hydrobiol.,89.509−532. Wah)en,M,andR.C.Thompson(1980):Geochim.Cosmochim.Acta,44,333T339. Wauchope,R.D.(1975):J.Environ.Qual.,4,355−358, Wong,P.T.S.,Y.K.Chau,L.LuxonandG.A.Bengert(1977):TraceSubstancesinEnvironme Health.(Hemphilled.).Xl,100−106. Wood,,.M.(1974):Science,1S3,1049−1052. WooIson,E.A.(1983):Bio】ogicalandEnvironmentalEffectsofArsenic.(B.A.Fowlered.) 78−80. Yokoyama,T.andS.Horie(1974):PaleolimnologyofLakeBiwaandtheJapanesePleistocene(S. Horieed.).Vol.2,3ト37. Yokoyama,T..S.Ishida,T.Danhara,T.Hashimoto,T.Hayashi,A:Hayashida, Nakajima,N.Natsuhara,).Nishida,Y.Otofuji,M.Sakamoto,K.Takemura Torii,K.Yamada,S.YoshikawaandS.Horie(1976):PaleolimnologyofLakeBi JapanesePleistocene.(S.Horieed.).Vol.4,52r66. Yokoyama,T・,Y,Nakagawa and K.Takemura(1982):Paleolimnology of Lake Biwa and the JapanesePleistocene.(S.Horieed.),Vol.8,65−91 一75− ACKNOWLEDGEMENT )ytisrevinUotyK,e止ltiSltrocaeRhcraesR(adkT.JdnatihsutaM,Rknahto siweW forhelpinperformlngneutrOnaCtivationanalysis,thestaffsofShigaUniversityforassistancein taking the sediment samples andin performing some of the experinlentalworks,and M.H. TlmperJey(DSTR.NewZealand)forhishe]pfulreviewandcorrectionofChaptersIlandIII・ ThisseriesofstudieswaspartlyperformedundertheVisitingResearcher’sProgramofResearch ReactorJnstitute.KyotoUniversity・ 一76一 琵琶湖底混中の元素に関する陸水学 及び環境化学的研究 水質土壌環境部 高 松 武次郎(編) この一連の研究は当研究所,水質士族環境部,土壊環境研究室の経常研究の一課題として昭和 52年に開始され.現在までの約8年間滋賀大学教育学部化学教室及び京都大学原子炉実験所の協 力を得て進められてきた。ここに得られた成果の一部をまとめた。 湖は地球規模での元素循環を反映する一つの反応槽と考えられる。溶存状態や粒子状で ら流入した元素は一部ほそのままの状態で堆積したり,河川から流出したりするが,多く−ま生物, 化学,物理作用などを受けて湖水中で存在形態を変える。しかしいずれは湖底への堆積,大気へ の揮散,河川への流出などにより系外に除かれる。また湖底に堆積した元素も杭成作用で存在形 態を変えたり,底泥中を移動,局在したり,湖水に再溶出したりすることが知られている。した がって,湖内での元素挙動を湖環境や対象元素自身が持っ化学特性との関連で明らかに と は,その湖に固有の環境や元素挙動の解明に役立つばかりか,地球規模での元素循環の仕組を知 る手懸かりにもなる。 上の観点で研究を進めるに当たって様々なアブ仁・−一チが考えられたが,ここでは環境試料とり わけ底泥試料を元素分析し,その分析結果の解析から元素挙動を推測する方法に重点をおいた。 多様な環境試料の中で掛こ底泥に注目した理由は,この試料が比較的元素濃度の高い試料で,一 度乾燥処理すれは保存中や分析操作中に目的元素が揮散,吸着などで失われたり,逆に汚染され たりする危険性が少ないこと,またけい光Ⅹ線分析法や中性子放射化分析法を用いれは,煩雑な 元素の前濃縮や分離を行うことなく試料を非破壊で分析できることなど,いくつかの分析上の利 点が考えられたからである。また底泥は湖環境の履歴を湖水中での生物,化学,物理反応や堆積 後の続成作用の結果として保存していることも他の試料に比べ興味深い点であった。 また底泥の元素分析から元素の挙動に関する知見を得るためには,不確定な原田でかく乱され ていない試料を得る必要があった。この点,琵琶湖とりわけ北湖中心部の底泥は(1)70m以上に 及ぶ水深のために風波によるかく乱が少ない,(2)河川流入物の直接影響が少ない.すなわち陸 源堆積物の割合やその変動が少ない,(3)庶陸生物によるかく乱が少ない,(4)厚さ1,000m以 上に及ぶ湖底堆積物のため,湧水によるかく乱が少ないなどの条件を備え,良い試料を提供して くれた。またこの湖には温泉水の流入や湖底での火山ガスの噴出など火山活動の影響が や北湖の流域が近年まで比較的人間活動の希薄な地域であったことも分析結果の解析を る好都合な条件であった。 −77− 第1章 琵琶湖底泥及びマンガン塊中の 36元素の分布 京都大学原子炉実験所 郎 継 美 次 武 宗 睦 滋賀大学教育学部 松 嶋 山 高 川 小 水質土壌環境部 湖全域から,底泥コア(長さ30∼40cm)を30試料とェツクマソ採泥器による表面泥を47試料 採取した。また湖心部付近の底泥表面からほMn塊も採取した。試料は分凱 乾燥などを行った 後,中性子放射化,けい光Ⅹ線,原子吸光,比色などの分析法で元素分析した。定量した元素は 次の36種である:Mn,P,As,Sb,Fe,Ni,Co,Zn,Cu,Pb,Hg,Cr,Ti,Na,K,Rb,C Sr,Ba,Sc,Hf,La,Ce,Sm,Eu,Yb,Lu.U,Th,Au.Ta,Nd,Br,N。 元素分布を元素間で統計的に比較したり,元素の底泥表面(鉛直方向)と岸から湖心部(水平 方向)への濃縮係数を算出したりすることにより,底泥中の元素分布の現況を明らかにした。ま た各元素の分布を支配している元素の移動,固定践構を底泥環境や元素白身が持つ化学特性との 関連で考察した。 第2章 2佃iマンガンを多量に含む水和酸化マンガンが 底泥表面へのヒ素の蓄積に果たす役割 松 郎 武 川 嶋 継 宗 小 山 夫 睦 滋賀大学教育学部 高 水質土壌環境部 京都大学原子炉実験所 次 琵琶湖では底泥の薄い表層に高濃度のAsが蓄積されており,底泥中のAsの深度分布はMnの それと酷似する。また湖心部の底泥裏面にしばしば小さなMn塊が発見されるが,ここにも高濃 度のAs(721〝g・gl)が含まれる。これらの事実はAsの蓄積がMnとの関連で起こっているこ とを予想させたので,ここでほ水和酸化Mn(HMO)へのAsの吸着実験と底泥コア試料中のMn の化学形態分析を行って,As蓄掛こ関するHMOの役割を示唆した。 琵琶湖の底泥表面酸化層には下層の還元層から常に豊富なMn2十が供給され,Mn2+を多量に含 む水和酸化Mn(Mn2+HMO)が形成される。この相は正の表面電荷を持ち,ヒ酸の吸着に大変有 効である。一方Asも下層で還元されて亜ヒ酸として表層に遅はれるが,表層でHMOと接触する と直ちにと軌こ酸化され,最終的にMn2+HMOに吸着,吸歳されて保持される。 一78− 第3章 2価カチオン共存下での水和酸化マンガン によるリン酸の吸着 滋賀大学教育学部 川 嶋 宗 継 滋賀大学教育学部 .堀 太 郎 京都大学原子炉実験所 小 山 睦 夫 水質土壌環境部 高 松 武次郎 第2章で,2価カチオンが共存すれば,水和酸化Mn(HMO)は中性付近でと酸を有効に吸着し, この機構が琵琶湖底泥表面へのAsの蓄積に寄与していることを示した。ここではこの知見を拡大 し,2価カチオンを吸着したHMOのリソ酸吸着特性について検討した。その結果,HMOはア ルカリ土類金属イオンやMn2+,Co2+,Ni2+などの遷移金属イオンが共存すれはpH6∼9の範囲 でリソ酸を強く吸着することが分かった。アルカリ土類金属間の比較では,リソ酸吸着に関する 有効性はBa>Sr>Ca>Mgの順で,金属イオン自身の吸着能の順と一致した。遷移金属イオンを 含む系では時間とともにリソ酸吸着曲線が変化したが,これは吸着した金属イオンが酸化物(例 えはMnO2,CoO,NiO)に変化したためと考えられた。実験結果は,琵琶湖底泥表面へのリソの 蓄掛こ2価カチオンを多量に吸着したHMOが少なからず寄与していることを示唆した。 第4章 亜鉛と銅の湖水から底泥への移行過程 における生物遺骸の役割 松 郎 武 川 嶋 継 宗 小 山 末 次 睦 滋賀大学教育学部 高 水質土壌環境部 京都大学原子炉実験所 Zn,Cu,Pb及びHgは北湖の底泥では表面から4∼5cmの深さにおいて,南湖では15∼25 cmの深さにおいて高濃度を示し,人為的負荷によるものと判断できる。これらの金属分布を詳細 に観察すると,濃度の高い表層で元素ごとに分布の様子が異なる。例えばZnとCuの分布を比較 すると,北湖でほ両元素とも表面で濃度が高いが,Zn濃度ほ表面直下で急速に減少し,一方Cu濃 度の高い層はよ1り深部にまで至っている。湖内から採取した植物ブランクトソに多量のZnとCu が含まれたので,琵琶湖ではこれらの元素の多くはブランクトンの遺骸とともに沈殿すると推測 した。沈殿後,遺骸の初期分解に伴ってZnの大部分は底泥表面近くで急速に放出され湖水に回帰 するが,腐植質と強国に結合するCuの一部は遺骸の分解,腐植化過程において残存する。 79 1 第5章 ジメチルアルシン酸,モノメチルアルソン酸 及び無機ヒ素の鉛直分布 水質土壌環境部 高 松 武次郎 筑波大学環境科学 中 田 錬 平 筑波大学環境科学 吉 田 冨 男 滋賀大学教育学部 川 嶋 宗 継 湖心部から3本の底泥コア試料(長さ30∼40cm)を採取した。試料は0.5,l,2及び5cm の厚さに分割し,凍結乾燥した後,ジメチル7ルシソ酸(DMA),モノメチル7ルソソ酸(MMA) 及び無機ヒ素(1As)の濃度を次の方法で分析した。まずヒ素化合物を試料から10MHClで浸出 した後,ペソゼソに抽出して分離.濃縮した。次に7ニオソ交換樹脂カラムを用いたクロマトグ ラフィーでDMA,MMA及び1Asを分隠し,最後にフレームレス原子吸光光度法でヒ素を定量 した。 その結乳琵琶湖の底泥中のヒ素は大部分がトAsであったが,DMAとMMAもほとんどの試 料で検出され,その濃度はDMAで検出されないものから24,7〃g・kg ̄lの範謁を,MMAで20・8 から44.1〟g・kg ̄1の範囲を示した。底泥ほトAsのほぼ0.1%に相当するメチル化ヒ素化合物を含 んでいた。またDMAとMMAの詳細な深度分布をはじめて明らかにした。 第6章 高潮しゆんせつ穴でのマンガン,鉄の酸化還元 サイクルとリンの循環 滋賀大学教育学部 川 嶋 宗 継 滋賀大学教育学部 堀 太 郎 京都大学原子炉実験所 小 山 睦 夫 水質土壊環境部 高 松 武次郎 富栄養化した南湖のしゅんせつ穴で,1981∼1982年に水温,溶存酸素(DO),マンガン,鉄, リン,ケイ酸,アンモニア,硝乳硫酸,硫化物の分布を調査した。その結果,成層期間中の庶 層水の還元過程は相対電子活動度(p亡)の減少とともに次の順で進行した:(1)DOの消費水和 酸化Mn(HMO)の還元(アンモニアの蓄積),(2)硝酸の還元(3)水和酸化鉄の還元(リソ酸 とケイ酸の放出),及び(4)硫化物の生成。 成層期にほ,DOが0になる境界の直上(表層水の最下部)で,粒状MnとFeのど−クがはっ ー80− きりと分離して現れた。この現象は表層水下部と底層水の間で通常“Manganouswheel”あるい は“Ferrouswheel”と呼ばれる両元素の酸化還元サイクルが機能していることを示した。表層水 下部でのMnの沈でんほ微生物酸化によるHMOの生成と生成したHMOへのMn2+の吸着による ものと考えられた。 リソの循環はFeの酸化還元サイクルに随伴したが,Mn2+,Ca2+,Mg2+を吸蔵したHMOもリ ソの循環に少なからず寄与した。 第7幸 水深指標としての底泥中マンガン濃度 一過去200万年の古水深の予測一 松 郎 武 川 鳩 継 宗 小 山 美 睦 滋賀大学教育学部 高 水質土壌環境部 京都大学原子炉実験所 次 表面底泥コ7(長さ30∼40cm)中のMnとAs濃度は試料を採取した地点の水深と非常に良い 相関を示した。ここではこの相関関係を堀江らによって掘削された深層ポーリソグコア(200m, 1,000m及び1,400mコア)中のMn濃度に適用して,掘削地点の舌水深を予測した。その結果, 地点E付近の湖底は約200万年前から40万年前にかけて頻繁に浅くなったが,40万年前から近年 に至る問は現在とほは同様の水深(約60m)にあったと推測される。1.000mコアは全般にMn 濃度が低く,そのコアの採取地点である野州川河口はずっと岸近くに位置してきたと考えられる。 第8章 底泥表層に蓄積されたマンガンとヒ素の量 宗 山 睦 夫 武 鳩 京都大学原子炉実験所 郎 継 次 松 小 川 滋賀大学教育学部 高 水頭土壌環境部 底泥表層に蓄積されたMnとAsの量を底泥コアの表層(0∼2cm層)と下層(10cm以深) に含有される両元素の平均濃度の差から推算した。その結果,Mnは4,350トン,Asほ73トン表 層に過剰に蓄積されていることが分かった。仮にこれらが湖水に溶出し.混合されたとすれは, 湖水濃度ほMnで160〃g・1▲1,Asで2.7J‘g・1 ̄1増加することになる。 −81− 謝 辞 中性子放射化分析を行うに当たり御指導,御協力下さった松下録治,高田実弥両氏(京都大学 原子炉実験所),底泥試料の採取と実験操作の一部をお手伝い下さった滋賀大学教育学部化学教室 の皆さん,及び第2章と第3章を校閲いただいたM_H.Tim匹rley氏(DSIR,NewZealand) に感謝致します。 なおこの∼連の研究は一部京都大学原子炉実験所の共同利用研究として行われた。 −82− Ap匹ndixI Morphomeけjcfea亡uresofLake8jwa Totat 1tem 2 2 4 爪U Location Lake su一寸acearea(km2) Lakevolume(km3) Meandepth(m) Maximumdepth(m) Drainagearea(km2) Aff】uent river Erfluent river N Appendix2 Photograph of Mn concretions sampled from the sediment surface at site G 83− Appendix3 Themethodofneutronactivationanalysis βeJβrmg氾α如乃〆斤∂,G,助旅,C∂,C,JA5,5∂,βれ立,エα,Ce,昭S,”,払yあ,⊥〟,扶 n,LU:7bandAu:Eachdriedsampleof200−300mgwasheatpsealedinapolyethylene tut光WraPpedinacleanpolyethylenebagtopreventcontaminationduringhandlingand irradiation.For determination oflongLlived unclides,eight samples were packedin an irradiation capsule along with neutron spectrum monitors consisting of Co(50JJg),Cr (50JJg),Sb(25FLg)andU(10〟g)impregnatedinasheetofMilliporefilter(HAWP,47mm i_d.).Irradiationwascarriedoutforlhinapneumatictube(thermalneutronflux:2■75× 1013;epithermalneutronflux:1.09×1012ncm2s ̄1)ofKyotoUniversityReactor(KUR)・ After theirradiated samples were allowed to stand for7−10days.Y−ray SpeCtra Were determinedforlhusingaGe(Li)diodedetectorwithanactivevolumeof53ml(ORTEC) coupledtoa4KChannelpulseheightanalyzer(NAIG)andtapereCOrded・Theprograms, designatedasCOVIDNandGAMMA.bothdevelopedbytheauthorsIWereuSedtoidentify thepeaks,Calculatepeakareas,identifynuclidesandfinallya1lotconcentrationsbynormal− izingcooloingperiods.detectorefficiency,nuClear constants and neutron spectrum with whichthesamplesandspectrummOnitorswereirradiated・Theneutronspectr11m,thatis, theratioofthethermaltoepithermalneutronfluxeswasdeterminedusingasetofCo,Cr, SbandUmonitors.COVIDNmadeitpossibletocalculatepeakareasinamannersimi1ar tomanualcalculationandGAMMAoperateSbyfittingpeakstoaGaussianfunctionplusan exponentialwithabaselineofquadraticform・ Mnconcretions,Obtainableonlyinsmallamounts,Wereanalysedforlong−1ivednuclides asfollows:about30mgofeachdriedsampleweresealedinaquartztubeinvacuumand irradiatedforlOhwithCo,Cr,SbandUmonitorsspottedonapieceofaluminumfoilof99・9 %purityinthehydraulictube(therlTla】neutronflux:8,15×1013;epithermalneutronflux: 5.95×1012ncm,2s1).Theirradiatedsamplewasanalysedasdescribedabove・ DeIerminationdNa,KandMn:Tendriedsamplesof20p30mgsealedinpolyethylene tutxsandthethermalneutronfluxmonitorofMn(25FLg)impregnatedinasheetofMi11ipore filterwerepackedtogetherinacapsuleandirradiatedatKURfor5min・Thesesamples werecooledfor2−3hpriortodeterminationoftheγraySpeCtra・Theconcentrationsofthe elementswerecalculatedinawaysimilartothatforlongplivednuclides,uSingtheratioof thermaltoepithermalneutronfluxesalreadydeterminedforlong−1ivednuclides・ ー85− ApI光ndix4 ThemethodofXrayfluorescenceanalysis Twenty50FLloftheinternalstandardsolution(Cs:100mg/ml,Se:1mg/ml)wereadded to200500mgofthedriedsamples・AfterdryingagainatllO。Cforlhandmixinginan agateball−millfor30min,theanalysisbasedondirectmeasurementofpowderedsamples WaSperformedwithanenergyLdispersionX−rayfluorescencespectrometer(ORTEC,Model TEFAL6111)equippedwitha PDPrll/05computor.The measurement conditions of the instrumentareasfol】ows=target=Mo,VOltage=50kV,Current:50FEA,filter:Mo,XLray path:air,andcountingtime:4KL8Ksec.SpeCtrumanalysiswasperformedwithaSEEK PrOgram(developedbyORTEC)whichinclud占dbackgroundsubtraction,peaksearching, andGaussianpeakfitting▲ TheanalyticallinesusedweretheLq.forPbandtheK。.for theotherelements・TheL。11ineofCswasusedasaninternalstandardforK,Ca,Ti,Mn andFe,andtheKα11ineofSewasselectedastheirtternalstandardforNi,Cu,Zn,As,Pb RbandSr・Internalstandardizationispreferableinordertocompensateforinstrumental andsampleloadingvariations■ Thecalibrationcurveswereestablishedbyplottingthepeak ratio,Ix/Ⅰ..s.,Wherelx andIl.s.arethe peakintensities ofthe desiredelement and jnt Standard,reSpeCtively■ Aseriesofartificia]referencestandards,preparedbyaddingknown amounts of the desired elements to dried anhydrous sedimentary silicates,Were made availableasprimarystandards・Inanalysingthesediment,FeandsometimesMn,uSually themajormetallicelementsinsuchsamples,absorbXraySOfelementssuchasNi,Cuand Zn・ThismatrixeffectoftenresultsinanunderestimationoftheanalyticalvaluesofNi,Cu andZn・Therefore,inthepresentwork,thematrix effectcorrectionwasperformedby referringtothecontentofFe(andMn). ToanalysesampIessuch as the upper O.2cmlayerofthesedimentcore and the Mn COnCretionsobtainabIeonlyinsmallamounts,aSimpledilutiorlprOCedurewasalsoused instead of theinternalstandard method.The samp】e preparation was as fo】lows:the samples or the calibration standards were thoroughly mixed with a tenfold weight of microcrystallinece11ulose(Merk,forcolumnchromatography)inanagateball−mill,Two hundredmgoftheresultantmixturewerethenmadeintopellets(13mmi_d.,Ca.lmmthick usingadiefortheinfraredspectrophotometry・Celluloseactednotonlyasabinder,butalso madeitpossibletominimizematrixitlterference. −86− Appendix5 RelativeconcentrationsofelementsinsedimentsfromLakeBiwato thoseonaverageearth’scrust Log(曙e。1m。。t/C:㌫st) 一1.0 −0.5 0 0.5 1.0 1.5 十 ca Sr Na Ni 机9 ℡a Sc Cr PF。TiE。Cu乙。YbXUSmCeLa明地BaHf Co ThNdZ。血 t)ElementalconcentratiorlSinthelowerlayers(belowlOcmdepth)ofthesediment coresfromthenorthernlake, ●りTaylor,1964. 一87− Appendix6 RelativeconcentrationsofelementsinsedimentsfromLakeBiwato those of shaIe Lo9(践d山旭nt/C㌫1e) −1.0 −0.5 0 0.5 1.0 1.5 C。Sr叫NILa喝山CrNaUC。ⅩF。馳県E。S。C。BaP YbSbSmThZnCeTaPbBrASHfNd .)Elementa]concentrationsinthelowerlayers(belowlOcmdepth)ofthesediment cores from the northernlake, CS伽 ..)TurekianandWedepohl,1961. 一88− = Appendix7 Relativeconcentrationsofe)ementsinsedimentsfromLakeBiwato thoseofpelag)CClay 叫(C㌫。1m。。t/C買1a。i。。1ay ー1.0 −0.5 ) 0 0.5 1.0 1.5 加配 十 + m 釦l 01 Co 恥ぬ舶山地Sr喝貼P托訟α加瓜Ⅹ馳班毎日払馳U 色 ; + 寸 l 01 Yb 十 十 .)Elementalconcentrationsinthelowerlayers(belowlOcmdepth)ofthesediment coresfromthenorthernlake. ..)Sugimura,1972. ー89一 AppendixS Verticaldistributioncorrelationl光tWeenelementsinthesedimentcorefromsiteG K Na Ca Cs Rb Ba Sr Ti Sc Mn Cr Co Fe 000 , 014 1.000 一 455 −0.120 001 1000 0,189 −0.216 774 0.273 503 0.205 0,551 1.000 0.405 −0.042 444 −0.616 0.5邑2 −0.083 0,338 −0.330 0.262 0.710 l.000 0.51:主 017(1 1.000 0.512 −0.491 0.397 −0.689 0.343 −0.676 0.727 l.000 0215 0.131 0.173 0,Z23 0,256 −0.005 0.530 0.653 012。