Limn。ー。gicaー and Envir。nmentaー Studies 。f E

Research Report from the Nationallnstitute for EnvirortrnentalStudies,Japan.No75,1985.
「乱立公曇朝究所研究報告 第75号
Limnologicaland EnvironmentalSt11dies of
Elements in the Sediment of Lake Biwa
琵琶湖底泥中の元素に関する陸水学及び環境化学的研究
Edited byTakejiro TAKAMATSU
高松 武次郎(編)
Water and SoilEnvironmentl)ivision
水質土J衰環最部
環境庁 国立公害研究所
THE NAT10NALINSTITUTE FOR ENVIRONMENTAL STUDIES
ERRATA
Re馳arl:hReportfromtheNationallnstituteforEnvironmenta]Studies.No・75
LiTrnO]ogicalandEnvironmeTltalStudies()fElementsintheSedimentofLakeBiwa
Line
CorTeatd
Iモpad
18
presented
dissoIved
lewes1
lowest
500m2
25ha
appearenCe
appearanCe
(av.depth=Ca.10m,maX・
deplb:亡8.131山
(depth:Ca.13m)
disappearen仁e
disappearance
refren(:e
reference
RteIl山oll
Re【erltion
6
prsented
disoIYed
14
28
29
30
28
nO
nOt
t
O
h
わ
O
Prefacefromtheeditor
Alakecanbeconsideredto一光anaturalreactionvesselinwhichanepitomeofthe
hydrologicaIcycleofeIementsisdemonstratedL Oncetheriverine(orlesserexten亡atmo−
spheric)elementshaveenteredalake,mOStOfthemtakepartintheintricatebiological・
chemicalandphysicalprocessesandchangetheirchemicalstatesdependingontheindividua
environmentofけ把Iake,Eventually,theyaree】iminatedfrorn】akewaterasaresL血of
beingdepositedasedimentatthebottomofthelake,eVapOrationintotheatmosphere・and/
orbeingcarriedawaybytherivers・Afterdeposition,Sincethechemicalstatesofelements
oftenchangeasaresuJtofdiagenesjs,SOmeelementsdissoIveandmoveinthesedimentpore
waterandsometimesaccumulateintheparticularlayers(e、g.theuppermostoxidizedlayer
orthelayerwithmaximumreduction)ofsediment,Redissolutionoftheelementsintothe
b。tt。m Water frorn the sedimentis also a Common case.Therefore,the study on the
elementalbehaviorinalakeassociatedwithlakeenvironmentandthechemicalproperties
ofelementsprovidesusefuHimnoIogica‖nformationnotonlyfortheJocaJinterestbu[also
tofindmechanismsoftheglobalhydrologicalcycleoftheelements・
Althoughthere are many approachesin which to conduct a study from the above
viewpoint,theeZementaZanalyszsotthesedimentshouldh,aPrOmjsjngway・tN,CauSet
distributi。nandthechemicalstates ofelementsinthe sediment oftensuggestthe mech−
anismsofthelargenumberofreactionsinlakewateranddiagenesisafterdeposition・A
sedjment samp】e a)sohassome analyticaladvantages・Thatis,Since the sediment has
highercoccentrationoftheelementscomparedtotheotherenvironmentalsamples−thelos
andcontaminationoftheelementsduringthesamplestorageandtheanaIytica10perationdo
notgivesignificanterrorstotheanalyticalresults・Therelativelyhighconcentrationof
elementsinthesedimentalsomakesitpossibletodeterminetheelementsofmorethan30
speciesbythenondestructiveanaJyticaltechniquessuchasneutronactiva[ionandX−raY
fluorescence,
Inordertoelucidatethebehaviorofelementsonthebasisoftheelementalanalysisof
sediment,itisesserltialtoob〔ainasampJewhichhasnotbeendisturbedbyimTr)eaSurab】e
factors.ThesedimentsamplefromLakeBiwa,particularlyfromthecentralregionofthe
northempartofthelake,hasnottx:endisturbedappreciablyforthefo1lowingreasoTIS:(1)
Thedepthofthewatert光ingmorethan70p−eterSpreVentSthesurfaceofthesedimentfrom
beingdisturkdbywind.(2)Thesedimentcompositionisnotinfluenceddirectlybythe
inflowofriverineterrestrialrnatterduetolake,slargesize.(3)Atthepresenttime
 ̄
11l一
benthicorganismsonlysparselypopulateonandinthesediment.(4)Thereisnoilldication
thatgroundwaterandvoIcanichotspringsareflowingoutfromthebottomofthe?entra]
basirLlnaddition,interpretationoftheanalyticalresu】tswillkeasiertocarryoutsince
therehasbeenverylittlehumanactivityinthecatchmentareaofthenorthernpartofLake
Biwauntilrecent times.
Thisreportconsistsofeightchaptersandappendixes.ChapterIisofprimeimpor−
tanceasitprovidesf11ndamentaldatatobediscussedinthefo11owlngChapters.
Octokr,1984
T.Takamatsu
ー
lV −
CONTENTS
Chapter I
GeneralDistributionProfilesofThirty−SixElementsin
SedimentsandManganeseConcretionsofLakeBiwa…
1
T.TAKAMATSU,M.KAWASHIMAandM.KoYAMA
Chapter II
TheRoleofMn2+−RichHydrousManganeseOxidein
the Accumulation of Arsenic in Lake Sediments
T.TAKAMATSU,M.KAWASHIMA andM,KoYAMA
Chapter III
PhosphateAdsorptionontoHydrousManganeseOxide
inthe PresenceofDivalentCatiorlS
M.KAWASIlIMA,T.HoRl,M,KoYAMAandT.TAKAMATSU
Chapter IV
TheRoleofBiologicalDebrisintheRemovalofZnand
Cu from a Water Column
T.TAKAMATSU,M,KAWASHIMAえndM.KoYAMA
Chapter V
DepthProfilesofDimethylarsinate,Monomethylarsonate,
andInorganicArsenicinSedimentfromLakeBiwa”
‥
39
T,TAKAMATSU,R.NAKATA,T.YosHIDAandM.KAWASmMA
Chapter VI
RedoxCycleofManganeseandlronandtheCirculation
OfPhosphorusintheDredgedAreaoftheSouthernLake・・・
・・47
M.KAWASHIMA,T,HoRI,M.KoYAMAandT.TAKAMATSU
Chapter VII
−Note−ManganeseConcentrationintheSedimentas
anIndicatorofWater【kpth,Paleo−WaterDepth
duringtheLastFewMi11ionYears
T,TAKAMATSU,M.KAWASHIMAandM.KoYAMA
Chapter WI
NoteTheTotalAmountsofMnandAsAccumulated
intheSedimentSurface
T.TAKAMATSU.M.KAWASHIMAandM.KoYAMA
7
7
Appendixes
亡U
7
Acknowiedgement
SummaryinJapanese
l
7
References
3
只U
ust ofauthors
TakejiroTAKAMATSU
SoilEnvironmentSection,WaterandSoilEnvironmentDivision,NIES,
TaroHORIandMunetsugt]KAWASHIMA
VisitingFellowoftheNationallnstituteforEnvironmentalStudies・
PresentAddress:FacultyofLiberaJArtsandEducation,ShigaUElivers;ty,OtsuShiga
520.
M11tSuO KOYAMA
VisitingFe1lowoftheNationalInstituteforETIVironmentalStudies・
PresentAddress:ResearchReactorInstitute,KyotoUniversity,SennanOsaka590rO4■
TomioYOSHIDAlandRenpeiNAKATA2
1VisitingFellowoftheNationalInstituteforEnvironmentalStudies■
2ResearchCollaboratoroftheNationalInstituteforEnvironmentalStudies.
Present Address:Faculty of EnvironmentalSciences,Tsukuba University,
Sakuramura,NiihariIbaraki305.
ー
Vl−
CHAI}TERI
GeneralDistriblltionProfilesofThirty−Six ElemerLtSin
SedimentsaTLdManganeseComcretionsofLakeBiwa
T.Takamatsu,M.Kawashima and M.Koyama
ABSTRACT
Thirtysedimentcores(30−40cminlength),47Ekmandredgesediments,
andMnconcretionswerecollectedfromLakeBiwa.Theconcentrationsof36
elementsinthesamplesweredeterminedbyinstrumentalneutronactivati(、n,X
ray fluorescence,atOmic absorption,and colorimetric analyses,The ele−
mentsanalysedincludeMn,P,As.Sb,Fe.Ni,Co,Zn,Cu,Pb,Hg,Cr.Ti,
K,Rb,Cs,Mg,Ca.Sr,Ba,Sc.Hf,La,Ce,Sm,Eu,Yb,Lu,U,
Brand N,Based onstatisticalconsiderations andcalculation oftheconcen−
tration factors of the elements,the features of the elementaldistributionin
Lake Biwa sedimentweredetermined.
1.INTRODUCTION
From the elementalanalysis oflake sediments,importantlimnologicaland environ−
mentalinformationwasobtainedinrelationto(1)theremovalprocessesofelementsinto
sedimentfromawatercolumn(Taylor.1979),(2)posトdepositionaltraTISferandfixation
ofelementsinttleSediment(Farmer&Cross,1979),and(3)environmentalchatlgeinthe
lake,includingthehistoryofnaturalarldanthropogenicinputofelements(Nrjaguet al・,
1979).
SinceLakeBiwaisnotonlythewaterresourcefor13mi11ionpeopleinKinkiDistrict,
butalsohasalonghistoryofmorethanami11ionyears,theaboveinLormationisofgreat
interesttomanyscientists.However,the analyticaldata on thesediments availablefor
obtainingthisinformationarelimited(Kobayashiet al.,1976;Kawashima et al・,1978;
Kurata,1978;Tatekawa,1979,1980;Takamatsu et al、,1980b;Nakashima&Morii
1982).
Thepresentpapersummarizesthedata ontheconcentration anddistributionof36
elementsinLakeBiwasedimentsalongwithabriefdiscussiononthemechaTlismsgoverning
−1−
thedistributionofelements.
2.METtiODS
Co11ectionandsampleprepration:Thesedimentcoreswerecollectedduringtheperiod
Aug,1976−Nov,1977from24sitesinthenorthernlake(N−1ake)inadditiontosixcoresfrom
thesouthern】ake(Srlake).Thesampljngsitesarei】1ustratedjTIFig・1.1・Agravitycorer
equippedwithaplasticcoreliner(3・5cmi・d・)wasusedtoobtainthesamplesof3040cmin
length・Mostoftheretrievedcoresshowedthinbrownoxidizedtoplayersoverlyingthepale
grayreducedsediment・Thecoresobtainedfromthenearshoreregionoftencontainedsilt
andfinesand.Immediatelyaftersampling,thesamplesweretakentothelaboratoryand
slicedinto2cm sections.For detailed studies onthedistribution and diagenesis o
elements,SeVeralrepresentativecoreswerecutintothinnersections(i・e・0・2,0・50rlcm
length)withintheupper2cmlayers・ThesubsampIeswerefreezedried▼grOundtoparticles
oflessthanlOO meshindiameter usinganagatemortar,anddried againin an oven at
lOOOC for5h.
Thesurfacesedimentswerecollectedduringtheperiod Nov.1976−Apr.1977withan
・l−1,・●羞∈苫−さS
Fig.1.1SampJingsites
(●)sedimentcores;(○)Ekmandredgesediments・
− 2 −
Ekmandredgefrom47sitesneartheshore・Afterthewetsampleswerehomogenizedonthe
SpOt,aliquotsofthesamplesweretakentothelaboratoryandtreatedinasimilarmanner
tothatforthecorestx!foreanalysis,
Manganeseconcretio11S,intheform ofirregular friablemassesupto5cmi.d.onth
sedimentsurfaceatthecentralsites(G,T,X and H),Were picked upwithtweezers
treatedinasimi1armannertothatofthecores(photographoftheconcretionswasshown
inAppen.2).
AnalyticalprocedureこAnondestructiveneutronactivationanalysISWaSperformedby
the flux monitor method according to the previous reports(see Appen,3;Koyama&
Matsushita,1980;Takamatsueta/.,1982b),TheelementsanalysedincludedNa,K,
Ba,Mn,Fe,Co,Cr,As,Sb,Br,Sc,La,Ce,Nd,Sm,Eu.Yb,Lu,U,Th
The XTay fluorescence analysis was perlormed by theinternalstandard method
accordingtothepreviousrtports(seeAppen.4;Takamatsu,1978,1980a).Theeleme
analysedincludedK,Ca,Ti,Mn.Fe,Ni,Cu,Zn,As,Pb,RbandSr.
TheatomicabsorptionanalysisforMn,NaandMgandthecolorirnetricanalysisforP
wereperformedafter aciddigestionofthesampleswith HC10.−HF(Kawashima et aL▼,
1978∴Murphy&Riley,1962).
Mercurywasdeterminedbyacoldvaportechnique:after Hgwasliberatedfrornthe
freeze−driedsamplebycombustion,itwastakenupintheKMnO.−H2SO.solution.TheH
wasthenvaporizedagainbyreductionwithSnCl乞befoT:ebeingintroducedintotheabsorption
Cellofanatomicabsorptionspectrophotometer.
NitrogenwasdeterminedbytheKjeldahlmethod(Kawashimaeta/.,1978)andthelo
ofignition(1.L,)wasdeterminedbycombustionofthesampleat550QCfor2h・
3.RESULTS ANDDISCUSSlON
AverageconcentrationsoftheelementsinthecoresandtheEkmandredgesedimentsare
presentedinTablel,1alongwiththemaximumandminimumvaluesrecorded,Theresults
ofthecoresincludethevaluesfortheupper2cmlayersandthelowerlayers(belowlOcm
depth)separately,lnN−1ake,tX:low10cmfromthebottomsurface,theelementalconcen・
trations of the sedimentarylayers arelittle affected by human factorsin view of the
sedimentationrates(Kamiyamaetal.,1982;MatsumOtO,1975)andtheearly−diagenesisof
elementsafterdepositionispractical1ycomplete.althoughthesituationinS1akemayl光
morecomplicated.Therefore,thevaluesinlowerlayersofN−1akeareconsideredtot光
backgroumdlevelsoftheLakeBiwasediments.
ー 3 −
Tablel.1ElementalconcentrationsinthesedimentsfromLakeBiwa
W.D.
l■L.
5−97(66)m
3.41l.4(7.7)%
5−97(66)m
5.6−11.7(9,5)%
1.223(8.2)m
2.54(3、4)m
2.5−4(3.4)m
1.2−8(2.8)m
O.9−9.8(4.4)%
9.110.0(9.6)%
9,トIl.0(10.1)%
6.2−14,8(9.7)%
Fe
%
2.36−5.11(4,57)
%
3.335.18(4.53)
0.914.24(3.22)
K
2.25−3.53(2,49)
2.03−2.85(2.40)
l.894.38(2.68)
%
%
3,944.66(4.29)
2.252.45(2.35)
%
4.04−4,38(4.21)
%
2.72−4.75(3.64)
2.15−2.38(2.29)
1.47ノ2.79(2.19)
Na O.581.48(0.86)
0.59−1.94(0,93)
(0.90)
(1.07)
Mg O,38l.26(0.96)
0.741,ZO(0.97)
(0.84)
(0.83)
Ti
0.35−0.60(0.45)
0.01−0.60(0.37)
0.420.52(0.47)
0.315、0.51(0.43)
0.26−0.50(0.39)
0.21−0.74(0,37)
0.13−0.94(0.46)
0.28−0.3(i(0.33)
0.36、0.45(0.40)
0.21−1.04(0.47)
O.23−0,64(0,50)
Ca O240,63(0.34)
mg・kg ̄
12302100(19t10)
N
P
32(ト1180(83(I)
560r1710(1150)
Mn
も9031BO(18も0)
b9り13900(3760)
Ni
8−42(30)
Cu
l:1一畠8(52)
Zn
84187(135)
Pb
16−52(32)
ー
】」.」2〟,7(】7.8)
C(フ
CT
6075(70)
N.D∴69(31)
4145(42)
別ト79(60)
112−34(〉(203)
1976(51)
A−
lO8−161(139)
115153(131)
7.7−13.4(10.4)
56−110(72)
Ba
570−740(680)
500820(690)
Sm
7.7−8.g(83)
6,98.5(7.8)
Hf
3.6−6.9(5.2)
Eu
l.0−1.Z(1.1)
La
36.ト52.0(439)
Nd
36、67(49)
Br
4、12(7)
2.5、4.4(3.4)
U
Th
14.4、18.8(16.6)
Hg o.10−0.1:1(0−12)
Ta
l.1−1.3(l.2)
Au o,01ト0.032(0.018)
78(8)
238(18)
52、76(65)
30311(100)
(52)
N.D.−16(5)
(12.3)
1耶卜149(143)
(6.1)
42−149(90)
6483く7(〉)
0・02▲0・07(0▲05)
0.1ト0・13(0.12)
110−899(366)
(12.e)
15−28(20)
145155(150)
480−1830(1060)
9154(68)
〔ユ3.9)
77、215(126)
mg・kg
1750−5150(3370)
4602980(1130)
25−l−426(336)
(70)
ト40(13)
1D.614.9(ユ3.4)
9,312.7(IO.8)
79−94(84)
3853(47)
46一朗(67)
Rb
:Z.ト3.6(3.1)
10、64(30)
150−194(164)
(15.7)
Cs
Yb
17−287(126)
】3.3−2l.&(ユ7,6)
7130(55)
Lu O.4〔ト0.56(0.50)
590、750(680)
1460−1630(1540)
42−99(76)
1.73.7(3.2)
Ce
800−1020(880)
267¢−5460(3780)
Zg、45(3(I)
6−41(23)
62114(76)
180−15(】n(710)
330570(420)
m賢・kg
19Z6(Z3)
l.4−2.4(1.9)
Sr
92−1750(650)
mg・kg→
25ZO2660(2590)
N.D∴28(12)
Sb
】1′5−ユ6−2(】4′5)
200−3430(1179)
1949(33)
As
Sc
m耳・kg
mg・kg
1410420(l(3020)
85−161(128)
くG.3)
6594(82)
50Z33(101)
76−92(81)
2.7−3.7(32)
0.41−0.55(0.49)
3.06,9(4.8)
0.91.2(1.1)
35.3−44.9(4().0)
46−61(54)
513(9)
2.84.3(3.5)
14.417.0(15.5)
0.16−0.21(0.19)
0,81.4(l.1)
(0014)
miniml】m【maXimum(averagel_
N・D・=nOtdetectable=W・D・=Waterdepth;f・L・=ignitionIoss・
*lowerlayers(tx!10WlOcmdepth)ofthesediTTlentCOreS.
**upper2cmlayersofthesedimentcores.
*■■surfacesedimentscol]ectedwithanEkTnandredgefromtheareaneartheshore
0.18−0.24(0.20)
0.101.42(0.49)
WherlCOmpared with the typicalelementalcompositionof theearth’s crust(Taylor、
1964),Shale(Turekian&Wedepohl,1961),andabyssalclay(Sugimura,1972),itisapparent
thattheLakeBiwasedimentshavemuchhigherconcentrationsofAs,SbandCs,andlower
COnCentrationsofalkalineearthmetalsexceptforBa.TheconcentrationsofUandThare
alsomuchhigherthanthoseinabyssalclay(seeAppens.57)_
ThecontentoftheelementsoftheMnconcretionssampledatsiteGarepresentedin
Tablel,2.Althoughtheconcretionsusuallycontainedlowerlevelsoftraceelementstha
the abyssalconcretions(Dean &Ghosh,1978),highconcentrations of Mn(16,7%),As
(721mg・kg▼1)and Ni(340mg・kg.1)are evident_ A comparison with the elementalcom−
position of thelake concretions previously reported for Lake Michigan(Edgington &
Callender,1970),Lake Ontario(Cronan&Thomas,1972),and Lake Oneida(Dean
Greeson,1979)showstheLakeBiwaconcretionstot光Simi1artothbseofLakeMichigan,a
the content of U and Th to一光COnSiderably higher.1n addition,the highAs contentis
Tablel.2 Elementa】concentrations of Mnconcretions
fromthesedimentsurfaceatsiteG
1
00
つJ
2
9
3
7
00
︵U
3
3
2・4
0
爪U
6
ー 5 −
2
3
つJ
∧U
1
Valuesarebasedonfreeze−dried mateT・ials.
DハU 3 ︵U 4 2 7 1 9 つJ
︵U l l 几U ∧U 6 3・4 7
0
5
189
26
2700
721
5.5
14.3
7.5
Zl.5
39.6
28
4.6
2.0
0,27
4.9
9.2
1.9
0.8
6
EIement Concn.,%
NaKMgCaTiMnF2封Sl
︵U
7
RbCSSrBaCrC。NiCuZ。PbPASSbBrSCb鎚NdSmYbL。UT
Element Concn.,mg・kg▲1
COmparabletothatofGreenBayinLakeMichigan,andthehighBacontentiscomparable
tothatoffreshwaterlakesatlarge(Edgington&Callender,1970;Mooree[al,,1980)
3.1Vertil・a】djβtrj加】臼on ofe】emeIltS
The profiles of elementsin the core sites G and D are shownin Figs.1,2andl.3,
respectively.TheprofilesoftheelementsatsiteGrepresenttheprofilesoftheoffshore
SedimentsofN−1ake,Whilethoseat site DrepresenttheprofjlesofSLlake.Althoughth
profj】esareir】f】uerICedbythechemjca】propertjesof班ee】eme鵬Sal】derlVjronJれerlta】factors
affectingthesediments,the elements can be classifiedinto some groups as a result of a
statisticalcomparisonoftheirdepthdistribution,aSShowninFig・1.4.
Manganese,As,andtoalesserextentNishowedextremelyhighconcentrationsinthe
uppermos=hjnlayers and sharply decreased co11Centrationswithjn a few centjmeters.
Be]ow10cmfromthetopsofthecores,theconcentrationsoftheelementsremainedalmost
constant.lntheoffshoresedimentsofN−1ake,theprofilesofZn,SbandPresembledthos
of Mn and As.
い
・小 . へ」「■J]
町
恥
U喜
∈
U
る
中
ヽ
lh山
伽rll⊥
卸
「」「」「」「」
Fig,l.2 DistributionofelementsinthesedimentcorefrornsiteG
Oneconcentrationunit.otherthan%,ismg・kg】.
一 6 一
芋ノら/よTj
、..
∈リ・‘且■つ︳iYU
、.・
、.
㌧■﹂﹁■
Fig.1.3 DistributionofelementsinthesedimenteorefromsiteD
Oneconcentrationunit,Otherthan%,ismg・kg ̄l.
Hn.As.Ni.Zn.
Ⅰ・し.P.Sb
▲U
J︸
∈U.≦計pと8
n︶
Fig.1.4 Verticaldistributionpatternsofelementsinthesediment
(A)offshoreTegionofNIake;(B)S1ake,
− 7 −
TheconcentrationsofCu,PbandHgwerealsohighintheupperlayersofthesediments
buttheiruniqueprofilesindicatedthattheelementst㌍longedtoagroupdifferentfromthat
OfMnandAs.ZincandPalsohadprofilessimilartothoseofPbandHginS−1ake.The
increasedlevelsoftheaboveelementscomparedwiththebackgroundlevelsreachedto a
depth of4R5cmin the offshore sediments of N−1ake,While thosein the S−lake sediments
reachedtoadepthof15−25cm,
Concentrationsoftheotherelementsdidnotvarysignificantlyinthecores_
For a moreprecisedeterminationoftheconcentrationsofelementsin the upper2cm
layersofthecores,COnCentrationfactors(F)werecalculatedasfollows.F=(Cx−Cr)/C,,
WhereCxandCrrefertotheelementalconcentrationsintheupper2cmlayerandinthelower
layer(1x)lowlOcmdepth),reSpeCtively.1nTablel.3,theelementswerearrangedin
Of decreasing F.AlthoughtheeffectsofI,L werenot considered,it wasfound that t
concentrationsof17elementsincreasedandthoseof18elementsdecreasedintheupper2cm
layeroftheN−1akesediment.
Furthermore,Fwasalsocalculatedinthesamewayforthesurfacethinner(i.e.01,
00.5andOrO,2cm)layersofthecoresandMnconcretions.Inthecalculation,theconcen−
trationsofelementsinthelowerlayersofthecorefromsiteGwereusedasbaselevelsfor
theMnconcretions.TheaveragedFislistedinFig.1.5.ItisevidentthatAs,Ni,Sb,P,
U and alkaJine earth metaJs(partictIZarJY Ba and Sr)are enrlChedin MTICOnCretioIIS,
whereas Zn,Cu,Pb,Fe,Ti,K,Cr,Cs,Rb,Th,Hf and rare earth elements are de
comparedtotheunderlyingsediment.
Briefdiscussiononseveralelementsisgiveninthefo1lowing,
Mn,As,SbandNi:BecausethedistributionprofilesofcomponentssuchasMn,As,
possiblySbandEhvalue(Kawashimaet al.,1978)areverymuchalike,early−diagenesi
associatedwithredoxprocessesshouldtakeplacewithinthetopseveralcmlayer,
ThecyclingofMIlwithinthesedimentarycolumniswellknowninconnectionwiththe
redoxconditionsofsediments(Robbins&Ca11ender,1975;F6rstner,1983).Thatis,
precipitatesprimarilywithininorganic and organic particles onthelakefloor,andafter
txingburried.apartofMnisreducedtoMn2+andsolubilizedintheporewater・TheMn2+・
after diffusing out of the reducedlayer,isimmobilized againby catalytic reoxidation
(Delfino&Lee,1968;Sung&Morgan,1981;Uren&Leeper,1978)andbyadsorptiononto
oxides(Morgan&Stumm,1964;Murray,1975a;Takematsu,1979)attheoxidizedsediment
surfaceand/orinthebottomwater.
ThebttomsurfaceofN一】akeismost】ycoveredwjthaoxjdjzed】ayerH】roughoutthe
ー 8 、
Tablel,3 Concentrationfactors●ofelementsintheupper2cmlayersofthesediment
c(〉reSfTOm Lake Biwa
Narthern lake
As
Mn
Sb
Hg
Pb
Zn
N
Br
Southernlake
Cu
O.253.64(1.34)
()0.03−4.54(0.93)
O.2卜1.18(0.66)
O.451.10(0.65)
O.001.59(0.60)
O.09−1.40(0.45)
O.15−1,Ol(0.56)
(−)0.421.50(0.44)
(−)0.101.15(0.36)
()0.14−0.68(0.40)
Ⅰ.L.
(−)0.2ロ0.45(0.20)
P
Au
Ca
Ni
Yb
U
Ba
Na
Lu
K
Fe
Sr
Cs
Ce
Mg
Co
Eu
Sm
Rb
Ta
Cr
Sc
Th
Hf
La
Nd
Ti
1.14−2,50(1.62)
0,60−0.97(0.77)
0.253.64(1.39)
(−)0.03−4.54(0.90)
0.38−1.00(0.67)
0.16−0.71(0.41)
0.59−1.70(1.08)
0.38−1.10(0,66)
0.00−1.59(0,57)
0.091.70(0.55)
0.06−l.1(l(0.46)
0.(略−1,10(0.53)
0.32−1,15(0.66)
0,1卜0.93(0.42)
0.00−0.10(0.05)
(一)0.10−1,15(0.41)
(一)0.14−0.93(0.40)
(一)0.20−0.45(0.18)
(0.17)
(−)0.32刀.25(0.10)
(−)0.41−0.48(0.04)
(−)0.060.29(0,21)
()0.08−0.73(0.26)
(一)0.32−0.29(0.12)
(一)0.41−0.73(0.07)
(−)0.03−0.12(0.05)
(−)0.150.24(0.04)
(−)0.13−0.34(0.02)
(−)0.220.21(0.0ユ)
()0.06−0.10(0.00)
(−)0.180.09(−0.01)
(−)0.11−0.06(−0.02)
(−)0.27−0.12(0.04)
(−)0.170.14(−0,02)
()0.11−0,05(−0.02)
(−)0.120.11(0.03)
(−)0.13−0.05(−0.01)
()0.25−0.10(一0.04)
(−)0,100.04(0.05)
(−)0.190.19(−0.06)
()0.27−0.08(−0.06)
(0.19)
(−)0.050.00(−0.03)
()0.08−0.03(0.02)
(−)0.120.16(0,08)
(−)0.180.09(−0.02)
()0.11−0.06(0.02)
(−)0,270.16(−0.02)
(0.03)
(−0.01)
(0.18)
(−)0.07(−)0.03(一0.05)
(−)0.23−0.14(−0.06)
(一0.26)
(一)0.150.07(−0.08)
()0.22−0.00(0.08)
(−)0.190.08(−0,09)
(−)0.29−0,07(一0.0釦
(0.12)
()0.19−0.19(−0.06)
(▼0−15)
(−0.11)
(−)0.220.07(一0.12)
(−)0.17−0.00(−0.09)
()0.22−0.07(−0.12)
millim11m−maXimum(aYerage).
●F=(Cxt,)/C,.Cx:elementalconcentrationinthetlpper2cmIayerofthesediment
COre,C,:elementalconcentrationinthelowerlayer(belowlOcmdepth)ofthesediment
COre.
Mnconcretions
い1K、Fe・SrRb・Cl)Cr
SrTlCe・Hf・LalTトMg.Ta
Fig.l.5 AverageconcentrationfactorsofeIernentsintheupperthinlayersofthe
sedimentcoresand Mnconcretions
yearbecausethebottomwatercontainsDOofca・4mg・kgrlevenattheendofthesummer
stratification(Naka,1973;Kawashimae[al.,1978)L Thecoresretrievedfromthecentral
regionofNlakealwaysshowedthin(ca・0・2cm)brownoxidizedtoplayers・Theredox
potentiaI(70plOOmV)observedinthereducedsediment(belowO・5cmdepth)ofNLlake
(KawashimaetaL.,1978)islowenoughforMnreduction(ca・600mVatpH6;tlem.1972)・
Erladdftion,microorgarlismsin[heJakewa亡ercarlrapidJyoxidizeMn2+亡OMnoxideunder
aer。bicconditions(Chap.VI),Therefore,theabovemechanismcanaccoutfortheprof
10−
of Mninthesediment of Lake Biwa.
Arsenichasaccumulatedtohighconcentrationsinthethinsurfacelayers(00.2andOrO.5
Cmdepth),particularlyinthecentralregionofN1akeandthedepthprofilesofAsisquite
Simi1ar to those.of Mn,aS SuppOrted by the highdistribution correlations tx!tWeen both
elements(e・g・COrrelationcoefficients,ー=0・986,0・930,0・998atsitesT,ⅩandGrespectively),
TheMnconcretionsalsocontainedhighconcentrationsofAsupto721mg・kg ̄1.Thesefacts
SuggeStthatthesurfaceaccumulationofAsmayresultfromadissolution−depositioncycle
withinthesedirnentarycolurnnassociatedwiththatpreviouslydescril光dforMn.Sincethe
redoxconditions(70100mV)ofthereducedlayers(KawashimaetaL..1978)approxima
theboundarypotentialofarsenate−arSeniteinterconversion,i.e,83mVatpH6(theauthor’s
calculationbasedonthedatacompiledbySi116nandMartell,1964),arSenicshouldpart
tkreducedtomobilearseniteinthereducedsedimentthougharseTlateismoredifficulttot光
reducedthanMnoxide(Peterson&Carpenter,1983).Infact,Takamatsu eial.(197
havefoundAspresententirelyasarsenateatthesedimentsurfacebuttheratioofarsenite
toarsenateincreasedtoO.76witlldepth,1naddition.Mnoxideisknowntobeapowerful
oxidantofarsenite(Oscarson et al.,1981)andMn2+rich Mnoxidefoundintheoxidized
Sedimentsurface(seeFig.2,3inChap,II;Kawashimaetal.,1978)isaneffectives
Ofarsenate(seeFig・2.2inChapLIl).Therefore,theprofilesofAsmayresultfrompo
depositionalmigration of arsenitein the sediment pore water followed by oxidation to
arsenate at the sediment surface and adsorption onto Mn2+Lrich Mn oxide(the detailed
mechanismisdiscussedinChap,II).
AnthnonyhasalsoaccumulatedinthesurfacesedimentandMnconcretions(seeFig.
1.5)・SincetheredoxpotentialofaTltimonate−antimoniteinterconversion,i.e.133mVatpH
6(theauthor’scalculation)issomewhathigherthanthatoftheAscoupleandMn2+一richMn
oxide can adsorb antimonate appreciablyin a pH range of6to7(Takamatsu ef al.,
unpublished),theredoxcycleofSb,SimilartothatofAs,mayCOntributetotheprofile
Sb.
ThemostextremeinstanceoftheabovemechanismswasshownbytheformationofAs
(andSb)−richMnconcretionsonthebottomsurface.
AsforNiwhichisalsoconcentratedintheMnconcretions,definiteprofilessuchasMn
andAscannott*SeenSOmetimeswhenanalysingbulksediments.Onereasonforthisisthat
theaverageconcentrationsofNiinclayrnineralsarehighenoughtoshadetheaccumulatior1
0fNiintheMn−richlayerswithinexperimentalerror■
Zn,Cu,PbandHg:Thehighconcentrationlevelsofthesernetalscontinuetodee匹r
−11−
partsofthecorest光neaththeEh−minimumswhichhavebeenrecordedataO.5−2cmdepth
OfthecoreintheoffshorepartofN−1akeandata68cmdepthinSrlake(Kawashimaetal.,
197S)・Inviewofthesedimentationratesofl,2rl.6mm/yforN−1akeand2.4mm/yforS
lake(Kamiyamaetal・,1982),thestartofaccumulationoftheelementsshouldgoback30−
40yearsagoinN−1ake,WhileinS−1ake,itgoesbackmorethan60years.Becausethe
WaterShedofS−lakewaslanddeveloped,pOpulated,andindustrializedmuchmoreearlier
anddenselythanthatofN−1ake,pOllutio−1byhumanactjvjtyshouldbthemostjmportant
factorfortheincreasedlevelsofthesemetals(Kurata,1978;Tatekawa,1979,1980)、
AJthoughthefjnedepthprofiJesof亡heelementsaredjstinctfromonear[Otherirlthe
metal−richuppersedimetltS,theincreasedconcentrationsofCualwaysreachtothedeepe
ZOne亡hanthoseoEZn・Aprocesscar7beproposedrela亡ing亡OSuChdifferencesintheprofiles
of Cu and Zn.
PhytopZankton(dominantspecies:馳uYaSirum)coIlectedwithanet(NXX25)from
LakeBiwacontainedconsiderablyhigherconcentrationsofZn(225mg・kgl)andCu(155mg・
kg−’)andIowerconcentrationsofother25elements(seeTable4,1inChap.IV)compared
tothose(seeTablel.1)ofsediments,incontrasttothefactthatveryhighconcentratio
and concentration factors(these factors are based on the concentrations of dissoIved
elernentsin1akewater)ofllelementsincludingZn,Cuand Pbhavebeenreportedwith
respecttophytoplankton(Kurata,1982).Phytoplanktonisrecognizedasamajorsourceof
sedimentary organic matter(Ishiwatari,1973;Jackson,1975;Cranwell,1976)and the
deposition of metalrrich planktonic debris has been suggested as a significant removal
processofmetalsfromthewatercolumn(KempeL al.,1976;Lund,1957;Taylor,1979)
Thus,alsoin Lake Biwa,1arge fractions of Zn andCu maysettle on thelake bottomin
associationwithplanktonicdebris.DtlringthecourseoLtheear]ydegradatior)Ofthedebris
and subsequerlt Slower humification,COpper,Which binds strongly to humic materials
(Takamatsu gJβ/.,1983b,ユ983c)mayremairIjnagreateramourlt hsedjmerl【s tharIZn.
HighCuconcentrations,Oftendetectedinhumicmaterialsofsediments(Nriagu&Coker,
1980),【endstosuppor=血sprocess(thede亡aiJedmechanismisdiscussedinChap.IV).
AsforPbandprobablyHg,aT10therinorganicprocessperhapsshouldbeconsideredsince
theconcentrationofPbwasJowinthepJankton.
Otherelemettts:TheotheTelementsshowednearlyconstantconcentrationsthTO11ghout
thecores,indicatingthattheywerenotmobilizedtoanysignificantextentafterdeposition,
AsforFe,Co,UandCr,redoxreactionsdidnotappeartotakeplacetocauseappreciable
mobilization.Cobalt,U and certain alkaline earth metals abundantin Mn concretions
【12
SOmetimesshowedslightlyhighcohcentrationsonthesedimentsurface.Elementssuchas
Cr,Ti,Hf,Th,SOmealkalimetalsandrareearthelements,SCarCeintheMnconcretions
theplanktonandmostlydepositedastheprincipalcomponentsinclayminerals,Showeda
Slightdeclineinconcentration toward thesurface,alo11gwith a negativecorrelatiorlWith
I.L.
3.2Horizomtalandlot・aldistribution ofelemeれtS
Toobtainingihformationonthehorizontalprofilesoftheelements,Variationintheir
relativeconcentrationsalongthetransectfromAdoRiveTtOAneRiver(fTOmSitesUtoJ)
isgiveninFig,1.6・Althoughmanyelementsshowedslightlyhigherconcentrationsinth
nearshoresedimentsalongtheeasternmargincomparedtothewestern(Tatekawa,1979),
theconcentrationsofsomeelementsclearlyincreasedfromtheshoretothecentralregion,
Whileothersshowedaninversepattern.Theelernentscouldbearrangedintheorderof
enrichmentinthecentralregionasfollows:Iif(mostdepletedinthecentralregion)<Na,
K≦Rb,Ca,Sr,Cr,Ti,lanthanidesexceptfor Lu and Yb(nearlyconstant overthe
region)≦Yb,Lu≦Cs,Fe,Co,Ni,Sc,U,Th≦Sb,Br,P,Pb,Zn,Cu,Ⅰ.L.<M
enrichedinthecentralregion),Thisorderisrough1ysimi1artothat ofelementsonthe
Sedimentsurface(seeTablel.3).