1 0.587 1000 0.293 0.Z77 1.000 0.234 −0.146 0.185 −0.149 0.452+0.281 0,1(,9 0.020 −0.530 0,318 1.000 0.641 0.156 0.004 0.927 −0.319 0.014 0.57:1 0.2−12 0.705 0.409 −0.692 0.537 0.372 −0.232 0,206 −0.730 −0.808 −0.368 0,702 0.253 0.536 0.363 −0.663 0.398 −0.677 −0.525 −0.498 0.998 0.284 O 0,114 015l (〉,446 0.207 0.128 0.143 0,050 0.413 0.05¢ 0283 0.399 0.035 0,163 0.659 0.199 10.567 0.042 0352 0.1(〉9 −0.300 0.593 191110050928152606㈹182758 0.042 −0.017 −0.167 0.009 −0.461 −0.142 0346 0.635 0.005 0.156 0,600 00 O.328 0.705 」0.174 0 O −0.004 0.274 0.074 3 0,03Z 3 O 0.102 0,108 ︵B O 0.407 0.072 0.586 7 0.259 0,052 0.942 −0.208 0.498 −0.161 O O 4 4 7 9 q︶ 9 7 1 只︶ R 7 5 つ︺ 8 0.185 3 0.409 −0.599 0.560 0.385 0.436 −0.450 4一4 O 0.351 0.502 0.369 −0.234 O 一 O 0.382 −0.657 0,614 0.439 6‘U O 0.379 0,510 0.4g2 ﹁〇 O O O O ︵U L 5 7 八U 1 ︵U 9 − 〓 ′0 3 OO 4 9 0 5 100 . O O 5 ︵U 0 つJ O O 3 〇 . ▼ 5 q︶ 3 0 ︵U O bO 00 4 O 3 3 爪V n︶ ∩:U ︵ 4一b ■b 一一一 1 0 5 一一一一一 〇二U O nU 〇〇 n︶ n 5 O O 4 ■〇.年 3 2 5 1 0 5 7 4 八8 6 亡じ一4 8 爪U l き 轟U 4 5.4 1 7 1 3 O 八> 7 O︵リ q▼ ﹁〇 ▲U 一一一 ︵U O O 3 つん ■4 3 つ−RR 5 一一 q﹀ 7 q﹀ O ︵U ∧U 亡U 5 n> 爪U 9 1 5 D OnV O ︵U 亡U 3 一一一一一一 ∩︶ 0 O 7 1 00556119866998認4013383722鵬2444917881515039〇 17 7‘9 99︻ ▲7 47 12 6.4 8 1 7.つ︺ 2 ▲4 3 2.4 3 1 n U5463644931499698755653153 ワ︼ 2 C.D.:depthofcore. l 0.186 Oハ:UO︵U O 八V 爪O U n︶O U 一﹁一一一 0,155 −0.055 O −0.384 O几V八V n−U O −0.2155 一一一一一 −0.119 O 0 0.222 −0.234 8 0 0.615 n:U 0.637 一一一一 0 0.371 0 O 0.635 O 0.519 O Ni 1.000 O O、0000 0.234 一 O 0.082 O O,460 0n︶n︶ O −0.14B O O −0,148 O −0.083 O ︵U −0,230 O75033743713278777776755172上VZ︻b −0.163 O −0243 n −0.421 n 0,425 一 0.650 0000 −0.363 爪V爪V −0.455 O −0.105 一一一 0.180 n二U 0.571 O −0.408 一 0.489 O 0 O 0.608 0.850 −0 一 0.151 一009(】 ▲0只 56q 1298518546612595216858粥38979249196929605A4 99 3ロ1 5 u0 −0.690 10 0.079 0.534 U 0.322 0.41(〉 097959247446196567581869962 077926001626780157675883694 1.000 0.238 I −0.399 640132224Z O3010154 433232 C 0 ハ︶ n︶n O O O O O O n︶ 一一 ¶一 ぜ、一− NiC。Z。P。ASSbBrLaC。禦川Lu⋮ThU ∽晋Rb監監宗認諾NiC。託AS諾La監Y。L“諾。 c.D. 1.000 Appendix9 VerticaldistributioncorrelationbetweenelementsinthesedimentcorefromsiteD C.D, C.D. I.L N Na P Rb K Ca Cs Sc Sr Cr Ti Mn 1.000 Ⅰ.L. 0.720 N P Na K Rb Cs Ca −0.768 1.000 0.94 −0.96Z O.56 −0.757 O.688 O.477 0.822 ユ.脚 0.437 0.35 O.685 0.830 1.000 0.591 l.000 0.266 0−375 1.000 −0.611 −0.377 0.552 0.698 0.810 0.440 −0.560 0.431 0.170 1.000 1.000 0.3朗 0.867 0.726 −0.643 0.686 −0.404 0.611 −0.6郎 0.528 −0.20 −0.345 −0.768 0.777 0.47 0.74 Sr 0.800 O.846 −0.51 0.28 0.620 Ti O.791 −0.74 −0.850 Cr O.810 −0.44 −0.468 0.741 1.000 −0.315 Sc Mn 0.762 0.25 0.23 −0.829 −0.823 0.673 −0.755 −0.569 −0.669 0.423 0.635 0.464 0.511 −0.794 0.561 0.599 0.692 0.580 −0.576 0.599 0.4娼 0.403 0.267 0.788 0.685 0.567 −0.610 0.523 1.000 0.679 0.799 0.052 0.628 0.690 1.000 0.813 0.618 0.600 一皿−r Fe O.479 −0.50 0.606 −0.375 0.378 0.Zll O.468 0.620 −0.220 0.417 0.537 0.831 Co O.225 0.32 0.116 −0.374 0.472 0.397 0.454 0.039 −0.093 0.454 0.357 −0.008 Ni 0.291 0.31 0.282 0.293 −0.002 0.154 −0.270 0.186 0.544 Cu 0.920 0.77 0.朗2 0.889 0.592 −0.640 −0.603 0.455 0.866 −0.771 0.814 −0.371 0.714 0.朗0 −0.758 0.857 −0.570 0.559 0.8g3 −0.820 0.720 0.930 0.848 0.453 Zn −0.894 Hg −0.865 Pb 0.934 As 0.744 0,44 0.38 tl.50 0.70 La O.郎2 −0−40 Fe Co 0.537 0.503 0.561 0.668 n.526 0.941 0.891 0.691 0.別9 0.948 0.767 0.685 −0.692 0.455 0.733 0.331 0.457 −0.348 0.050 0.92Z O.220 −0.642 −0.851 −0.656 0.419 0.585 −0.808 O C,D.:depthofcore 1.000 L Fe l.000 Co −0.202 1.000 Ni O.043 0.105 1.000 Cu 0.448 −0.249 0,289 1.000 Zn 0.娼0 −0.435 0.206 0.858 1,000 1.000 Hg 0.573 −0.437 0.053 0.750 0.933 0.914 Pb −0.424 −0.354 0.111 0.822 0.932 As −0.095 0.104 0.5Zl O.822 0.613 0.406 La O.445 0.342 −0.202 −0.708 −0,79(〉 −0.749 0.709 −0.013 0.100 0.683 0.朗6 1.000 0.491 0.070 −0.818 −0.726 0.179 −0.67g 0.386 0.600 0.577 0.693 −0.797 0.871 −0.481 0.588 −0.500 0.038 −0.744 −0.748 0.503 0.843 −0,607 −0.108 −0.727 −0.769 1.000 【0.276 0.397 0.645 0.640 0.774 0.601 −0.708 ApTX・ndixlO Verticaldistributioncorrelationbetw?enelementsinthesedimentcore去fromthenorthernlake(averagevaluesofthecorrelation coefficientsin24cores) ■思∵− l・ll 0.291.M 0.18 0.851.m l、25 0、7g O、671.00 Ⅷ.1g O.D5−0.㈹−0−011一帥 −0−8l−0一拍−0,20−0,41011.00 朋 −い C.D∴depthofcore ー∵∵ 0.他州.04 q.1邑 D.03().Ⅷ 0.03−0.04−0.04 0.陀 0.10 0 0.%0.050.150.040.240.040.個0.12 q.330一鴨0.008.32D.2昌0.000.椚 0051D75725 州一個0,0卜0.14…10.41q.33q.53t=50,21旬.鵬0.D50.250.63q.050.2S−…4q.鴨0.2S O.020.14州30▼2も0・13骨・D70・17 ̄0 −Ml−0.Ol−816−0.000.詣0.300.550.520.30D.880.D40.220.70D.㈹0.28−0.17=70310.070.150・鵬0・410・098・160・09 ̄8 州.078.12=90.230.230.390.260.290.20D.帖−=70.120.390.140.24−0.110.138.120.030.030・010・040・070・010・15▼0・24 0.070.160.000.160.160.300.370.370.13−0一帖−=80.118.530.080・23一=50・098・31=90・820・D40・310・13−0・00=9−0 0.37−0.270.39−0.160.鵬1川3D.16=1=9−0.1卜0.020.158.240.05D.D20.20刀08Ⅷ.00D.070.封0■22−0.30−0.25−0・26▲0・】2▲0 0.04q.250.光0.2q O.39D.32D.粥0.53019−0.180.130.21¢.63=O D.270.250.010.15−0.87−0.34−0▲25−0.53−0.10−0・25▲0・03▲0 000866罰 Ⅶ93渕朋208g罰 0.160,39−0.510.48 0.鮎 0.511.00 0.03 0.03 0.Z3 0.07 0.22 D.24 D.471一00 0.18 0.18 =7 0.2D O.朋一0.05 0.朋 0,631.00 −0.24(仁ほ(=姐(.25 0.祖 0.120.領q.帆(1.1¢1.00 0.12−0.32−=7−0,210,310.310.310.29 0.23 8.331.川 0.03 0.09(‖ヰ 0.08 0,36−0.04 0.D4 0.210.518.13 0.121.M D.39−0.OS0.050.15 0.25 0.24 0.410.510.32−0.12 0.04 0−311一㈹ D.4g0.D70.0ト8.12−0.ZlO−16 0−26 0,17 0,50−0.21D.040.110.511.00 0.14 =70.06 0.090,28 0.22 0.250.34 0.350.07 D.20 0.16 0.510.321.00 =5q.Tq q.750.Tl…T一=0一針姐ペ.随一q.qln.33q.17 q.q30.310.ヱ9也.041.00 0.200.10 030 0.15−0−110.29 0.㈹ 0,290.20 D.10 D.㈹0.D8 0.34 0.538・23 0−14l.00 0.088.438.390.350.190.Ol刀.040.390.390.25M20.280−530.180.370.240.291・00 0.058.398.180.36D.13−0.26欄.2ト0.030.28 0.0卜0.28 0.10 0.150.218.20 0.22 0.03 0・391.00 0.470.690.75 0.81808−0.188.39−0.03 0.168.320.210.170.130.168.05 0.駈0.02 0一光 0.381.00 0.d80.800.780.関−0.0巨0.29−0.37−=1=98.23D.370.180.D70.178.080−73=20.罰OJ2(.861・00 ーq.17…9q.71q一誠一0.ヱ7−0.19一=10.1卜0.30q.34n.ヱヱ0.ヱ7−0.u−…7−…80−64¢.35¢・ヱ2欄▼010・6島¢741・00 一0.63=80,600.540.D2−0.18Ⅷ.160.090.帖0.18−0.230−03−0−13−0.280.060.650.030・230・Z30・74 0・81D・551・00 0.470.740.呂D O.710.D3−0.22≠4ト0.080.010.33−0.30=5−0−250.29刀・070・800・03D・240・320・738・63D・580・621一川 0.480.帥0.570.52−=4」D.19Ⅷ.40−8.010.080.3ト0.380,22=30.160・090・620・020・280■370・690・830・550−760,771・00 0.390.670,750,弘0−15−0.38−D65−0.170,110.460.230・140,180・280・Og O■55−8・048・250−250−720▼730・480・560・780・731・00 =7−0.25−0,3=.210.430.390.528.410.230.15M50・210・658・11D・33−0■30=18・l仁=5−0,㍊0▼250▼61110D・28D・00刀・29 00949762702291黒 ∽はNPNaKRbGMgCaSr鮎溢TiCr恥FeC。NiC。Zn鞄靴ASSbBrLaGSmYbL川m c.D.Ⅰ.L.N P Na K Rb Cs Mg Ca Sr Ba Sc TiCr Mn Fe Co NiCu Zn =g Pb As Sb Br La Ce Sm Yb Lu HL Th U Appt・ndixll Horizontaldistributioncorrelationbetweenelementsintheupper2cmlayersofthesedimentcoresalongthetransect from Ado River to Ane River 00t〉 621 697 873 924 0 0 【0 160d 1530 556 364 629 7:三1 324 034 0 0 0 251 0 399 0 461 0 R17 0 660 −0 Cr Ti Mn Fe 0 114 I) 168 .805 .L76 521 O O 一 O八U−n〓〓:‖二U 一 nごn〓〓 一 O︵U OハU︵U︵U爪VO 一一 一 n︶︵U q〓り二b二汚7q−6175〓h〓b7 65ワ︼5一b一4人−727只︶7 n∵‖〓〓二‖二U 一 。4970qJ 一 O OOハリOハリO l −0 −0 1.000 0.4−14 1,000 0.280 0.722 l.000 0.366 −0,542 −0,Z60 1.00D O.90】 0.α&1+一一心.ユ09 0.557 l.000 0.966 0.599 0.455 0.289 0.793 0,423 0.956 0.794 −0.374 0.040 0.95() 0.301 0.1】0 0.541 0.929 0807 −0.061 −0.260 0,716 0.92B O.706 −q.250 −0.418 0.757 0.905 0.536 0.483 −0.274 0.913 0.764 911 (〉,084 0,148 0.6ざ9 0.9Ⅰ8 0 640 −0.350 −0.230 0.857 0.854 0 744 0.241 0,307 −0.736 −0.896 0 478 0.249 0.1S2 0.565 0.479 0 412 0,524 0.397 0.134 0.311 518 −0.362 0.592 0.588 0836 0 0 745 ().330 0.473 0,551 0.653 365 0.622 0.565 −0.784 0.711 411 0.607 0.598 0.861 0,722 0 778 −0.121 0.0(〉1 0.842 0.850 0 一 〇 09 O l10 . . . 10n〓U Oんじ爪U O 10ハU爪V八U l︵U O74︹B爪V一b︻0 10︵UO∧U爪U︵U 一一一 ハU7︻J1.40005 一一一 一 O OO kU6367一b轟b9 〇〇O J﹁ワ∵只〓hニッ∴る︵ 一 <U77013q〓コ〓b二b 一一 n∵只〓りこH5∧U759q︶9 一 一 。 OU852824榊963635諾頼諾828 一一 一 一 n〓‖〓‖0∩∵n:‖二‖二U n〃八U︵ O︵UハU OハU几V∧U爪V 〇9︵凸69700﹂﹁5︽b7■■﹁〇〇〇 O 一 nU︵Un︶n 一一 爪>03393611つJ5︻b nJ﹁〇2 nU O222︻b一q52220£〓ユニJ二b O人U 71Z l一1只︶R∵‖〓ソ〓り二b 一 OO 一一一 一 一一 O l O ︵U9一b几bつ︼l︵リ︵凸91006q︶ハ089 0■120轟bハU.417:J〓バ.42UO3ハリ 1〇八U 票㌫託声慧La監YbLum甘 W.D.:Waterdepthatthesamp】ingsite、 127449<V5つJ9 一 一 O 丁.879 n∵n〓〃二じ二じ八 0,878 0.467 0,311 0.802 一 9f〉0 ︻b一b亡U41ウ︺︵U76■b 98】 一0 953 OO∧U 854 0 904 O 867 646 n〓〓:〓二U∴U八U︵UO 35:Z 826 口 n︶n〓〓二じ二U︵ 000<U 一一 737 −0 0 868 171 7ヽ▲7712仁Ul只二八〓J7q〓b7‘U3 1693んU2.41Z2253J﹁5︻ユニ‖ 857 11(I 000 947 1.OI)0 624 0.749 1.000 6gO O.480 0.067 903 0.989 0.708 733 0.77l −0.891 129 0435 0.460 5441771つ︺0仁リー▲95一b597 1729 0 894 O︻U 045 253 118 497 O 548 −0 074 0 34ア ︵U︵U︵U 3Z9 042 0 1000 八U6エリ人︼︵U3qUっJ519一14959っJ2 087 −0 000〇 2つJ︵y n︶n〓‖:〓エリO 0.286 0.669 0.Z」璽7 7:∠8 056 一 0,836 0 0 0 ㌻〓 :〃 エ︵りリU 0000n n 0.831 717 848 247 ▲:H〓7二h一q<V5りん5 7DO1427467 0645 898 −0 811 −0 0 O O 781 0.913 0 0 1 0 636 一一 0.675 727 942 OUO 445 1.0(】0 168 0.574 1.000 616 0.706 0.036 483 −0.2別 −0,086 0 686 0.016 0.143 0 90tl 0.3〔〉6 0.140 0 279 −0,67B −0,175 0 684 0.107 0.284 0 648 0.118 0.271 0 677 −0,823 576 −0.815 725 852 431 −0 O80D8︵凸8007357日∂778 0.427 Sc tia Sr 000 874 −0 一b 146 623 1 611 0 8几b3200nD亡U97つ︼RU993・ヰ274 885 568 939 八UハリO 439 Ca Cs Rb 一一一一一 683 K Na 1OOO 0︵UO ¢∽1 00() 969 1 9U2 (I 507 0 890 −0 454 O a82 () 435 0 147 0 270 0 907 0 081 −0 079 0 7(I2 0 947 0 843 (】 llZZ O 948 0 910 86:Z 82∂ 988 893 1 P N 4:占 ー ∵∴J=.∴︰・∵∵∵.∵J..ト√・ w.D. Ⅰ.L. AppeTtdix12 Horizontaldistributioncorrelationtx}tWeenelementsinthelowerlayers(belpwlOcmdepth)ofthesedimentcores alongthetransectfromAdo Riverto AneRiver 1LL N P Na K Rb Cs Ca Sr Ba Se Ti Cr Mn Fc 10()0 0,474 1.000 0.508 0.992 l.000 0.8Z7 0.838 0.85Z l.000 0.8邑9 0.58l 一打557 −D.891 1.0(】0 475 Co Ni 735 一一 830 0.804 −0.72【) −0 0.904 0.460 0 0,7B4 0.6H2 0 一一一 0.867 0,5f〉2 一一一 iC13 一 825 050l 一 一一 − 0.839 0R91 −0.855 0.819 0,149 1.000 0.064 I),474 −0.129 −0.71Z 0.142 1,000  ̄0▲499 0.821 0.311 0,483 −0.56I O.886 1.000 0,248 −0.091 0.4U9 0.6820,】02 −0.862 0.602 l.000 0.9ぢ7 0.811 −0.925 −0.431 0.898 0,l18 −0.353 rO.438 l.000 0.5()l 0.179 0.488 −0,508 0.446 0.739 0,388 −0.860 0.651 】.000 0.488 0,544 0.682 0.318 0.432 【) 398 0.576 −0.174 855 −0,265 0.958 −0 153 0.564 −0072 0.915 0.394 0 519 1.000 962 −0.823 −0 0.929 0 887 −0.354 094 −0.375 −0.398 0.993 0.664 −0 3(〉6 0.928 1.000 627 −0.250 0 0.555 0 689 −0719 724 0.330 −0.816 0.758 0.940 0 023 0.557 0.751 695 −04Z6 −0 0,673 0 7:Z9 0.528 5(〉7 0.133 0.793 0840 0.942 ▼0 016 0.612 【),843 163 0.26l 0 0.10R O 329 −07‘19 96g O,750 −0.885 0.34Z O.856 0 302 0.09(1 0.327 896 −0.692 −0 861 0.441 O.889 0 278 0.193 −0,528 0.967 0.7g5 0 245 0.866 0.978 0.913 I) 】68 −0.301 0.455 0.983 0728 −0 287 0.901 0.995 878 0.347 093l −O 058 0.487 −11183 0.950 0.479 0 489 0.990 0.954 554 −0.65:Z n.450 0 782 0.427 0.852 0.669 0.978 0 197 0,441 0.670 0.045 0 842 0.701 0.603 0,238 0.618 0 198 0.142 0.218 807 0S54 −0.57:1 0 663 0,274 D.728 −0.75:Z 0.781 0 69R O.548 0.703 一口 536 −0.118 0.657 0.841 −0.91l −0 030 0.710 −0.856 613 −0.338 0.535 0 187 −0,356 0.204 0.355 0.165 −0 766 0527 0.334 860 0.242 (),988 −0 131 ,0.551 0,093 0913 0.419 rO 0.988 5ひ3 0.932 919 −0.61−1 0.77∈〉 0 O70 −0.294 −0.178 0.772 0.294 −0 724 0.830 0.742 906 () 901 tl.257 −0.896 0 294 0.682 1)O17 −0.873 0.206 0 760 −0,936 −0.857 917 0 664 0.117 ().871 −0 585 0.874 0.331 0.687 −0,03l −0649 0.874 (),709 一一 0.別9 0.791 (),787 n.465 0.430 0.418 −0.753 0.034 −0,037 0283 −0.651 0.604 0,701 0937 0.931 0.135 0.797 0 760 −0.3(〉7 −0325 ¶0 356 0.699 0.792 818 0.744 0.922 913 0.234 0.917 910 0.3】4 0.934 894 −0.245 0.628 617 0.635 0.964 950 0,707 0936 922 0861 0.842 867 95167397977 芝 m甘P智慧慧聖Ti監監監託如諾La監YbL。m甘 W・D▼ 705 Cu Zn Co l.UO(】 Ni O.94d l.000 Cu o.g68 0.736 】.000 Zn o.859 (I9二Z5 0.5()Z Pb O.797 (l,884 0399 As O.635 0.676 ().179 Sb O.983 0926 0.902 Br O.74(】 0.481 0,866 La −0.941 −0.853 10.808 Pb As Sb Br La Ce Sm Yb Lu Hf Th U 1.()00 0.992 1.000 0,900 0931 1.0()0 0.794 0,729 0,529 1000 0,362 0.269 0.218 0.749 1.000 0・816 】0.749 −0.658 −0,871 −0−750 1.000 0.772 0.939 n.も30 0.862 1.㈱ Sm o118 0.097 0.064 0306 0.289 0.452 10.055 0.061 0407 −0.102 1.000 Yb I),570 0.648 0.117 0.885 0,910 0.968 0.453 0.118 ∩.615 −0,712 0.576 1.000 Lu O.571 0.535 (l,261 0.7:Z5 0.712 0.818 0.411 0▲35l −0.768 0.581 0.834 0.朗1 1.000 1】f −0,396 −0.49(〉 0.074 0.758 0.806 −09】9 −0.249 0・060 0,509 0510 −0.637 −0.929 −0.853 1.000 Th O.111 0.252 −0.370 ().582 0.653 0315 −0・198 0・304 0.607 0,877 (),682 −0.914 1.000 0.810 q.021 U o.622 0.625 0.300 0.799 0.792 0.802 0.574 0・348  ̄0,5f〉8 −0.787 0.350 0.845 0.611 0.595 0.626 W・D▲=Waterdepthatthesamp】ingsite. Appendix13 =orizontaldistributioncorrelationbetweenelementsintheupper2cmlayersofthesedimentcoresandtheEkmandredge Sediments w.D.I.L. W.D. 1.000 1.L. 0.197 1.000 N K P Rb Ca N O.100 0.863 1.000 P O.222 0.630 K 0,0()ア 0.5β0 0.509 0.583 】.000 − Rb Sr Ti Mn Fe Ni Cu Zn Hg Pb As 0.540 1.000 O.051 0.067 0.037 0.356 けーい − −0.178 −0.045 −0.070 Sr −0.289 −0.051−0.081−0.170 0.029 0・010 0・712 l・000 O.168 Mn O.803 0.268 0.176 0.294 −0.