Briefdiscussiononsomeelementsisprsentedasfollows.
Mn,AB,andprobablySb:Theaccumulation of theseelementsin thecentraldeeper
regionshouldresultfromthesamechemicalpro匹rtiesofelementsandmechanismsasthose
responsiblefortheverticaldistrib11tionoftheelements,Thatis,there匹ateddissoluti
depositioncycleswithinthesedimentarycolumnandbottom water must have carriedthe
elementstothedeeperpart,
Zn,Cu ahd Pb:These elements also showed highconcentrationsin the offshore
SedimentsalthoughthiswasmorepronouncedforPbintheupper2cmlayer.Amongthe
elements,ZnarldCuexhibitedsimilarhorizontalprofilestothatofl.L.,eSpeCiall
upperlayer,reflectinggoodcorrelationcoefficientsalongthetransectfromsitesUtoJ(Zn:
0.910,Cu:0.948).Thus,theroleofplanktonicdebrisrichinthesemetalsshoulda
emphasizedinthiscase.
Alkalimetals:Theorderofincreasingconcentrationofalkalimetalsinthesediment
fromthecentralregioncomparedwiththenearshoresedimentwasidenticaltotheorderof
increasingatomicnumtx)TSfrom NatoCs;thatis,theconcentrationofCsincreasedfrom
theshoretothecentralregion,WhileNaand,tOalesserextent,Kshowedaninversepatt
¶13−
ト‘ (Wし侵
l.2
仙
As・・・−−
1.0
0.8
Sb一一
Cu−一
之n一…
Pトーーー10g(刷
P一→−
0・6
1■し ̄−−−−・1
0,▲
0・2
。L叶.抽.止.霊
Fe-
Co−−=・
N仁一・一
丁i−−=一
Cr−−−
H†一十・ナ
∪−−−一一
丁h−一−一
缶−
Sr−一・−
Ba−−−−・
トb一−・−
K−
一ノニニ主、ノ■′ Rb−−▲
Cs
[∠
巨<
≦
lα
)
Fig.l.6 Horizontaldistributionofelementsinthesedimentsa)ongthetransectfrom
Ado Riverto Ane River
X。_,andU。_2ShowtheelementalconcentrationsintheupperZcmlayeTSateaCh
siteandU.respective)y.X】。_andU.。_Showtheelementalconcentrationsinthe
lowerlayers(belowlOcTT[depth)ateachsiteandU,TeS匹Ctive]y・
14一一
Thisorderreflectstlledissolutiontendencyofalkalimetalionsfromclaymineralsandalso
theaffinltyfortheseionstobeincorporatedintothesedimentcomponents fromthewater
column.TheseprocessesmaybecontrolledbyionLeXChangeprocessest把CauSethedecreas
intheionicradiiofhydratedmetalsisrecognizedtoi11duceahigheraffinityofthemetals
foranionrexchanger(Kakihana,1970).
Lanthanides:Thesedimentfromthecentralregionshowedanappreciableincreasein
theconcentrationofheavierlanthanidescomparedwiththenearshoresediment;namely,
therewasanincreaseintheratiooftheheavierlanthatlidestothelighteron鶴fromtheshore
to thecentralregion.The ratio of solublelanthanides vs.particulate onesis known to
increaseperceptiblyfromLatoLuinariver,althoughthisratiohasthesameloworder(ca
1.4%)foralltheelements(Martinefal.,1976).Therefore,itislikelythatthep
deprivedofheavierlanthanidessettle near theshore and thatthesoluble fractionrichin
heavierlanttlanides remainslongerin solution andis tTanSpOrted to the offshore before
deposition.This process may be reflected by the higher(Yb+Lu)/(La+Ce)ratios ob−
SerVedintheplankton(0.036;SeeTable4.1inChap.IV)andtheMnconcretions(0.0
comparedwiththose(0.028)inthebulksediment(seeTablesl.1andl.2).
Hf:The Hf concentration decreased greatly from the shore to the centralregion,
Showi11gahighinversecoTrelationwithMnandthedepthofthewateT.Hafniumshowsa
verylowsolubilityofhydroxide(Ksp=1053・▲;Sil16n&Martell,1964;SeeAppens.18and19)
andisinsolubleinwater(themaximumsolubilityisca,7.1×10 ̄8pg・kg.1atpH6), AIso,
this element cannot be reduced to alower valence statein a naturalenvironment.ThereL
fore,rnOStOfthiselementshouldbedepositedasacomponentofterrestrialclayminerals
issupportedbythefactthattheratioofelementalconcentrationintheMnconcretionsor
theplanktontothatinthebulksedimentislowestforHf(0,36,0.20fortheMnconcretio
andplanktonrespective]y;Cf.(Ti)0.58,(Th)0.55,(La)OA9fortheMnconcretions;(Th
0,26.(La)0.25for the plankton).The Hf content jn the sediment may be a promising
indicatorofthedepositedamountofallochthonousmatter,
Theconcentrationsof16componentsintheupper2cmlayersofcoresandtheEkman
dredgesediments arei)1ustrated on the map of Lake Biwa(Figs.1.7tol.10)and the
fo1lowingcommentsmayl光made.
Zn,Cu,PbandIIg:ThehighconcentrationsofZn,Cu.PbandHgupto899,154,311
andl,LI2mg・kg.1respectivelywererecordedforS1ake.Anareaofveryhighconcentrat
alongwiththesouthwesternmarginofthelakeextendedasfarastheoutlettotheSeta
River.ThesehighconceTltrationsshouldbetheresultofhumanactivity,aSpOintedoutb
15−
Kurata(1978)andTatekawa(1979,1980).
CaandSr:TheconcentrationsoftheseelementswerehigherontheeasternshoreofN−
lake than on the western side.This js related to the rich source of Ca and Sr from the
calcareous bedrock jn the watershed,
MnandAs:Pollutionhasnotinfluencedtheamountofeitheroneoftheseelements,eVen
inthesurfacesedimentstakenfromthewesternshoreofSlakewherethesedimentshould
lx:themostcontaminatedbyhumanactivity.Therefore,theMnandAsaccumulatedinthe
Offshoresedimentsof N−1akecant光COnCludedtobemostlyofnaturalorigin,
−16−
ーー﹃
−
Fig.1.7 RegionaldistributionofI▲L・,N,PandHgirlbottom Fig.l.8 RegionaldistributionofK,Rb.CaandSrinbottom
surface sediments
Surfacesediments
く 〉:COntelltin theearth’scrust.
く 〉:COntentin theearth’scrust.
ーー00■
Fig・1・9 RegionaldistributionofFe,Ti.MnandAsinbottom
Surfacesediments
く 〉ニCOntentintheearthlscrust.
Fig・1・10 RegionaldistributionofNi,Cu,ZnandPbinbottorn
Surfacesediments
〈 〉:COntentintheearth,scrust.
CHAPTERIl
TheRoleofMn2+LRichHydrousManganeseOxideinthe
A‘:Cumulatiol10fArseれicim LalieSedjmeIltS
T.Takamatsu,M.KawashimaandM・Koyama
ABSTRACT
Arsenicispresentatllighconcentrations.intheupperlayerofLakeBiwa
sedimerltSandshowsadepthprofilesimilartothatofMn.Adsorptionexperi−
mentsofAsontosynthetichydrousMnoxide(HMO)inthepresenceofMn2+
andthespeciationofMninthesedimentcores.suggestthattheaccumulation
of As at the sediment surface results from post−depositionalmigration of
arsenitefn thesediment pore waterEoJZowed byoxidatioTltO arSenateat the
sedimelltSurfaceandadsorptionontoMn2しrichl・lMO.
l,lNTRODUCTION
Arsenic commonly accumulatesin the uppermostlayers oflake sediments.High
concentrationsllaVebeenfoundinLakeWashington(Crecelius,1975)andinLochLomond
(Farmer&Cross,1979)withreportedvaluesof210and474mg・kg ̄1respectivelyintheupper
lcm of the sedimentscomparedto concelltrations of12and18mg・kgLldeeper dowtl、1n
LakeBiwa,theconcentrationofAsisalsohighintheuppermostlayersofthesediment,For
example,inthecentralbasin,aCOnCentrationof198mg・kgLlAswasfoundinthesurface
2mmlayerofthesedimentcomparedto25mg・kgLllowerdown(seeAppen.15;Takamatsu
gJ〟/.,1980b).
UptothepresenttimethefixationofAsinlakesedimentshasusua11ytxLenattributed
toadsorptionontohydrousFeoxide(Kanamori,1965;Nealetal..1979;Farmer&Cross
1979)becausearsenateischemicallysimilartophosphateandthero]eofhydrousFeoxide
in the P dynamics of aquatic environmentsis wellrecognized.This behaviour can be
explainedbythefactthathydrousFeoxidehasapHpzc(pointofzerocharge)ofabout8・6
(Schott,1977;Kinniburghetal.,1976)andsohasanetpositivesurfacechargeinnatu
lake environments.1n contrast,hydrous Mn oxide(HMO)has a pH。ヱ。Of about2.
(Murray.1974;McKenzie,1981)aTld[hereforecarriesanetnegativesurEacechargeatthe
一19−
pHofmostlakesediments(pH50rgreater),ThissuggeststhatHMOwouldnotadsorb
As.However.strongcorrelationsbetweenAsandMninlakesedimentshavebeenobserved
SuggeStingthatAsisassociatedwithMnaswellasFe(Crecelius,1975).
Inthischapter,theroleofMnintheaccumulationofAsattheoxidisedsurfaceofL.
Bjwa sediments was demonstrated by studying both the adsorption of As onto symthetic
HMOand theassociationof MnandAsinthesedimentcores.
2.METHODS
A(korptionofarsenateontosynthesisedIIMO:HMOwaspreparedfromtheoxidation
ofmanganousionbypermanganate(Murray,1974),Asolution(400ml)containingKMnO
(1.149g)andNaOIi(0.368g)wasslowlyaddedtoasolution(400ml)containingMnC12・4H2−
0(2.159g)withconstan[stirring.TheresuJtingsuspension(8pMr102,Murray,19
filtered(MilliporeCX10)andwashedsuccessivelywithdistilledwater.Na2SO。(0,2M),and
disti11edwater,tOremOVeeXCeSSK+andMn2+adsort光dontheoxide.Finallythesuspension
WaSdilutedto11itretogiveastock suspenSioncontaininglmg Mn・ml1asIiMO,This
StOCksuspenSionwaswe11mixedbeforeeachexperiment.
TheeffectofdivalentcationsontheadsorptionofarsenateontoHMOwasstudiedby
thefollowingprocedure.Asolutioncontainingarsenate(5JJgAs)wasaddedtoasolutio
(40ml)containingthestocksuspenSionofHMO(5ml)andonedivalentcation(Oto2mg)
e.g.Mn2’,Ni2+,Sr2+orBa2’,ThemixedsolutionwasadjustedtothedesiredpHwit
OrHCl,dilutedto50mlwithwaterandallowedtoreachequilibriumbystandingovernight
Withgentle stirring undera N2atmOSphere.The solution was then filtered(0.45JJm)to
removethe HMO,the pH was measured andthe concentration ofAswasdetermined by
atomicabsorptionspectrophotometry.
ChemicalforTrLSOfMninsediments:Thesedimentcoreswereseparatedintosections
Ofdesiredlengthimmediatelyaftersampling.Thewetsampleswereextractedsequentia11y
to produce two fractions:(1)exchLlngeable Mn by extracting the samplewith Na,SO.
htjw)1(mo行eudiSr肥けgntcaⅩ占ybお撒α〝〟JCぞ/)2(dnaruoh1,M.0i止s
sodiumdithionitesolution(5%)adjustedtopH6,5withcitratebuffer(0_2M).Theresidual
Mn,Whichshouldbecontainedmainlywithinthecrystalstructureofunweatheredprimary
minerals,WaSeStimatedbysubtracting’fractions(1)and(2)fromthetotalconcentration
ofMninthesample・Theextractions(1)and(2)wereperformedin a polyethylene
centrifuge tube with continuous mechanicalshaking at room temperature.After each
extraction,theleachatewasseparatedbycentrifugationfollowedbyfiltration:Theresidue
一20
waswashed with aminimum volume ofdisti11ed water prior t〔〉the fo1lowingextraction.
ManganeseconcentrationsinLthe・1eachatesWere・determinedlbyatomicabsorptionspectro−
photometry.The totalconcentration of・Mn was、]analysed■After’acid digestionwith
HClO.一HF(KawashimaeL al.,1978).
3.RESULTS AND・DISCUSSION
・ProfilesofAsinthesedimentcoresfrom3sites(T,XandG)nearノthecentralbasin(for
sitelocations,SeeFig.1,1inChap.I)arepresentedinFig.2.1(Takamatsueta/.,1980b).
Arsenichasaccumulatedtohighcdncentrationsihthethinsurfacelayers(OL2’arldO5mm
depth)∴Thesedimentationrate,l,2tol.6mm・y▲1(Kamiyamaeta!.,1982)suggeststhatthe
Asーrjchlayersweredepositedwithin/the4yearspriortosamplingbutnodramaticincrease
ofAsinilowtothelakehasbeenobservedforthatperiod,Ontheotherhand,thecoincident
depthprofilesofAsandMnconcentrationsinthecores,(correlationcoefficients,r=
0.930,0.998atsitesT,ⅩandGrespeCtively)andAsconcentrationsupto721mg・kg1i
concretions(Chap.I;Takamatsuetal・,1980b)sugge苧tthatthesurfaceaccumulationofAs
mayresultfromadissolutiondepositi6ncyclewithin the sedimentarycolumn associate
with that knownto occur for Mn.
TheresultsoftheadsorptionexperlmentSareShowninFig.2.2.lntheabsenceofa
divalentcation,nOappreCiableadsorptionofarsenateontoHMOoccurredbetweenpH6and
8,a range Often encounteredin aquatic environments.On the other hand,there was a
substantialincreaseinthe amount of arsenateadsort光dby HMOin the presence of the
山mqkil(dry叫
0 ■) 80 120100 2q)
G
『
Fig,2.1DistributionofA畠insedimentcoresfromL.Biwa
・Dateofsampling:Aug.1976−Nov.1977.Waterdepth(m):G97.T71,X90・
−21
divalentcationsMn2十,Sr2+,Ba2+andNi2+.For example,When Mn2+was added to the
experimentalsolutionofHMOpriortotheadditionofarsenate,quantitativeadsorptionof
arsenateoccurreduptopI18.Thisresultcanbeexplainedbyachangeinthesurfacecharge
of HMO due to the added cation.Divalent cations,SuCh as MnZ+,Co2+,Ni2+,Zn2+,are
adsor旭ontotheHMO(Morgan&Stumm,1964;Murray,1975a;Takematsu,1979)and
H+isreleasedtosolutionbyexchangeofdivalentcationswithH+ontheoxidesurface,The
amount of H+released wasfound tol光about one mole for each mole of divalent cation
adsortxd(Murray,1975a;McKenzie,1979),Sincetheratioofchargeequivalentsreleas
tochargeequivalentsadsorbedwaslessthanone,theadsorptiく)nOfsuchcationsshouldlead
toadecreaseinthenegativesurfacecharge,andfinallytoapositives11rfacechargeonthe
HMO.This mechanism was coIlfirmed by electrophoresis experiments(Murray,1975b).
Therefore,theHMOwhichispositivelychargedasaresultofbindingsignificantamounts
Ofadiva】en亡Cation,hastheabiJitytoremoveanionsfromsolution.
主‡ ̄:_ニニヤニ
Fig.2.2 EffectofdlValentcationsontheadsorptlOnOfarsenateonto HMO
HMO:5mgMn DIValentcation:(●)none;(○)Mn2+,(▲)Sr2+,(□)Ba2+,
(×)Ni2+,1mgforead;〔△)MnZ+、2mg.Ar父1nate:511gAs Totalvolume:
50ml.pH adjustment:HClor NaO11.
Fig,2.3showsthefractionationofMnobtainedbyextractionsofthesedimentcores・
Thesamplesanalysedincludedthree(G,X,T)fromthecentralregionandone(γ)fromthe
sha1lowsouthernbasinofthelake.ThereactiveMnoxidewasrelativelyenrichedinthe
surfacesediments.1tssurfaceenrichmentextendedtoasedimentdepthofca.4cminthe
southernbasinandadepthoflor2cminthecentralregion.ExchangeableMn(Mn2+)was
depletedinthehigh1yoxidisedsurfacesediment(OrO・2cmlayer)fromthesollthernbasinbut
themuchhigherconcentrationsofMn2+(upto40%oftotalMn)werefoundinthesurface
sedimentsfromthecentralregion・Thebottomwaterandthesedimentofthesouthernbasin
一22一−
巴OU
0 4088 0 40
D軒り⋮町︺川打u
C川﹃⋮什じ川﹃
B愕∪川什U
紺
エ﹃醐﹃
∈U.‘五〇P
S
T
0 0.0自0.160 40
S■t−甘m叩
Fig.2,3 FractionationofMnbysequentialchemicalextraction
A:tOta)sedimentconcentration(%)ofMn;B:eXChangeableMn/totalMn,%;
C:reaCtiveMnoxide/totalMn,%;D:100(B+C),%.
usua11yhadhigherlevelsofⅨ)(andEh)thanthoseofthecentralregion.Theslowdecrease
OfEhvalues,Observedjustbelowthesedimentsurfaceofthesouthernbasin.indicatedth
DOdiffusesintothedeeperlayersofsedimentinthesouthernbasincomparedtothecentral
region(Kawashimaetal,1978).Thisshouldbringaboutthedifferencesinthedistributions
Of Mn−SpeCies一光tWeen tWO areaS,though a smalldifferencesin the sedimentation rates
(Kamiyamaetal.,1982)mayt光arninorfattor.ThecoexistenceoftheabundantMn2+a
Mnoxideinthesurfacesedimentsofthec占ntralregionmightcontributetotheadsorption
OfarsenateontoHMOandcausethehighsurfaceconcentrationsofAsinthesesediments
(seecoresG,X,TonFig.2.1).
TheseresultssuggestthefollowingmechanismforthesurfaceaccumulationofAs(Fig.
2.4).Mn2+continuously diffusing upward from the deeper reduced sediment forms a
Mn2十−1ichlayer of HMO on the oxidised sediment surface.The redox potentialin the
reducedsedimentisnearthatoftheAs5・−As3+couple(Kawashimaetal.,1978)andpartof
theburiedAsislikelytot光PreSentaSarSenite.1nfact,Takamatsueial,(1979a)fou
presententirelyasarsenateatthesediment surfacebuttheratioofarseTliteto arsenate
increasedwithdepth.Therefore,itcantxexpectedthatarsenitedissoIveseasilyinthe
−23−
waterofreducedsedimentduetothelowcontentofsuIfidesinIakeenvironments(DeueJ&
Swoboda,1972).Manganeseムxideis、knowntoreadilyo叫isearsenite(Oscarsonetal.
1981)andarsenitewhichmigratqdtothesedimentsurfaceandcameincontactwithHMO
WOuldtx!rapidlyoxidisedtoarsenateandadsorl麗dduetothepositivesurfacechargeinduced
byMn2+・Thestabilityofthe’adsorbedAsislikelytobeincreasedbytheformationof
insolublearSenateSaltswithMn2+,Ni2+andthealkalineearthcations(Ks,MnlO ̄28■7,Ba
lO▼SOl ,Si11さn&Martell,1964;SeeAppen,18).
Fig.2.4 MechanismforthesurfaceaccumulationofAs
R−】ニbjo】ogjca】and/orca土a】ytjc DXjdatioJlOfM】12+;adsorption of Mが+0雨o
HMO.RL2:0女idationofarsenitetoarsenatebyHMO;adsorptionofarsenate
onto Mn2+一rich HMO.
HigharsenicconcentrationsinMnconcretionsfromL.Biwa,isfurtherevidenceforthe
accumulationofAsintotheMn2+rich HMOatthesedimentsurface.
WeconcludethathydrousMnoxides,pOSitivelychargedfromthe adsorption ofMn2+
ions,COuldplayasignificantroleintheaccumulationofAsonthesurfaceoflakesediments.
24−
CllAPTERIII
Phosphate Adsorption onto Hydrous Manganese Oxide
in the Presence of Divalent,Cations
M.Kawashima,T.Hori,M.KoyamaandT.Takamatsu
ABSTRACT
Previ0usStudies showing the ability of hydrous Mn oxide(HMO)to
adsorbarsenateatnearneutralpHin the presence ofdivalent cationshave
been extended to examine theinteraction of this oxidewith phosphate.
A】kalineearthcations,Ba2+,Sr2+,Ca2+,Mg2+,andtransitionmetalions.Mn2+,
Co2+,Ni2+,CauSe HMO to strongly adsorb phosphate between p116and9
depending onthe cation.The effectiveness ofthe alkaline earth cations to
cause Padsorption was Ba>Sr>Ca>Mg,Whichisthcsame order astheir
affinitiesfortheoxide.Changeswithtimewerefoundintheabilitiesofthe
transition metals Lo cause P adsorption onto HMO and this may be due to
conversion of the adsorbed cation toits oxide.
1.1NTRODUCTION
Phosphate which exists as H2PO。 ̄and HPO.2in most freshwaters can be rapidly
removedfromaerobicsolutionsbyadsorptionontoinorganicsubstances.HydrousFe(Ill)
OXide,hydrousAloxideandclaymineralsarethoughttot光theonlyimportantadsorbents
for phosphate since allthese substanceshave positive surface charges at slightly acid to
neutralpH andthereforehighaffinitiesforanions(Stumm&Morgan,1970),Ontheot
hand,hydrousmanganese oxide(HMO)has negative surface charge at near neutralpH,
i.e.itspHpヱ。(pointofzerocharge)isabout2.3(Murray,1974;McKenzie.1981),andhasn
beenthoughttoadsorbanions,1tdoes,however,haveahighcapacitytoadsorbcations,
lnthepreviouschapterHMOinasolutioncontainingdivalentcations,SuChasMn2+,
Ni2+andthe alkalineearthcations,WaSShown to adsorbAsatnearneutralpH.It was
concludedthatthefixationofarsenateintheoxidisedsurfacesedimentofLakeBiwacould
lxpartlyduetotheadsorptionlOfarsenateontoHMOinthepresenceofMn2’.
lnthepresentstudytheabilityofHMOtoadsorbphosphateatnearneutralpH was
examined.Inparticular,differentdivalentcationsandthechangeofphosphateadsorp
ー25一
withtimewereconsideredinanattempttofurtherelucidatetheadsorptionmechanism・
2.MATERIALSANDMETHODS
HydrousmanganessoxidewaspreparedbyoxidisingMn(II)withpermanganatein
alkalinesolution(Murray,1974).The HMO was thenwashed with Na2SO.(0.2M)a
WatertOremoveadsorbedK’andMn2+(Chap.ⅠⅠ),Nocoagulationofthestocksuspension
occurred for at least three months. The HMO suspension was standardised by atomic
absorptionspectrophotometryafterdissolvinganaliquotinascorbicacidsolution,
Theadsorptionexperimentswereperformedasfollows:HMOsuspension,phosphate
andthedivalentcationwereaddedinthisordertothebuLfersolutioncontainedinateflon
beaker■ The HMO suspenSionwas ultrasonicatedjust t光fore use.AfteT Standingfor a
記】∝ted time(20hours forequj】ibrju打】eXperiments or5mjn,2aれd6hours for kjnetic
experiments)ataconstanttemperature(250C),thesolutionwasfiltered(0.45FLmMi11ipore).
The pH of the filtrate was measured.The precipitates on the filter wasdissoIved with
ascorbicacid(0・2M)andphosphateinthissolutionwasmeasuredspectrophotometrically
(Murphy&Riley,1962).Whennecessary,phosphateinthefiltratewasalsodetermined
experimentsinvolving Ba2+,this cation was removed as BaSO。by centrifuging before
measurlngphosphate.
ThedivalentcationsolutionswerepreparedfromthecoTreSpOndingchloridesaltsand
Standardisedbyatomicabsorptionspectrophotometry,
3,RESULTS
Fig.3.1showstheperCent(%)adsorptionofphosphateontoHMOasafunctionofpIL
ln the absence of divalent cations,HMO did not adsorb phosphate at near neutraland
alkalinepH(Fig,3.1a)butsomephosphatewasadsorl光dasthesolutionbecamemoreacid
Additionofalkalineearthcations,e.g.Ba2+,Sr2+,Ca2+andMg2+(Fig.3.la)increasedthe
percentadsorptionofphosphatewithamaximumnearpH6,5.Preliminaryexperiments
Showed that alkaJjne earth metaJphosphatesdo∫】Ot preCjpjtatebeJowpHlO under these
conditions,i.e.phosphate(3.2×10.6M)andcations(2×10 ̄▲M).
Transitionmetalionswerealsoeffectiveincausingthe adsorptionofphosphateonto
HMOatnearneutralpIi(Fig.3.1b)althoughtheadsorptioncurvesobtainedweresharper
anddisplacedtohigherpHthanthoseobtainedforthealkalineearthmetals.
Theeffectivenessofthealkalineearthcationstopromoteadsorptionofphosphateonto
HMOapDearSfromthedataonFig.3.1totEBa>Sr>Ca>Mg,Thiswasconfirmedby
−26−
3
▲
5
6
7
PH
8
9 10 11
Fig.3.1Effectsofalkalineearth(a)andtransitionmetalions(b)ontheadsorption
ofphosphateonto HMO
refuB・M4▲01×2:noilateM.601×23:etahpsoP.M4 ̄01×63:OMH
solution:0.OIMNaaCetateOrNH,一N11.Cl.Agingtime:20h(25■C).
experimentscarriedoutatconstanttotalcationconcentration.TheresultsinFig.3.
thatatallconcentrationsofphosphateinsolutiontheamountofphosphateadsorbedona
givenamountofHMOweregreatestfortheadditionofBa2+andleastforMg2’.
N宣●呈○壬毒○∈亨星空血
I
2
【ph。SPhqt叫洞5・H
Fig.3.2 Adsorptionisothermforphosphateinthesolutionoftheconstantalkaline
earth cation concentration
Meta=on=2x104M.pnこ6.5(0.005MacetatebuffeT).Agingtime二20h(25.C)・
−27一
lntheabsenceof HMO,theprecipitationofphosphatebythetransitionmetalswas
examinedasafunctionofpH(Fig.3.3).Lossofphosphatefromsolutionortheformation
ofNi(OH)2WaSnOtdetectedatanytimeaftertheadditionofNi2+.Fiveminutesafter
addingCo2+ahighproportionofthephosphatewasprecipitatedt光tWeenpH9andllbut
afterstandirLg.for20ho11rSthepercentofphosphateadsort光dhaddecreasedatpH>9.1and
increasedbetweenpH8,7and9.l.AlightblueprecipitateofCo(OH)2formedatpIi>8・
after5minutes,butafterstandingfor20hourstheprecipitateinsolutioTISwithpH9turned
brown.TheadditioI10fMn2+alsocausedadsorptionofphosphateafter5minutesreaching
almostlOO%at pll10.A brown precipitate,preSumably HMO,formedinthis solution
After20hours,however,theperCent adsorptionof phosphatewas zero at pHlO and the
maximumwasonlylO%occurringatpH9.
9
10
PH
Fig.3,31nteractionbetweenphosphateandtransitionmetalionsasafunctionofpH
Phosphate=3・2×10−6M・Metalion=2×10−1M・BuffersolutionニOLOIM NaL
acetateorNH,NH.Cl.Agingtimeこ5minor20h(25.C),
Theadsorption ofphosphate onto HMOin thepresence■Ofdivalent cations was ex−
amined as a function of time.With added Sr2+(Fig.3,4a)no changein the percent
adsorptionwasfoundbetween2and20hours▲1ncontrasttothis,atpH>7▲5forMn2+and
Co2+andpH>8forNi2+phosphateadsorptiondecreasedwithtime(Figs・3・4b,C,d)■
−28一
Fig,3,4 Timedependence ofthephosphateadsorption on HMOafter addition of
Sr2+(a),Mn2+(b),Co2十(c)andNi2十(d)
.c’52:pmeT.M一01×2:no=ateM.‘01×6.3:OMH.6L01×2.3:etahpsoP
4.DISCUSS10N
Theresultsobtainedinthisstudyforphosphatearesimilartothosefoundpreviouslyfor
arsenate(Chap・lI).It wassuggestedin theearlier chapterthatthe surfacecharge on
HMO.normallynegativeatnearneutralpH,WaSreVerSedbyexchangeofH+ontheHMO
Surface for divalent cations from solution.A positively charged surface thus resulted
leadingtotheadsorptionofarsenateoTltOtheHMO,Asimilarmechanismseemslikelyfor
phosphate with allthe divalent cations tested showing the ability to cause substantial
phosphateadsorptiononto HMO.AtpH<51essthan50%ofphosphateinsolutionwas
adsorbedinthepresenceofdivalentcations,butforarsenatethecoTTeSpOTldingfigure(see
FigL2.2inChap・II)waslOO%:Thisdifferenceappearstoarisefromamuchhigheraffinity
OfarsenateforHMOatacidpHintheabsenceofdivalentcations.Forexample,atpH4
approximatelylO%adsorptiorLOfphosphateoccurred(Fig.3.la)while80%ofarsenatewas
adsortx)dumdertheseconditions.
The order of the effectiveness of alkaline earth metalions to cause adsorption of
phoshate′OntOHMOwasBaZ+>Sr2+>Ca2+>Mg2+.Thisorderisthesameastheorderof
affinityofthealkalineearthsthernselvesforHMO(PosseltetaL.,1968;Murray,19
ー29
TheadsorptjontehavjourofthesecatioT)SWaSattribu亡edtothesizeofthehydratedradH,
Ba2’くSr2+くCa2+<Mg2+,andtheabilityofthesmallerionstoapproachclosertotheactive
Surfaceof HMO.Ahigherchargedensitywouldresultwiththesmallerionsandthisis
likelytofavouradsorptionofanions.
TheadsorptionofcationsontoIIMOisfavouredbyincreasingpH(Murray.1975a)and
theadsorptionofphosphateaJsoiT7CreaSedfrompH3.5toapproximateJypfI7.Abovethis
pH,however,meChanisrnsoFN!ratetOreducethephosphateadsorptionontoHMO・Either
thephosphateinsolutionchangesforme.g_COmplexeswiththecationtoproduceanionwith
positivecharge,OrthesurfacechargeontheHMObecomeslesspositiveandfinallyreverses.
Thefirstofthesepossibilitiesisunlikelyt光CauSeanyCOmplexesformedwi11probablytx・
anionic_ Themos‖1keJYreaSOrlforthedecreaseinphost)hateadsorptionwithincreaslngpti
inthepresenceofthealkalineearthcationsiscompetitionfromhydroxideionseitherby
preferentialadsorptioninplaceofphosphateorbytheformationofhydroxycomplexese.g.
Ca(OH)+,andhydroxidesonthesurfaceoftheHMO.Thetimecourseexperimentsshowed
nochangewitlltimeafteraninitia12l10urperiodintheperCentadsorptionofphosphateonto
HMOinasoJutioIICOntainingSr2+.Thisisconsistentwiththeformationofstablehydroxy
COmplexesandllydroxidesabovepH7.
Asimilarpatternwasfoundwiththetransitionmetals;phosphateadsorptiondecreased
withincreasingpH.UnliketheresultsforSr2+,however,thepercentadsorptionatalkalirle
pHin the presence of the transition metalsdecreased with time、The decrease within−
creasingpH forCo and Niisprobablydue to the formation of hydroxy complexes and
hydroxidesonthesurfaceofHMO.Thedecreasingadsorptionwithtimecould一光eXplained
bythehydroxidesofthesetwometalschangingtotheoxides,CoOand NiO,Whichmay
reduceevenfurtherthetendencyofphosphatetoadsorbtotheHMOsurface,Theinitial
formation of Co(OH)2in the absence of HMO andits subsequent change to a browTl
precipitate(probablyCoO)atalkalittepnisevide11Cefortheproposedmechanism・lnthe
solution containing Cowithout HMO,theincrease with time of phosphate adsorption
txtweenpH8.7and9.1doesnothavearLObviousexplanation.Perhapssomeoftheinitially
formedCo(OH),SlowiyreactswiththephosphateinsolutiontoformaninsolublesubstarlCe,
whereas at higher pH CoOis formed▲ When Mn2+was added to an a】kaline solution
containingphosphate,HMOformedimmediately・TheexcessMn2十insolutiongerlerateda
positive)ychargedsurfaceontheHMOandphosphatewasadsortxd・Withtime.thesurface
adsort㌍dMn2+wasoxidizedautocatalyticallybyO2(Stumm&Morgan,1970)andphosphate
thenreleasedbackintosolution.Thesamemechanismexplainsthedecreaseinphosphate
−30−
adsorptionwithtimeinanalkalinesolutioncontainingaddedHMOandMr12+.
Inmostfreshwaters,Ca2+andMg2+arepresentatconcentrationssimi1artothoseused
inthisstudy,SuggeStingthat甘MOcouldactasascavengerofphosphateinlakes.Thiswas
一▼01×5.2:+aC(retwiBkL)mF4dlfoOMHntaehybriC
M,Mg2+:8×10 ̄5M).HMOinthepresence ofdivalentcationscould,therefore,1x:an
important adsorbent of anionsin naturalaquatic systems.Inlakes,thiswi11be most
importantintheoxidisedsurfacesediment,becausetheformationofHMOusuallyoccurs
herefromtheoxidationofMn(1I)whichhasdiffusedupwardfromthereducedsediment.
Totalphosphorus often shows a markedincreasein concentration toward the sediment−
Waterinterface(e.g.seeAppen.15)andthisisconsideredto一光duetotheupwardmigration
OfdissoIved phosphorusfromthereducedlayer,followed by precipitationin theoxidised
layer(Carignan&Flett,1981),TheresultsofthisstudysuggestthatHMOinthepresen
Ofdivalentcationscouldbeatleastpartlyresponsibleforthisprecipitation,Thefixation
Ofarsenateintothesurfacesedimentwassuggestedtoresultpartlyfromtheadsorptionof
arsenateonto Mn2+Trich HMO(Chap.II).Although hydrous Fe(IlI)oxide,hydrous Al
OXideandclaymineralsareimportantadsorbentsofphosphateinnaturalwaters.thepresent
StudydemonstratesanewroleforhydrousmanganeSeOXideasanadsorl光ntOfanions,
31一
CHAPTEIモ1V
TheRoleofBiologicalDebrisimtheRemovalof
Zn arLd Cufrom a Water Column
T.Takamatsu,M.KawashimaandM.Koyama
ABSTRACT
ThefinedepthprefilesofZn,Cu,PbandHgaredistinctfromoneanother
inmetal−richuppersediment.Althoughthesourceofthesee)ementsshouldt光
attributed to human factors,a prOCeSS has been proposedin relation to the
differencebetweenthefineprofilesofZnandCu.Thesepossiblyresultfrom
the deposition of planktonic debris rich in these metals and their viability
duringtheearly−degradation ofdebris and thesubsequentslower process of
humification.
1.INTRODUCTION
AsshowninChap,Ⅰ,Zn,Cu,PbandHgwereenrichedintheupperlayersofsediment
andhadcharacteristicdepthprofiles.Theincreasedlevelsoftheseelements(exceptZn)
reached to a4r5cm depthin the offshore sediments of the northernlake(N−1ake).
Accordingtothesedimentationratesofl.2−1.6mm/yobservedinthecentralregionof
1ake(Kamiyamaetal・,1982),aSedimentdepthof4−5cmcorrespondstosedimentdeposited
30−40yearsago.Inthesouthern1ake(Srlake)sediment,themetalrichlayerswere15
25cmin depth and enrichrnent Of the metals must have begun more than60years ago,
judgingfromthesedimentationrateof2.4mm/yinthatarea(KamiyamaeLal.,1982).
pointedbutforthislake(Kurata,1978;Tatekawa,1979,1980)andmanyothers(Tay
1979;Nriagu et al・,1979;Wahlen&Thompson,1980),theincreaseinanthropoge
metalfluxesinthelakemaybethemostplausibleexplanationfortheincreasedlevelsofthe
metalstx:CauSethewatershedofS−1akewasland−developed,pOpulated,andindustrialized
muchearlier thanthat of Nlake.
However,thedetailedprofilesoftheelementsaredistinctfromoneanothereveninthe
metalrrichupperSedimentspossiblyduetodifferencesintheremovalprocess ofelements
from the water column and subsequeTlt dissolution and fixation mechanismsin the sedi−
−33−
mentarycolumn.
2.MATERIALS ANDMETHODS
Phytoplanktonwascollectedwithaplanktonnet(NXX25)fromS−1akeon90ct.1980
andasubmergedplant,lhllisnertaBiu)aenSis,WaStakenfromSetaRiveron12Sept.198
TheplanktonconsistedofStauYaStnLm(97.2%),CLostenum(1,27%),IWおtrum(0.86%),
Melosih2Italica(0.35%),and GloeoりStis(0.33%).Afterthesampleswere air−dried and
driedagainat800Cfor5h,theywereanalysedbyneutronactivationandX−rayfluorescence
in a similar manner to that for the sediments(Appens.3and4;Takamatsu,1978;
Takamatsuet al,,1982b).
Theanalytica】dataonthesedimentsusedwerethosedeterminedinChap.E.
Acid−1eachablesulfideLS wasdetermined asdescribed previously(Kawashima et al.,
1978).