鵬2 0・0鵬 −0・135 −0・218 0・100 l・000 Fe O.440 0.571 0.411 0・409 −0・476 −0・023 0・008 −0・071 0・749 0・393 1・000 Ni 1.00(I O.553 0.622 0.544 0.541−0.545 −0.155 −0.213 −0.400 0.435 0・401 0・617 Zn 0.002 0.036  ̄0.205 1.000 Ti Cu 0.237 0.019 0.523 1.000 Ca 0.214 0.392 0.318 0.142 0・022 1・000 O.274 0.760 0.699 0.772 0.580 0・250 0・093 −0・287 0・260 0・246 0・443 −0.138 0.696 0.744 0.7010.603 0・298 0・016 0・174 0・080 0・009 0・207 O.705 1.000 0.442 0.805 1.000 Hg −0・Z21 0・673 0・534 0・767 −0・718 −0・543 0・119 −0・321−0・278 −0・139 −0・197 0,382 0.819 0.935 1.000 Pb 0.093 0.635 0,678 0.662 【0.478 −0・260 0・046 −0・143 −0・052 0・017 0・088 0.380 0.529 O.902 0.151 0.099 0.175 0.041 0.029 0.198 0.342 0.121 0・719 0・439 0.818 0.901 0.884 1.000 As W.D.:Waterdepthatthesamplingsite 0.196 −0.173 −0.2朗 0.147 1.000 Appendix14 AnalyticaldataontheEkmandredgesediments 2792▲Uつ︼ヘエ143︻b‘VつJワ︼3A二b2 八UOl亡U13312■︼33853964 ︵Un−ハU︻‖スUハリ几UハU■‖エリ■‖エリハて‖二り人リリ1 N 1 N NN NNN 八じ八じ爪V︹UO .2.1.1.2一﹂ 8462252244658236795756B15907 0 ワ〓J53334.44つり222A.272917131︻凸︹凸nUワ︼人︼ 443149ほ362317 71爪V︵U亡J■lエV7ウ︶3473S一︶︵Udロ1〇一bl点じ一7一hこJこソニH一Lリ 。 9エリ∩凸7二U5900q︶3︹810UJq一1311八U10000ハ055261 5 3 221321111・l12121ウ︼■121 2 11 49 4哨 43 05 55 94 3昭 993鍋485961338n21135126633126241紬 45 3〇 3一 鍋5 12 09 44 47 37 77 55 49 69 294470344952954474837309 N 6 227 1 112946863061砿3876指70671835 790 ぬU0 6U1 1.一 99 4史 5人 ︻b 4二h377︻−256115︻U︵U▲4233■b6 9 557576一b551411134 13 二J ︽b 21 2 5949 756 512 一l棉 766 518 〇O lq 9只 U6 U︵67163︵U5上U<U一qOロ亡U3853456q 66川n8124n13213nn 1 6︶n n D亡一 柑﹀ 15 81530778577 131。 。 1918031411舶餉33772457419307 50 指7 53 07 65 80 75 39 一49099021061724207弘1591821649779 9 1 7 3 45 93 一6 94 55 67 72 65 5錮 7 707888 (L)notanalysed・N▼D・=tJndetectable・Analyticalmethod=(C)colorinetry・(AA)atoTllicabsorptionspectrophotonletry,(ⅩRF)Ⅹ−rayfluorescerlCeanalysis N 一− 1 −− 2 −− 9RUnU9977UO .3.5.4一3.4﹂ 4 4343443442404242443523436434■ 3917川柑16172261579211115於2 72 38 27 72 22 62 25 79 49 加 。一2515∽箭17諾312m44け6261612931 14邑 14。 321 7ぞ O96900701n〓J135Z212560614∩906▲ ︽bqUUORU﹁∂nVワ†4:︼l r .2.3一 32 13900 33 503() − 慧∵1 32 31 3 ’76.11.20 1 4 5 8 6 7 10 II り 33 ll、 34 35 23 36 16 4 4 17 7 6 7 1ZZ14334413433445 21Z24221112 7‖7▼ 。 二 :: 7ニ6. 12 38 39 40 41 42 43 44 45 46 47 一43245170 ’77,11.4 C; X ’76.1l,20 A B C D 3 。 ▼ 25▼臥9.6.仇97.L17▼1▼3、L8.一L9 47 .2 一<U2q︶97‘VO9121▲り几bq︶4﹂﹁ワ∵4252・4326 ・ 19 404275744632845595053461956681ほ一37指8639016345銅222124806120耶668674654280664359595235禦466738㍑讐21 2 ワ=UOOOn∴Un=UOOOOOOOOOnUn∵nOOOOOOOO840ワ︼∩﹀nUnO8SOO5091 〓一一26〓一 2.33 0.45 2.()3 0.31 255 038 132965 2 23.423つ︶32432つ︺つ︺23ワ︼2つJ 3 一 ノ ノ 3 2八U210310■nUAl只りq −− 5662飢957172037301946973縄549434649〇 2 − 2 ‘V47︵U3q︶nUOロ︵U︵り5Jrnて403︻bnU 蛸66躯17粥7749別2507679320620948砧mご 3 0000−1U人〓二UlハリO−n〓U︵UnUO<UOO −− ー360・−▲︵U9一りqU2只U‘リー12亡Jlフ〓U 55354■ヽつり︹UつJ︻b6亡U■4︻/つJウ一40n 37 4 2。749。銅⋮67.45515。574欝5。749775。m576試禦㌶95762613。湖⋮662讐45。闇49。試63608。64947。85723。4。。75。㌶諾禦 −− 1580 13RO 150n 1440 65ユ ー 146() 123(I 3840 4000 4650 5400 45 198 27 42 122 190 113 13 02 00 nZ 55 24 65 71 15R − 96一q3.4ワ︼︻∠4317几bOZ1480n − ノ ノ 2一1201■﹁50‘U59βU20︵H7ZO 3631一l〓一部封一一29一29一21〓一 2 −− 0.4Z 29 −− 0.36 93 1()50 925 3 668 564 3 147() 1:Z80 4 1・120 1120 3 1310 11)20 4 1130 972 3 1340 1160 3 956 764 3 1050 856 3 276 339 〔) 893 472 3 184 203 0 570 689 2 34:Z 339 1 816 719 3 1500 1600 3 755 6】3 5 701 731 3 770 757 3 843 785 4 745 725 2 741 753 3 308 415 4 769 744 2 867 936 4 714 823 3 623 748 2 764 677 3 25 2 29 2 l一1001142っJ4332つJつん432■l 2 Ti Ni Cu Zr) Pb As Fe Mn (%) (%) (〟g・gり N P Si K Ca (〟g・g■) (%) (%) Sampling Samp】iIlg site Dale ADpendix15.1AnaIytlCaldataonthesedimentcore Samplingsite:A.Samplingdate:11/20,1976.Waterdepth:4.Om N P K Ca Ti Ni Cu Zn Pb As Rb Sr Hg (〃g・g1) (%) 2 5 7 6 q︶ 6 6 0 7 エリ 2 9 5 5 5 ⊂J 9 AA 0.24 0.23 0.ZO O.13 0.08 0_07 0.15 0.14 7 ︹J ﹂一﹂一 2 d. ﹂ 5 4 .4 5 ・″nU 6 亡U 6 7一 爪U nU 5 ごU 5 (.)notanalysed.Analyticalmethod:(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)Ⅹrayfluorescenceanalysis. nU 八U 8 5 5 2 2 U OO 7 5 5 ハ⊂0 6 6 6 4 ご亡 じU ご U64 dU 分U 7・亡U 亡U 48 7 ︹B 5 1 910■ 5 ワ︼ 00 00 <U 2.27 0.27 ごU 2 784 4.76 4.61 り.50 240 d. 755 4.79 4.52 0.48 3 711 4.72 4.3ア 0.46 900 7 890 2,29 0.29 ハU Z.28 0,25 320 9 3 RU 9 7 4 3l ワ ︼ 1 1 360 つJ 740 4.53 4.40 0.44 0 4 一q l 4 6 4 5 4 J’こJ4 890 9 11 2.23 0.27 4 3 340 9 776 4.12 4,52 0.46 1 7 900 2,39 ().31 410 <U ∧U 2.40 0.34 3 759 4.71 4.51 0.44 320 7 781 4.77 4.53 ().43 5 2.27 0.30 3 380 7 761 4.11 3.92 0.33 834 4.91 4.98 0.44 1 4 840 ︵む 4 2.26 0.26 2.66 0.3Ⅰ 990 2 3 3 380 4 410 1.73 1.68 0.18 6 0﹂7nO 0 360 6 2.07 0.15 5 30 一川サ 291 1.53 1.47 0.17 2、ワ︼ 330 ︹XU 0 2.21 0.15 Z 4 ︵B1 ﹁〇 ワム 9 8 3 8 6 0 4 16 1 2 359 2.05 1.83 0.18 4 2 0 00 490 5 57 9 3 5 2.00 0.14 2 75 0 4 1 15 39 DO ハリ 0 T⊥ 683 3,79 3.25 0,29 ︵XU 5 0 2.39 0.31 1290 1050 4.21 3.88 0.36 22 54 2.23 0.29 1000 410 380 5 76 3 00 4 1 3 2 1 1 5 2.29 0.36 1580 1380 4.49 4.13 0.36 27 58 940 (腫・gl) XRF AA XRF C XRF XRF 5 3 0 3 28−30 0 26−28 0 24−26 9 2224 1 18−20 20−22 3つJ一2 3 9一丁l ∧U 5 只り りん l nU 4 ︵‖︶ 1214 1618 O 7 3 10−12 14−16 爪U 4 讐/1 8−10 ︵U 3 − 68 XRF 7 5 4−6 0 4 24 (%) (〃g・g ̄り (%) C 6 L 11 05ハU592742353爪U5 0−2 Fe Mn (〃gすl) 2 3 ∩∠ 2 4 2 4 1 Appcndix15.2 Analyticaldataonthesedimentcore Samplingsite:B、SamplirLgdate:u/20,1976・Waterdepth二3.Om・ N P K Ca (%) Sr Hg Ti Ni Cu Zn Pb As Rb (%) 28 56 361 61 2.40 0.41 813 4.20 4.47 0.54 29 56 429 64 q︺ 712 4.52 4.45 0,51 27 52 430 59 6 920 699 4.72 4.38 0.50 29 47 200 50 3 2 2 44 176 44 400 2.36 0.35 910 741 4.42 4,24 0,50 28 46 175 45 400 2.50 0,33 900 705 4.42 4.45 0.50 20 44 154 37 Z.29 0.33 870 719 4.54 4.24 0.49 25 43 146 43 751 4.50 4.42 0.53 30 42 152 37 390 370 2.42 0.32 950 25 45 157 43 980 735 4.90 4.39 0.51 28 46 152 45 2.36 0.30 890 672 3.55 4.01 0.48 25 43 147 44 661 3.85 4.26 0.52 26 44 151 42 360 310 2.38 0.32 720 2.40 0.31 900 809 4.63 4.44 0.52 25 42 147 41 390 2.45 0.30 870 750 4.48 4.31 0.50 27 44 149 42 400 2.34 0.29 900 778 4.61 4.21 0.51 17 41 146 42 亡U 7 430 35 7 55 4 2 史 7 4U 4 1 780 3.99 4.61 0.53 2.34 0.33 亡U 4 4 1 780 410 1 1 2.54 0.34 9 2 310 1 0 5 5 2 44 190 46 30 7 2 23 719 4.58 4.31 0.50 7 2 737 4.56 4.56 0.52 920 3 3 850 2.28 0.33 O 2 ︵U 爪U O 爪U ∧U ハU ハリ ハU ∧U 八U <U 4 7 ∧﹁. 7 6 八1 U 7O 79 1 9 0つ 0J 35 1 3 9 1 9 9 2.37 0.37 420 1 2 O ハU nU 4 ハ U O 5 9 ∩8 2.41 0.36 920 1 1 2.35 0.37 4 3 4 34 4 41 57﹂﹁ 912 4.68 4.48 0、51 5 2.40 0.42 1130 0 600 5 630 27 51 328 56 2.50 0.45 1350 1160 4.64 4,50 0.53 0 2.35 0.42 145け 1270 4,55 4.55 0.54 35 5 6 680 920 50 31Z 56 1 25 49 308 53 2.32 0.42 1680 1420 4,55 4,47 0.50 AA 3 99494979510 24 50 308 52 2.38 0、42 1500 1440 4.48 4.38 0,51 (〃g・gり XRF つ 1 4J 4 AA XRF C XRF XRF (〟g・g ̄り ︵b 亡じ 6 0 りん 3 40−42 ハU 3840 9 0 6 3 2 qレ 9 9 ︵‖凸 3638 O 爪U ハリ 2 4 7 8 2 2 34−36 6 八U 3234 <U OO <U 7 9 30−32 2 q︶ 28−30 XRF 6 3 5 2 9 9 26−28 ︵U 22−24 24−26 4 8 2 9 9 20−22 1 ロ0 18−20 9 ■− 1618 5 14−16 9 、∴麗 1214 6 7 2 10−12 2 9 8−10 ︵∪ 68 八じ 爪U 7 5 6 2 2 3 4−6 ,1 0 2 9 9 9 9 2−4 (〆g・gり (%) C 02 Fe Mn (〃g・g ̄1) 0,18 0.19 0.22 0.18 0.21 0.18 0.17 0.16 0.18 0.09 0.10 0.11 0.10 0.08 0.08 (−)notanalysed.Analyticalmethod:(C)coIorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)XLrayfluorescenceanaIysis. 6 6 9 ﹁ Appendix15.3 Ana】yt上calda【aonthe5dimerl亡COre SampLingsite:D.SampZingdate:11/20,1976.Waterdepth:4・Om・ 9 O 4 0 pU 4 RU 230 ︵U 7 ウJ g 緋 ︵占 ウJ Z 欄 q︶ 3 り山 4 7 3 5 J† ワ︼ 770 3 ワ山 21 1 0 53 2 l 3 57.2 55.7 54.8 53.D 2 3 ■〇 ▲‖日 ∩︶ l▲ 2 5 5 ハU A﹁ ︵O ∧U qU n 9 4 ▲‖己 ハU ▲.、D ▲パ7.一’ 4 ︻XU nU 亡U7− 6 9 3 7一b 6 6 6 7 −▲ 6一hU O 5 7 7 ワ︼ ﹁∂ 6 ■4 6 0U ∩乙+貞 几〇 U. 〇 爪V ▲U 〇一誹 9 6 5 6 6 2 ■.〇 5 5 8ノ ﹁〇 6 O つJ ︵U l1 5 7 5 5 7 O 9 6 几U 2 ︵U 2 爪V O ′0 O 9 ︻‖b エリ ︵VU 仁V O 0 5 ﹁∂ QU 5 ハリ 7 5 Z AT 9 6 qリ βU ﹁つ 06 1131187111533364 0 5 5 9 つJ 9J 5 6 7 ′D q﹀ nJ 6 3 7 9 9 3 つJ・4・4一3・4・A﹁ 59.9 4 3 55.3 9 爪V 6 q︶ っJ J︼ 3 3 53.2 1 3 52.6 QU 1 00 6 2.4 7 ︵h︶ 6 ﹁○一h︶+⊂J 5 6 5 6 ﹁J 5 56.7 9 5 53.2 3 0 22 3 1 5 ■U l 9 ハリ qU 76 3 つ] 7 1 3 2 O 5 6 ハU ハU 0 3 ワ︼ 2.4 9 7 ハU 9 3 ∩> 7 5 3 qノ O ウん・l一3 ▲U ▲U QU 1 O 0 4 5.4 ︻〓U T− つJ O 5 4 ウJ 5 5 3 5 4 JT A︼.4 4 ▲︼ 4 4.4 一7 3 3 9U つJ 3 ︹J 9 q﹀ 0 7 4.4.4一■l一■A︼・4 AT・一7 l・0 ︵リ バU 9 9 qU 3 3 0U ︵U 史U ︻U 爪V O っJ OU nU ︵リ▼ n︶ A・一斗‖︶ O EJ ︵U 5 3 n︶ ■4 爪U U ﹂’.4.4 つJ 3 3 O O 3 3 O O 一寸 3 つJ O一lU 八り ■U <U O 八V 人U O ︵U nV 八‖Y <U 3 3 3 0 爪U 7 免じ一h 75673566967。62362。65766669169。64。624659 2 ︻U 抽出8987鍾96979890968484朗㌍ n︶ nU 731 凸J 八U l Ol 7 0 ∧‖V 2 515 9 只︶ ︵U 7 3 9 qU・4 7 1 l l l ∧U 1 0 0 QU 只︶ 5 3 広V ′0 0 3 ︵X︶ 3 9 35 つ J 3 3 3 3 3 3 2 3 nB 3 6 31 3﹁∂つ3 J pU 2 O ハU 1 2 0U 5・4 1 1 q︶ ︵U O O ∧U ac再vationana】ysj5. −でロー. 1 2 QU 7 ︵U 9︼ 4 6 qU一U 2.4 6 見︶ ︵U 2 4 6 QU 1 2 3・4 5 6 7 ︵b 9−1,l l l ヽ1 2 2 qム 2 2 3 3 ウJ 3 つJ 八U 1 2 へJ・4 5 6 7 hO 9 ▲U りん 4一b 立U ︵U 2 4 6 QU ▲‖U ワ︼.4 1 1 1 1 1 つ] ワ︼ 2 2 ウ︼ 3 3 3 3 1 5 兄 只 八U O ︵U 1 つJ nU ■4 5 2 3 ︵U ︽U 3 7 ワ︼ 4 ︻U 9 1 3 一﹁ 4 ﹂† ﹂T 4 4 ▲b 3 ′† ▲4・4 5 ▲4 5 ワ︼ ク︶ 2 2 2 2 Z 2 2 2 2 2 2 りん 2 9U 揖08 4 0 n8 1 4 つJ 7 1 q︸ 2 7 7 7 G︶ ∧U U 1 2 2 2 1 2 1 2 1⊥ l ヽ▲ 1 2 ︵′− 1 q﹀ 5 9一1 3 7.4.爪V一b 3 ■4 5 7 ︹J .4 9 7 7・一7 3 3.4 ウJ 3 つJ 3 3・・4 64聞575755495347粛5351515150 妃U 5 3,1 3 3 爪V 5 β ハリ O O ︵︼U・4一 QU 8 QU PU QU 8 RU 7 7 8 ∩古 ︵VU 7 ︹凸 5 1 0 ∧U,⊥ 3 54.1 ■〇 3 ウ︼ 3・4・4 ト)not analysed.Analyticalmethod:(C)coIorimetT・y,(AA)atornicabsorptionspectrophotometry,(XRF)Xィayfluorescenceanalysis,(NAA)neutron 53.6 333▲︼3・43333・ヰA︼333434ノ733つJ33 2 q︺ 3.710.37 18 50 250 62 90 143 10 1.110.39 qU 4 .1月.2J一1.2.2.2J.1.1一1一.1一.1﹂ ﹂ 14.5 61 5.612.148.6 20 51.4 柑 15.7 42 5.31l.647.1 3.39 0.40 15 47 237 70 98 151 8 1.09 0.40 0 5734 3 3 2 1.け5 0.39 599570577560533605538550506493㈹499434409366386359381372339312309353324 1.07 0.45 (〝g・g1) (〝g・g ̄1)(頑㍗g ̄1) 51.7 26 1(I.154 5.412.749.0 21 8 3.飢lβ.3タ 24 j7 24き 66 90 144 23 1Z.8 52 6.312.346.5 29 3.90 0.40 22 52 254 68 94 149 15 13.7 53 4.712.850.7 17 7 XRF NAA XRF C NAA XRF AA XRF C XRF NAA XRF Hg Co Cr Cs Sc La Ti Ni Cu Zrt Pb Sr Rb As Fe (〝g・g1) (%) (%) Mn N P Na Ca K (〃g・gり(%) (%) (〃g・g ̄り 恥h(Cm)さ孟; Appendix15.4 AnalytlCaldataonthesedimelltCOre Samplingsite=E.Samplingdate:8/5,1976.Waterdepth:75.Om. 37 11 4. 44 47 66 47 61 2. 46 60 3.2.2.L 46 □U l▲ 4 ▼ . 1 2 . 7 q︶ ■﹂J 9 5 56 5 4 54 3 53 50 9 一’ 56 1 7.5.6. 53 爪U 55 9 7 ¢U .4 ワ︼ 3 一b 6 5 4 3 仁U 一’ 3 4 ︻U ■〇 ■.〇 4 9 ︻U .4 O 4 ﹁〇 5 仁U つJ 5 6 ⊂J n︶ 0 5 4 2 ︵占 O ・4 4 2 2 4 2 Z ワ] O ︵U O Z O 3 3 O 2 2 O 3 3 O 9 つJ 2 3 .4 O 4 ハU 4 O ・4 O 5 5 ﹁∂ 3 O 4 八U .4 7 ・AT 7 .4 ¢U .4 ⊂J 7 つJ 8 9 4 9 7 pU 7 7 .4 一4 ・4 3 2 00 690 0.75 0.30 つL 50 970 0.69 0.28 ⊂J O ︻U 3 4 ・4 2 1 ﹁1 爪じ 八U O D 9つJ 3 八U 9 27 2 1 30 870 0.70 0.30 840 0.77 0.31 1 0 2 爪U Jq ?︼ qU 6 一q 9 9U 0U 0U 6 7 7 史U n凸 O つん 9U l エリ l A﹁ l nU ワリ l QU O l −−00■ 20 8 一† 仁U Z 8 60 50 20 ▲︼U 2 2 ハd 7 ハU つJ ハVU 2 つL aTlalysis. ︵U 2 1 O ハU O ・4 1 6 .4 0 5 7 2 ▲4 ・几T 4 4 4 ■へ︶ 3 l ︵U 5 4 7 ・4 ヽ1 ・■り −4 4 910 0.76 0.32 5 日U 7 pU 7 ′0 1 ︻ 7b 1 2 1 1 エU 6 ﹁n︶+■d一・与 4 6 QU QU 9 4 亡り 4 5 7■b 2 3 エリ 5 5 7 QU 7 3 ‘U ﹁〇 7 7 1 QU 7 6 2 O 色U 2 3 O 3 ﹁〇 3 8 7 O っJ 2 DU 9 Pリ 几U ハU n凸 7 .4 7 1 ︻じ ハU 3 ∧U EJ 1 9 4 O.L O.2.3.乙 一7.5.6.臥 9 L 9 っJ 9 ハリ ハU q− 5 2 0 4 3 4 q︺ ・4 7 ▲¢ U ︻hU b ︻b ︷b 7 6 ﹁〇 4 ︵U 2 1 O 5 6一 60 61一 4 3 1 0 6 5 4 .4 1 5 ■4 2 80 1130 0.81 0.34 C 1 月 〇 ハb ■.〇 3 爪V 1 3 O 1 ︵U QU 7. 2762つJ 2 9 7 5 2 2 .4 9 .4 Z 20 970().79 0.33 C 6 ︵U AT 0 ∩8 nD 2 1 0 7 nO ∠U 3 3 80 840 0.79 0.36 ㌣ 1 5 7 3 6 2 叩40 1040 0.81 0.34 ‖ 7 nU 1 .バー.4 2 2 70 l170−0.74 0.36 ′ ︹占 O ■4 5 2 00 1ユ90 0.80 0.35 gg 爪U ∩る 4 ︽b ・A..4 q︶ 4 3 爪U nU O ︵U O 爪U O ︹U ︵U ︵U ハU ︵U ︵U O ハU O n U 9 U3 53 63 一︵ 8 7 62 3爪V ・4 9 99 6︵U 3 U爪V 3 0 A︼︻﹂ 2 Z 2 2 t 2 7 2 ワ︼ lQU り︼l▲ l l l 5 l Q l 17 7 3 0 ∧..U O 八U O O ︵U ハU ハU ∧U ハリ O 4 1 ﹁〇 つJ On 7 エU 2 QU O 5 0U 八U ﹁〇 仁U 6 ︵U n8 ・4 1▲ ▲t 1 2 馳 1040 0.77 0.3Z 3 6 1 7 3 5 6 史U J︼ nU 2 2 QU ︵U 9 2 ︵U nJ 4 2 3 3 3 5 ■﹂J ■4▲+一︼ 4 ・4 5 5 ︵b 2 つ] ワレ 2 つ﹂ 2 2 2 Z り] 2 2 2 Z 2 2 00 1060 0.710.36 3 2 4 っ ウJ J ■ 2D 29 27 Z5 つワ ︼︼ 20 20 ?1 ︼ 9 2 ︵ 2U 1DU 1 7 1 7 1 ︻ノ 7 ︹ヱ 7 0 00 7 6 7 ∩凸 爪U ハU Z 2 Z l 1 1040 0.75 0.37 A 6 3 5 ハリ 2 ‘5U 一d ︼ 7 6 00 b 6 6 ︻b ‘U り少 d﹁ T− (−)notanalysed・Analyticalmethod=(C)colorimetry.(AA)atomicabsorptionspectrophotometry.(XRF)Ⅹrayfluoreseenceana】ysis,(NAA)neutronactivation .q4 1 0 0 9 5 エリ ﹁〇 6 3 00 5 ︵U 7 Q0 ︼ q︼ q︸ ∩﹀ 9 qU 9 0∩ 7 7 7 7 7 ′0 ﹁〇 ︻/ 3 0.43 − ︹鵡 4.83 0.43 4 0.41 一4 4.69 0.39 ▲斗 5.01 0.43 ■ヽ︶ 4.92 0.40 4 6 4.82 0.43 n 3U ヘ︻ リ′− 6 9 3 7 2 9 仁U1 3qU 5 7 1 ・ へ4 J 一 1b 91 00 n3 J 9 3 5 2 9 4.98・D.4D 1220 0.7()0.34 Cs Sc P Na Ca K 4.80 0.35 1(〉20 0.59 0.31 (メg・g ̄り (〟g・gl) Ti (%) Ni Cu Zn Pb Sr Rb Fe Mm (%) (〃g甘1)(%) (%) (〃g・g1) C NAA XRF AA XRF C XRF NAA XRF 恥h(cm)∼あ Appendix15.5 AnalytlCaldataonthesedimentcore Samplingsite:F,Samplingdate二8/5,1976. Waterdepth:87,Om. P Depth (cm) Mn ・J†gゴニ・ qU −▲ 3 3 9 7 2 nJ 5 1 3 3 5 2 3 nO OU 1 9 4 1 ■4 − O 3 1 1 nJ 6 ロ0 7 00 − 0 − O 2 <U 5.26 −101 <U 2090 2330 (AA)atomicabsorptionspectrophotometry. O 2 5.36 (C)colorimetry, 2 5 6 2 9 1820 2770 (一)notanalysed.Analyticalmethodニ 八U 1 835 O 5 9 9 2 1 4648 3 0 6 40−42 42−44 1080 44−46 O 1 2290 O 7 2 nU 8朗 <U 3 38−40 3030 2 7 3638 一 ﹁〇 5 5 3 1 2 6 0 34−36 1200 3040 5.12 O 2 2 32−34 4 史U 只U 0 3 交じ 2 2840 ■4 爪じ 7 30−32 1170 4 6 亡U 0 3 6 QU 1 980 爪U 7 3 2830 4 亡U 4 24−26 26−28 ﹂− 9 2 1J ⊥ ウ 0 6 3 2 2 爪U 5 7 3 ハリ ハU 22−24 5 <U 7 18−20 2022 5 O 4 5 O O 16−18 2 <U ∧U 14−16 5 O <U 3 5 O O 12−14 ■月︼ <U ︵U 8−10 1012 O ハU 6−8 4 4 O 46 nU O 2−4 4 <U 爪U 02 00 ■バ︼ 0 3 1 3 5 ﹂7 9 只U 1 2 9 6 1 3 1 ︵凸 9 9 9 1 ∧.U 6一1 .2一.1 AA 7 4 C Appendix15.6 AnalytlCaIdataonthesedimentcore Samplingsite:G1・Sampllngdate:4/4,1977・Waterdepth:97.Om. 2.65 1720 4,70 483 5l(I 4.87 − 1940 49Z 一 026 2.56 O.2畠 2.78 け,70 0.70 0.Z8 0.28 2,60 2.63 4.64 477 5,】5 4.70 0.51 4.73 5.07 5.20 0.52 − 0.52 4.5 5t】 4.6 19.8 4.2 18.3 51 4.0 18.7 .55 5:1 4.4 4.8 17.5 17.6 O2一b3 (XRF)Xrayfluor亡∝enCea六a】ysis,(NAA)neulrona⊂tivationanalysis  ̄ 1.2 13  ̄ 0.9呂 1.09  ̄ 25 」 】47 23 27 19.3 78 68 143 1▲6 16.2 28 196 :Z7 25 − 26 19,7 17.2 230 73 1.8 1,5 1.9 1,9 2.0 2.5 2,0 1.7 1.7 69 1.9 18.7 25 23 7!〉 