HumicacidinthesedimentwasdeterminedaccordingtothemethodofOhba(1964).
3,RESULTS ANDDISCUSSION
Fig.4.1showsthedistribution ofelementsin theupperlOcm of the coresat sites G
andT(forsitelocations,SeeFig.1.1inChap.Ⅰ),alongwiththeprofilesofhumicac
Sulfide.Zinc,aSinthecaseofMnandAs,eXhibitedasharpdecreaseinconcentrationfrom
the surface to a2cm depth but was nearly constantin coneentration at a deeper ZOne.
Copperalsoshowedamaximumconcentrationatthesurface.1tsconcentrationdecreased
rapidlyfromthesurfacetoalcmdepthandwasgenerallyconstantfromalto2cmdepth
(thisconstantlevelcorrespondstoca.50%excessabovethebaselevel).Theconcentration
OfCuwasthesameasthebaselevelata45cmdepth.AlthoughtheconcentrationofPb
WaSmarkedlyreducedonthesurface,therewasasignificantincreaseinconcentrationata
depthofca.1cm・Be】owIcmdepth,theconceJ】tratjorIOfPbdecreasedrapjd】yar】dreacIld
tothebaselevelata4−5cmdepth.ObviouslytheindividualprofilesofZn,CuandPbdiffer
from oneanother.
Theconcentrationsofelementsinphytoplanktonandthesubmergedplantfrom Lake
BIWaaregivenin TabLe4.l.TheratiosoftheconcentrationsofeJementsinthe aquatic
organismsexceedingtheaveragebaseconcentrationsofelementsintheNrlakesediments
(txlowlOcmdepth)areindicatedintheTable,andshowasignificantenrichmentofCuand
ZnintheorganislnS,COmparedtothesedjments,
Inpreviousstudies,SimilarincreasedIevels ofZn,Cu and Pbwerefoundin diatom
34−
4
6
︻■b.雲lむP中古U
0
0.025
0.05
Su桐de−S.%
Fig.4.1Fineprofilesofelementsinthesedimentcoresfromoffshoreareasofthe
northernIake
Excess concentratiorlS Of elementsin the uppermostlayer above the average
concentrationsofelementsinthelower)ayers(belowlOcmdepth)weT’etakenas
lOO%.(●)Pb;(0)Cu;(t)Zn;(△)Mn;(×)As;(◎)Ⅰ・L・
(AsierwneLLa)from LakeWinderrnereanditwassuggestedthatbiologicaluptakeplaysa
majorroleintheprocessofthedepositionofmetalsinthelakesystem(KempeLal.,1976;
Lund,1957;Taylor,1979).TheaccumulatioT10fmetals(11meta】sincludingZn,Cu
Pb)by phytoplankton has been also reportedin Lake Biwa(Kurata,1982),thoughthe
reported concentrations are much higher thaIlthosein this study.In addition,phyto−
plankton is generally recognized as a major source of sedimentary organic matter
(lshiwatari,1973;jackson,1975;Cranwell,1976).ThusinLakeBiwa,WeCanaSSu
thatlargefractionsofZnandCusettleonthelakebottominassociationwithplanktonic
debris.Afterprecipitation,mOStOftheZnandafractionoftheCuarereleasedwithinthe
upperthinlayer of thesediment due to earlymicrobialdegradation of the debris;this
coincidestotherapiddecreaseinI.L.observedfromthesurfacetoa2cmdepth・However,
theorganicresidues,Whichareresistanttoearlydegradation,CauSethesubsequentslo
processofhumification(Kemp&Johnston,1979),Duringthishumification,Cu,kno
tcstrongly boundtohumic materials(Takamatsu et aE.,1983b,1983c),remainsi
sedimentaryhumatesandaccountsforca,50%oftheexcessCuinitiallyobservedonthe
sedimentsurface.However,Zncannotwithstanddjagenesist光CauSeOfthelowstability
humate.Theseobservationsaresupportedbythefo1lowingfacts:(1)Humicrnaterials
−35−
Table4,1Elementa)concentrationsofphytoplankton’and
leavesofl匂Ilisnerza BiztlaenSis=andtheratio of
thesetotheeIementalconcentrationsofthe
sediment‥●
Element
Phytoplankton
l匂JJね刀g7Ⅶβiwg那ね
%
Concn, Concn.ratio Concn, Concn.ratio
9
l
3.4
9
O
T−5
︵U
4
O
∧U
nlU
4
2
5
2
ハリ
ナ⊥
▼
つJ
︵U
﹁〇
八U
nU
O
4
︵U
︵U
3
O
3
3
八U
2
7
O
仁U
7
9
2
八U
︵U
︵U.月T
八U
つJ
9
ワ︼
2
爪じ
4
DO
3
︵U
l
ハリ
りん
7
2
0
1
nU
1▲
0
れU
6
∧U
R︶
■
2
5
O
9
2
6
∧U
爪U
O
O
2
O
9
︵U
ワ︼
0.03
3.71
ハU
O
‘U
ワ︼
︵U
3
20.2
N.D.
43.2
183
0.23
3.6
N.D.
N.D.
N.D.
1.38
26.0
N.D.
0,54
ワん
00
八じ
6
11∴:1
l
4
〇
mg・kg ̄1
3500
6.7
22.1
343
6.1
5.O
N.D.
2.1
0.46
n入U nO
9
つJ
0
ワん
6
4
1
00
nU
3
5
0
ユ9,3
4.O
16.8
21.1
O.63
2.90
33.6
2.1
24.3
451
l.85
19.6
l.02
O.10
l.05
ll−1
6.5
l.3
4.31
鑓U
1
mg・kg、1
258
7.8
155
225
00
l
U
Th
O
βr
5 ハU つJ 8
2 0 0 り乙
Na托KCa
Mn
Ni
Cu
Zn
Pb
Co
Cr
As
Sb
Sc
Rb
Cs
Sr
Ba
Sm
Ce
Yb
Lu
Hf
La
0.29
0.22
0.41
0.82
0.03
八U
2 1
Values arebased onmaterialsdried at80’Cfor5h.
N,D∴nOtdetectable.
■ PhytoplanktonwascoLlectedwithaplanktonnet(NXX25)
fromthesouthernlakeor190ct.1980;SpeCies:Sh2uれかtyum
97.2%.fbd血sJγ〟椚βJMβgO.86%,CわぶJβガ〟椚1.27%,
G/og叫拶Jね0.33%,〟eわ5i/♂JねJ∫甜0.35%.
=l匂Jlisner紹Btwaensis wascollected fromtheSeta Riveron12
Sept.ユ98仇
...Averageconcentratior)SOfelementsinthelowerlayers
(txlow10cmdepth)ofthesedimentcoresfromthenoTthern
lake.
仁U
︵U
3
2
八U
ワ︼
3
2
2
ウル
9
つJ
2
ー36−
(humicacid)havebeenfoundataconcentrationexceedingl%throughoutthecorealthough
theconcentrationofsulfide,anOthersignificantscavengerofmetals,islessthanlOOmg・kg▼1
below alcm depth.(2)Humic materials extracted fromlake and marine sediments
showedahigherconcentration ofCuthanthatinthesediments(Nissenbaum&Swaine,
1976;Nriagu&Coker,1980),
Theearly−degradationofbiologicaldebrismaynott光reSpOnSibleforthecharacteristic
profileofPbsincetheconcentrationofPbwasfoundtobelowintheorganisms,Inrecent
studies.Pbhastcenfoundtol光adsorbedrnuchmorestronglythananyotherdivalentcatio
On hydrous Fe oxide and clay minerals(Coggins et aL.,1979;Naruse et a/.,1979)and
transportedinriversmostlyinassociationwiththeoxidefractionofthesuspendedmatter
(Tessieretal.,1980;Florence,1977).Therefore,SOmeOtherinorganicprocess
COnSidered to account for the removalof Pb from the water column andits subsequent
fixationin the sediment,
一37−
CIIAPTERV
DepthProfilesofDimethylarsinate,Monomethylarsonate,
andInorganicArsenicinSedimentfromLakeBiwa
T.Takamatsu,R.Nakata,T.YoshidaandM.Kawashima
ABSTRACT
Threesedimentcoreswerecollected from Lake Biwa,and analysed for
theirdimethylarsinate(DMA),mOnOmethyIarsonate(MMA),andinorganic
arsenic(トAs)content.WeusedananalyticaltechniquethatincludedsoIvent
extraction,anionre】くChange chromatography.and firlaldetermination of
arsenicbyflamelessatomicabsorptionspectrophotometry.Thesedimentwas
foundtocontaintrace)evelsofDMA(undetectable24.7JJg・kg「1)andMMA
(20,8−44.1FLg・kg.1)inadditiontoトAswhichtendedtobepresentinthegreatest
amount・ThedepthprofilesofDMA,MMA,andトAswerealsoana】ysedin
detail,
l.INTRODUCT10N
Arsenic can tx:methylated to monomethylarsonate(MMA)and dimethy】arsinate
(DMA)bycommonfungi,yeaSt,bacteria,andalgae(Challenger,1945;McBride&Wo
1971;Cullenetal,,1979;Andreae&Klumpp,1979;BakereLal.,1983),Theresul
methylatedLarSenic compounds arewidely distributedin soils,Sediments,Water,and or−
ganisms of the environment(Takamatsu et al.,1982a;Braman&Foreback,1973;
Shaikh&Tallman,1978;1versonet al.,1979).Sinceorganicarseniccompounds,p
CularlyDMA,areadsorbedtoamuchlesserdegreethanarsenatebysoilsandsediments
(Wauchope,1975;Andersonetal.,1978),theycaneasily一光SOlubilizedandtransportedin
thehydrosphere.Inaddition,inthe.microbialmethylationcycleofarsenic.theyare
precursors of gaseousdimethylarsirte aild trimethylarsine(Cox & Alexander,1973;
McBride&Wolfe,1971;Cuuenetal.,1979)whicllmaybetransportedintt妃atmOSpher
Therefore,themeasurementsofDMAand MMAintheenvironment mayprovideuseful
informationontheglobalcycleofarsenic.Althoughsedimentshavebeenanalysedbysome
authors(Iversonetal.,1979;Maher,1981;Takamatsuetal.,1982c),thedepthp
OfDMAandMMAhavenevert光endescribedforlakesediments.
一39−
2.MATERIALS ANDMETHODS
Threesedimentcores(A.BandC)werecollectedfromthecentralregionofLakeBiwa
Wheretheaccumulation of arsenic on the sediment surface hadt㌍en Observedpreviously
(Chaps,land11;Takamatsuetal..1980b).ThecoresAandBweretakenon5/28,1982
andCon12/15,1981.ThesitelocationsofthecoresA,BandCcorrespondtothoseofsites
G,TandE(seeFig.1.1inChap.Ⅰ)respectively.Agravitycorer,COnSistingofapla
coreliner(3.5cmi.d.)was used to obtain samples of 30p40cminlength.The red
conditionsinthesesedimentswereessentiallysimilartothosereportedbyKawashimaeta/.
(1978).Theretrievedcoresshowedthinbrownoxidizedtoplayers(ca.0,2cminthickness)
OVerlying the pale gray reduced sediment_Immediately after collection,the cores were
takentothelaboratoryandslicedintoO,5,l,20r5cmlayers.Thesubsampleswerefreeze
driedandhomogenizedwithanagatemortar.
Thereagents,apparatuS,andanalyticaloperatingconditionswereidenticalwiththo
descrit光dinthepreviousreports(Takamatsu elaL.,1982a,1982c).Theanalyticalprocer
duresforDMA,MMA,andinorganicarsenic(トAs)determir)atjonarethereforeonJybriefJy
outlined,
Thesedjmentsamp】e(15g)wasextractedwitha5−io】dvo)ume(5−25mJ)oflOMHCZ
byshakingmechanicallyat300C forlh,Adesired aliquot(upto12.5ml)ofextract was
takeT)and4.15gofKl,WaterandHCIwereaddedtopreparea25mZsolutioncorltainglMKI
and5MHCl.ArseniccompoundsincludingDMA,MMA,andIAswereextractedwithlOml
Of benzerle(亡Wice).Then,arSenic compounds were backrextracted with5mIof water
containing H202(twice),After the aqueous phaseswere neutralizedwith NarICO,,the
soJutionwaswashedwith5mJofbenzene(twice).AportionofthissoIutionwasappliedto
.)mrofAetaC,hsm04L2XlxewoD,m51×.di0(nmulocegahxrni
DMA,MMA,andトAswereseparatedbyelutingsuccessivelywithO,l%CH3COOH,5%CH3−
COOH,andlMHClataflowrateofca.20drops/minandcollectedin130rdropfractions.
The eluates were subiected to arserLic analysis by flameless atomic absorption spectro−
photometry,afteraddingMg(NO3)2tOprepareO.025%ofMg2十solution.
TheassignmentofchromatographicpeakstoDMA,MMA,andトAshasbeendemon・
strated by the authors on the basis of analysis of arsenic compounds spikedin the soil
extracts(Takamatsu et al,,1982a)and the elution behavior of arsenic compounds as
observedinadifferentchromatography(Takamatsuetal・.1983a).Thegoodaccuracyof
analyticalresultshasbeenalsosupportedbytherecoverjes(91103%)ofarseniccompounds
spikedinthesoilextracts(Takamatsuelal・,1982a)・
ー40−
The totalconcentration of arsenic(T−As)was determined by X−ray fluorescence
analysisaccordingtothemethoddescri旭inthepreviousreport(Takamatsu.1978),
TtlecarboncotltentWaSanalysedwithanelementalanalyzer(CarloErbaCo.,Model
llO6).
3,RESULTSANDDISCUSSION
Fig.5.1showsthechromatographicseparationofarseniccoTnpOundsintheextracts
fromthetheuppermOSt(0−0、5cm)layersofthecores,Theelutionpatternsconsistedof
clear4peaksandwerequitesimi1artothoseof arseniccompoundsinthesoilandpond
Sedimentextracts(Takamatsuefal.,1982a,1982c).Threepeakswerefoundtocorresp
toDMA,MMA,andトAs.Theother匹ak(Ⅹ)wasassignedtothenewarseniccompound
whosetentativestruch∬e(C5H7AsO3H2)hasbeenproposedpreviously(Takamatsueta/.,
1982a).AnotherpeakappearinginthesecondfractionpriortotheelutionofDMA.was
often obseTVedinthelower sedirnent extracts.
Fig.5.1ChromatographicseparationofarseniccompoundsextractedfromtheO−
0.5cmlayersqfthecores
A:tneu]E.mrofeta c.hsem04 2.4xlewoD,nm51×.d im01:nmuloC
O.1%CH,COOH,B5%CH,COOrI,CIM HCl.Flow rateこ20drops/min.
Fractionvolume:130drops/fraction.
−41−
TheanalyticaldataarepresentedinTable5,1,Althoughagreaterpartofarsenicin
thesedimentcorrespondedtoトAs,DMAandMMAcouJdalsobedetectedinmostofthe
samples.Thelowlevelsoftheseorganicarseniccompounds,COmparabletoca.0.1%ofト
As,WereSimilartothoseobservedinthearsenicrpollutedsoils(Takamatsuet al.,19
The Lake Biwa and pond sediments(Takamatsu et a(..1982c)appeared to have higher
coTICentrationsofMMA(20.8r44.1JLg・kg.1)thanDMA(undetectable−24.7J‘g・kg ̄1).
TypicalarsenicprofileswereobservedinthecorefromsiteA(Fig,5.2),Theprofi
ofthecarboncontent(alargeportionofthecarbonisorganiccarbon)andredoxpotential
(Kawashimaetalリ1978)arealsoillustratedinthefigureforreference.IAs(andTAs)
werepresentathighconcentrationsintheupperlayerofthecore andtheseprofileswere
quiteconsistentwiththosereportedinourprevioussurvey(Chaps.IandII;Takamatsu
ef al.,1980b).The accumulation ofトAs at the sediment surface should result from a
dissolution、depositioncycleofarsenicwithinthesedimentarycolumnassociatedwiththe
redox cycle of manganese(see Chap.II).The profiles of DMA and MMA are here
descritxdforthefirsttime;thatis,DMAwaspresentinagreateramountinthesurface(0−
2cm)layeTS,WhereasMMAtendedtodecreasesomewhatinthes11rfacebutincreaseinthe
lowerlayerswhereDMAwasnotedtodecrease.
Two possible processes,i.e.bacterialor fungous process and algalprocess,may t光
responsiblefortheconfigurationoftheseprofiles.(1)Themechanismsforthebiological
reductionandmethylationofarsenicarenotknownindetail(WongeEal.,1977;WooIson,
1983),buttwomodelshavebeenproposed.Thefirst(M1)isbasedonastudyofanaerobic
bacteria andinvoIves the transfer of methylcarbanions(CH,)from methylcobaramin
(McBride&Wolfe,1971;Wood,1974),Thesecondmodel(M−2)isbasedonastudyof
aerobicfungiandinvoIvesthetransferofcarboniumions(CH。+)fromS−adenosylmethionine
(Challenger,1945;Cullenetal.,1977).Ineithermodel.thepathwayfromMMAtoDMA
includesareductionstepwiththegainoftwoelectrons,i.e.CHヨAs3+0(OH)2→(CH3)2Asl+0−
(OH)inM−10rCH,As5+0(OH),→CHヨAs3+(OH)2inM−2.Therefore,thepathwayfrom
MMAtoI)MAmightberelativelyacceleratedir)SedimentJayersatadepthofO.22cmwhere
thelowest redox potentialwas recorded althoughthe production of MMA and DMA by
microorganisTnSmaybepromotedbythelargeamountofcarboninthesurfacesediment
(Takamatsueta).,1982a,1983a).TheproductjonrateofMMAfromarsenitemayprocee
steadilywithoutaccelerationbyloweringtheredoxpotentialsincethisstepinMpl,i.e.As3+−
0(OH)→CH3As3+0(OH)2,invoIvesnoredoxprocessaTldthatinM2,i.e.Asユ+(OH),→CH,・
ehtcniS,ojda.mO亡cinesro【ph止wsecornitadxsj,2)JfO(0ナ5A
一−42一
Table5,1Concentrations.ofarseniccompoundsin
thesedimentcoresfrom Lake Biwa
9 6 hU 00
2 2 2 1 1
7
1
3
6
1
﹁D
3
3
1
4
6
2
l
1
ワ︼ 3 ワ︼
1 1 1 1
4
り︼
3
3
2
ワ︼
5
9
ウJ
3
3
4
nU.4▲
5
り山
7
3
2
1
■4
︵U
2
1
1
nO
5
︻/
6
3
7
6・・4
2
■4
つJ
7
3
7
ワ︼
ワ︼
2
00
00
2
0D
2
5.d.︵∠
3
ワ]
2
2
RU
7 1
7 2
9 3
︵U
l
1 1
00
2
9
9︶ 1仁U
■■2
﹁
q
QU
9
4
2
9
1
ワ︼
2
2
﹁〇
3
4
6
ワ︼
2
5
つJ
ウ︼
?︼
2
6
2
2
7
7
2
3
1.4
nO
5
3
▲4
4
3
3
7
3
3
3
2
ウん
896438394440卸3131詣30312826詑
2 l5 ∧U
1 39 9 9 7.4 3 2 ワ︼ l <U
ウ︼
3 ワ︼ 2 1 1 1 1−▲ l 1 1・−1 1 1 1
●Valuesarebasedonthefreeze−driedrnateriaIs,andshowtheaveragesoftwo
9
2・24 2.
︵4
U 7 2 1 0ノ 1 3 4 長V 3 5
6 3 2 ∧U RU ︵U 5 1 7 RU 5 6 7 qレ l
ワ︼ 2 2 ワ︼ 2 2
n
O 6 4 4・4 Jq 3 3 2 ワレ 2 2 2 ワ︼ ヘユ
り︼
ワ︼
0
3
ワ︼
1
3
2
2
仁V
﹁〇 9 7 6 QU ︵U q︶ ▲LU 5 q︶ q︶ OU ︵U
7 ワレ。4
34.
4 44
5 3
4 ︵b 5・4 3.4 5 5
.4
4 ■4
ワレ
7
﹂’5
9
人U
9J ︻
3/ 3l・
3・4
3・・
24 39
5ワ交
︼じ
3
3
爪U
9
2
4
6 ▲4 5 ∧U ︻n 5 <U qU 6 1 亡U 7 1 1
00 q︶ 5 5 3 3 3 りん 2 3 2 ワ︼ 2 3
1 3 2 6 5
4
︵U
史U nO ■4・q
7 5 7 6
︵U
3
ワん
3
2
O
4
3
1
ー43
3
9
∧‖︶
4
lヽll持
5 ︵U 5 3 5
4
0
†Weightedaveragevalues.††Urldetectable(<1JLg・kgLり
%
mg・kg ̄】
〃g・kg▼−
‘U 5 2 6
1
1−2
23
3−4
46
6−8
8−10
1015
15−20
2025
25−30
30−35
3540
■■T
︶
36.β
0.5−1
3
6.9
5.3
34.0
7,6
42,3
7.3
34.O N,D.
30.9
2.1
6.3
33.3 .3.9
4,5
29.9
N.D.
1.8
5.6
26,6
4.7
30.9
N.D.
2.1
20.8
N.D.
4.2
22.2
1.2
3.0
22,2
N.D.
3.2
27.6
N.D.
(4.5) (27.1) (−
31.7
C O0.5
7
†
1−2
2−3
3−4
46
6−8
810
10−15
1520
20−25
25−30
つJ l 几U 8・4 9 5 3
†
0.5−1
6.2.4.4.3.1.3.1.3.3.2.3.3.1.4.9.〇.6.5.6.5.5.6.42札付118.9.6.8.
1−2
23
3−4
4−6
6−8
81(1
10−15
1520
20−25
2530
30−35
97733
B O0.5
3 2 ■4 几U 1
0.5−1
79685272956352
711013345.9.4m.9
A O0.5
トAs T−As Carbon
X
DMA MMA
As.吋kす1
▲s・mO■kす1
0
20
40
の
&) 0 1D
刀
コ0
■0
0
2
c.ヽ
3
Fig,5.2 DepthprofilesofarseniccompoundsinthecorefromsiteA
*:baseconcentrations(averagesinlO35cmlayers).
concentrationofarsenite(reactantoftheaboveprocess)detectedinthereducedsediment,
e.g,7,9mg・kg ̄1AsintheO.5−2cmlayerand4.3mg・kg▲1Asinthe24cmlayer(Taka
etal,,1979a),ismuchhigherthanthatofMMA(product),theproductionrateofMMAf
arsenite should be held approximately constant regardless of a little change of arsenite
concentration.Therefore,theenl1anCedtransformationofMMAtoDMA,Whichoccursin
thesedlmentwithmaximum reductionimmediatelybeIowtheuppermOStthin(ca.0.Zcm)
0Ⅹidizedlayer,Should resulti11depletion of MMAin the upper2cm sediment.Thisis
consistentwiththevariationsintheDMA/MMAratiocorrespondingtochangesintheredox
potentiaJinthearsenic−pOllutedpaddysoiJs.InthesoiIs,theamountofDMAincreased
thatofMMAdecreasedwithloweringtheredoxpotentialunderfloodedconditionsalthough
the totalconcentration of methylated−arSenic compounds was approximately con亭tant.
(Takamatsuetal.,198Za).(2)Themethylatedrarseniccompoundswerefoundonlyin
euphoticzoneofmarineenvironment andplanktonic algaeweresuggestedtobethe most
importantproducersofthesecompounds(Andreae,1978,1979).Inaddition,reCentS
ShowedthatfreshwatergreenalgaeasweIlasmarineaIgaearehighlycapableofmethylating
arsenic andtheresultingDMA and MMA are containedinthosealgalcells(Andreae&
Klumpp,1979;Baker et al・,1983)・Planktonis generally recognized as animportant
sourceofsedimentaryorganicmatter(Jackson,1g75;rShiwatari,1g77).Itisthusli
thatthebiologicaldebrisrichinDMAandMMAsettleonthelakefloor,andthen upon
burial,DMAdecomposesto MMA andsubsequentlytolAswithincreasingdepth.The
吊−
differencein the decomposition rates of DMA and MMA(the rate:DMA>MMA)may
accountfortheconfigurationoftheprofiles,
ThejnfJowofagriculturalchemicalsmayl光anOtherconceivablesourceofmethylated−
arseniccompounds,lnordertopreventtt妃incidenceofsheathblightofrice,derivative
ofMMA,i.e.ironandcalciumsaltsofMMAandbis(dithiocabamate)methanearsinehave
beenoccasionally11Sedinthepaddyfieldsofthewatershedsince1957,thoughDMAwasnot
usedatall_ TheagT・iculturaluseofsucharsenicaIswasbegunatmost25yearsagobefore
samplingofthecores,andthisperiodcorrespotldstothesedimentdepthof3−3.5cmbecau
thesedimentationratesatthelakebottomnearsiteAarel,2−1.4mm/y(Kamiyama etal.
1982).However,theincreasedconcetltrationsofMMAaboveitsbaselevelsareextending
tothedeeperzone(ca.8cmdepth)ofthecoreandtheupper2cmsedimentswhichdeposited
within the recent ca,15years containless amounts of MMA compared to the deeper
sediments.Therefore,WeCOnCludedthattheinfluenceofagriculturalchemicalsisnegligible
inthiscase.
Althoughatthistimeitisdifficulttosaywhichoftheaboveprocesses,(1)and(2),
ispredomitlantinthislake,thehigherlevelsofDMAandMMAdetectedwithintheupper
lOcmsedimentmayplayasignificantroleindeterminingthet光haviorofarsenicinbottom
Water andsediment.
− 45
CIIAPTER VI
RedoxCycleofManganeseandIronandtheCirculation
OfPhosphorusina DredgedAreaoftheSouthern Lake
M.Kawashima,T.Hori,M.KoyamaandT.Takamatsu
ABSTRACT
TheverticaIdistributionoftemperature,disoIvedoxygen(DO),manga−
nese,iron,phosphorus,Silicate,ammOnium.nitrate,Sulfate and sulfide was
investlgatedin a dredged area of the eutrophic southernlake,Lake Biwa
(period:198lL1982)・Thereducingconditionsinthehypolimnionproceeded
With decreasein the relative electron activity(pe)are as fo】lows:(1)
COnSumptionofDO−reductionofhydrousMnoxide(accumu]atiorlOfammo−
nium),(2)reductionofnitrate,(3)reductionofhydrousFeoxide(re)easeof
phosphateandsilicate),and(4)productionofsulfide.
ImmediatelyabovethefrontofDO(i.e_thelewestepilimnion),Clearpeaks
OfparticulateMnand Fe,Whichwereseparatedeachother.wereobserved.
Thepersistenceofthesepeaksisattributedtotherotationofthe”manganous
Wheel’’andtt鳩t<ferrouswheelMbetweenthelowerepilimnionandhypolimnion.
The”manganouswheelりwithasmallradiusrotatedmorerapidlythanthe
<’ferrous wheel”with a big radius.The precipitation of Mnin thelower
epilimnionwasfoundtoresuItfromthemicrobialoxidationandadsorptionof
Mn2十ontohydrousMnoxide.
ThecircuIationofphosphoruscanbemainlyexplainedbycoupllngtOthe
redoxcycleofFe,buthydrousMnoxiderichinMn2+.Ca2十andMg2十appre・
CiablyinfIuencesthePcycleastheadsorbentofphosphate.
1.INTRODUCTION
OurpresentconcernisthecirculationmechanismsofelementsinLakeBiwa,eSPeCially
thosebetweenthesediment andbottomwatet・.
Recently,atthesouthernlakeofLakeBiwa,aSquarebottom(ca.500m2)wasdredge
toobtainearthandsandforbuildingaman−madeisland,reSultingintheappearenceofa
Squarewaterpillar(av.depth:Ca,10m,maX.depth:Ca.13m).Thisarea,inwhi
StratifiedI光dectlyfromJun.toearlySept.(Terashima&Ueda,1982);prOVidedasuitable
fieldforourstudy.
47−
ln this paper,Weinvestigate(1)the seasonalchangein co11Centrations of several
COmpOnentS(reducedsubstancesandnutrients)inthedredgedarea,(2)theredoxmecha−
nismsofMnandFedependingonDOlevelsandthemicrobialactivityinthewater,and(3)
thecirculationofPassociatedwithplanktonicactivityandtheredoxcycleofFeandMn,
2.MATERIALS ANDMETIiODS
さamplecoIJection:Fig・6・1showstheJocationofthedredgedarea・WatersampJes
WereCO11ectedatdepthsofevery2musingavanDornsampler(madeofPVC):Duringthe
Stratification periodin the summer of1982,Water Samples were collectedwithin50cm
intervals near the front of dissoIved oxygen(DO)(i.e.near the boundary between the
epilimnionandthehypolimnion)by pumpingupthe water,tO Observethedetail緑distrr
iblltionofelements・Analiquot(ca・11)ofthe sample wasfiltered(0.45FLm.Mi11ipore
HAWP)intoapolyethylenebottlecontaining8mlof12MtLICl,immediatelyafterco11ection_
Fig・6▲1MapofLakeBjwa,Showjngthe】oca南口of抽edredgedarea
t Analytica,1procedure:DOwasdeterminedbytheWinkler−aZidemethodandinsituwith
a DOmeter(TOA,ModeJIB).TheconcentrationsofthedissoJvedeJements weredeter−
minedfromanalysisofthefilteredsample.Theconcentrationsoftheparticulateelements
were given by differencesin concentrations of the dissoIved elements and totalconcen−
trationsobtainedfrom analysisoftheunfilteredsample.Solublephosphate(PO.−P)was
determined bythemolytxlateaSCOrbic acidmethodincludingsoIvent extraction ofa blue
colorcomplexwithiso−butanol(Murphy&Riley,1962)▲ TotalphosphoruS(T−P)was
48−
determinedinthesamewayasthatofPOrPafterdigestionofthesamplewithHNOsHユー
SO.−HF・Ferrousionwasdeterminedbytheferrozinemethod(Gibbs,1979)immediatel
aftercollectionofthesample・TotalFe(TFe)wasanalysedinthesamewayasthatof
Fe2’withtheacid(HNO3−H2SO.−HF)digestedsarnple・Manganese,Na,K,MgandCa
thefilteredsamplewereanalysedbyatomicabsorptionspectrophotometry.TotalMn(T
Mn)wasanalysedafterdigestionofthesamplewithHNO3HF.Sulfateandsilicatewere
determined by the turbidimetric method(APHA.1975)and molytxlenumblue method,
respectively,uSingthefilteredsample・Ammoniuminthefilteredsample(glass−fit把rfilter.
Whatmann GF/C)was determined by the thymolmethod(Koyama e[aL,,1976).Th
COnCentrationofnitratewasobtainedfromthedifferenceinconcentrationofnitritedeter.
minedbytheGriess−Romijnmethodandtotalconcentrationofnitrateandnitritedetermined
bythezincpowderreductionmethod(Nishimura&Matsunaga,1969).Fordetermination
Ofsulfide,methyleneblueproducedbythemethodofCline(1969)wasmeasuredcolorimetri−
Cally.
lonicconcentratioTtSOfthesample:Concentrationsofthemajorionsintheepilimnion
WerePraCticallyconstantthroughouttheyear,typicalvaluest光ing:(Na+)0.28mM,(K+)
0,04mM,(Mg2十)0.09mM,(Ca2+)0.23mM.(Cl ̄)0.25mM,(HCO, ̄)0.55mM,(SO−2 ̄)0.08mM.
andtheionicstrength(Ⅰ)1.4×10 ̄3.In the hypolimnion of the dredged area during the
stratificationperiodinsummer,thereleaseofcations(Fe2+,Mn2+,NH.+)fromthesediment
Withacommensurateincreaseincarbonateconcentrationandreductionofsulfatebrought
aboutachangeinionicconcentrations:(Fe2+)0.05mM,(Mn2+)0.05mM,(NIL+)0.09mM,
(HCOユ▲)098mM,(SO.2)0.01mM,and(1)1,7×10/3.
3,RESULTS ANDD【SCUSSION
Figs.6.2and6.3showtheisoplethsofthe water temperature and DO,reSpeCtiv
inthedredgedarea(period:Apr.1981LOct.1982).Thewaterinthisareastratifiedduring
Apr.rSept.The DOinthebottom watert妃gan tO decrease from early Apr.and anoxic
WaterapPearedinthehypolimnion(txllowca.8mdepth)duringJun.early Sept.Simil
findingshavebeenreportedbyTerashimaandUeda(1982).Thecompletedisappearenceof
DOin the hypolimnion may be promoted not only by abundant organic matters(e.g.
planktonicdebris,fecalmatters,etC.)intheeutrophicsouthernlakebutalsobytheh
Water temperature(max.220C)in this area.The bottom wateT Of the northernlake
(temperatureisapproximatelyconstantthroughouttheyear,Ca,70C)containsoxygeneven
attheendofthesummerstratification(lateNov.)althoughthestratificationI光riodofthe
一49−
northern1akeislongerthanthatofthisdredgedarea.
Fig・6・4showstheisoplethofT−Mn・TheMnconcentrationtx・gantOincreaseinthe
hypolimnionatalmostthesametimeasDObegantodecreaseandreachedmorethanlmg・
1 ̄1underanoxicconditions.T−Mnintheanoxichypolimnio11WaSidentifiedasdissoIved
Mn(DJMn,prObablyMn2+)filtrablebyO.45FLmMi11iporefilterandnoparticultateMn(fL
Mn)wasdetectedinthiswaterlayer(seeFigs.6.12atof).
Figs・6.5and6.6showtheisoplethsofammoTliumandnitrate,reSpeCtiveJy.Ammo・
nium,prObably produced by the decomposition of organic rrlatter,alsoincreased with
decreasingDOandthemaximumconcentrationjntheanoxicwaterreachedmore亡hanlmg・
1」.Contrarytothecaseofammonium,thenitrateconcentrationdecreasedunderanoxic
COnditjons.Thedecreaseinnitrateconcentration,Observedin[heupperepiJimnionandthe
lowerhypolimnion,mayreSult from assimi1ationby plankton and denitrification,reSPeC−
tiveIy.
Figs.6.7,6.8and6.9showtheisoplethsofT−Fe,mOnOmericsilicate(M−SiO2)
TrP,reSPeCtively.WherLDOwasconslmedcompletelyinthehypolimTlion,TrFe,M−SiO2
andT−Paccumulatedinthebottomwater.1tiswellknownthatFe2+isreleasedfromthe
Sedimenttothehypolimnionunderreducedconditionsasaresultofthereductionofhydrous
FeoxidetoFe2’.TheproductionofFe2+anditssubsequentreleasefromthesedimenttake
placelater thanthoseof Mn2+(Mortimer,1942),due tothelower redox potentialof the
Fe%十−Fe2’couplethanthatofMn4+rMn篭+(Stumm&Morgan,1970).Theconcentrationof
TpPincreasedinthe bottom water at almost the same time as the concentration of TrFe
begantoincreaseaJthoughphosphatesholユ】dbereleasedwhenammonjumisprodueedbythe
decompositionoforganicmatter.M−SiO2,apartOfwhichisprobablyproducedbydecom−
posjtior10f debrjs such as dia〔om,e【cリdjdJ10亡increasein corICentra亡ion untH[he T−Fe
concentrationkgantoincrease,SincephosphateandsilicateareoftenoccludedinTlatural
hydrousFeoxides,theymaybereJeasedintothehypolimnionwhenthehydro11SFeoxides
arereducedtoFe2+anddissoIvewhiledecreaslngtheredoxpotentialofthesedimentandthe
bottomwater(Kato,1969;Stumm&Morgan.1970)、
Figs.6.10and6.11show theisopleths of sulfate and sulfide,reSpeCtively・1n the
middleofJun.,thesulfateconcentrationtxgantodecreaseandtheproductionofsulfidew
detectedintheanoxicbottomwater.Thisshowsthatthesouthernlakecanbringabouta
highlyreducedconditionwheresulfatereductioncanoccur,ifthestagnationofwaterperSists
asinthecaseofthisdredgedarea.
BasedonFigs.6.2to6.11,ttlereductionprocessesapl妃artOprOCeedinthehypolim
ー50−
inthefollowingorder:(1)consumptionofDO−reductionofhydrousMnoxidetoMn2+
(accumulationofammoniun),(2)reductionofnitrateprobablythroughdenitrificatiotl,
(3)productionofFe2+byreductionofhydrousFeoxide(releaseofphosphateandsilicate),
and(4)reductionofsulfatetosulfide.Thisorderwasthesameasthatofthereactions
Whichoccuredinassociationwithadecrea?einrelativeelectronactivity(pe),aSrepOrted
byStummandMorgan(1970)・ThecomponentsproducedatahigherlevelofpE COuld
diffuseintoahigherandmoreaerobicwaterlayerthanthoseproducedatalowerlevelof
pe・AmmoniumandMn2+diffusedintothelowerepilimnionbeyondthefrontofDO.