29 20.1 73 2.0 78 2.0 2,l 83 2.3 20 − 167 1‘土1 64 23 − 185 182 26 218 26 30  ̄ 70 1.9 187 70 一 26 25 − 18∩ − 2.0 78 1.9 Samplingsite:G−2.Samp]ingdale=4/4,1977. 36.2 12 386 11 46 48 42 40 42 41 41 41 43 7 86 40 7 80 6 8.3 41 39 1()1 1畠1 66 150 178 4Z 」  ̄ 154 146 7() 42 l.04 148 40 2 10,0 2 6.9 3 225() 8 203() 8 1970 3 − 1 1830 86r〉 970 980 2340 612199991000820111月u︹0 49 「 107 】41 155 155 4.g 3,7 3.0 0.97 0.16 0.96 012 1.04 1).07 l,06 0.〔嶋 1.01 0.06 099 0け7 1.0の 1.D9 1n6 】.01 1.01 0,99 l.06 l.06 106 1.00 1.04 0R3 l.OJ】 0.98 − 0.10 − 0.10 ﹂一.1.1一.1一.1 4.3 54 1()9 400000Z。0。川30州9080馴004。g。関川仙407070 38 58 26 301 68 46 l 59 4.6 30 25 25 28 087788R8呂88989889888 4.5 4,Z 6【) 65 4f) ︵U 55 56 26 145 02A=6:h ︹U2468の246<nハリ 4 4.5 183 154 24 27 468024680Z46畠02468 4,3 53 29 24681111122Z2233333 02 53 l 4.8 205 27 148  ̄ 42 〇一.9一.〇 64 l10人U 4,4 5Z 150 41 2 4.4 36 62 〓一L。一= 71 55 17.4 58 16.7 69 18.8 68 34 4() 20.6 75 25 17,3 71 15.2 (〉7 184 67 1.9 1Rの 68 17.1 63 「 27 1t;.9 68 29 31 18.2 70 23 − Z7 17.7 69 27 26 18,4 59 24 18.4 65 83 47 】44 168 144 17二1 149 44 4.4 78 . 59 3 3.3 n=‖O 54 l 4.6 3.7 130 .7.8.9川.9.9.9.1.〇,9.9 4.7 56 55 141 58 808318982773 4.0 51 人じのO 55 333233433343333333444535 0658618157028436746R8528 777鑓U‖ら789呂898877777只︶只 7777 l−1111一1111111ヽ▲1111 333ユ34:34334333333333333 人U9DO549Z428人U1097099176364 l l O73畠8706=693411ヰ26q4680 t l 385315620688995355只︼7▼4=b4・ l 1 7789989C99988呂A988898888 R 53 147 178 ()7 6 7一94一85 − 0.GG 8 n.7:Z 149t) 4,58 473 157 l‘18 64 二12 一.3ふ .6一6一.8 0.66 4.57 4,64 − 1(〉20 36 147 1 一 2.60 2.77 143 57 ‖0・6L。L。‖ 0.69 0.2且 − 58 57一57粥一53 0■26 0・65 13514仁V182605693699Z O 111222223っ︶33344 069 234543151151551556575555 11111111111111111111111 − ∩=リ14103121222111Ⅰ3324333 067593064910213ブ〓8︰b1927 0▲58 4.70 136 185 33一26一祁一31一2928 り・61 】970 4.65 0.27 137 177 _ 2.70 4.82 1Ⅰ4 150 158 139 9Ⅰ 23∩ 46 55 76 174 54 G9 73 153 43 68 6〔1 132 37 73 53 132 :事3 70 55 1:15 31 67 58 13t 二13 66 55 133 31 64 56 1‘10 36 1;6 − 0甜 10100 4.57 4.92 4400 4.55 5.13 250〔1 463 5.23 2080 4.60 4.74 1700 428 430 195n 4.49 4.93 194() 459 5.08 1600 437 −l.27 慧7。1鵠76。補749認諾⋮捕66。餌拙⋮冊858891752655諾 06R O.29 0.62 − ぐ%) こ%) .5 .5一.5一j lり︼−J45681 069 028 2.31 0.77 (),3二1 25Z O80 0.3▲ 2.75 0.77 0.32 2,76 070 0.30 2.6ひ 0.74 0.33 :Z70 0.75 0.30 2.89 0,65 027 2.7t】 n.68 − (肌▲■) XRF XRF NAA XRF 3933詣30332629313434調2931一333329二 一5 29 9=65m434252534448= 4〇 q −−ON■ 苦い㌻㌻㌻川ほ‖1618M器24莞芸34莞4。 tk〆h(cI¶) は)サ 牒 Appendix15.7 AnalytlCaldataonthesedimentcore Samplingsite:H.Samplingdate=4/4,1977・Waterdepth二89・Om・ 309876ニU 5一.3.4﹂J﹂,9.8 n。。。︹ 0988川877070 01〓一一〇一〇二一一一=一= 9135262926293031叩262728252631293029四2831 17。.811訓173146皿19Z147156一159.55一で14114。13814。162.7。 9.9.7 32 ・ 43 ・ 1 ・ ■ =0・7 6針7.99.8飢〇.仇7臥7.7.5.一7.臥7.6.7.7、6. 。 0 414943別645847556443一一一 1 9.32、6.乙4.臥5.4.〇2.仇〇.㍗一2.3L臥l9.7. ,。・4ゴ一 一二ノブ= 。 725651544651535052515052引57515353525255誠56 6.8.9﹂川.6 444643434445464949474850帥誠50餌505151495551 ..6.1 1﹄ 4.2.2.15一﹂J一.〇一.2 l1−. 0﹂.〇 7 ︵8 9 0.1l j,〇.9.〇 3 0.1二1 0030帥聞0030卸30002080餌訓20細別訓00洲700030 即納㍑8783郎9292857787797974 5686詣3130321543光49一3226一5〇5〇一5〇一60 6れ︶ 0.13 70746869626366666157616262朋忘7469駈696。65 7136け2528270531日18‖19一18‖一〇7一39 (−)undetectableoTnOtarLalysed.Ana)ytica】method:(C)co)orimetry・(AA)atomicabsorp(ionsp∝trOphotometryI(XRF)Xrayfluore監enCearLalysis・ (NAA)neutronactjvationarlalysis・ 747465717071門75666666646971一7175677475舶70 0.18 捌04。川Ⅲ洞78〇一隅緋ふ一柵47。一皿柳1・。 0.13 Lu 〇 9.臥針臥67.軋9.8.5∵L臥9、7.針仇仇臥08.9. 0.11 ‖▼8.9.臥臥q.9.108.軋ゝ8▼ゝ7.−8.ゝ軋−8.−9. 0.10 (〃g・E1) ■ ㌻16810ほ‖16182022242628卸323←誠罰刑場.1.〇.〇,〇.1,〇一 〓こ■‘ 0.09 K N P XRF AA XIくF C XRF NAA XRF xRF As Rb Fe (%) Ti Ni Cu Zrl Pb Sr (〝g・g ̄l) (〝F・g▼■) (〟g・g ̄り (%) Mn (〟g・g ̄▲) (%) (〝g・g▲l) ⅠL. 拠pth(cm)(%) 6 1 7 6 1 6 3 7 0 6 6 つJ 5 7 7 7 QU 9 4 ウJ 7 6 3 9 7 ︵=O 7 5 4 0 9 9 3 6 7 1・4 4 9 5 4 ︵0 9 6 4 2 3 史リ 9 エU A 5 L 2.4 9 E T l qU つJ 3 B 2 a 2.■q 1 u a 2 0 日U ﹁D 3 4 3 l 2.4 O つJ ︻U 3 l 3 4 7 0 5 ■U 5 q︼ 5 ﹁〇 1 2 ﹁つ 3 2 N 1 ﹁▲ 1 2 1 1 1 1 5 tD Y m ・い 2 只︶ 6 3 3 3 0 つJ 4 q 2 3 1 2 3 2 4 1 ■・1 6 4 つJ 3 uU つJ 4 9 1 ︵U 仁U 3 O 5 り︼ 4 6 1 qU 3 2 0U 4 l l ︻LU 9 〇.4 7 l ワ︼ l り︼ l l l り︶ 2 6 7 0 1 2 つJ A.︹∠ 1 2・l l ■4 7 2 ■4 3 2 ■4・ 2 O 5 3 ﹁〇 4 qU 2 1 4.4 4 4 ︵U 5 7 つJ.4.4 3 5 5 O 5 3 ハU 5 ﹁〇 9 5 4 5 O 人U ワ4 ︼ ▲ つJ 7 8 QU 3 1.4 5 A﹁ 3 5 ︵︼U 3.4 d ‖ pU J・■4 5 d▲ 0 3 55 q︶ 4 ■4 5 0U ﹁〇 1 ハリ 6 5 5 9 5・4 9 1 5 ∧U 9 1 l 7 1 6 l 7 67▲L6 U 八U 2 3 ()undetectableor not analysed・Analyticalmethod:(C)colorimetry,(AA)atomic absorptio−1SpeCtrOphotornetry.(XRF)Xray fluorescence analysis,(NAA)neutTOn aCtivation a11alysis. − 7 2 9U 1 nb ﹁〇 − 7 7 4 q︶ 八U 2.4 5 7 ﹁コ 9 ■4 5 1 6 0 5.4 9 0 5 5 2 ︹凸 − 7 6 QU つJ 7 ﹁D.4 5 5 3 O ︶U − 7 5 2 1 5 1 5 ∧U 1 0 3 0 11 5 ハリ 5 ︻U−U 366394969272一79〇3一92一879798 O O ≠U S O ︵凸 − u 2 5 5 2 史リ 7 5 1 qU 6 5 0 7 3 ■1 9 ﹁J 5 5 ¢U 7 5 鑓U 7 4・4 5 5 6 5 0U 5 2 5 7 鑓り ︻U 9 7 3 ︵U ■4 4 5 1 2 2 7 4 ¢U 5 q︶ つ︺.4.一︼ ■4 5 5 4 4 3 4 4 4 4 4 3 3 3 7 9 7 9 l 9 QU 4 1 5・4 ︵U ハU O q︼ 7 nU 7 2 qレ 3 q︶ 5一人V 3 5 ︹D 6t′ ′0 0 1 7 7 ﹁D ﹁つ.4一かU ﹁⊃ 5 5 5 仁U 5 5 5 5 5 5 Q︺.A 1 ﹁〇 7 n> 5 ︵U 几U O 爪U B 人じ a ︵U O .b ︵U 645 2 7 4 2 ︵U O ︵U ︵U ︹D 2.1 5 ︵U ︵U ハU ︵U 5 nU q︺ 6 7 2.6 ().39 0 9 9 3 O 5 爪U O O ︵U 5 7 1 3.4 74 8 8 0 pU ︵U ハリ O 八U 9 9 ︵U ≠U O ︵U ︹U 八U 1 O 74 7.2 0 0 3 ︵U ︻U ∧U 爪じ nU 7 7 ▲b 2 1 ハる 5 7.5 513 10.2 14.7 3.8 17.9 621 10.9 15.3 1.6 5.4 1 5.d▲.4 O 5 爪U ︵U ︹U O O 7 7 ︵U ︹U 6 7 ロリ q︶ 9 39.5 2.0 2.5 15.4 78 3.6 15.3 7.9 0.50 4 5 0 O O ︵U nU んり C 0 1 g 一 一 42.6 1.2 1.2 − 40.4 0.8 一 一 636 14.2 16.2 3.2 0.46 3.1 0.49 2.8 ワ︼7172766日UO9■・l 0 .2﹂.〇﹂﹂.〇一.〇一.2.1▼2一.〇.2 5 0 O ハリ O O O ㌢ ′ 7 0.52 39.9 一 一 1.4■ 41.4 1.6 8.1 84 qU 7 1 9 1 6 よU ﹁〇 7 9 9 7 RU 爪U ︵︼U 3 2 2 1 2 1 ︼l l,1 1 1 1 1 ワ︼ 1 2 1 ︻U nU O ︵U .7一.7.7.7指.〇 〇 C 02394爪U ︵U ︵U ハU爪じ爪U▲UOO 0 0 ︵U ︵U nU 161682878373一 86一27一〇8一〇5一1614 ︵U O ︻U O ハU H gg 一77一78〇3一22一〇820 8.一針針.8.9.臥 ▲b 6 0.55 79− 3.8 3.7 79 80 16.1 0 S O 2.40﹁〇・40ハリ937S 99 ︵‖U ハU 八U ハU ハU 9 q︶ 85 3.1 8.2 3.6 17.4 8.5 0.8 1.3 40.2 0.9 42.2 749 11.0 17.2 4.0 16.2 8.0 7.7 12.3 ▼9.9.9.8月.9一.9 ▼一8.9.9一一8.8 ハリ O ︵U ︵U ︵り ︻U 几U ∧U O C 2 3 7 5 3 6 5 7 4 りん 6 5・4 4 R︶ 0 3 5 5.4 5 7 5 ﹁〇 2 3 3 5 つJ 4 5 2 2 3 ワ︼ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ワ︼ ∧U 7 5 1 2 1 9 3 QU.■q l 1 5 1 5 0 1 仝U 3 3 3 3 3 りん 3 2 つJ 3 ■4 3 3 つJ 3 3 2 nU hU nU んU ハU QU 6 9 凸ノ 3 6 日U 2 2 dノ qU 1−4 2 八U 5 3 5−4 仁U 6 7 6 6 7 7 5 5 仁じ よU 7 7 6 6 5 ︻b hU l 一8.〇.9.9.9.6 ︵U O O ヘリ ︵U 7 2 ︹る 7 3 9 6 ︹凸 ハリ 1 00 7 7 6 父 5 2 6 88 3.7 7 9.4 63() 12.9 17.0 6 516 13.0 16.7 2.5 3 2.9 3 97 3.3 0.43 一 一 1.0 45.5 一 一 44.5 42.9 577 11.4 15.7 0.13 9.4 16.3 0.8 1.2 725 11.4 15.8 2i, 584 11.8 16.5 4.1 0.9 0.9 1.9 20 2.2 0.45 − 88 3.7 3.1 6 91 3.8 9.2 17.0 一 − 682 1l.2 16.2 30 0.1l 一− 3 9.1 647 1l.5 15.8 2,0 26 l.2 0.017 5 729 10.9 15.4 2.0 23 2.1 0.50 1.5 47.9 1.3 1.6 −− l.4 20.7 1.3 l.1 4g.4 21.6 − 4 47.1 1.0 1.1 45.3 l.0 1.2 19.2 − − 7 l.0 7.7 824 12.4 14.6 3.4 32 2.2 27 只︶ As 5 ー・;■− (〟g・g ̄l) 2.3 31 23 0.50 32−34 2.2 − 28 0.51 3032 81 3.5 0.53 2830 8.4 0.57 26−28 543 10.9 15.5 0.55 2426 1.8 0.55 2224 1.4 1.3 0.11 0.60 2022 3.7 0.55 2.9 18.6 24 19 0.5() 18−20 83 0.56 16−18 513 1l.6 15.9 8.7 0,50 14−16 0.15 23 只︶ 1214 0.8 25 n︶ 1〔l−12 1.9 − 0−56 0.54 0.53 810 4 20 17 0.47 68 8.9 0.47 2−4 48.5 − 10 39.1 1.2 1.2 73 3.4 24 0.46 46 2 lト.− ZO.9 xRF NAA XRF 40.1 0.8 7.6 23 Lu 15.6 715 11.0 14.3 23 (〟g・g ̄り 0,48 (〟g・gり (〝g・g▼1) (%) (%) Rb Ni Cu Zn Pb Sr Ti Fe Na Ca K Mg Mn (%) (%) (〟g・g ̄り AA NAA XRF AA AA XRF C XRF NAA XRF (%) P gl) 恥h(cm) − Appendix15.8 Analytica]dataonthesedimentcore Samplingsite:Ⅰ.Samplingdate:4/4,1977.Waterdepth:73.Om. Appendix15.9 Analyticaldataonthesedimentcore Samplingsite:J.Samplingdate:4/4,1977.Waterdepth:44・Om・ l 朋2513 ︻ 21 ■ DJ nU ︹凸 0 ︵U 1 4 2 2 9 Z L A 史U 19ユ7 O u B 2 a 2 6 5 7 u 3E 3 りレ 仁U l RU 3 9 4 l 2 l 6 7 O O 1 6 7 1 9 1 一〇2一一〇1m 7 2 ﹁J 9一7一一12 6一LU 714 J︼ N nコ S 6 7 Z l <U O ハU ウ一 l 12 9 9 1 2 2 2 3 3 A﹁ 6 2 3 3 9 9 つJ エリ へJ・・勺 4 5 nJ・4 エリ 2 ■ヽU ︻b 9 4 ︻b 4 ウリ ワ] 6 9 2 八じ つJ 7一 7 7 QU 4 7 つレ ︵ソ︼ ︵∠ 7 0∩ 4.A一 7 q︺ 7 7 5・4 り﹂ Z 7 7 6 5 几LU.4 Ar ﹁〇 0 5 8 9 鑓U ’1 7 l ︹凸 g 4 ︻〓﹀ ﹁〇 交じ一‖ l 9 鑓U 2 5 エリ ︻VU 3 3 3 1 nO ロ0 7 1 7 9 5 l rrU 6 QU 6 4 3 ︻﹂J一b 5 0 ﹁∂ 0 2 4 7 ワ︼ l 7 3 り山 OO 0 5 Ar ロ0 1⊥ 7 ー 6 ︻‖凸 ユ 7 9U l ハVU 7 n8 0 9 8U FJ 3.4 7 3 l 軍44453739謂433639 爪U ・ 11 0 d 5 一一一85一一3045 5 ‖ 4 l C 5 11 3 7 7B 7 ︵U 0 7S 1 一† b4 ︵0 T クリ .h qU ︵U 振 0 3 dJ 8 ウリ 4 T 5.一q 2 9 q﹂ ■ヽ︶ 1 5 仁U っJ 6 O 7 2 4 2 3 5 ▲︼ 3 5 ︻人U 3 3 nU ﹁∂ 1 つJ 5 l 7 2 l. ■11 ︻‖U ‘U l 3 1 9 C C ト)ur)detectable.Analytiealmethod:(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)X−rayflutrencence analysis.(NAA)neutronactivationanatysis・ 4 l l 6 nJ ■﹂J.4 7 ﹁nU 5 5 6 0□ 凸J 爪U QU −q 5 6 ‖﹁D S 2 2 2 ワ ︼ O 2 O 几U 長V l O O ワ︼ い 9 6 ︻︼U 7 ︹八︶ い 0.51 3 O ︼ 仁U つ⊥ 八U l O ︻U 7 nU O 仁U 2 ▲hU けー 0.50 1 l O nV 8 ハリ O lト nU 2.4 l l l ‘U 9 7 l ノー○∽■ 0.55 ワJ ︵‖︶ l 8 ︵〓︼ O l 1.A﹁.4 nU ︵U nU 9 hU O 5 ︹凸 0U 9 9 6 ハD 4 い、−﹂h 2 2 97102721お02360203 O (〃g・g1) 3 ハU 5 2 2 9 6 0 ¢U ︵U 7 1 1 7 4 3 4 9 ︵U 9 2.几T 2 0 5 2 エU 00101030704000射30 5 Z 0 4 2 4 Yb Lu Rb As (〟g・g▼j) (〟g・gり Cu Zr) Pb Sr Ti Ni Fe (〟g・g ̄l) (%) (%) (〟g・g1) (元) (〟g・g▲1) Mn K N P 【kpth I.L. (Cm)(%) Appendix15,10 AnaIytlCaldataonthesedimentcore Samplingsite:K.Samplingdate:4/4,1977.Waterdepth:35.Om. K Ca Mg P Depth(。m)(些g・g−1) (%) (%) Ti Ni Cu Zn Pb (〟g・g1) (%) <U 5 4 7 8 1 0 ︹盲 ∩8 6 3 2 2 3 2 3 3 2 5 3 9 9 ︵パ︶ ︹B 1 00 1 00 1 7 8 史U ︹古 史U 7 7 7 亡U 4 6 RU q︶ 9 8 8 1 . 4 7 5 9 4 3 ごU 3 3 2 3 7 6 28 1 28 ︹uJ 28 29 1 3 1 28 6 30 4 1 1 2 4 7 1 00 .4 4 4 3 3 2 4 3 1 33 9 1 31 1 l 7 3 1 29 4 4 3 3 9 3 (一〕notanalysed.Analyticalmethod:(C)colorirnetry,(AA)atornic absorptionspectrophotometry, (XRF)X−rayfluorescenceanalysis. 1 978 4.37 4,52 0.60 33 1 4.64 0.6l 35 1 2.45 0.43 1.00 1270 − 41 00 944 36 1 − 5 リJ 639 37 2 <U24 3 4 日つ 2.40 0.40 1 4.74 0,61 1 − 1 − 1140 2.26 0.39 1.02 1410 1030 4.67 4.50 0.59 つJ 3 690 − 4.36 0.57 3 − 2,40 0,40 − 4,92 0.64 3 − 840 1000 − − 3 2.26 0.36 1150 1 2.43 0.39 0.99 1420 1090 4.69 4.67 0.61 2.50 0.41 − 1 850 3 2.47 0.40 1.Ol 1480 1240 4,86 5.05 ().66 1 3 930 1 4.89 0.61 2,30 0.41 0.99 1470 1230 4.92 4.87 0.61 1 − 900 史U54555253594159﹂7 2 5 1120 0 ー 2 30−32 2.42 0,39 9 28−30 ■⋮一8・0 26−28 4 24−26 ㍑ 22−24 2 20−22 ﹁⋮■ 18−20 2 16−18 ー 5 14−16 8・6 12−14 1 q7 U ﹂ ︵U 2.55 0.35 0.97 1400 1110 4.85 5.06 0.62 34 1 0 2.60 0.34 0.94 1420 1110 4,75 4.88 0.58 740 ︵H︶ 2 2 640 8.1 1 3 7.7 42 6 1 9 3 4 ︻︶4 O 6 1 8−10 10−12 58 2 2.60 0.36 0.92 1510 1160 4.51 4.73 0.53 3 2.62 0.38 0.95 1530 1160 4.6S 4.69 0.53 700 2 670 7.4 1 7、4 6−8 1 4−6 1 2,65 0.41 0.96 1710 1430 4,98 5.09 0.57 1 2.54 0.42 1,00 1790 1460 5.26 5.03 0.56 820 1 910 7.9 0 9.4 2−4 2 9 0−2 n qレ29 36 ﹂ 2︼ 3 48 3 2 4 4 0U 5 AA AA XRF C XRF XRF 4 7 XRF Fe (%) 1 C Mn (%) (〟g・g1) 岬(cm)か掌 一一 一 ⅩRF O−Z lO.6 1310 2.26 0,36 0.94 6530 6010 5.20 5.18 0.45 37 82 237 2「4 8.4 960 2.72 0,37 0.94 3150 3550 5.00 5.22 0.49 26 66 153 4−6 8.0 1060 2.37 0.31 0.94 3090 3020 5.09 4.74 0.40 28 55 6「8 8.3 2.42 0.32 0.89 2670 2630 5.06 4.79 0.43 29 54 128 890 8「ユ0 β.0 朗0 10−12 8.0 750 12r14  ̄ 14r16 8.7 18岬20 一 − − 8.9 − − 2450 − 5・05 0,52 30 38「4() − 2360 − 5.05 0.54 34 73 80 37 136 35 139 ユ43 72 72 7(1 35 − 2750 − 5.13 0.56 − 2870 − 5」9 0.57 38 41 − 2860 − 5.05 0.50 35 一 3100 5.29 0.51 41 61 146 33 146 70 31 33 134 38 136 27 33 35 146 27 73 31 37 134 59 143 71 71 34 132 35 136 56 146 59 141 28 72 70 34 136 3〔1 36 144 32 73 32 141 72 56 143 54 137 臥7 】ユ00 2.25 0.31 0.96 2670 2970 5.22 5_21 0_51 36 28 32 61 145 59 145 32 148 29 140 70 55 133 55 137 35 37 52 142 58 147 2.43 0.29 0.94 2590 2820 5.21 5,15 0.51 36 2.30 0.29 35 51135 33 2.24 0.28 0.94 2500 2630 5.10 4,94 0.50 2.23 0.29 8.9 1130 − 34−36 940 33 30 54 135 29 2,42 0.28 0.99 2580 2600 5,32 5.03 0.51 28 2.41 0.27 32 29 2,18 0.26 0,98 2550 2440 5.33 4.86 0.51 39 2.40 0.3l 8.7 1050 30−32 36嶋38 2.31 0.32 8.5 1000 26【28 32「34 131 134 83 129 45 144 ▼ 2330  ̄ 4・710・47 30 58 144 40 30 144 70 2.52 0.31 0.95 2400 2460 5.26 5.25 0.55 2・30 0・27 一 一 22「24 28「30 54 9.0 1i20 2.27 0.30 0.