W.T
lg81
1982
Fig,6.2Isoplethofwaterternperature,凸C
DO
lg81
1982
Fig,6.3lsoplethofdissolvdoxygen,%
−51−
Fig・6・4Isoplethoftotalmanganese.JLg・1−l
Fig・6・5Jsoplethofammoniumnitrogen,JLg・l−1
一52一
NO5−N
19も1
1982
A M JJA S O N D JF M A M JJ A S(〕
盲︶王dむ凸し¢︼ロ≧
Fig・6.6IsoplethofnitratenitrogenlFLg・11
Fig・6.7lsoplethoftota=ron,〟g・ILl
1 53−
Fig・6・81soplethofmonomericsilicate,mg・1−1
Figr6・91soplethoftota】phosphorus,JLg・11
ー54−
Fig.6.101soplethofsulfatesulfur.mg・1 ̄1
SuLfide−S
8
盲ニーd占﹂空盲≧
2
Fig・6.111soplethofsulfidesulfur,mg・1l
き、1Thettmang乱n叫SWheel”andt−ferr(l鴨Wheel”
ThetypicalverticaldistributionofMn(D−MnandP−Mn)andFe(DTFeandPFe)
duringtheI光riodofsumrnerstratificationi畠showninFig■6.12alongwiththeprofilesofDO・
DMndecreasedincorlCentrationrapidlyanddisappearedwithinawaterlayerofca・0・5m
immediatelyabovethefrontofDO.PLMnwasproducedwithasharpconcentrationpeak
inthethinwaterlayer(ca.1m)whereDMndisappeared.Thepersistenceofthis匹ak
impliesthattheapparentdynamicequilibriurnismaintainedbetweentheupwardfluxofD−
55一
50 100
〕00 200
(F亀M巾
く
8
⊂
\
DO i
__▲【づノ8ノ
Fig.6.12 VerticaldistributionofIX),dissolvedFeandMn(l:)−FeandI)一Mn),and
partjcu】ateFear】dMn(P−FeandPMr】)
Concentrationunit:(1XI)%,(ott、erS)〃g・11、 Samplingdate:(a,b=uly14,
1982,(c,d)Ju】y22,1982,〔e.f)Al】g.ユ1.Ⅰ982.
M11diffusingfromtheupperhypolimnionandthedownwardfluxofP−Mnsinkingfromthe
lower epiJlmnion(Spencer&Brewer,1g71).Both the oxidation of D−Mn(Mn2十)and
dissolutionofP−Mn(hydrousMnoxide)shouldoccurrapidlywithinathinwaterlayer(ca.
1minthickness)nearthefrontofDO.
ThedistributionofD.FedifferedfromthatofD−Mn:theconcentrationgradientofD−
FewasalwaysgreaterthanthatofD−Mnthroughoutthestratificationperiodinthewater
layerofca・20r3mdirectlyabovethebottom(seeFigs,6,12aandc).PFealsoforTneda
sharppeaknear[hefrontofDO,butthepeakpositionofPrFewasJocatedinadee一光rWater
layerthanthatofPMn.Thispeakseparationshouldresultfromfractionalprecipitation
inthecourseoftheoxidationofMn2+andFe2+.TheredoxpotentialofMn一しMn2+couple
ishigherthanthatofFe3LFe2+,Therefore,WhentheparticuZa[eforms(hydrousMnoxid
andhydr.ousFeoxide)weresinkingintotheanoxichypolimnionthroughthefrontofDO,
hydrous Mn oxide was reduced anddissoIved more rapidly thanhydrous Fe oxide・ln
addjtjon,Mn2+carldiffuseinthemoreupperJayeroEthewaterthanFe2+beEoreoxidatjon
(Krauskopf,1957)_
TheredoxcyclesofMnandFe.observedinthewatercolumnofthedredgedarea.have
txetlreferredtoasthet’manganouswheel”(Mayer et al.,1982)andthettferrouswheel”
ー56−
(Campbell&Torgersen,1980),reSPeCtively.SincethepeakofP−Fewassomewhatbro
thanthatofP−MnandtheredoxpotentialofFelowerthanthatofMn,the ttmanganous
Wheel”appearedtorotatemorerapidlywithasmallradiuscomparedtothettferTOuSWheel”
With a big radius.These two ttwheels”may also have the effect of enhancing water
respiratorymetabolisminthedredgedarea(Mayereial.,1982).
PrFeincreasedagaininconcentrationlxIowalOmdepth(Figs.6.12bandd).Assulf
wasproducedintheanoxicbottomwaterbelowca.10mdepth(seeFig.6.11),theP−Few
presumedtoconsistofinsolubleferroussulfide.Theexistenceofsulfidewassupportedby
thefactthattheblackprecipitateonthefilter(OA5JLm),COllectedfromthebottomwaterjust
after sampling,turned brown upon exposure to air.The molar ratios of S/Fein these
precipitatesrangedfromO,7tol.00nJuly.14andfroml.2tol.60nJuly,22.Thatthe
ratiosaTeapprOXimatelyunitysupportstheexistenceofFeSbuttheexcesssulfurmaybe
duetothepresenceofco1loidaIsulfurproducedbyoxidationofsulfidenearthefrontofIX).
Theionicactivityproducts(1AP)werecalculatedfromtheconcentrationdataobtained
inthehypolimniorl(pH:6.8)onJuly,14andJuly,22.Theconcentrationofthedisso
totalsulfidewasapproximatedasthedifferencebetweentheconcentrationsoftotalsulfide
andP−Fe,.Sinceanyothersulfide,OtherthanFeS,SCarCeIycontributedtotheconcen
oftheparticulatesulfide(thetotalconcentrationofCu,Pb,HgandZnwerelowerthan3×
10,8M,2×10 ̄8M,lx101OMand8xlOLBM,reSPeCtively;Cf,theconcentrationorderoffしFe:
106M).Theequilibriurnconcentrationof S2wascalculatedusingthe acid dissociation
constantsof H2S.Beforecalculating,thepKvaluesof H2S(pKl=7,22andpK2=14.
I=0;Smith&Martell,1976)were corrected for theionic strerlgth of the actualwater
sarnple(Ⅰ=1,7×10 ̄3),uSingtheGtintelbergequation(Stumm&Morgan,1970)andthe
vaIuesofpK】=7.ZOandpK2=14.28werethusobtained.Theactivitycoefficientsuse
IAPcalculationswereobtainedbytheextended DebyeHtlCkelequationatI=1.7×10 ̄3.
Consequently,thelAPvaluefor FeS,i,e,(activityofD−Fe)×(activityofS2),Were
calculatedtobeca.10.17・6andfoundconsistentwiththoseforpyrrhotite(10.18・9),freshly
precipitatedFeS(10「16・郎−1017・06)andmackinawite(10 ̄17・6)(Berner,1967),Thevaluealso
agreedwithlO.161し10.1705,meaSureddirectlyinthelakewater(Davison&Heaney,
andlOL17・7forthepondsedimentincIudingmackinawite(Doyle,1968).
TheIAPof6×10−18,CaIculatedforMnS,WaSmuChlowerthantheKs。OfMnS(3,16×
10Lll,at250C,Ⅰ=0)(Smith&Martell,1976)andsuggestedtheabsenceoftheprecipitate
OfMnSinthehypolimnion,
TheIAP va】ue between Fe2+and CO,2 ̄was calculated so as to determine whether
一57−
Sideritewasproducedinthehypolimnion・Thecalculationwasdoneusingthemaximum
ValueoftheD−Fe(5・4×10▲SM)andalkaJinjty(0,9meq・1 ̄l)duTiTlgthestratifjcationperiod
Thevalueobtained,9・9×1012,WaSSma11erthantherangeofKspvalues,2.2×甘11−1×10rlO
(Mayeretal・,1982),andthustheformationofFeCO,didnotappeartoocccurinthisar
TheabsenceofMnCO,preCipitation(rhodochrosite),aSevidentfromtheabsenceofthe
Mninthelowerhypolimnion(seeFigs▲6.12b,dandf),alsoindicatedFeCO3nOttOt光
producedsincethecarbonateshadalmostthesamevaluesof KspL Manyauthorshave
reportedthatthesolubilitiesofFe云ndMnmaytx:regulatedbycarbonateformationjn
anoxichypolimnions(Delfino&Lee,1968;Hoffmann&Eisenreich,1981;Verdouw&
Dekkers,1980;Mayeretal.,1982).Althoughthehypolimnionofthisareaisnotsatur
withrespecttoFeCO3andMnCO3atpreSent,theincreaseofalkalirlityandtheconcentrati
OfFe2+andMn2+alongwiththeprogressofeutrophicationmayprovideformationofthese
carbonates.
3.2 Circulationmechani8mOfphosphortLS
ItisweJlknownthatphosphateaccumulatesintheanoxichypolimnion(seeFigs,6.9.
13aandc)accordingtothefollowingmechanisms‥(1)decompositionofbiologicaldebris,
and(2)reductionofhydrousFeoxideincludingphosphate(Stumm&Morgan,1970),Th
Verticald;stributionofP(Fig・6.13)suggestedthereJeaseoEphosphatefromthesediment
SurfaceaswellasinthedissolutionprocessofPFerichinphosphate・TheprofilesofD−Fe
andPO一PinthelowerhypolimnionandthepeakprofilesofPLFeandparticulateP(P−P)
nearthetror)tOfDOwerequitesimi1artoeachotheT,reS匹CtiveJy■ Thescavengingprocess
OfphosphatebyhydrousFeoxideiswellrecognized(Mayeretal.,1982;Tessenow,1974
thatis,phosphateprecipitatesintheforrnofpartiallyhydrolyzedferricphosphateuntilthe
phosphatecor)teT)tisexhausted,andsubsequent】yhydrousFeoxideprecjpitates.Theretore,
thisprocessshouldberesponsibleforthecoincidentdistributionofPandFeinthedredged
area・ThepeaksofP−P(seeFigs.6.13bandd)weresomewhatbroad,relativetothoseo
theP−FeandtheyspreadovertheformationregionoffしMn一 Asdescrjtx)dir)Chap
hydrousMnoxidewhichadsort光dlargeamountsofdivalentcationscanadsorbphosphate・
Ca2+(0.23mM)andMg2+(0.09mM)arethemajorcationsinthewaterofLake Biwa and
Mn2+diffuses continuouslyinto thelower epilimnion from the anoxic bottom water.
Therefore,inthewaterlayernearthefrontofDO,hydrousMnoxide.richinCa2+,Mg2+
MnZ+,isproducedandshouldactasaneffectivescavengerforphosphate.Thismechanism
maycontributetobroadeningthepeakofPP.
、 58−
ム
8
盲〓l詠D﹂α−p≦
12
0
Fig・6・13 Vertica】distributionofDO,phosphatephosphoruS(PO.一P),andparticu−
】atephosphoruS(PLP)
Concentrationunit:(IX))%,(POrPandP−P)FLg・J ̄l.Samplirtgdate:(a.b)
July14,1982,(c,d)July22,1982,(e,f)Aug.11,1982.
HighconcentrationsofP−Paround4mdepthappearedrelatedtotheactivityofphyto・
planktonlSincethesedistributionsofP−Pwereinagreementwiththoseofchlorophyu−a,
thoughthedataonchlorophylトaarenotshownhere.PhosphateandorganicPproducedby
decompositionofplanktonicremainsintheupperepilimnionprobablydiffusedownwardinto
thewaterlayerswhereP−MnandPFeareproduced.andthismaytx:anOtherreasonwhy
thepeaksofPPwerebroad.
TheresultsofAug.11,1982(Figs.6.12e,fand6.13e,f)wereobtainedafterth
DOsuddenlywentdownfrornca−an8rntoll.5mdepthbyatyphoonwithheavyrain(see
Fig・6.3)・ComparedwiththedistributionshowninFigs.6,12a,Cand6.13a,C,th
trationsofD.FeandPO一−Pdecreasedinthehypolimnion,WhilealargeportionofDLMn
remained■ ThesuddensupplyofIX)totheanoxichypolimnionbroughtaboutthesedimen−
tationofferricphosphateandhydrousFeoxide,andthustheclearpeaksofPFeandPP
disappearednearthefrontofDO・SincethereductionofhydrousMnoxidetoMn2+was
easyandrapid,the’tmanganouswheel‖wasstilloperatingascanl麗SeenfromtheperSistent
PeakofP−MnaroundlOmdepth.
−59−
3.3 0Ⅹidation mel:hami8m80f Mれ2+amd Fe2+
TomaintainthepeaksofP−MnandPFenearthefrontofDO,therapidoxidationof
Mn2+andFe2+isnecessary.TherapidoxidationofFe2+proceedschemicallyinapHrange
fromneutraltoalka】ineunderaerobicconditions,andthekineticsofthisreactionarefirst−
Orderwith respect to the concentrations of Fe2+and DO and secondporder for OH ̄
(Stumm&Lee,1961).Therefore,inthelowerepilimnionofthedredgedarea(pH:Ca.
Slightlyaerobic),thechemicaloxidationofFe2+toFe3+shouldtakeplacerapidly.This
reactionmaybeacceleratedbythepresenceofphosphatediffuslngfromthehypolimnion,aS
pointedoutbyStummandMorgan(1970).
TheoxidationofMn2十occursonlyinapHrangeofhigherthan8,5(Po,=0,2atm)and
isautocatalyticwithrespecttothehydrousMnoxidegenerated(Stumm&Morgan.1970;
Pankow&Morgan,1981).Since the pH of the hypolimnion waterislow and constant
throughout the year(ca.6.8),the above a11tO−0Ⅹidation mechanism of Mn2+in alkaline
Solutioncannotberesponsibleforthiscase.ThePpMnshouldbeproducedbyanotherrapid
OXidationmechanismsuchasamicrobialorinorganiccatalyticreaction.
TheoxidationmechanismsofMn2+havet光enStudiedinvariousnatura】environments,
e.g.soils(vanVeen,1973;Uren&Leeper,1978;Douka,1980),marinewaters(Ar
Ehrlich,1979;Nealson&Ford,1980),tilelines(Meeketa/,,1973),COldsprings(Mustoe,
1981),andinlets(EmersoneIal.,1982).1twasfoundthatmicroorganismscanoxidizeMn2+
tohydrousMnoxidesaerobicallyevenat apH of68andthisoxidationproceedsmore
rapidlythananynonbiologicalreaction.
Figure6.14(curvesAlA3)showsthechangeofDMn(Mn2+)concentrationswhenthe
unfilteredwatersobtainedfromtheanoxichypolimnionwereaerated.Mn2+decreasedat
thernostrapidrateinthesamplefromthewaterlayernearthefrontofDO(curveAl).
However,prOductionofPMncouldnott光detectedwhenthewatersamplewasfiltered
(0.45FLm,Millipore)immediatelyafterco11ection(curveB)andNa2SO−OrNaCIwasadded
totheunfilteredsample(curveC).Theadditionofchloroformortoluene(finalconcen−
tration:0.5%v/v)alsopreventedMn2+fromt光ingoxidized,aSShowninFig.6.15(curveC).
TheseresultsindicatethattheoxidationofMn2+wasinhibitedbythesteriIizationofwater
orremovalofparticulatematter.Therefore,theprecipitationreactionofMninthewater
samplesshouldt光1inkedtomicrobialoxidationandadsorptionofMn2+ontothehydrousMn
oxidegenerated・SincetheoxidationofMn2’occurredeveninwatercontainingchloroform
or toIuene on raising the pflofthe waterLligher[han g,[he ca亡alytic activLty ofmicro−
organismsseemedunnecessaryfortheoxidationofMn2+atthispH・
60−
50
−1(〕O
Time(h)
Fig.6.14 AeTationexpeTimenttoestimatetheoxidationratesofMn2十
Watersamp】es=anOXichypolimneticwaters,(pH)6.8−7.2,(Temp)25PC,(sam
plingdate)June12,1981.(A)OxidationofMn2+intheutlfilteredsamples;
(Al)[Mn(ⅠⅠ)]0=102FLg・11,takenfrom10mdepth;(A2)[Mn(ⅠⅠ)]。=270fLg・
1 ̄1,takenfrom12mdepth;(A3)[Mn(II)]。=750F,g・1 ̄L,takenfrom13mdepth.
(B)OxidationofMn2+inthefilteredsarnple.(C)OxidationofMn2十inthe
unfilteredsamplewithO.1MNa2SO−OrO.1M NaCl.
妄巳三三︵巳三言
3
0
(0
20
て
■
80
Time(h)
Fig.6.15 AerationexperimenttoestimatetheoxidationratesofMn2+andFe2十
Watersamples:anOXichypoIimnetic(12mdepth)water,(T)H)6.8L7.0.(Temp)
25口C,(sampIingdate)Aug.20,1982.[Mn(ⅠⅠ)]。=3.04mg・1Ll.[Fe(Il)]。=2.19
mg・r).(A)OxidationofFe2+withorwithoutchloroformandtoluene.(B)
OxidationofMn2’withoutchloT・oformandtoluene.(C)OxidationofMn2+with
chlorofom ortoluene.
一61−
TheoxidationofFe2+didnotnecessitatethecatalyticactivityofmicroorganismsand
Otherparticulatematter,aSShowninFig.6,15(curveA).OnthecurvesBandCinFig.6
14andCinFig.6.15,PrMnisnotdetectedinthesamplesinspiteoftheformationofP−Fe
(hydrousFeoxide),WhichdemonstratesthathydrousFeoxidedoesnoto匹rateeitherasa
Catalyzerforoxidationoradsort光ntOfMn2+underthegivenconditions,Thenoninter−
actjon t光tWeen hydrous Fe oxide and Mn2十at pH6.8appeared to t光the major factor
bringingabouttheclearseparationofthepeakofPrMnfromthatofPFenearthefrontof
DOduringthestratificationperiodinsummer(seeFigs.6.12bandd),
−62−
CHAITRRⅥⅠ,−Note−
ManganeseConcentrationintheSediTttent
asanIndicatorofWaterDepth,
−Paleo−WaterDepth血ringtheLastFewMillionYears−
T.Takamatsu,M.KawadlimaandM.Koyama
ABSTRACT
GoodquadraticcorrelationswereobservedbetweenMn(orAs)concenr
trationsintheshortcoresandwaterdepthatsitesatwhichthesecoreswere
Sampled.ByapplyingthesereIationstotheconcentrationsofelementsinthe
threelong(200,1000,and1400m)coresdrilledbyHorieetalリthepaleo−Water
depthduringthelastca.2mi11ionyearsatthedrillingsitescouldbeestimated.
TheresultsindicatethatthelakebottomnearsiteEhasremainedunderwater
depthconditiDnS(ca.60m)similartothoseofthepresentforthelastca.0.4
m.y.Fromca.2toO,4m.y.agotheareahadfrequentlybeenshallow・The
lOOOmcbretakenatthemouthofYasuRiverwasfoundtoconsistprlmarilyof
littoraIsediments.
Threelong boring cores(200,1000.and1400mlength)were taken by Horie et aL.
(Yokoyama&Horie,1974;Yokoyamaetal.,1976)toinvestigateenvironmentalchang
inLakeBiwaduringthepastfewmi11ionyearsnotonlyoutoflocalinterestbutfromaglobal
viewpointaswell.The200mand1400mcoresweredrilledatthe匹IaglCpartOfthelake
(nearsiteE,SeeFig.1,linChap.I)in1971and1982,reSpeCtively,andthelOOOmf:
themouthofYasuRiverin1976.FTOmanalysisofthecores,neWinformationrelatingto
manybranchesofseienceincludinggeology,biology,limnology,geOChemistry,geOph
and meteorology wasobtained.Theinformation on waterdepthhas beenof particular
interesttogeologists.Althoughparticlesizedistributiotlinthecoresshouldbeveryuseful
forestimatlnghistoricalchangeinwaterdepth,anOtherpromisingmethodbasedontheMn
(orAs)rwaterdepthcorrelationisproposedhere.