∂9 2700 2580 5.30 4.94 0.51 31 20−22 24「26 29 2.70 0.31 0.90 2430 2500 5.08 4.99 0.48 2・43 0・28  ̄ 990 − 16r18 2.45 0.28 0.89 2490 2420 4.97 4.74 Cし45 63 38 67 70 35 140 72 66 27 39 133 67 ()notanalysed.AnaIyticalmethod:(C)colorimetry,(AA)atomicabstrptionspectrophotometr),.(XRF)Ⅹ−rayfluorescenceanalysis, Appendix15.12 Analyticaldataonthesedimentcore Samplingsite=M・Samplingdate:4/4,1977.Waterdepth:40.Om. P Na K Ca Mg Depth(cm);ごこ(FLg・g1)(%) Mn (%) C AA XRF Fe (%)(JLg・g−1) AA AA XRF C XRF XRF (%) Ti Ni Cu Zn Pb (〟g・g1) (%) XRF 7 1 0 0 1 1 O 1 7 19 9 9 18 6 ‘20 17 9 14 7 9 18 ∩凸 史U − − O 1 5 5 9爪U4l0< 0U3l0l3lRl U ハ1 リ 5 − O − O 1 RU 1 − ︵U ︵U 0 0 2 1 0 5 1 1 1 9 1 − 1 1 − 1 2 16 20 亡U 1 2 1 15 亡じ 1 1■.1 3 0 4 7 八 H︶1 9 00 〇 0ハ リ 9 O2 l l5 l l4 l4 l 史U 1<U2 ハリ 1O 3 1 2 18 2 1 21 00 2 7 19 5 0 4.72 0.63 5 4.79 0.65 5 − 858 3.69 4.53 0.60 899 − 2 1030 7 2.39 0.65 4.48 0.65 17 7 28−30 900 1.39 2.20 0,591.16 − 867 4,22 4.39 0.64 907 7 7.5 2,29 0.59 870 3.90 4,46 0.65 862 900 1.31 2.29 0,65 1.12 1040 4.57 0.68 9 2628 一 833 八U 7.8 一 一 5 2,36 0.61 24−26 一 750 1.49。2.30 0.61 1,211000 2022 22−24 2.38 0,66 842 3.69 4.54 0.64 5 7.7 一 7 一 960 3 18−20 720 1.49 2.49 0.67 1.22 4 1618 7.7 2 4 14r16 31 21 1 4,69 0.64 4 870 7 929 4.63 4.65 0.63 3 一 ・4.・4. 3 2.27 0.66 4 4 − 0 3 900 1.72 2.27 0.63 1.22 1060 1 4 ︹汽︶ 3 12−14 8.3 ■4 3 1012 00 3 997 4.15 4.83 0.63 2 3 l 940 4.47 4.54 0,60 8.3 1230 1.26 2.29 0.65 1.24 1120 5 O 3 8−10 45 8.0 1490 1.30 2.23 0.61 1.18・1210 4 O 6−8 朗0 3.29 4.39 0.62 44 g 7,9 1130 1.42 2.08 0.55 1.111100 1010 4,58 4.56 0.57 630 1.06 2.37 0.44 1.Og lOOO 5 4−6 3 8,8 1180 1.83 2.40イ 0.43 1.07 1710 1300 3.15 4.87 0.54 7.6 7 3 DO 0−2 2−4 2 9 3 4 4 ハU 0U 4 ハU 2 7 8 ・4 9 6 9 2 ( ̄)notanalysed・Analyticalmethed=(C)colorimetry,(AA)atomicabsorptionspectrophotometry.(XRF)Ⅹr早yfluorescenceanalysis, 1 O 1 Appendix15.13 Analyticaldataonthesedimentcore Samplingsite:N.Samplingdate:4/4.1977,Waterdepth:94.Om. P Na K Ca Mg ・ Ikpth(cm)Ll(pg・g−・)(%) (%) XRF AA AA XRF C XRF XRF Ti Ni Cu Zn Pb As (%) (〟g・g1) (%) XRF ︽U 7 9 1 6 53 132 32 23 54 132 30 2 27 q︶ 50 132 30 6 55 137 33 29 DO 27 1 − 1 q︶ − 3 31 61 144 36 ▲4 1 . 0 2 7 7 7 7 6 6 7 − − 7 6 7 − 1 55 143 32 ︵b l l 38 00 5.17 0.56 0 一− 1▲ 3130 3 1 2.280,33 4 3 4 − 4 980 1.20 2.50 0.32 1.18 3120 3270 4.87 5.20 0,54 35 60 151 3D 3 3 51 131 30 3 3 30 3 5.19 0.53 4 4 3 3380 − ﹂﹁ 0,31 2 6 1 2,37 55 127 31 2553 131 29 6 1170 1.21 2.14 0.30 − 27 9 31 も0 137 27 3 5.12 0.52 つJ − 3 3380 3 一 3 一 1 2.20 0,29 4 5.22 0,52 3 − 4 3340 4 − 4 一 つJ 2.36 0.33 3 870 1,13 2.08 0.260 3 5.00 0.48 3 − 3 3220 2 一 9 1160 l.15 2,34 0.32 1 4 2.27 0,26 55 136 38 4 − 26 6 5.02 0.50 4 − q︶ 2850 3 一 6 2.47 0,28 9 6 − 53 132 32 5 一 臥 26 2 3436 36−38 0.46 0 32−34 4.94 4 3032 − 1 28−30 3170 ∧U 2628 一 ごU 22−24 24−26 一 9 18−20 20−22 7一8.一7.一針一臥一 −一﹁一︵− 14−16 16−18 2.52 0.28 1 l.12 2.54 0.30 0,95 3120 3290 4.60 4.96 31 0.44 48 138 33 3 7.5 820 2 10−12 12−14 52 123 30 nU 1.17 2.24 0.31 0.96 3230 3470 4,86 4.82 25 0.42 52 127 34 q︸ 1.22 2.26 0.31 0,97 3760 4240 −5.09 5.17 0.4526 2 7.8 1060 7.9 1030 2 68 810 亡U 1.12 2.55 0.33 0.98 3580 4040 4.09 5.13 23 0.45 54 127 32 ︵U 1.28 2.29 0.35 0.98 3850 3860 4.66 4.67 29 0.41 66 139 39 7.7 910 ︵b 8.3 1090 46 只U 24 3 1.94 2,13 0.37 0.98 4660 4900 5.06 4.85 32 0.42 75 191 57 4.4 10.5 1360 (%)(〟g・g−1) 1 0−2 C AA Fe Mn (%) 6 l l 3 ()notanalysed.Analyticalmethod:(C)co]orimetry,(AA)atomicabsorptionspectrophotometry,(XRF)X−rayfluorescenceanalysis. l l 6 4 l l 6 7 7 l l 3 4 4 l l 7 7 l l 4 ■4 Appendix15.14 Analyticaldataonthesedimentcore Samplingsite:0.Samplingdate:4/4,1977.Waterdeptll:61.Om・ P Na K Ca Mg Depth(cm):ニこ(JLg・g1)(%) Mn (%) Ti Ni Cu Zn Pb As (〟g・g ̄1) (%) − 75 7 2 2 75 74 67 2 仁U 9 1 3 2 − 75 <U 68 ハU 2 28 73 RU 31 29 l ︻uU 31 − − 69 4 27 D O q︶ 3 3 3 3 ゥ山 29 3 00 35 70 1 34 32 73 ︵U 5 4 爪U 3 1 4史U44 3 4 3 00 0 0.89 2,39 0.36 1.03 1410 1460 4.59 4.95 0.52 2 4.51 0,48 4 1280 0 1.011660 1580 4.88 5.03 0.52 2.30 0,29 5 4.91 0.50 5 1590 4 4.92 0.50 5 − 4 − 1600 5 4.70 0.56 0.98 1750 2.19 0.30 3 一 − 1.05 1670 1590 4,84 5.06 0,57 5 一 − 1390 39 79 5 亡U 5 2.41 0.35 1.16 1560 1550 4.70 4.98 0.57 42 36 77 5 − 4 一 4,94 0.54 39 3 9 7 史U 3 4 4 4 3 .4 4 4 3 5 2.30 0.34 − 4 5 − − 1600 63 6 ︵パ︶ 5 8.2 5 30−32 5 2830 2,26 0.31 3 ﹂﹁ ハリ O 3 34 32 200 つ J ワ︺ 3 3 2628 9〇188 24−26 8・3一8・9 22−24 ■ 20−22 9・0 18−20 0.88 2.35 0.30 1.00 1430 1270 4.85 4.73 0,54 870 1.00 2.31 0.37 一 16−18 690 0.88 2.63 ().32 0.94 1560 1490 4,76 4.90 0.51 700 − 14−16 5 12−14 8.3 8.5 亡U l ﹁⊥ 1 6 ︵凸 り 山 3 2 3 2 2 8−10 36 00 0.84 2.50 0.32 0,911700 1680 4.64 4.99 0.48 3 0,90 2.58 0,35 0.99 1750 1770 4.61 4.89 0.49 790 3 840 8.3 58 47 2 8.3 0.97 2.4工 0.35 1.03 2150 2220 4、38 4.80 0.47 3 46 68 10−12 0.92 2.55 0.38 l.03 4650 540() 4.87 5.09 0.46 ︵パ︶ 7 6 4ハU4qU3 7 .94. 4 4 さ;90 6 9.7 1180 8.2 6 7 7 5 2 り6 ︼ 0−2 24 7 AA AA XRF C XRF XRF 9 XRF (%) ︵∂ < U C AA Fe (%)(JLg・gJJ) 2 7 (L)notanaIysed.Analytica)method:(C)co)orimetry,(AA)atomicabsorptionspectrophotometry.(XRF)X−rayfluorescenceanaIysis, 72 2 2 1 2 6 1 3 2 7 1⊥ 1 6 4 2 3 4 7 3 73 乃 ■4 3 3 AJ)Pendj3(15・15 Ana】yt】Ca】dataor]tJleSedjmentcore Samplingsite:P.Samplingdate:11/4.1977.Waterdepth:5・Om・ P Ca K Mg (%) (%)(〟g・g1) (%) Ti Ni Cu Zn Pb Sr (〟g・g ̄り (%) 4−6 4.5 30 131 41 570 481 2.16 2.26 0.26 6 23 0,43 3.48 0.48 420 4.6 2.69 2.74 D.308 660 539 740 0,45 3.40 0.58 370 665 3.3 310 310 680 0.45 3.25 0,49 545 2.35 2.13 0,24 5 20 93 32 681 2.32 2.50 0.279 21 97 36 0_50 3.79 0.47 760 7 亡U 亡じ 4 3 ∧U 3 6 6 Analyticalmethod:(C)colorimetry.(AA)atomicabsorptionsp∝trOphotometry,(XRF)X ̄rayfluorescenceanalysis・ 1 18−20 3.0 2.31 2.22 0.26 亡U 16−18 583 6 92 33 740 0.44 3.44 0.49 ▲4 340 3,2 6 94 33 6 19 5 0.45 3.54 0.49700 627 2.27 2.33 0.26 10 18 ︵‖O 0.48 3.63 0.52770 290 6 350 3.8 3 2.40 2.60 0.29 3.8 1214 6 29 119 44 23 102 36 7U4l3l3l5l 爪 7 8 nUl2 l 2,62 2.72 0.30 1012 1416 704 94 33 1 8−10 3.4 60 187 54 4 6−8 42D Cし41 3,23 0_57 18 811 3.33 3.67 0.41 5 960 0,45 2.61 0.75 6 580 21 60 200 54 0 7.0 3.92 3.78 0.42 6 2−4 669 8 870 0.40 2.44 0.72 6 600 5 7.3 2 12 5 22 69 283 59 0.41 2.37 0.75 1000 761 4.05 3.76 0.38 <U 750 4 7.4 .4 −〓−− 01 0 l AA AA XRF C XRF XRF 八U93nU 6 9 XRF C Fe Mn !壬二(〟g.g1) (%) Depth(cm):ニこ(JLg・gL) AppeJldix15.16 ALlalyticaLdataonthesedimentcore Samplingsite:Q.Samplingdate:11/4,1977.Waterdepth:21,Om. Mn Fe (%) (〟g・g▼1) (%) Ca K Mg (%) ⅩRF Zn Pb Sr Ti Ni Cu (〟g・gJl) (%) AA AA XRF C XRF XRF 23 nB 9 16 OO 630 5.75 4.57 0.14 679 4.83 4.65 0.13 Z3 亡U 930 9 0.44 2.51 0,21 810 り︺ 0.42 2.62 0.25 280 4 320 2.5 4 3.3 16−18 ︵‖凸 <U l 1 14−16 757 5.19 5.14 0.21 4 22 5 890 4 6 0.44 2.73 0.36 只リ DO 370 q︼ りム 3.6 一 13−14 9 0 31 9 52 45 9 亡U 5 9 史U 8 ︵U 2 ︵U ︹︶0 9 . 4 5 5 5 5 4 3 2 1 <U 9 53 1 交U 737 史U 7 0 00 7 亡U 7 ︵‖凸 7 8 715 4.65 4.64 0.29 3 880 55 7 8 3 737 7 ︻/ 1 0.43 2,74 0.46 768 4、61 4.46 0.38 父U l﹂ 0.40 2.74 0.63 1000 8 360 765 4.39 4.04 0.46 3 4.9 430 980 0 6.1 0.29 2.39 0.81 95〔) 7〔)4 4.11 3.78 0.43 0.31 2.35 0.77 ﹂T 1213 460 410 748 4.18 3,95 0.42 1 10−12 7.7 7.3 0 7 2 2 1 810 5 1 0 2 2 6−8 790 4.31 4.05 0.44 940 史U 0,29 2.61 0.83 55 5 0.33 2.59 0.91 990 440 2 510 7.4 63 3 7.5 4−6 2 2−4 840 4.22 3.99 0.45 1 0.35 2.48 0.94 1020 1 0.40 2.50 0.911300 1130 4.44 4.28 0,44 770 ︹B 4 900 8.0 2 8 7 6 1 9.1 12 父U CU 5 5 4 9 1 11r㌫∵J 0−1 5 亡U 5 2 5 3 亡U (うundetectable.Analyticalmethod;(C)co]orimetry.(AA)atomicabsorptionspectrophotometry,(ⅩRF)X−rayfluorescenceanalysis. Ap匹ndix15.17 Analyticaldataonthesedimentcore SampIingsite:R.SampIingdate二11/4,1977.Waterdepth:60,Om. P Ca K Mg Mn (〟g・g1) (%) Depth(cm)∼孟) Ti Ni Cu Zn Pb Sr (〟g・g▼り (%) 5 2 5 1 9 3 5 3 5 ▲4 −− 4 3 3 3 史U 1 1 9 ■ 4.2 O2 1ワ︼2 り2 ん 5 ワ︼ 4 只U 5 5 1 4 5 4 3 3 2 2 2 0 2 3 1 1 7 7 1 6 6 <U1 92 3 1 7 7 て▲ 5 7 1 亡U l l 5 1 O 4 6 6 ハリ 6 八U 6 史U 1 40 1 父じ 1 9 00 2 6 1 37 Analyticalmethod:(C)co)orimetry,(AA)atomicabsorpLionspectrophotometry.(XRF)X−rayfluorescenceanaJysis. 5 1 7 0.31 2.35 0.93 1770 1630 4.60 5.00 0.51 42 6 607 35 仁U 8.4 49 6 30−34 5 0.30 2.42 0.錮 1780 1640 4.32 4.80 0,50 5 6 869 ︵=0 8.5 3 ■4 0、29 2、17 0.811520 1390 4_10 4、35 0、45 2630 47 3 0.27 2.26 0.78 1600 1360 3.99 4.46 0.45 44 4 0.26 2.31 0.84 1540 1300 4.62 4,38 0.44 657 5 558 8.5 7 7.5 1822 44 1 0 1418 7 0,26 2,41 0.78 1560 1360 4.52 4.鳩 0.43 44 ワん 1 2 0.29 2.52 0.85 1600 1410 4.25 4.42 0.44 657 648 5 2 618 7.4 50 3 3 7 7.5 54 q︶ 2 810 10−14 8.7 5 0.28 2.62 0.89 1620 1550 3.78 4.52 0.41 5 0.33 2.57 0,92 1800 1610 4.58 5.58 0.43 584 6 673 7.2 5 7.0 6−8 4 4−6 2 0.36 2.81 0,94 柑10 1850 4.47 4.95 0.46 O 4 2 6 7.4 22−26 4 2 723 .4 2 0.37 2.54 0,96 2050 1840 4.85 4.63 0.41 3−4 八U 5 2 6 884 5 2 7.6 6 2 1.5−3 59 72 nU 7 9 2 956 2 0.33 2.22 0.92 2330 2080 5.06 4.24 0.40 0.34 2.47 0,94 1930 1760 4.62 4.59 0.40 9.1 史U 7 qU 2 0.2−0.7 10.5 1100 0.7−1.5 61 3 3 0,37 2.30 0.86 4070 4490 5.12 4.75 0.40 XRF 4 00 4 0−0.2 15.0 1490 2 8 2 <U 9 9 7 7 ︹ ︵H5 ︶ 7 24 5︼4426ハ 4B 5 ワ 2U1 7 15 1﹁〇1 3 14 1 1 15 1 AA AA XRF C XRF XRF 3 XRF Fe (%) 1 C (%)(〟g・g1) 1 Appendix15.18 AnalytlCaldataonthesedimenteore Samplingsite:S.Samplingdate:11/4,1977.Waterdepth:43、Om. P Ca K Mg Mn Fe (〟g・g1) (%) (%) (〟g・g ̄1) (%) 4 5 4 2 1 1 5 1 1 2 1 7 5 1 2 1 1 5 6 1 4 6 2 5 3 1 ︵U 4 1 7 0D 1 2 q︶ 1 1 8 ︵U 4 5 4 3 3 4 4 9 6 5 00 人︼ 5 Analyticalmethod:(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(ⅩRF)Xrayfluorescenceanalysis. 7 32 1 q︶ 4 6 亡U U 亡 3 0 3 3 1 .4. 3 6 AU 6 2 3 5 5 5 3 3 4 .4. 4 5 7 00 29 5 35 1 .4 35 44 93 34 3 1 3 31 1 1 47 0 1 43 1 46 6 45 1 43 4 54 1 53 6 53 1 1 868 3,78 4.27 0.50 0.37 2.76 0.90 1650 1460 4.65 4.86 0.44 1 540. 04735565.5 4 0.35 2.87 0.95 1470 1260 4.77 4.95 0.48 1 0.33 2.88 1,05 618 9 56 819 4.12 4.32 0.50 360 688 960 978 4 05 829 3.86 4,08 0.51 2 945 1 7 0.36 2.78 0.94 4()1 0.34 2.89 1.03 1 3U 亡 0.37 2.65 0.78 1200 1120 3.99 4.44 0.43 0.47 2.62 0.76 1570 1450 4.82 6.00 0.37 57 4 1 3 6.0 1 6.0 374 d. 3438 6.0 4 30−34 6,2 840 430 l 2630 6.0 3 1822 22−26 7.0 5.9 3 1418 0.35 2.72 0.80 1390 1180 3,53 3.92 0.38 1 500 1 801 0.32 2.59 0.90 1700 1670 3.90 4.37 0,40 7.1 1 7.2 8−10 17八6 U 68 2 0.34 2.69 0.92 2870 2940 4.37 5,18 0,42 1 2 とU 2 0.37 2.47 0.96 3220 3210 4.38 4.97 0.41 7,5 1120 9交じ3亡U7 2 6 2 7.8 1040 46 1 3 0.36 2.41 0,86 2380 1850 4.74 4.36 0.38 2.54 10−14 1U46 史 2 7 8.0 108〔) 0.34 2.62 0.95 2800 2870 4.62 5.00 0.43 1 2 8.5 1050 l.5−2.5 XRF < 6U 62 64 73 71 71 72 7■4 7. ︵7 ︶U7 7︻V 父U U < OU O 1 7 5 7 5 2 3 0.71.5 2 0.35 2.52 0.85 2140 1950 5.22 4,71 0.41 0.20.7 10.2 118D O.33 2.45 0.87 2050 1700 4.80 4.29 0.40 ロ 0 4 4 00.2 10.8 1570 (〟g・g▲1) AA AA XRF C XRF XRF 7 7 XRF 2 C Ti Ni Cu Zn Pb Sr (%) Appendix15,19 Analyticaldataonthesedimentcore Samplingsite:T.Samplingdate:11/4.1977.Waterdepth:71.Orn・ P Na K Ca Mg Depth(cm)誌 (〃g・g ̄1)(%) (%) AA AA XRF C XRF XRF (〟g・g1) 0.53 2.10 0.32 0,91 8740 8350 5.43 4.49 0.38 0.20.7 10.1 1220 0.60 2.31 0.33 0.99 4100 4200 5.20 4.51 0,40 0,71,5 0.63 2.51 0.33 1.01 2980 28】0 4.86 4.69 0.45 910 〓∽■ 8.6 1300 7.9 880 0,57 2.59 0.29 0.92 2()10 1820 4.69 4.58 0.42 860 0.61 2.37 0.25 1.王9 2090 18ZO 4.鮎 d.46 0.42 7.7 830 0.61 2.45 0.22 0.95 1780 1600 4.86 4.53 0.46 14−18 7.9 別)0 18−22 8.5 980 2226 8.7 26−30 8.5 830 30−34 8.6 1100 890 0、62 2.47 0_27 0_98 1920 1670 5、05 4、72 0.48 0.53 2.30 0,26 0.99 1900 1550 4.89 4.45 0.47 31 149 69 37 26 148 68 39 24 151 62 舶 42 25 154 62 40 25 151 63 32 25 147 64 34 23 149 64 38 0.53 2,17 0.22 0.96 1900 1600 4.88 4,43 0.46 0.73 Z.36 0.2β 1.07 20▲iO 1760 5.07 4.郎 0.49 36 140 68 37 21 15‘璽 71 63 4 7.9 1014 49 ﹂7 8−10 0.80 2.56 0.33 1.03 2430 2370 5.07 4.89 0,46 740 40 145 3 8.3 77 131 61 4 7.5 1010 6−8 61 一q 4−6 0.69 2.46 0.32 0.99 3020 2980 5.15 4.85 0.44 0.65 2.62 0.34 1.01 2420 2310 5.02 4,88 0.45 51 198 125 56 6 (;3 l − 1.52.5 2.5−4 8.5 9 3 ごじ 亡じ 史U 3 5 9 6 4 3 2 ↓.⊥ l ︶ 9 4 ∧U ワー 3 5 ﹂﹁ 2 ︻♭ 3 q ︶l 父lU q7 7 5 5 5 一斗 5 5 5 5 5 5 00.2 13.4 1660 Ti Ni Cu Zn Pb As Rb Sr (%) l XRF Fe (%) 9 2 4 7 3 3 6 ハU 史リ 4 00 3 7. 7 3 3 ワJ 2 3 りム 2 3 2 3 ワ︼ 3 つJ 2 C AA Mn (%)(〟g・g1) 25 】50 31 26 141 64 0.43 2.25 0.29 1.05 2110 1990 5.12 4.75 0.50 4 Analyticalmethod:(C)colorimetry,(AA)atoTTlicabsorptionst)eCtrOphotometry,(XRF)ⅩrayEluorescenceanalysis. 65 3 Appendix15.20 AnalytlCaldataonthesedimentcore Samplingsite二U.Samplingdate:11/4,1977,Waterdepth:66.Om. N P Ⅰ元plh l.L. Na (JLg・grL) (⊂m)(%〕 Ca K Mg MrL (%).(%)(FLg・g▲l) Fe Ti Ni Cu Zn Pb Sr (%) Rb (F.g・g■) (%) AA NAA XRF AA AA XRF C XRF NAA XRF As (F.g・gJl) (pg・gr■) XRF XRF NAA XRF NAA 2 nJ 16 ︹鵡 l 7 凸J 21 5 6 QU 鎗リ 7 2 1 亡U 6 9 つJ 6 ﹁〇 3 5.4 クー ﹁〇 7 7 4 6 6 5 ︻VU ■〇 1 ︻ノ 4 4 7 −q ワ︼ 7 凸J 0 史U ︵パ︶ つJ q−一U 7 一一〇〇3一一一 56987436846 ・LO 0l O 7 686568808 7 53一7959一6775鎚 54 舗 爪U 6 nフ (.)undetectable.Analyticalmethodニ(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)Xrayfll】OreSCenCe analysis,(NAA)nel】trOnaCtivationanalysis. ︻‖凸 2 A E 9 B u T L a 46 仁じ N T 1 ︹∠・1 716572 ■︺▼ d ‖ h 仁U・AT 5A.几h (〃g・g1) 25 12 13 15 6 2 5 18 1 1416182022別 16 ■﹂J 14 ︻′.4 0 1 12 ▲UU 8 Yb Lu U 20 26 7 7 爪U .4 5 6 ■〓か1 鵬5875鋪7148627259656267鵬稲537262676368718075737279 1 41卿92093 0 5 2 024681012 C (%) 20 26 】9 18 20 Appendix15.21Analyticaldataonthesedimentcore Samplingsite:V.Samplingdate:11/4,1977.Waterdepth:45・Om・ 1 5 5 3 4 3 ■4 6 3 3 つJ 7 6 ﹁コ 1 3 9 00 1 ︵古 4 7 5 3 3 6 5 ﹁〇 ウJ 5 3 ﹂T 4 1 只じ 3 ズU 6 ﹁〇 6 4 ワ一っん 3 3 3 3 3 3 3 3 3 3 2 7. 4 2 5 1 6 6 几U 7 7 6 4 O ︵hV 6 ▲4 7 仁U 6 1 仁V OJ ハU ﹁〇 6 ハU 3 5 2 5 5一q 3 3 3 5 4 2 3 3 4 2 7 3 2 5 7 〇 一〇一一 3 一・1 RU 2 5 A..4.4 6 5 9 11 2 ・ 4 LL4 5 7 1 ︵U 1 l O 3 ‘U 5 1⊥ 5 1 6 よU 7 7 4 5 6 Z 3 ﹁コ 6 5 ■4 7 亡U 5 7 7 6 1 9 5 1▲ 9 O 3 ︵U 7 1 ア O 6 3 2 7 1 5 2 2 爪V O 2 ︵B <U ︵リ O 5 人U 8 2 6 A−4 6 6 l 7 2 4576一436〇584566一 1 5 O 9 2 5 5 l 5 44 ハリ ウJ ︵U 7 <U 一っ 3 g g 9 3 4 L 1 00 1 u 5 5 ﹁〇 b Y 5 2 3ワレ22333322 50090546お3529290695 9 4 史じ 1 7 6 0 5 6 2 1 4 6 5 0 7︼ 2 6 爪じ つム 爪U りん 1 八じ 4 <U ハ 2 U 6 りん ︵〓V 1 ︻∠ワ︼ nV ワ山 ︹‘ 爪U 2 1 2 3 nU 八U A.只︶ ︵U ワ︼ O 史 ︵U 9 0 2 3 2 ∧U ︵U l Z 2 2 鑓SU 2 3 a l,1 1 2 B nU 1 5 6 ﹁〇 0J 5 7 9 5.4 C 〓↓− 5 7 16 76 7 ハU 4 7 O 7 3 7 9 9 9 へJ 1 1 11 7 hU 7 2 7 1 2 ︵U 6 4 ︻b ﹁〇 3 3 7 l⊥ l l ∩∠ 5 5 2 l l 3 5 4 9 9 nU 爪U O 2 2 1 6 ︵b l nU.4.4二光 5 9 00 3 7 l 5 q︶ つJ t▲ r∂ 1 q﹀ クJ 0 丘U 1 9 7 ハU 5 7 1 4 C 89949589卵0706019707 7 hU 00 7 5 5 2 00 3 3 7 7 RU りん 4 ﹁〇 6 4 4 5 5 5.■q 5 5.4 7 b S 4 4・4 7 6 − 0」 1−2 24 46 68 8−10 10−12 12−14 14−16 1620 4 00 5 2 鑓U 2 ワレ 2 9 2 J7 几h︶ n凸 l l 、い qJ 9 0U OO ︵U ︵U 9 9 9 9 〇 〇〇 〇O 1 7 6 5 6 6 6 9 ︹B 8 9 0ノ 9 9 9 9 ︵∂ 0 ︵U O O 八じ 八U O hU ︵U O ワ︼ 9 7 1 2 QU O 2 5 9 m O・4 9 免り 史リ 6 3 4 2 S 7 00 7 ワノ nO q︺ 9 nO 9 ︹B 7 7 6 4 7 ︵0 ﹁〇 7 7 亡じ 月V 7 7 U 3 3 T 2 一 0q L‖ 7 3 ‖ 仁U 5 4 2 4 9 2 9 9 4.4.44.454一斗44 5 7 ハJ 1 2 9 1 7′ ハU 9 7 2 2 ﹂﹁ 9 5 n−U ︻/ 5 4 2 7 u A ︵U 3 ﹂’3 7 ■4qU n占 U O 7 7 ワー7 7 ︹0 7 7・nO 只 B 1 6 DJ 4 4 1 5 9 ワ︼ 2 1 1 2 2 2 ヽ.▲ l−2 a L 6 7 0∩O 1 7 りん.d ︹八︶ 2 2 9 ハリ 1 2 1 0 ▲U 9 史U u E 6 0 9 2 6 つJ 9 一サ l 1 4.4 3 4.4 4 3 一斗.4 3 T 0 5 Z 1 7 00 1 3 ワレ 1 3 2 2 3 ワ︼ り‘2 ︹∠ 3 2 2 3 1 3 つJ nU 2 9 1 ︵X︶ 4 qU 1・4 一’ 3 2 1 3‘q 3 4 3 4 丘U ハU 6 d N 64 4 3 亡U 7 3 4 3 3 4 ■q 4 4 ■4 4 ノ7 J’4 八U O O O nU O O ︵U O ∧U a 333333333つJ (−)urLdetectable.Analyticalmethed:(C)colorimetry,(AA)atomicabsorptionspectrophotometry, (XRF)XrayEluorescenceanalysis,(NAA)neutronactivationanalysis・ Rb As (〃g・gl) (〃g・gl) ⅩRF NAA XRF NAA Ni Cu Zn Pb Sr Tj FeJ (〃g・g1) (%) (%) P Na Ca K Mg Mn (腫・g1)(%) (%)..(%).(〟g・g ̄1) C NAA XRF AA AA XRF C XRF NAA XRF At)pendix15,22 Analyticaldataonthesedimentcore Samplingsite:W.Samplingdate:11/4,1977.Waterdepth:90.Om. Ti Ni Cu Zn Pb Sr Fe Mn Ca K P l ∧U q−8 5 5 3 2 0 00 ■===■¶= ハU ︵ ﹁〇一1 1 ﹂︼ 1 八U 6 l 96 つ︼ 7 ︵U ︵U 3 ワ︼ .. ヽ▲ 7 6 1 7 ウ︼‘リ 〇 3.ヰ 0 八U 4 2 5 5 0 ■b 5 4 1 7.︵U 0 1 3 3 7 00 7 一〇1一一一一一一 9 4 2 5 6 4 (−)tlndetectable・Analyticalmethod:(C)colorimetTy,(AA)atomicabsorptionspectrophotometry,(XRF)Xrayfluorescenceana】ysis, (NAA)neutronactivationanalysi5, ハU O l l 1 l n︶ 1 ︵り 9 l l 7 2 1 1 3 4 4 7﹂6 45 6 7 5 3 5 3 0 3 6 9 1 4 3 5 3 3 3 8 n凸 2 2 A▲ 鑓U 5 4 3 ■4 9 2 4 ウ山 2 2 ▲7 1 2 4 亡U ワ︼ 4.4.4 2 4 ︵b 2 4 9 4 ︻U 7 2 ﹂︼ 2 1 2 2 ワん 5 ■﹁ つJ つ︺ 5 3 ︵〓﹀一−2 ﹁〇.4 9 1 gU ■1 l ▲4 ︵U 5 2 9 2 2 Z 9 O 2 2 4 日U 6 1 80 ワ︼ 00 8 ■b l ▲U 亡U 1 1 ウJ 2 6 <U ∧U q︶ ワ︼ 2 ︵U ハ8 2 7 8 nU 4 2 00 3 3 1.4 3 O 2 2 ︵U ■4 3 O 3 2 4 2 つJ 2 O 2 2 5 2 ﹁〇 2 ウJ 2 3 几U 2 りん 3一b 3 5 2 2 O つ﹂ 3 3 1 2 ︵U 2 3 O 2 2 ∫lU 2 L 9 ワ︼ ・ 1 . 8 3一■ 5 3 2 0246048260 OO・l l ■1 1 ウ︼ 5 上U 1 ク■ っJ ウ︼ ワ︼ J1 5 つ︼ 3 7 6 1 んU 5 O 0 O O O 00 八U q︶ 5 5 6 l l l l ︻U 1 2 8 7 4 7 6 7 5 7 6 6 0 7 5 7 − 8 6 7 8 9 0 9 1 0 9 7 2 9 1 1 2 9 0 0 = 57一4437 nV ハリ t 5 ︵U 7 n﹀ 0 3 4 9 8 5 9 6 6 1 9 4 3 2 1 6‘V 5 1 ︵U ︵U O 9 6 O O 8 7 8 00 6 0 2 3 6一4H ︽b 6 5.4 ︵U 6 5 ︻○ 5 5 7 q﹀ ︵U OO 7.︵︻ 3 0 0 O O O 3 0ウ 5 9 nU 1 8 ■b 5 8 ︻ ︹D ︹n 6 3 4 4 人︼ 3 1一b つ︶ 7 6 7 史U 9 ﹁∂ 7 0 亡U 2 2 ワ︼ 7 1 2 2 qU 2 1 5 9 つ︼ ツ︼ 9 RU ワ︸ ワ′7.︻ 6 8 J−5 0 1 9 7 7 1 5 4 00 G 8 ⊂J+只︶ 1 2 5‘︶一b 1 1 6 3 8 0 8‘V 3 5 5 6 3 5 3一斗4一3 1 ▲−0 4 7 上U 6 7 O ︵U 7 5 几b 0 2 つ︶ 鑓︺・4 9 2 爪U 5 1 ゥ︶ 2 史り OO 5 5 5 4 7 6 3 人じ 1 爪U0O ︵U O 8 ウJ 只d.R 5 8 1 2 1 8 5 2 1 2 4 6 9 つ︼ 轟b 9 7 2 6 ︵0 ︵b り﹂ 8‘U 5 7 7 7 7一b 7 ︻b一b 6 7 7 7 ■b 7 7 6、b ■P 3 2 7 つ︼ 6 RU O つ︶ 5 2 7 qU 爪U ハ凸 O l へJ り︼ 7 DO一† qU 8 7 鑓U OO OO Oり 8 8 ︵U 9 9 9 9 UO 7 7 7 2 7 qU 3 ∧U 2 ・4 8 ﹁〇 ワ︼ 1 7 5 <U 7 q︶ 6 ﹁〇 1 8 1 0 ﹂−1 6 2 q﹀ 9 1 7.4 0 9U 3 亡U ウJ 4 3 つ︺ 6 5 5 7 6 8 DO 6 1 つん 1 0 1 7 992402㈹157692紀857578即舵m47011196 9 ︻b 7 ・ 5 0 〇 H00− 9 0 5 ︹凸 0 7 6 父︺一b 1 5 7 0 4 5 ▲︼ 3 3 3 ▲4 5 ﹂−3 4 4 3 4 3 4 3 7 4.4︻﹂▼.︼ 3 9 qU J† 0 0 ■4 史U 8 ▲︼ 9 ハ8 3 7 ︵ろ 0 7 3 3 6 ■′ 1 つ︺ 9 ムU 1 4 0︺ ︻U 8 8 9 1 0 3‘V 轟b 5 3 3.4 9 7 7 4 つ︶.4 っJ 3 ウリ 4 4・4・▲▲・d ■4 ■︼ 4 4 3 3 つJ 3 爪︶ ■0・=L6一 9 粥0063馳716765666462616462616265 858 759 ︻8 つ︺ ﹂︼ 1 一4 2 0 5108甲85403129353443詭48454241473334 5076373544摘60595969 A.つ︼ 7 2 [D q﹀ 6 3 1 ︵6 3 00 ﹁〇 7 4 ︹0 ︵6.4 3 72 85 8 9 7 8 亡U ﹁〇 5 ■b 5 5 ﹁〇 5 5 ﹁〇 5 6 ■b 7 (〟只・gり 1 0 5 ワ︼ 0 ︵U 5 2一b 0 7・﹂ 2 0 2 1 亡じ 人︼ nU O 5 ■b 2 0 亡U 9 1 Jヽ 5 8 亡U 2 9 9 9 7 7 3 1.4 00 6 7 史U.4一4 g 9 7 <U OU 9 9 9 5 5 5 ﹁∂ ■b 6 5 ﹁〇 6一b 5 5 5 亡U ▲︼一斗 4 4 U Lt】 (〟g・g1) (%) (%) (〃豆tg ̄1) (%) (叫g・g ̄1) Appendix15,23 Ana】ytlCaldataonthesedimentcore Samplingsite:Ⅹ.Samplingdate:11/41977.Waterdepth=90・Om. 5 ハU 5 90 1 0 6 〇 172 7 20 〇6 〇 ︵U l ︻/ 9 1 3 2 7 5 50653333333 l,⊥llll1 1 O 5 3 3 O 0 ︵毒 ︵U 4 爪U ︵U 6 1 5 O 3 9 4 2 2 2 ︵U 9 3 ︵U 1 1 O ︵U 2 n> 6 2 OU 1− 0 5 5 5 ハU 1 ウ1 O 3 2 1 2 9 2 7 2 ︵U 2 2 2 2 2 4 3 爪U 3 0 3 2 1 3 qU 3 5 ︻U 9 7 9 9 7 5 4 4 A・4 4 4 O 4.4 ︵U つU2つん 4 史U 6 4.4 3 ︵U J.4.4.4.5.5一 4 ︿U 9J 2 O .3.4.4J n︶ q︶ 5 ︵U 4 3 0 ー一一.9一.〇.〇.9 3 9 7744332ワ︼23 上U.4 0070907030机90001010錮 7 っん 2 4 O 5 3 9 ∩8 ︵U 1 7 OO 3 5 ︵U 八U q︶ 0 9 q︶ 八U 1 9 qU O ll ハU 八U O 2 q−1 2 2 9 ハU 0−D.2 l.2−2 2−4 4−6 6−8 − 〓? 810 1020 2030 3040 C O C 5 7 3 6 4 0 3 2 4 3 9 0 3 5 2 1 9 6 5 3 5 6 4 3 4 3 4 9 7 q︼・4 4 q︶ 2 9 8 3 QU ︵U つ︼ 2 つ﹂ 7 2 2 6 7 2 5 6 1 7 5 2 2 5 6 8 6 7 1 1 3 3 3 1 q−OP qU 6 6 9 7 1 3 ︵U 7 l ︵U l l ︵U OO ︹古 0 2 3 5 4 3 3 QU 3 gU 1 史U q︶ l 1 1 3 9 QU ︵U 1 2 8 7 1 2 1 4 (−)notanalysed.Analyticalmethod:(C)colorimetry.(AA)atomicabsorptiorlSpeCtrOphotometry,(ⅩRF)Xrayfluorescenceanき1ysfs. (NAA)neutT・On aCtivationanalysis. 1 8 qU 5 2 1 1 ▲b 7 5 qU 3 3 6 5 5 1 5 2 1 9 6 ︵U 5 6 7 l 7q︼ ︵U 2 5 1 ︵b 1 l qU 3 2 4 7 2 6 9 6 2 4 3 6 4 ハU ワ︼ ウJ 3 3 1▲ 3 7 5 7 5 ︵占 2 1 3 日U 父U 4 3 6 3 O 几U 1 ︵U 4 O l O ︵U .3.3.3.3.3.3.3.2一2.3一 nU O O 八U O 八U ︵U ︵U 八U O O O l n> A一d.1 O nV 96見じ5八U O ハリ ハリ rJ O 2 2 1 ︵U QU O ︵U 7・2 4 日U 5 6 7 ロ0 7 7 7 6 7 11 .〇﹂.〇.1一5.4.4.3.3.3一 6ハU9611︻U696 RUQU6Rリ ︵‖凸 951819091027鍋565205一 ハU り⊥ 5 4 2 0 q︼ 5 ﹁〇 4 4.4.4 .1一5﹂.4.5月.6.4一7.〇一 鑓U l 〇392372243023264435一 4 46555343343532353632一 47536258726664656565一 XRF NAA ⅩRF AA AA XRF C XRF XRF C AA 9 QU ︹B 9 1 ︹U O つJ 9 2 9 b S 1− 1 q︶ 7 7 7 7 7 7 0U 7 0.20.7 0.7−1.2 (〟g・g ̄り (〟g・g−1) (%) (%) As Ni Cu Zn Pb Ti Fe Mr】 Ca K Mg P Na (%)(〟g・g1) (%) (〝g甘l)(%) Appendix15.24 Analyticaldataonthesedimentcore Samplingsite:Y.Samplingdate:11/4,1977.Waterdepth:83・Om. P Na K Ca Mg 恥,th(。m)(〃g・g一】)(%) (%) (%)(〟g・g1) XRF AA AA XRF C XRF XRF Fe (%) Cu Zn Pb As Ti (〃g・g▲1) (%) 5 6 5 5 5 6 6 こU 6 6 6 Analyticalmethod:(C)colorimetry.(AA)atomicabsorptionspectrophotornetry,(ⅩRF)Ⅹ−rayfluorescerICeanalysis. qU 8.11080 0.69 2,28 0.29 1.33 2820 2900 5.51 5.04 0.5357 142 38 30 3 34−38 2 57 1443824 980 0.70 2.24 0.32 1.30 2620 2830 5.28 5,02 0.55 8.3 6 亡U 6 亡U 6 亡U 3 5 4 亡 つU J ︻/ ハリ 7 32 3 3 3 4 55 141 29 7.8 1020 0,71 2.30 0.311,21 2630 2770 5.39 5.18 0.55.29 30−34 6 2630 860 0.56 2,25 0.311.26 2450 24別) 5.14 4,90 0.52 57 146 31 30 3 56 14430Z9 8.0 1050 0.66 2.20 0.28 1.23 2600 2580 5.28 4.72 0.47 8,0 1 18−22 22−26 2 142 30 950 0.70 2.56 0.311.24 2540 2480 5.13 4.84 0.47 53 38 990 0.74 2.59 0.25 1.25 2640 2610 5,41 5.03 0.51 5727151 36 0 7.4 7.9 5 1418 54 127 7.9 1鵬0 0.68 2.23 0.30 1.18 3280 3500 5,30 4.84 0.44 32 28 8.0 1070 0.78 2.30 0.28 1,19 2800 2830 5.07 4,71 0.46 56 28 136 30 7 10−14 3055 129 22 6 810 30 58 134 32 970 0.77 2.52 0.29 1.23 291() 3190 5、04 4.81 0.46 g.1 830 0.76 2.64 ().33 1.20 2930 327() 5,07 4.96 0.47 八H︶ 6−8 7.9 q︶ ︻b 7 7 ウJ3 4 3 3 3 46 61 q︶ 2.5−4 79 163 3928 8.4 1120 0.73 2.33 0.34 1.16 3350 3430 5.06 4.58 0.43 5 1.5−2.5 9 4 0.7−1.5 10.11330 0.71 2.11 0,34 1.23 3310 3230 4.96 4.31 0.42 99 532 43 49 3 0−0.2 11.3 2000 0.86 2.04 0.38 1.31 4380 3910 5.83 4.69 0.42 98 332 48 50 179 0.2−0.7 12.3 1840 0.68 2.15 0.35 1.15 3590 3630 5.31 4.78 0.43 99 235 5636102 ワ ︼ l7 l7 ワ史 RU 1 . 2 l ︼U 3 3 15 21 9 4 ・4 .4 ■ dT9 34 31 1 1 1 1 1 1 1 1 1 1 1 1 1 C AA Mn (%) 3 Appendix15.25 Analyticaldataonthesedimentcore Samplingsite:Z.Samplingdate=11/4,1977・Waterdepth:77・Om・ K Ca Mg (%) 3 7 4 4 9 7、+OU 7 5 7,6 3 1 6 ︵占 0 00 1 5 1 4 1 己U 00 1 1 1 1 7 5 7 4 7 7 7 7 5■ 00 9 7 2 亡U 6 仁U 5 6 1 1 1 1 4 3 qU 5 43 45 7 1 只︶ 41 5 11 4タ 40 2 1 4 .4 45 9 5 37 7 3 1 41 5 1 30 43 4 23 2 1 29 7 1 4 22 7 1 30 亡U 5 1 4 1 38 3 2 d. 45 0 48 4 1 2 0∩ 1 1 9 5 4 3 4 3 3 1 7 DO 5 3 亡U 6 1 1 2330 2280 4.94 4.74 0.64 8 2.21 0.38 1.18 2.26 0.42 1.16 2120 2300 5.11 4.72 0.64 5 1 2200 2220 4.86 4.72 0.64 XRF 1 2.31 0.38 1.17 1 2200 2100 4.95 4.56 0.60 1 2 2.10 0.39 1.12 4 4 6 2 7 2270 2110 4.65 4.64 0.63 4 2190 2220 4.68 4.81 0.66 2.21 0.38 1.15 1 5 6 3 1 6 7 2.34 0.40 1.11 1 5 3 2.32 0.38 1.18 2110 2130 4.69 4.81 0.66 3 つJ 2.15 0.38 1.08 2000 1890 4.60 4.56 0.64 5 7 2.26 0.42 1.14 1770 1940 4.50 4.84 0.66 6 4 3 2.250.37 1.18 1540 1480 4.69 4.55 0.63 1 4.46 0,63 2,23 0.42 1.09 1360 1270 4.32 4.55 0,64 1 2.38 0.47 1.17 1061 1000 4.22 4 4.32 0.59 991 八U 4.37 0.60 895 4.08 2.42 0.52 1.09 3 2.55 0.45 1.211090942 4.40 2 2.36 0.44 1.10 1080 4.35 0,62 ︵ H︶ 4 34 24 34 6 2 9 43 5 ︻/ 5 4.36 0,59 829 4.47 5 史U 亡 U 5 ハb 5 16 933 4.59 亡じ 2.30 0.43 1,15 1130 9 4.30 0,59 4 2.51 0.42 1,05 1370 1070 4.61 4 1 3 30−32 32−34 2.65 0.42 1.14 1410 1320 4.37 4.35 0.61 0 1 2830 9 26−28 2.08 0.43 1,09 3390 3420 4.54 3,87 0.47 2 00 24−26 00 2224 (〃g・g1) .4 7 2022 5 18−20 00 1618 2 14−16 ︹八︸ 12−14 4 10−12 Ti Ni Cu Zn Pb (%) .4 8 8−10 (%) 3 68 4 穴U J−N− 4−6 7 24 交じ 12 D 4 11 3 3 4 6 00 7 92 4 55 6 2 U 6 5亡 <5 UO45 5 5 9 5亡U4 1 53亡U 6 6 6 66 亡 亡U 6 0.5−1 6 0 9 nU 00 00.5 ⅩRF Fe Mn (%)(〃g・g ̄1) AA AA XRF C XRF XRF ‖7 7 1 5 4 5 2 1 2 1. 3 7 6 4 4 45 . 1 7 4 Ana)yticalmethod:(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)X−rayfluorescenceanalysis・ Appendix15.26 AnalytlCaldataonthesedimenttcoreL Samplingsite:α.Samplingdate:11/4.1977.Waterdepth=8l・Om Na 史︶ 爪U DU O 3 9 7 2 6 1 3 4.d︼ 1 5 5 5 7 4 6 9 4 仁U 7.4 3 2 8 10100pl︻一一 0 2 ■4 2 7 6 9 ︹凸 4 ¢U u 3 5 302 2 3 3.4 3.4.4.4 つJ 3 3 4 A 3 4 (−)undetectable.Ana】yticalmethed:(C)colorimetry.(AA)atornicabsorptionspectrophotometry.(XRF)Ⅹrayfluorescenceanalysis, (NAA)neutT・OnaCtivationanalysis. 1 3 2 4 6 0 7 ︻U 7 3 ︻U 3 ︻b RU 1 3 6 5 6 2 3 Z 7 ■4 1 つJ ■4 7 つJ 几U・d▲ 2 nU ﹁⊃ 人U nO 6 ︵U 爪じ 9 q O 3一l O つJ nU 3 ワ︼ 6 3.4 7 3 0 3 a 2 1 U 3 2 仁U 3 q︶ 3 9 爪U 7 6 3 4 鑓U ︵U 7 ロU 4 ロU ︻U ︻U ワ︼ 4 只︶ q ハU q﹀ ﹁コ O ∧U O ︵U 4 5.4 L ︹U 5 7 ハU nU 爪U つJ ︻U 2 q︺ 1 O 9 1 ︵U 0 1 りム 3 ︻U 2 9 3 nU 3 3 3 3 3 O 3 q︶ 3 O 2 OU 3 O ︵U 9 ︵b nU OU 7 ︵U ¢U ︵U 9 ハU 6一b 〇 ハリ ﹁〇 ︻b ハリ 2 7 nU ハU 八U O O ハU O 4 ︵古 3 O 6 ︵U 4 ︵b As 2 ︷じ 0 7 0 4 5 7 A︶ ﹁0 3 4 3 7 9 8 3 3 ︵U 3 8 4 9 4 7 9 q︶ ﹁〇 0 9 只 5 2 1 2 9 3 2 A▲ 仁U OU ︹0 9 3 0 ︵U qリ 0 AU ︵U 6 ﹁コ 5 00 人U ︵U q︸ q︶ 9 nU 7 7 5 qU ﹁コ 9 A.つJ 6 9 ワ︼ 2 りん 00 7 9 ¢U ︵U O 5.4 5 4 ︵U O ︽U qU OU 1 2 6 1 2 1 ︵U 3 仁U 2 6 7 丘U 7 3 q︶ 9 爪U 5 つ︼ ︵U 1 0 7 只︶ 0 2 2 4 9 1 2 0 1 2 ︵U 2 6 2 7 2 1 8 ロU 7 2 1 l 1 9 3 1 3 ﹁〇 9 1 ↓l l 7 2 7 日U 7 l l,1 ︵h I DU ハリ 父︶ 只U 2 l ハリ ア 5 q︶ 2 1 2 4 6 7 ︻U つJ 3 つJ 3 J︼ つJ つJ 9 3 2 2 2 1 3 7 7 1 3 1 7 3 1 5 2 0 仁U OU一b 9 八U 5 7 ■4 2 1 7 6 ■4 1 4 5 5 0 ハU 1 2 7 5 5 6 1 9 2 4 0U 只︶ 1 9 ︵U ︵U 3 つJ 8 4 ▲U ︻b 5 7一b 7 ︵U 2 5.4 只︶ 1 つJ 4 4 4・4.4 5 5 4 0 1 0 9 q−5 q︶ 2 ロU 1 3 4 5 O 6 5 4 4 3 0 3 1 ﹁つ 5 4 人U 4 4 2 4 O 5 3 4 1 4 9 0 5 2 ■4 ■4 4 4 3 一一L一一一二 ︼ 7 2 LL3 O O ▲U 7 ︵U ▲b qU q−7 5 4 4 1 椚6070亜28382822475045655396 67 6 7 7 7 7 5 9 q︶ 6 7 7 7 7 7 11,1 3 4 5 4 4 4 3 ︹凸 9 nU 2 5 5 7 6 4 4 2 2 9一l 3 つ 3J 3 ■4 4 A・4 4 4 4 4 4 4 3 4 O 7 3 5 3 ︵U J︼.d︼ 2 0 7 りん 1 4 4 4 ︵U QU 3 鑓U 3 史U 4 3 4 3 4・4 5329一59一 2 ︵U d5 N O 2.4.4 ︻U 3 T 4 3 E3 4 3 4 ▲U 3 9 3 7 3 一斗■4.4一4 5 つJ・■■.−斗︻J 2 ︵n 5 4 つJ 9 O ハリ O l ﹁⊥ 0 八U 5 5 ︹古 l▲ 5 2 00 1 6 ﹁〇.4 2 ハU 3 2 4 3 6 A﹁ 4 2 3 つ,4 2 4 3 5 2 ワ︼ 2 2 ワ︼ 2 りん 2 2 2 2 2 2 2 QU 1▲・4 ハリ 9 nU 7 1 nU 7 ワ︼ O 7 0 nU 6 ■4 ‖U 9 ︵b 0 2 0 4 ︻U ︵U 3 4 ‖D 5 7 5 5 ︻U 4 7 6 0 9 日U ・9 9 ︹B 只U 7 9 7 9 7 仁U 7 0nU 65 6A﹁ 7 3 2 14−18 QU 7 (〝g・g▼l) nU ︻U ︵U O O O ▲U−U ハU ︵U ︵り ∧U O ︻U 7 6 7 6 2 2 A﹁ 4 日り・4 hU 1 5 つ,4 6 7︿b 5 1 nU 9 ロU 6 7 0U 9 QU ハリ 7 0 qU n凸 3438 2 7 30−34 5 日0 26−30 八U 18−22 2226 q︶ 7 10−14 つ.4 7 8−10 4 7 6呂 2 7 4−6 ﹂︼ 9U 2−4 3 12 nc ︹凸 1 2 2 9 鎗U 5 草U 6 8 6 9 00 7 ⊂J rD 6 4 Z 2 ワ︼ 2 つん 2 2 2 2 りん 2 XRF NAA 3−1 0.5−1 ︵B 9 2 ︵U 5 2・4 7 1 んU 9.4 7 A.7 ¢U 5 0 RU 3 5 4 EU つ] 6B4 0U. 44 27 ハリ 6 仁V 5 4 6 7 6 6 6 只︶ QU ﹁〇 6 7 6 EU 6 6 ︻b 仁U 6 6 6 6 ︵b 2 ﹁〇 3 7 凸ノ 2 4 ハU 0 q︼ 5 9 4 2 0 7 仁U O O O 1 0 だUh 7 T5 だU 3 3 3 1 9 1 2 4 1 4.4 1 1 ︵U﹁つ 6 ﹁〇 5 5 5 4 5 5 ﹁つ ﹁〇 5 5 5 5 5 6 3 3 6 ∼ NAA 5 ロU QU (〝g・g1) 4・4一q・4 ︻b 2 2 ロU 2 nU 1 3 00 ハリ 8 Co CT・ Sb Ba Cs Sc Sm Ce Yb Lu QU 5.4 233〔〉 ■4 8 5 2500 1 2210 1 ﹁〇 2480 1 2050 ﹁つ 1940 5 2300 4・4.4 2160 3 5・4 2390 4 5 2210 1 ﹁コ 2650 ■1 5 360〔1 ︵U ︻U 爪U O O ︵U O O ︻U O ハリ ハU ∧U ハリ 5 8 ︵U 3 3 6 6 2 2 1 5 4 几U 6 qU.4 4 ﹁〇 7 ﹁〇 97 75只︶ 只︶ 只︶ 只︶ q︺ 0︶ 鑓U ロU ロ0 5 仁U 2 nU A﹁ 3 2 1 2 2 4 1 4 2 ¢U・4 3 3 2 2 ワ︼ 2 りん 2 2 2 2 2 4980 9 つム 3 1▲・4 3 5 2 4 7 2 3 2 ¢U‖5 3 3 4 4 ■4 4・4 4・4 ﹁〇 ﹁⊃ 5 5 5 5・4 5 3 0 a u 6 爪U 3 5 7一l 史︺ ▲h ﹁〇 QU l▲ ︻b 6 4 0 ︻X︶ ︵わ ︻ 5 5 5 ﹁⊃ ﹁〇 5 6 5 5 6 XRF C AA NAA XRF (%) 1()110 00.5 (〟g・g ̄1) (〟g・g ̄l) (%) (%) Rb Ti Ni Cu Zn Pb Sr Fe Ca KI Mg Mrl (%) (〟g・g▼l) AA AA XRF C XRF NAA XRF (%) (%) Dq火h(。m)三上こ(〟g・gl) Appendix15.27 Analyticaldataonthesedimentcore Samplingsite:β.Samplingdate:11/4,1977,Waterdepth:58・Om・ 7 l 3 2 ︻ヽ︶ ワ一6 5 9 ﹂﹁.4一4 ア 6 1 つJ 3・バー・4 6 7 5 3 3 7 7 7 4 ︻b 3 B 3 L 5 3 3 Z 4 り︼.4一6 .A一.4.■て T O 1 7 A︼ ︿▲U ︻八︶ 5 9 ﹁︺ 1 4 4・■† ‖=一 ‖‖‖一一一一・6: 4 ︵U O 7 7 O ウレ l 9 2 O Z 0 7 0・4 hU ∧U 3 4・4 3 6 〓 nU 5 ︵U 1 4 2 U 4 2 0 5・ O 6 O 3 rD O 5 ⊂J 7 ﹁〇 ハU 5 6 7 7 ︵U ・AT 0 6 4 7 つJ ﹁〇 3 5 3 2 爪U 9 つJ ■〇 7 qU 4.A︼ 9 ▲h Jq・4..4 5 つム 5 6 6・4 qU ︵U 9 つJ・4・4 1 9 0n 6 O 爪U ﹁〇 O OU ﹁〇 5 2・A−5 ■﹂J一1 3 nU 3 1 5 っJ .4 5 O□ 4 4.4 乙右4.4.4.7.L9.7.も4.6、5. 9 q︺ 貼554336302926292725262733 7 つJ 3 ■﹂J ■へ︶.■斗 5 qU 1 ︻U 7 ▲‖0 ⊂J 几﹁U 3 3 つJ 9 7 7・4 ウレ ﹁〇 3 3 7 7 1 5 2 ウJ 1 ︵U 5.−勺 5 3 0 へ〇 85つJ9 3っ J22∩‘22り︼222 qU一1 14 11 6 3 ■4 0 9 7 2 7 7 4 4 5 9 O CU 7 <U ∧U 7 6 5 (−)urLdetectableoTrnOtana】ysed.Analyticalmethod:(C)colorimetry,(AA)atonicab50rptionspectrophotometry,(XRF)X−ray fluore∝enCeanatySis,(NAA)neutronactivationanalysis・ つJ 9 1 ︻﹂U 仁U 7 つJ 爪U a u E L■L30・9 93899077645249595360由585856 ﹁つ3.42232323ワ︼333 O ∧U 7 5 一5156一一一︻ 7〇一一 d N 48505550544855535856粥545955 nU ︵U 0 1 5 T ︵U 5 .Ln .2.2.9j.9.2.1.2.2﹂∵j.4.5 ⊂J 5 4 5 4 ﹁〇 5 5 5 ■﹂J 9 4.4.4 9 ︻‖V O ■■q 4 ∧U 1 ∧U ハU 1▲ ︵〓﹀ 1 qU O O一‖︶ 2 ︷U 7 5 O ハU 5 Ar ﹁〇 l ↓1 5 6 つJ 3 9 7 ワレ pU 2 つJ 一トロ..4 ハy 7 qU 9 ハV 爪V 長V 7 S ▲.O l 4 1.4一︻‖0 ハリ 几U l 0 爪U 0 鎗U 0 ∧U 5.4.皿.。4.4一寸.4・4▲ 9 一斗.几T 1 ∧U n﹀ (〟g・g1) つJ O 一斗 ハU ︵U ハnU ∧U つJ Yb Lu 5 2 7 3 9 9 7・几T・d▲ 5 2 ワ︼ O ︵U 5 6 ︵U 2 O 9.4 2 7 9 鎗U <U O 中U 2 ハリ n> ∩︶ 5 5‘リ ア 7 7 9 ︵U 0 9 3 9 っJ Z 3 ︵U OO ▲‖︶ gU ハ> ▲‖︶一4 ﹁〇 ︻ヽ︶ つJ 0 3 2 3 3 2 O 6 3 Z n︶ 2 2 ・・ヰ 3 O 3 2 ︵U 3 ■U 3 1 つJ O つJ つ] 3 O 爪〓 OO <U q﹀ 0 nJ ロU On 7 U 7 7 9 7 7 ?J 0 几火︶ ハU 7 OU 1g−22 QU QU 14−18 QU 0,5−1 23 12 34 46 68 10−14 8−10 ︵U ハ‖︶ U 6.4 0 仁V m S ︻b 2 ∧U S ワ山 0 ハU 31 B O b C O 4 2 2 爪V S 3034 ウ︶ 5 2 臥9.9.針針〇.一〇.〇.〇.9.9.針9. 2 1 5.L∴L′仇︹山6.6.臥︻軋Dれ7.臥㍗ 4.㌻∩よっ山L2.一2.乙3.乙3.3.も 7 6 9 7772 9 4・4・ 7975717372凱一76相79朗開拓粥 7 RU ︻b 5 6 1 5 qU.4 q﹀ 2 7 9.L∴仇nLょいq.一臥3.臥9.L L乙 l ワ︼ 9︼ l 1 1 ,1 り︼ 1 1 2 ワ︼ Z 0 、“ 869088銅8783一9497979091約94 ㈹040606鵬000400090009990806 AA AA XRF C XRF NAA XRF ⅩRF C 7 0 7 2 1 7 ■﹂J <U O つJ.4 .7通用.8月.7.7.8.7.7J J.7 <U n︶ ▲日 2226 −−誉T− 26−30 43090592幻917690970525 ∧U っJ 00.5 (〟g・g ̄▲) (〟g・g ̄l) (〃g・gl) (%) As Rb Ni Cu Zn Pb Sr Ti Fe Mn K Mg (%) (%) (〟g・g「1) (%) Appendix15.28 Analytica】dataonthesedimentcore Samplingsite:6.Samplingdateこ11/4,1977.Waterdepth:2.5m. P K Ca Mg Depth(cm)(JLg・g.) (%) 5 6 0 4 5 ハリ ▲4 4 6 6 9 3 7 0 1 6 4 6 5 8 亡U 仁U 3 5 8 00 5 6 亡U 3 6 0 5 1 6 4− 2 7 .4 5 7 140 77 8 135 81 35 2 7 5 9 ハU 6 4.49 0.48 6 153 76 4 4.28 0,49 935 4.66 960 3 843 4.66 650 RU 3 980 2.10 0.35 0,82 1100 28−32 4 2.10 0.33 0.76 24−28 3 620 3 20−24 4.58 0.51 亡U 5 6 4.96 0.53 875 4.76 亡じ 982・5.11 2」5 0,32 0.84 1060 1 2.34 0.29 0.90 1150 00 2.41‘0.36 0.92 530 9 460 1820 4︼33n3 U 2 2 ワ 16−18 1 4.79 0.55 4.93 0.54 4 960 934 5.00 1 843 4.74 470 7 1 2.38 0.36 0.89 1020 1416 3 3 4.53 0.53 2.21 0.30 0.80 00 960 390 2 4.69 0.55 778 4.48 一]▲ 788.4.49 3 950 4 2.30 0.30 0.78 3 4 460 2 4 1012 6 4.29 0.50 4 723 4,51 9 880 5 2.29 0.27 0.80 3 360 6 810 4.59 0.49 5 4.5と1 0.45 6 756 4.52 ロ0 00 1 1 920 2.33 0.28 0.80 .940 771 4.62 5 1 2.50 0.36 0.77 360 3 1 370 6−8 1 1 46 5 1 4.25 0.43 3 1 804 4.59 1 1 4.29 0.40 990 9 1 942 4.95 2.28 0.33 0.82 2 1 2,09 0.36 0.83 130〔) 490 9 1 640 Oロ263025りん 7 2 1−2 1 2 4.41 0.45 62 3 3 2,13 0.35 0.82 1850 1600 4.92 6 3 860 XRF 2 5 4.21 0.46 2−4 12−14 (〟g雫1) AA AA XRF C XRF XRF 2.28 0.42 0.82 2080 1780 4.87 860 0.5−1 Ti Ni Cu Zn Pb As Rb (%) 3 0 7U 94亡U .4 47 4 亡U41 44 3 003 0 70 亡 4 14 041 4<U﹂︼ 0−0.5 XRF (%) 亡﹀ UU5392︹2 J ︹ C Fe Mn (%)(〟g・g ̄り 11 138 84 5 Analyticalmethod=(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)Ⅹ−rayfIuorescenceanalysis・ 一b 7 7 5 3 4 3 2 0 2 Appendix16 ProbablespeciesofelementsintheoxidizedandredueedlayersofsedimentinLakeBiwa Oxidizdlayer Reducedlayer Solidphase Fe Fel+2)Ⅹ,FeS,FeS2, [FezOユ・nH20] Mll Mn(+2)X Fe+Z,Fe(+2)L As As(十3)Ⅹ,ⅩAsO㍗. As(+3)しHAsOヱ, [AsS;,HzAsOi] [As2S。] Sb Sb(+3)X,Sb2S,, Sb(OH)ユ,XSb(Oll),. Aqueousphase Aqueousphase −…−→, Fe(十2,+3)L → Mn十之.Mn(+2)L M†l◆2,Mn(+2)L Sb(OH)ユ・aq., Sb(+3)L,SbS盲 一−−−−−→ H2AsO;,[As(十3)L] Solid phase FelOも・nIiモ0、. Fe(+2.+3)Ⅹ 2).3),4) Mn(+2)X,MnOx・nH20 (Eh>cα.600mV) ⅩAsO∴[As(+3)Ⅹ] 沌拍. Total dissolved sulride:10 ̄β10 ̄‘M Sb(OH)盲.[Sb(+3)L] XSb(OH)言,[Sb(+3)Ⅹ] 油壷. Pb+3,Pb(+2)L Pb(十Z)Ⅹ,PbO2 (Eh>r仇600mV) 抽出. Hg,Hg(+2〉Ⅹ ⅩCrO∴Cr(+3)Ⅹ, ざdfd. ←S [Sb?〕 Pb Pb(+2)Ⅹ,PbS −−N∽− Hg HgS,Hg,[Hg(+2)X] Cr Cr(+3)X,[Cr(Of砧] U UO=,U(十4)X, UO2(+2)X V VO(+2)X.Ⅴ(十3)X, XVOJ3.[VO(OH)。, V(OH)l] Ce Ce(+3)X Ⅰ】b十2,Pb(十2)L, [PbSi2] ◆ ̄S HgS;】,Hg.[Hg(+2)L] ←S Hg,HgOti十,Hg(十2)L Cr(OH)言,Cr(十3)L ←一=7 CrOi≧,Cr(Ofi);, U(OH);2,UO;(Otl)十, ←−−−− U(十4)L,UO2(+2)L H2VOi,VOOtl◆, VO(+2)L.V(OH)言, Ⅴ(+3)L Ce十】,Ce(十3)L Cr(+3)L [Cr(OH)3] UOz(OH)∴UO⊇(+2)L UO2(+2)X ←−= ? H之VOi −− −→ Ce+3,Ce(+3,+4)L, Ce(OH);g,Ce(0Ii汀, Tota】dissoIved carbonate:10510 ̄1M XVOこJ Ce(+3,+4)X,Ce(OH). (Eh>e〃.400mV) 1)Eh−pHdiagTamforeachelementwasillustrateda25’C,1atm.byrefrencetothefollowingliteratures:G▲Charlot.”L’an81ysequa】itativeetlesreactioTIS ensol11tion”,4e昌dition,1957,MassonetCie;LG.Sil16n,A.E.Martell,t’StabilityconstantsoLmetaトioncoTTIPlexes’’,Spec.pub.No.17,1964.CTlem.S()C. (London). 2)J.D.Hem,ChemicalfactorsthatinfltlenCetheavaitabilityofiTOnandrrlaTlganeSeinaqueotJSSyStemS,Geol.Soc.AmeT・Bull.,Spec.pap.140,1724(1972) 3)R.R.Weiler.TheinterstitialwatercompositioninthesedimentsoftheGreatLakes.1.Western LakeOntario,Limr[01.Oceanogr,18,91B−931(1973) 4)G.Brtlmmer,Redoxpotentialetmdredoxprozessevonmar)gan−,eisen、undschwefetverbindungeninhydro叩Orpher)b6denundsedimenten,Geoderma12,207 −ZZ2(1974) X:1nsolubleorganicsubstance.hydrousoxidesofmanganE5eandiron,OrC]ay,etC・ L:Solubleorganicsubstanc []:Minorco爪Stituentineachphase ←S:Rtentionbysulfideformationcanbeexpected. AppeTtdix17 ModeIforcyclesofmetalsinLakeBiwa 旭適ql止1m 匪ぬpl出血(B) Supply:Bio]ogicaldetritus(BD).Organicsubstanees(L(5)andL(ins)aresolubleand irLSOlubleorganicsubstancesrespectively),Hydrousoxidesofmanganese (MnO.r)andiron(FeOx),C]ay;Metalionsaresupt)1yedasoccluded,COmplexed, andadsorbedformsinadditiontosomesimpleinorganiccomplexesandfree aquo−ions(Me舛つ. (R1):Releaseofmeta]ionsbymicrobialdecompositionofmetalcomp】exes(i,e.MeL (s)→Me几++R.R:Organicresidue);CataIyticoxidationofMn2+,Catalyzer: MnOx,FeOx,quartZ,feldspar,microorganism,etC. (R−2):Complexformation;Oxidation;Adsor7)tion;Dissolutionbyeomplexformation (MeXl+L(s)→MeL(s)+ⅩI);MetalioTlreleasewithloweringofpHandby hydrousoxide(MnOxorFeO.r)LL(s)interaction. (R3)= CompIexformation;Sulfideformation;Stlbstitutionreactioni(Mn2+.MeT十)+ Me,Ⅹ1→(Mn,Mel)Xl+Me冒+);Dissolutionbycomplexformation;Metalion releasewithloweringofpH andbyhydrousoxide−L(s)interaction. L雷(ins):insolubleorganicsubstanceresistedtodecomposition. :underlinedspeCleSShowstheminorconstituentineachproduction. −126一 ■・、l 2 3 十+ 539 ハU33︵U qU2 4 4 596 2 554 3Ar l l 11 111 1 1 2 As 28.1 l.1 27.1 Ce 24.3 Co ∴■1 Ni 22−2 Fe 17.7 Mn 13.2 Elen廿ent(3+〕 −11)g K些 Ba‥ 50.1 Fe Ⅰ}b 35.4 Cr ししI 35.1 A】 Cd 32.7 Bi \111‖ 28.7 Co 28.1 Zn■ 27.9 Ni‥ 25.5 61 Sb 36.3 A﹁ 5 2 つJ 1 4 2 Elemt(3+) 52.5 Zrl 迦1ent(2+) + Cd 434222 Pb ++十++十 3T t−11 −log K50 α0 443257■472461一b535 +jO 11 72 535 70 1 7 ﹁〇 7 7 6只︶973 56 7 U︵﹁〇 32 q−20122 つJ3.4 555.43 4.4 Hg + 、 法字La琵N。訂実記Er諾Lu Element ぐ2+つ (4+)50.6 (4+)53.1 (ThO)23.3 (UO2)19.3 (4+)56.0 (3+)37.4 (3+)4l.8 (4十)64.8 −1ng Kso 20.2 20.】(at22℃) 】5.8(a122℃) 9,4 19.7 Mg Ca◆ 18.2 Sr● 18.1 Appendix18 Solubility products of metal−hydroxide,Sulfide and arsenate ValuesarebasedonthedatacompiledbySil16nandMartell (1964).伽Hydroxide,Tempニ25℃,Ks。=(Me爪り(OHr)わ;03) Sulfide,Temp:25℃,K5。(2+)=(Me2+)(S2▼),K5。(3+)= (Me3+)2(S2.)3,●ニValue for(HAs02)2(ⅠⅠ2S)3;(C)AI−Senate. Temp:20℃,Ks。(2+)=(Me2+)3(As0▲3 ̄)2,K,。(3+)= (Me3十)(AsO.3 ̄),..:Elementswhicharelargelyaccumulated inMnconcT・etions(concentrationfactoT・>0.8),◆ニEIements whichareslightlyaccumulatedinMnconcretions(concen− trationfactor=0.3−0.8) 一127− Iog(Solublllty.M) +10 )( −10 −20 −40 −30 ㌔ a㌔﹂千尋i O n d扉u㌔っr C ⊥ H =l A tll (\1’/) F l】l N C Z C P C S H Appendix19 Maximumsolubilityofmetalionas(A)sulfideand(B)hydroxide ConcentTationlevel二(1)mg、kg1,(2)〃g・kg∴(3)pg・kg ̄1. (A)Temp:25−C,pH:6,5,Totalsulfideconcentrationinsolution= (a)10 ̄6M,(b)10▼5M,(c)10 ̄4M;(B)Tempこ25凸C,pH:7.0. −128− 109(Solubility.M) −10 0 a r a q一 B S C机 へぢ刃h帽り Mn2+ iCd 叫rqぺり可し … ∴ Nl Nd Pr Y Tm m S E u d E r b G O Y†山H︻⊥n u b y ZC u S C 129 −20 −30 −40 国立公害研究所特別研究成果報告 第1号 陸水域の富栄養化に関する総合研究−霞ケ浦を対象域として一昭和5】年度.(1977) 第2号 陸上植物による大気汚染環境の評価と改善に関する基礎的研究椚和51,52年度 研究報告. (1978) (改 称) 国立公害研究所研究報告 奴第3号 A compaTative study ofadults andimmature stagesofnineJapanesespeciesofthegenus Chironomus(Diptera,ChiTOnOmidae)・(1978) (日本産ユスリカ科・C執れ川仇Ⅵ∽ 属9種の成虫,サナギ,幼虫の形態の比較) 第 4 号 スモッグチャンバーによる炭化水素一望葉酸化物系光化学反応の研究一昭和52年度 中間報 告.(1978) 第 5 号 芳香族炭化水素一室素酸化物系の光酸化反応機構と光酸化二次生成物の培養細胞に及ぼす影 響に関する研究一昭和5l,52年度 研究報告(1978) 第 6 号 陸水域の富栄養化に関する総合研究(Ⅱ)番ケ浦を中心として.一斗昭和53年度.(1979) ※第 7 号 Arr”rphologicalstudyofadultsandimmaturestagesof20Japanesespeciesofthe family ChilOnOmidae(Diptera).(1979) (日本産ユスリカ科20種の成虫,サナギ,幼虫の形態学的研究) 媒第 8 号 大気汚染物質の単一および複合汚染の生体に対する影響に関する実験的研究一昭和52.53年 度 研究報告.(1979) 第g 号 スモッグチャンバーによる尉ヒ水素一審素酸化物系光化学反応の研究一昭和53年庭 中問報 告,(1979) 第10号 陸上植物による大気汚染環境の評価と改善に関する基礎的研究昭租51−53年度 特別研究 報告.(1979) 第11号 Studies on the effects ofair pouutants on plantsand mechanisms orphytotoxicity.(1980) (大気汚染物質の植物影響およぴその柄物毒性の機構に関する研究) 第12号 Multielement analysis studies bynameandinductivelycoupledplasmaspectroscopyutilizing COmputer−COntrOlledinstTumentation.(1980) (コンピュータ制御装置を利用したフレームおよび誘導結合プラズマ分光法による多元素同時 分析) 第13号 StudiesonchironomidmidgesoftheTamaRiver・(1980) Parll.The distribution ofchiTOnOmid speciesir)atributaryin relation to thedegree orpol・ 1utionwithsewagewater・ Part2.DescTiptlOnOf20speciesorChiTOnOmirlaeIeCOVeredrromatributary・ (多摩川に発生するユスリカの研究 ¶一講1報 その一支流に見出されたユスリカ各種の分布と ̄F水による汚染度との関係一 一節2報 その一支流に見出されたChilOnOminae亜科の20種について−) 第14号 有機廃棄物.合成有機化合物,重金属等の土壌生態系に及ほす影響と浄化に閲する研究−昭 和53,54年度 特別研究報告.(1980) 巣第15号 大気汚染物質の単一および投合汚染の生体に対する影響iこ関する実験的研究−昭湘54年度 特別研究報告.(1980) 第16号 計測車レーザーレーダーによる大気汚染遠隔計己軋(1980) 数第17号 流体の運動および輸送過掛こ及ぼす浮力効果【臨海蝿域の気象特性と大気拡散現象の研尭 1一昭柾53,54年度 特別研究報告.(1980)  ̄ Vll− 第18号 PrepaTation,amlysisandcertification ofPEPPERBUSHstarLdaTdTefeIenCematもrial▲(1980) (環境標準試料「リョウプ」の調製,分析および保証値) ※第19.号†陸水域の富栄養化に関する総合研究(Ⅲ)−一霞ケ浦(西浦)の潮流一昭和53,54年度. (1981) 第20号 陸水域の富栄養化に関する総合研究(Ⅳ)−霞ケ浦流域の地形,気象水文特性およびその湖 水環境に及ばす影響一昭和53,54年度.(1981) 第21号 陸水域の富栄養化に関する絵合研究(Ⅴ)一環ケ浦流入河川の流出負荷量変化とその評価一 昭和53,54年度.(1981) 第22号 陸水域の富栄養化に関する総合研究(Ⅵ)一霞一ヶ浦の生態系の構造と生物現存量一一昭和53, 54年慶.(1(蛤1)■ 第23号 陸水域の富栄養化に閲す、る総合研究(Ⅶ)一湖沼の富栄養化状射旨捷に関する基礎的研究一 昭和53,54年度.(1981) 第24号 陸水域の富栄養化に関する総合研究(Ⅶ)言栄養化が湖利用に及ぼす影響の定塵化に関す る研究】一昭和53,54年皮 (1981) 第25号 陸水域の富栄養化に関する総合研究(Ⅸ)−〟了cr叩∫由(藍藻類)の増殖特性一昭和53, 54年度.(1981) 第26号 陸水域の富栄養化に関する総合研究(Ⅹ)一藻掛吾養試験法によるAGPの測定一昭和53. 54年度.(1981) 第27号 陸水域の富栄養化に関する総合研究(Ⅲ)一研究総括一昭和53,54年度.(19飢) 第28号 複合大気汚染の植物影響に関する研究一昭和54,55年虔 特別研究報告.(1981) 第29号 StudiesonchironomidmidgesoftheTamaRiYer.(1981)′ Part3,SpeciesofthesubfamilyOrthocladiinaerecordedatthesummeisurYeyandtheiTdistTi・ butioniJlrelationtothepollutionwithsewagewaters, Part4.ChironomidaerecoTdedatawintersurvey. (多摩川に発生するユスリカ規の研究 一策3報 夏期の調査で見出されたエリユスリカ亜料orthocladii爪ae各種の記載と,その分 布の下水汚染度との関係について 一策4報 南浅川の冬期の調査で見出された各種の分布と記載−) 常第30号 海域における富栄養化と赤潮の発生機構に関する基礎的研究一昭和54,55年度 特別研究報 告.(1982) 第31号 大気汚染物質の単一および複合汚染の生体に対する影響に関する実験的研究一昭紬55年度 特別研究報告,(1981) 第32号 スモッグチャンパーによる炭化水素一軍葉酸化物系光化学反応の研究一環境大気中における 光化学二次汚染物質生成捜構の研究(フィールド研究1)一昭和54年度 特別研究報告.(1982) 第33号 臨海地域の気象特性と大気拡散現象刀研究一大気運軌と大気拡散過程のシミュレーション 一昭和55年皮 特別研究報告.(1982) 第34号 環境汚染の遠隔計測・評価手法の開発に関する研究一軒和55年度 特別研究報告.(1982) 第35号 環境面よりみた蝿域交通体系の評価に関する総合解析研究.(1g82) 第粥号 環境試料による汚染の長期モニタリング手法に関する研究一昭和55,56年度 特別研究報告. (1982) 第37号 環境施策のシステム分析支援技術の開発に関する研究・(1982) #38号 Preparation,analysisandcertificalionofPONDSEDIMENTcertifIedref℃TenCematerial・(1982) (環境標準試料「地底質」の調製.分析及び保証値) 第39号 環境汚染の遠隔計測・評価手法の開発に関する研究一昭和56年度 特別研究報告.(1982) −V111 ̄ 第40号 大気汚染物質の単一及び複合汚染の生体に対する影軌こ関する実験的研究一昭和56年度 特 別研究報告.(1983) 第41号 土壌環境の計測と評価に関する統計学的研究.(1983) 第42号 底泥の物性及び流送特性に関する実験的研究.(19田) 粟第43号 StudiesonchironomidmidgesoftheTamaRiver.(1983) Part5.AnobservationonthedistributionofChironominaealongthemainstreaminJunewith descrlptionof15newspecies・ PaJt6.DescrlPtionofspeciesofthesubfamilyOrthocladiinaerecoveredfromthemainstream htheJune5urVey. Palt7.AdditioTlalspeciescollectedinwinterfTOmthemainstream. (多摩川に発生するユスリカ類の研究 一第5報 本流に発生するユスリカ頸の分抑こ関する6月の調査成績とユスリカ亜科に属す る15新種等の記録− 一策6報 多摩本流より6月に採集されたエリユスリカ亜科の各種北ついて.− 一第7報 多摩本流より3月に採集されたユスリカ科の各種について−) 第胡号 スモッグチャンパーによる炭化水素一室素酸化物系光化学反応の研究一環墳大気q】における 光化学二次汚染物質生成機構の研究(フィールド研究2)一昭和54年度 特別研究中間報告. (1983) 第45号 有機廃棄物.合成有機化合物,重金属等の土壌生態系に及ぼす影響と浄化に関する研究¶昭 和53年∼55年皮 特別研究報告,(1983) 第46号 有機廃棄物,合成有機化合物,茶会属等の土壌生態系に及はす影響と浄化に関する研究−昭 柏54,55年度 特別研究報告 第】分冊.(1粥3) 第47号 有機廃棄物,合成有機化合物,重金属等の土壌生態系に及ぼす影響と浄化に関する研究一昭 和54,55年度 特別研究報告 第2分冊.(】湘3) 第48号 水質観測点の適正配置に関するシステム解析.(1983) 第49号 環境汚染の遠隔計測・評価手法の開発に関する研究一昭柵57年度 特別研究報告.(1984) 第50号 陸水域の富栄養化防止に関する総合研究(Ⅰ)−一霞ヶ浦の流入負荷真の算定と評価一昭和 55−57年度 特別研究報告.(1984)■ 第51号 陸水域の富栄養化防止に関する組合研究(n)一霞ケ浦の湖内物質循環とそれを支配する因 子一昭和55−57年度 特別研究報告.(1984) 第52号 陸水城の富栄養化防止に関する総合研究(m)一霞ケ浦高浜入における隔離水界を利用した 富栄養化防止手法の研究−昭和55−57年皮 特別研究報告.(1%4) 第53号 陸水域の富栄養化防止に関する総合研究(Ⅳ)一霞ケ浦の魚頬及び甲殻類現存塁の季節変化 と富栄養化一昭和55−57年度 特別研究報告.(1984) 第別号 陸水域の富栄養化防止に関する総合研究(V)−霞ヶ浦の富栄養化現象のモデル化−一昭和 55−57年慶 特別研究報告.(1984) 第55号 陸水域の富栄養化防止に関する総合研究(Ⅵ)冨栄養化防止対策←昭和55∼57年度 特 別研究報告.(1984) 第舐号 陸水域の富栄養化防止に関する総合研究(Ⅶ)湯ノ湖における富栄養化とその防止対策一 昭和55∼57年度 特別研究報告.(1984) 弟57号 陸7k域の富栄養化防止に関する総合研究(Ⅶ)一十隠悟報告」一昨沌55−57年度 特別研究報 告.(1∈B4) 第調号 環境試料による汚染の長期的モニタリング手法に関する研究一昭和55−57年度 特別研究総 合報告.(1躯4) 第盟号 炭化水素一撃葉酸化物一硫黄酸化物系光化学反応の研究光化学スモッグチャンバ オゾン生成機構の研究一大気中における有機化合物の光酸化反応機構の研究一昭和55∼57 年度 特別研究報告(第1分冊).(1盟4) 第60号 炭化水素、窒素酸化物一硫黄酸イヒ物系光化学反応の研究一光化学エアロゾル生成槻構の研究 一昭和55−57年皮 特別研究報告(第2分冊).(1%4) 第61号 炭化水素、窒素酸化物一硫黄酸化物系光化学反応の研究一環境大気中における光化学二次汚 染物質生成機横の研究(フィールド研究1)一昭和55−57年皮 特別研究報告(第3分冊). (1981) 第62号 有害汚染物質による水界生態系のかく乱と回復過程に関する研究一昭和56−58年度 特別研 究中間報告.(1984) 第63号 海域における富栄養化と赤潮の発生桟橋に関する基礎的研究一醐口56年度 特別研究報告. (19糾) 弟朗号 複合大気汚染の植物影軌こ関する研究一昭和54∼56年慶 特別研究総合報告.(1984) 第65号 Studiesoneffectsofahpollutantmixturesonplants−Partl▲(1984) (複合大気汚染の植物に及ぼす影響一第1分冊) 第66号 StudiesorLeffectsofairpollutantmixturesorLphnts−Part2.(1984) (複合大気汚染の植物に及ぼす影響一第2分冊) 第67号 環境中の有害物質による人の慢性影響に関する基礎的研究一昭和54−56年度 特別研究総合 報告.(1984) 第鴨号 汚泥の土壌還元とその環境に関する研究一昭和56−57年度 特別研究総合報告.(慄4) 第69号 中禅寺湖の富栄養化現象に関する基礎的研究.(】粟4) 第70号 StudicsoIIChironomidmidgesinlakesoftheNikkoNationalPark(1984) Pa∫tl.EcologicalstudiesonchironomidsinlakesoftheNikkoNationalPark・ ParID.TaxonomjcalandmoTPhoIoglCalstudiesonthcchironomidspeciesco11ectedfromlakes h theNikko Nationall〉aTk. (日光国立公園の柳沼のユスリカに関する研究 一策1都 日光国立公園の湖のユスリカの生態学的研究− −第2部 日光国立公園の湖沼(こ生息するユスリカ類の分類学的,形態学的研究一 策71号リモ∵−トセンシソグによる残雪及び雪田相生の分布解帆(1984) 第72号 尉ヒ7k第一窒素酸化物一硫華酸化物系化学反応の研乳環囁大気中における光化学二次汚 染物質生成機構の研究(フィールド研究2)一昭和55−57年度 特別研究報告(第4分冊). (1985) 第73号 炭化水素一室素恨化物一硫黄酸化物系化学反応の研究」一理困55−57年度 特別研究総 合報菩.(1985) 第74‡ヲ・都市域及びその周辺の自然環㈲二係る環境指標の開発に関する研究.環境指標一その考 え方と作成方法昭和59年度特別研究報告.(1984) 第75りr Limno]og・CaL之Indenvironmen(aEstudiesorelementsinthesedimenlorLakeBi“′2l.(1985) 琵琶湖庇iJ糾】の元射こ関する陸水学およひ環境化学rl加肝究 ※残部なし Report of Speci&1Rese&rCh Prqject the N&tionallnstitute for Environment81Stlldies No・1■Man activity and aquatic enviTOnmentWith specialIeferences to Lake Kasumlga11TaProgIeSS TepOrtin1976,(1977) No.2*Studies on evaluation and amelユOration ofair pouution by plants−Progressreportin1976−1977. (1978) 【StartingwithReportNo.3,thenewtitleforNIESReportswaschangedto:】 Research Report fromthe N8tion81InstittLte for Environment&1St11dies 薫No・3 AcomparativestudyofadultsandimmaturestagesornineJapanesespeciesofth仁genuSChironomzJS (Diptera,Chi−OnOmidae)・(1978) No・4+SmogchambcrstudiesonphotochemicalleaCtionsofhydrocarbon−nitIOgenOXidessystem−PTOgreSS JepOrtin1977・(1978) No.5■Studies onthephotooxidationproductsofthealkylbenzerLe−nitrogenoxidessystem,andontheir effectsonCulturedCe115ResearcllrepOrtin1976・1977,(1978) No,6+Man activity and aquatic enYironment一with speCialreferences to Lake Kasumigaura−ProgTeSS repoftin1977−197臥(1979) 欒No・7 ^morphologlCalstudyofadultsandimmaturestagesor20JapanesespeciesofthefamiIyChiTOnO一 midae(Diptera).(1979) 兼No,8*StudlesonthebiologlCaleffectsofsingleandcombinedexposuleOfairpollutantsReseaTChreport in1977−1978.(1979) No,9+SmogchamberstudiesonphotochemicalTeaCtionsorhydIOCarbon−nitIOgenOXidessystem−ProgIeSS reportin1978・(1979) No.10+Studieson eYaluation and amelioration ofaiT pOllution by plantsProgressreportin1976−1978・ (1979) No,11Studiesontheeffectsofai∫pOllutantsonplantsandmechanismsofphytotoxicity・(1980) No.12 Multielementanalysis studies by name andinductively coupled plasmaspectroscopyutillZingconl− puteJ−COntrOlledinstrumentation・(1980) No.13 StudiesonchiTOnOmidmidgesortheTamaRiver.(1980) PaT11,¶e distTibl】lioT10ichiIOnOmidspeciesinatTibutaTyinTelationtolhedegIeeO−p(〉llution Withsewagewater. Part2.I)escriptior)Of20speciesofChiTOnOminaerecoveredfromatTibutary. No.14*StudiesorLtheerfectsoforganicwastesortthesoilecosystemProgressreportin1978−1979・(1980) 姓No.15■StudiesonthebiologicaleffectsofsingleandcombinedexposureofairpollutantsrResearchTePOrt il11977−1978.(1980) No.16+RemotemeasurementofairpollutionbyamobilelaserTadar.(1980) 滞No・17*Tnnuenceofbuoya爪CyOnfluidmotionsandtransportprocessesMeteorologlCalcharacteristicsand atmosphericdiffusionphenomenainthecoastalregionProgressreportin197B・1979・(1980) No.18 Preparation,analysisandcerlificationofPEPPER】】USHstandardreferencematerial▲(1980) 蝋No・19●CompTehensiYe StudiesontheeⅦtTOphicationo−†㍑血−Wate一色TeaSLakecu一丁entOrKasumigaura (Nishiura)−1978−1979.(1981) No.20■ComprehensiYeStudiesontheeutrophicationoffresh−WateTareaS−GeomorphologicalandhydTOme・ teorologicalcharacteristicsofKasumigaurawate−Shedasrelatedtothelakeenvironment−1978−1979・ − − (1981) Xl− No・21■Comprehensive studies on the eutIOphication offresh・WateT areaSp Varlationofpollutantloadby irLnuentTiverstoLakeKasumigaura−1978−1979.(1981) No.22*Comprehensive studies on the eutrophication of fresh・Water areaS−StruCture Ofecosystem and StandingcTOpSinLakeKasumigaura1978−1979・(1981) No・23*ComprehensiYe StudiesontheeutrophicationoffreshrwateraTeaS−AppllCabihtyoftrophicstate indicesforlakes1978−1979.(1981) No.24*ComplehensiYeStudiesontheeutrophicationorfresh−WaterareaS−Quanlitativeanalysisofeutrophi・ cationerfectsonmainutilizationoflakewaterresou(CeSr1978−1979.(1981) No.25■ComprehensiYe Studieson theeutrophic且tionoffresh−WaterareaS−GrowthcharacteristicsofBlue− GreenAlgae,坤C和叩∫Jf∫1978−1979■(1981) No.26*Comprehensive studieson theeutrophicationoffresh−WaterareaS−Determinationofargalgrowth potentialbyalgalassayprocedure−1978・1979・(1981) No・27*Comprehensivestudiesontheeutrophicationoffresh−WaterareaSrSummaTyOfresearchesr197&・ 1979.(1981) No.28+Studiesoneffectsofairpollulantmixturesor)plantsProgressTepOtin1979−1980・(1981) No.29 Studieson(hiTOnOmidmidgesoftheTamaRiveT.(1981) Part3,SpeciesofthesubfamilyOrthocladiinaerecordedatthesummersuⅣeyandtheirdistribution in relation to the pollutian with sewage waters. Part4.ChiTOnOmidaerecordedatawintersurvey. ※No,30+Eutrophication aTid red tidesin thecoastalmalineenvlrOnment L Progressreportin1979−1980・ (1982) No.31■St11diesonthebiologicaleffectsofsingleandcombinedexposureofaiTpOllutants−Researchreport h1980.(1981) No.32+Smogchamberstudiesonphotochemicalreactionsofhydrocarbon−nitrogenoxides5yStemProgress reportin1979Researchonthephotochemicalsecondarypollutantsformationmechanisminthe enviEOnmentalatmospheTe(Partl)▲(1982) No.33■MeteorologicalcharacteristicsandatmosphericdiffusionphenomenainthecoastalreglOrlrSimulat− ionoratmospheJicmotionsanddi汀usionp【OCeSSeSPTOgreSSrepOftin1980■(19B2) No,34*ThedevelopmentandevaluationofremotemeasurementmethodsforenvilOnmentalpollutionRe− SearChreportin1980■(1982) No.35*CompEehensiveeYaluationofenvilOnmentalimpactsofroadandtraffic・(1982) No.36*Studies on the method roIlongte∫m enVi−OnmentalmonitorlngProgressrepoftin1980−19別・ (1982) No,37*StudyonsupportingtechnologyforsystemsanalysisofenviIOnmentalpol]Cy−Theevaluationlabo− ratoTyOrMan一号nYironmentSystems・(1982) No.38 Preparation,analysisandcertificationofPONDSEDIMENTcertifiedIeferencemateml(1982) No,39■The development and eYaluation of remotemeasuTementmethodsforenvironmentalpollution L ReseaIChJ叩Ortin1981・(1983) No.40・Studiesonthebiologicaleffectsofsingleandcombinedexposureofairpo11utants−ResealChreport 加1981.(1983) N。,41*Statisticalstudiesonmethodsofmeasurementandevaluationofchemicalconditionofsoil■(1983) 環No,42*ExpeTimentalstudiesonthephysicalpropeTtiesofmudandtTleCharacteTisticsofmudtransportationL (1983) 芽N。.43 StudiesonchiIOnOmidmidgesoftheTamaRiveL(1983) − Ⅹ11一− Part5.AnobservationonthedistribtJtionofChiTOnOminaealongthemainstTeaminJune,Withdes− CrlptlOnOr15newspecies. Part6・DescriptionofspeciesofthesubfamilyOrthocladiinaerecoYeredfromthemain5treaminthe JunesuⅣey・ Part7.Additionalspeciescollectedinwinterfromthemainstream・ No.44+Smogchamberstudiesonphotochemicalreactionsofhydrocarbon−nitTOgenOXidessystem−ProgTeSS reportin1979rResea.chonthephotochemicalsecondaTypOllutantsfoTmationmechanisminthe environmentalatomosphere(Part2),(1983) No.45ヰStudiesontheerfectoforganicwastesonthesoilecosystemOutl川eSOfspeciahesearchprojeetr 1978−1980.(1983) No.46*Studiesontheeffectoforganicwastesonthesoilecosystem−ReseaTChreportin1979・1980,Partl・ (1983) No.47*StudiesontheeffectororganicwastesonthesoilecosystemReseaTChrepoTtin1979−1980,PaTt2・ (1983) No.48*StudyonoptimalallocationofwaterqualltymOnitoringpoints・(1983) No,49*ne dモYelopment and evaluation o一丁emOte meaSu−ement method ro−enYiTOれmentalpollution− ResearchlepOltin1982.(1984) No.50*ComprehensivestudiesontheeutrophicationcontTO)offreshwatersEstirnationofil−putloadingof bkeKasumigauIa.1粥0−1982.(1984) No,51*Compreher[SivestudiesontTleeut10PhicationcontrolofrreshwatersThefunctiorlOftheecosystem andtheimportaTTCeOfsedimentinnationa)cycleinLakeKasumigau−a・一1980−1982・(1984) No.52*ComprehcnsiYe Studies on the eutrophication controIoffreshwatersEnclosure experiments ror restorationofhighlyeutrophicshallowI−akeKasumigaura・1980−1982・(1984) No.53蠣Comprehensivestudiesontheeutrophication controIoffreshwaters−Seasonalchangesofthebio− massoffishandcrustaciah LakeKastJmigauraanditsrelationtotheeutrophication・r1980−1982・ (1984) No,54+Comprel−enSiYeStudiesontheeut−OPhicationcontroloffresllWaterS−Modelinglheeutrophicationof bkeKasumigaura.1980・1982.(1984) No.55*Comprehensive studies on theeutTOphication controloffreshwaters−MeasuresfoTetJtTOphicatiorl col山01.一1980−1982.(1984) No・56*ComprehensivestudiesontheeutrophicationcontTOloffreshwaters−EutrophicationinLakeYunoko・ 一1980・1982.(1984) No.57+ComprehensiYe Studies on theeutrophication controloffreshwatersSurrLmaryOfresearches・▼ 1980−1982,(1984) No.58■St11diesonthemethodforlongternenYironmentalmonitoTlng−OutllneSOfspecialreseaTChpTO)eCt in1980−1982.(1984) No.59■Studiesonphotochemicalreactionsofhydrocarbon−nitrogen−Sulferoxides system−Photochemical ozone formation studied by theevacuable smogchamber p Atomosphericphotooxidation mecha− nismsofselectedorganiccompoundsResearchreportin1980−1982PaTtl・(1984) No.60■Studies on photochemicalreactiorlS Of hydrocarbon・nitrogcn・Sulfer oxides system Formation mechanisTr[SOfphotochemica)aerozoILReseaIChreportin1980−198=PaTt2.(1984) No.61*Studiesonphotochemicalreactionsofhydrocarbon−nitrogen−SulferoxidessystemResearchonthe photochemicalsecondaTy pO11utants formation mechanismin the environmentalatmospheTe (P紺tl).−ResealChreportin1980−1982・(1984)  ̄Ⅹ111一 No・62■Effectsoftoxicsubstancesonaquaticecosystems−ProgIeSSrepOrtin1980−1983.(1984) No・63■EutrophicationandredtidesinthecoastalmaTineenYironment−ProgTeSSrePOrtin1981.(1984) No,64*Studiesoneffectsof血pollutantmixturesonplants−Finalreportin1979−1981.(1984) No,65 StudiesoneffcctsofairpollutantmixtuTeSOnplants−Partl,(1984) No・66 Studiesoneffectsofairpo11utantmixturesonplantsrPaIt2・(1984) No.67+Studies on unfavourable effects on human bodyregardingtoseveraltoxicmaterialsintheerLViron− ment,uSingepidemiolo由Calandanalyticaltechniques−Projectresearchreportir[1979−1981,(1984) No・68*StudiesontheenYironmentalcffectsoftheapplicationofsewagesludgetosoilResearchreportin 1981−1ウ83.(1984) No,69*FtJndamentalstudiesoTltheeutrophicationofI・akeChuzenji−BasicTeSeaTChIepOrt.(1984) No.70 Studies on chironomid midgesinlakesofthe Nikko NationalPaTk−Partl.EcologicalstudiesorL ChiTOnOmidsinlakesoftheNikkoNatiomlPaTk・PartnLTaxc・nOmicalandmorphologicalstudieson thechironomidspeciescollectedrromlakesintheNikkoNationalPark.(1984) No.71*Analysiso】1distributionsorremnant snowpackandsnowpatchvegetationbyremotesensing.(1984) No・72 Studies on photoehemiealreacLions of.hydroearbonnitrogen oxidesSurruT OXidesSySlem −ResedrehonlhephotochemicalsecondaTypO‖utants fDrmation meehanismin†he environ− mentalalmosphere.Research■reporlin1980−】982.(1985) No.73 Studies on photochemicaL TeaCtions orhydrocarbonnilrogen oxides−Surrur OXidesL5yS(em. Finalrepor【in1980−19S2一(】粥5) No.74 A eomprehensivesludyonthedeve]opment orjndicessystemforurbaniIndsuburban environ・ men(a]quality.Environmenta]indicesbasicnotion formation,(1984) No.75 LimnoLogicalLLndenvironmen(aL studiosoreLemenlSjnthesedimenlorLakeljiwa・(1985) *inJapanese 弾out or s【ock
© Copyright 2024 ExpyDoc