Fjg.7.1showstheconcentrationsofMnandAsinthelowerlayers(1x)lowlOcmdeptl一)
oftheshortcoresfromthenorthernlakeasafunctionofwaterdepthatthesamplingsites.
−63−
Theconcentrationoftheseelementsincreasedremarkablywithincreasingdepth.Below
lOcm from the bottom surface,the sediment appeared toIx・unCOntaminated and any
extensivechangeinelementalcompositionbyearlydiagenesisto have alreadybeencomr
pleted▲ Therefore,the concentrations of Mn andAsintheselayers should t光1ixed to
preserveinmuchdeeperzonesofthesediment,
Fig_7.1Relationshipbetweenmanganese(A)orarsenic(B)concentrationinthe
lowerlayers(belowlOcmdepth)oftheshortcoresandwaterdepthatsites
wllerethecoresweresampled
ThedataindicatedbyopencircleswereexcludedforcomptltationoftheregresL
Sion印uations.
Datapointswerefittedtoquadraticpolynominalfunctionswithgoodcorrelationcoef・
ficieIltSOfO.975for MnandO,937forAsasfoIIows:
WD=−1476.6X㌫n+915.2ⅩM。4臥7
WD=−0.045Xまs+4.710XAs18.501
WDisrelatedtowaterdepth(meter).XMntOtheconcentrationofMn(%),andXAStO
theconcentrationofAs(mg・kgLl),
【nthecaseofMn,deviationsindatapointsfromthecalculatedcurvearewithinseveral
perce血InmOStCaSeSandthewaterdepthofsamplingsitecanbeestimated(romtheabove
c。rrelationwithinastandarddeviationof6.03m.TheAs−Waterdepthcorrelationisalso
seenbutdeviationsindatapointsfromthecalculatedcurvebecomemuchlargerthaninthe
caseofMn(standarddeviation:9.64m).
−64−
Itshouldtx:pOintedoutthattheserelationsofMnandAswithwaterdepthareonly
empiricalor phenomenologicalonesderivedfrom chemicalcompositioTISOf a recent era
(backtoca.300B.P.)whenthelakeenvironmentshouldhave一光enthesameasthatofth
presentin ageologicalsense.There must beseveralimportant factors whichinfluence
directlyorindirectlytheconcentrationsofMnandAsinthesedimentand,inmostcase,ar
not understood.
The possible factors are asfollows:(1)size of watershed,(2)1akesizein area,
volume and water depth,(3)soiland rock composition of the watershed,(4)mean
residencetimeoflakewater,(5)biologicalactivityaroundandwithinthelake,(6)sudden
heavydepositionofvoIcanicashorclaymineralsbyviolentflood,bothofwhichshutdown
theinteractionbetweenthelakewateTandsedimentatthetx)ttOrnSurface,(7)masswater
flowinsedimentlayers,i.e.springwellingupfromthelakebottom,and(8)changein
oflake bottom water.
Someofthesefactorsmayhavechangedconsiderablyduringthepastca.2m.y,,andth
consequentchangeofMn(orAs)Waterdepthcorrelationisalsolikely.Therefore,itis
anxiouspoi11tin our approachthat therecent relations of Mn(orAs)LWater depth,i.e.
equations(1)and(2),Canapp】ytowhatdepthofthecores.
Afterthelongcoreshadkendividedintosublayersofrough1yequallength,thesediments
collectedfromeverylayerweresubjectedtoelementalanalysisbyXrayfluorescenceand
neutronactivation(Koyamaetal.,1977a,1977b;TakamatsueLal.,1979b)▲
Table7.lshowstheconcentrationsofMnandAsrecordedinthelorlgCOreSalongwith
Table7.1ConcentrationsofMnandAsinthelongcoresandwater
depthcalculatedaccordingtoequations(1)and(2)
200 m
lODO m
Concentration(m
numberofsubsamples
range
aVerage
CV(%)
-As
158
275
141
38
137
37
720−4360 2494343 21ト3590(1136−2685) 2.2−27.9(13.727,9)
1143 (1765)
12,4 (22.3)
16与3
651
60.5 (23.5)
57,4 (15.2)
32.2
71.8
yat即dep血(m)
range
9.5−92,7
aVerage
58.1
CV(%)
28.5
0−93.1
0−90.6(36.2−90.6)
D−77.9(37.6−77.9)
1,4
29.6 (64.3)
122.8 (23.郎
30.8 (63.5)
79.0 (14.8)
1761
Parenthesesshowthevaluesfortheupper200mof1400mcore.
−65一
thewaterdepthcalculatedfromequations(1)and(2).Therelativefrequencies(RF)of
thecalcu】atdwa亡erdeptわjnthecoresarea】sogjvenjれFig.7.2.
0
Reb仙e f忙ql鰐nCy.%
20
40
60
Fig.7.2 Histogramofthecalculatedwaterdepthinthelongcores
(A)200mcore,(B)1000mcore,(Cl)thewho]eof1400mcore,(C2)theupper
200mpartof1400mcore,
−66一
AlthoughtheMnconcentrationsanalysedinthe200mcorerangedfrom720to4360mg・
kgLIwithanaverageconcentrationof1653mg・kg.1,mOSt(ca・75%)oftheMnconcentrations
werewithin1200−2000mg・kg1,COrreSpOndingtoawaterdepthof40−75m,ThepaleoWate
depthatthecoresitehadusuallytxenabout60m,eXCeptOnSeVeraloccasions(RF<2%)
ofawaterdepthoflessthan15m.
Thedrillingsiteofthe1400mcorewasnearthatofthe200mcore.However,theMn
concentrationinthe1400mcorewerelowerthanthoseinthe200mcore.Thisisaresultof
thehighRF(ca.40%)oflowMnconcentrationsCOrreSpOndingtoawaterdepthoflessthan
15m.Thisis particularly the case at a core depthlxLIow200m.Althoughthe samples
analysedwerelimitedtoasmallnumtxr,intheupper200mofthe1400mcore,Waterdepths
CalculatedfromtheMnandAsconcentrationswereessentiallythesameasthoseinthe200m
COre.
Basedonagedeterrnination(Yokoyama et al.,1982),thelakebottomnearsiteE
apparentlyremainedunderwaterdepthconditionssimilartothoseofthepresentforthelast
Ca.0.4m_y.althoughtheareahadfrequentlytxensha1lowfromca.2toO,4m,y.agO.
The Mnconcentrationsinthe1000mcoreweregenera11ylessthan500mg・kg.1and a
Waterdepthsha1lowerthan15mfoundinRfofca.80%,implyingthecoretoconsistprimari
Oflittoralsediments.Inthiscore,therewereseveralsamplescontainingveryhighconcen−
trationsofMn.Onesampleconsistedmainlyof organicsubstancesandseveralothersof
fineclay.Evidencefromotherfieldsinregardtoparticlesizeanalysis,Organiccompou
etc.wil=光rleededtodeterminewhetherthesehighconcentrationsofMnarereallydueto
thewaterdepthwhenthesedimentsaredeposited.However,thesedifferentcorescertai
provideabasisforapplyingtheMn(orAs)−Waterdepthrelationtotheanalysisofthepast
historyoflakesedimentsingeneral.
ー67一
Cf王APTERⅧ,−Ⅳote−
TheTotalAmounts of Mn andAs Accumulated
in the Sediment Surface
T.Takamatsu,M.KawashimaandM,Koyama
ABSTRACT
The totalamounts of Mn and As accumulatedin the surface of thelake
floor were calculated from the differences ofthe elementalconcentrationsin
theupper(0−2cm)andloweil左yersofthecores(tx}low10cmdepth).The
amountswerefoundtobe4350and73metrictonsforMnandAs,reSPeCtively.
ThesurfaceoxidizedsedimentofLakeBiwaaccumulateslargeamountsofMnandAs
intheformofMnoxideandbytheadsorptionofMnandAstoMnoxideasdescritx:din
Chaps.IandII.Sincethebottomwatercontainsca.4mg・lLlofdissoIvedoxygenevenat
theendofthesummerstratification(Naka,1973;Kawashimaetal.,1978),athinoxid
layercoversnearJytheentiretx)ttOmSurfaceandcon亡ribu[es亡OefficientZyaccumuZa亡ingMn
andAs.1ftheconcentrationofdissoIvedoxygeninthebottomwaterundergoesacontinued
reductionduetopo11utionandeutrophication,aSpOintedoutbyNaka(1973),theoxidized
layer at a water depth below the thermocline(ca.20m depth)may possibly disappear,
CauSingthereleaseofMTlandAsintothelake.
AssumingaverageconcentrationsofMnandAsinthenorthernlakecores(seeTablel.
1inChap.Ⅰ)tobeapproximatelythoseinthesedimentfromawaterdepthbelow20m,the
excessconcentrationsofMnandAsaccumulatedintheupper2cmlayerofthesedimentcan
beestimatedbythedifferencesintheconcentrationsintheupI光r2cmlayer(Mn:3760,As:
55mg・kg1)andinthelowerlayer(Mn:1860,As:23mg・kg ̄1)tobe1900and32mg・kg1,
respectively.Ifweassumethewatercontentofthesedimenttot光78%andthedensityof
drysediment2,62g・Cm,3(Yamamoto,privatecommunication)intheupper2cmlayer,t
excessofMnandAsshouldamountto4350and73metrictonsrespeCtivelyinthelakefloor
utlder the thermocline(ca、458km2)、The volume of waterin Lake Biwais27.6km3
Therefore,ifalltheexcessMnandAsweretotx)dissoIvedandmixedperfectlyinthelake
−69−
Water.additionalcoTICentrationswouldtxapproximately160FLg・1LlforMnand2,7JLg・1 ̄1for
As.
Althoughsuchasituationisunlikely,thesecorlCentrations,eSPeCia11ythatofMn,Should
begivendueconsiderationinviewoftherecommendedvaluesforMnandAs(50JLg・1 ̄l)in
dri−1kingwater(FWPCA,1968).
−70−
REFERENCES
AmericanPublic HealthAssociation(1975):StandardMethodsfortheExaminationofWaterand
Wastewater,1JIthed.
Anderson,M,A,,T.R.Holm,D,G.1versonandR.R.Stanforth(1978):Project
Environ・Res・Lab・Athens,Georgi争・
Andreae,M.0.(1978):Deep−SeaRes,,25,391−402.
Andreae,M.0_(1979):Limnol.Oceanogr.,24.440−452.
Andreae,M.0_andD,Klumpp(1979):Environ.Sci.Technol..13,738−741.
Arcuri.E.).andH.L,Ehrlich(1979):Appl.Environ.Microbiol..37,916923.
Baker,M_D.,P,T.S,Wong.Y.K,Chau,C.1.MayfieldandW.E.lnniss(1983):Can・J.F
Sci_、4012541257.
Berner,R.A_(1967):Am.).Sci,,265,773−785.
Braman,R_S.andC.C.Foreback(1973):Science,182,1247.
Campt光I),P,andT.Torgersen(1980):Can.J.Fish,Aquat.Sci.,37,13031313.
Carignan,R.andR.),Flett(1981):Limnol.Oceanogr.,26,361−366,
Challenger,F.(1945):Chem.Rev.,36,315361.
Cline,).D.(1969)ニLimnol.OceanogT,,14,454−458.
Coggins.A.J..K.D,TuckwellandR,E,Byrne(1979):Environ.Sci.Technol.,13,128l−
Cox,D.P.andM.Alexander(1973):Appl,Microbiol_,25,408−413.
Cranwell,P.A.(1976):EnvironmentalBiogeochemistry(J.0.Nriagued,),AnnArborScienc
88.
CTeCelius,E.A.(1975)二Limnol.Oceal10gr,,加,441−451.
Cronan,D.S.and R.LThomas(1972)ニGeol.Soc.Am.Bull.,83.14931502,
Cu]]en,W.R.,C.L.Froese,A.Lui,B,C.McBride,D,],Patmore and M.R
Organomet.Chem.,139,6ト69.
Cullen,W.R..B.C.McBrideandA二W,Pickett(1979):Can.).Microbiolリ25,120ト1205.
Davison,W.andS▲l・Heaney(1978):Limno].Oceanogr.,23.11鋸卜1200.
Dean,W.E.andS・K.Ghosh(1978):J.Res,U.S.Geo].Survey,6,231240,
Dean,W.E.andP,E.Greeson(1979):Arch.Hydrobiol.、86,181−192.
Delfino.J.J.andG.F.Lee(1968):Environ.Sci.Technol.,2,1094−1100,
Ikuel,L.E.andA.R.Swoboda(1972):SoilSci.Soc,Am.Proc.,36,276−278.
一71
Douka,E.(1980):Appl,Environ.Microbiol.,39,7480.
Doyle,R.W.(1968):Am.J.Sci.,266,980994,
Edgington,D.N.andE.Callender(1970):EarthPlanet:Sci.Lett,,8,97−100.
Emerson,S.,S,Kalhorn,L.Jacobs,B,M.Tebo,K.Il.NealsonandR.A,Rosson(
Cosmochim.Acta,46.1073、1079.
Farmer,J.G.andJ.D.Cross(1979):Radiochem.Radioanal.Lett.,39,429−440.
F】orence,T.M:・(1977):WaterRes.,11,68ト687.
F6rstrler,U.(1983):MetalPollutionin the Aquatic Environment.(U,F6rstnerand G.TL W・
Wittmanned.),Springer−Verlag,250258_
FWPCA(1968):Report of the Committee on Water Quality Criteria,Govt.Print.Office,
Washington,234.
Hem.J.D,(1972):Geol.Soc.Am.Bull.,140,17−24.
Gibbs.M.M,(1979):WaterRes.,13,295297.
Hoffmann,M.R.andS.].Eisenreich(1981)ニEnviron.Sci.Technol.,15,339−344,
Ishiwatari.R.(1973):Chem.Geol,,12,113p126.
1shiwatari,R.(1977):Proc.JapanAcad.,53,47p50.
1verson,D,G.,M.A.Angerson.T.R.HolmandR.R.Stanforth(1979):Environ.Sci.Techno
1491Ⅰ494.
Jackson,T.A,(1975):SoilSci,,119,5665,
Kakihana,H,(1970)二lonKokanZyushi.(M.Honda,H・KakihanaandY・Yoshinoed.)∴Hirokawa
12−16.
Kamiyama,K.,S.OkudaandM.Koyama(1982):Jap.}.Limnol.,43,3538.
Kanamori,S.(1965):].EarthSci.,Nagoya Univ.,13,46p57.
Kato,K.(1969):Geochem.J.,3,87r97.
Kawashima,M.,T.Nakagawa,M.Nakajima,A.Shiota.T.Taniguchi,0.Itasaka,
Matsushita,M.KoyamaandT.■Hori(1978):Mem.Fac.Edu,,ShigaUniv..28,13−29・
Kemp,A.LW.andL.M.Johnston(1979):J.GreatLakesRes.,5,110,
Kemp,A.L.W.,R.L.Thomas,C.Ⅰ.DellandJ,M.Jaquet(1976):).Fish,Res・BoardCan,
462.
Kinniburgh.D,G.,M.L・JacksonandJ▲K・Syers(1976)=SoilSci・Soc,Am.J・,40.796799・
Kobayashi,J.,F,Morii,S−Muramoto,S・Nakashima,H・TeraokaandS・Horie(1976)ニBer・Oh
lnst.Landw.Biol.,OkayamaUniv.,16.147163・
Koyama,M.,T.HoriandY・Kitayama(1976):IARCReports,2,1114・
Koyama,M,andR.Matsushita(1980):Bull・1nst・Chem=Res・,KyotoUnivリ58,235−243・
ー72一
Koyama.M,,R∴Matsushita.M.KawashimaandT.Takamatsu(1977a):Paleolimnolo
BiwaandtheJapanesePleistocene(S.Horieed.).Vol.5,174180L
Koyama,M,,R.Matsushita,M.Kawashima,T.Takamatsu,K.Okamoto,K.Fuwa,S
andT,Fujinaga(1977b):PaIeolimnologyofLakeBiwa andtheJapanesePleistocene(S.
Horieed,).Vol.4,276−296.
Krauskopf,K.B.(1957):Geochim・Cosmochim.Acta,12,61−84▲
Kurata,A.(1978):Biwako to sono Shusuiikino Kankyo Dotai・’1Kankyo Kagaku’’Kenkyu
Hokokushu,B2R121,5467.
Kurata,A.(1982):SuionnoKenkyu,26,19−28,
Lund,J.W.G,(1957):Proc.Linn.Soc.London,167,165r171.
Maher,W.A,(1981):Anal.Chim.Acta,126,157−165.
Martin,J.M,,0.HogdahlandJ.C_Philippot(1976):].Geophys・Res,,81,3119−3124▲
Matsumoto,E.(1975):J.Geo].Soc.Japan,81,301−306.
Mayer,L.M.,F.P.LiottaandS.A.Norton(1982):WaterRes・,16,11891196.
McBride,B.C.andR.S.Wolfe(1971):Biochemistry,10.4312−4317,
McKenzie,R.M.(1979):Geochim,Cosmochim.Acta,43.1855L1857,
McKenzie,R,M.(1981):Aust.J.Soi)Res.,19,41−50.
Meek,B.D.,A.L.PageandJ.P.Martin(1973):SoilSci.Soc.Am,Proc.,37,
Moore,W,S,,W,E.Dean.S.KrishnawamiandD,Ⅴ.Borole(19SO):EarthPlanet.Sci.Lett.
200.
Morgan,].J,andW.Stumm(1964):J.ColloidInterfaceSci.,19,347−359・
Mortimer.C,H,(1941):J.Ecol.,29,Z80329.
Murphy,J.andJ.P.Riley(1962):Anal_Chim.Acta,27,3136.
Murray,].W.(1974):J.ColloidInterfaceSci.,46,357371・
Murray,].W.(1975a):GeochimLCosmochim.Acta,39,505519・
Murray.J.W.(1975b):Geochim・Cosmochim・Acta,39,635647・
Mustoe,G.E.(1981):Geol.Soc,Am.Bull.,PaTtI,92,147153.
Naka,K.(1973)こJap.,.Limnol.,34,41−43.
Nakashima,S.andF.Morii(1982):NogakuKenkyu,59.189−201・
NaruSe,Y.,R.Ando,F.TsuchiyamaandH.Sugiyama(1979):Bu11.Jpn.Soc,Sci.FishL.45
Neal,C,,H.Elderfieldand R.Chester(1979):Mar.Chem,,7,207219.
Nealson,K.H.andJ.Ford(1980):Geomicrobiol,)..2,2137.
Nishimura,M.andKMatsunaga(1969)こBunsekiKagaku,18、154−158・
Nissenbaum,A.andD.J.Swaine(1976):Geochim.Cosmchim.Acta,40,809816・
一73−
Nriagu.J.0.andR.D.Coker(1980):Environ.Sci.Technol.,14,443−446,
Nriagu.】.0..A.LW,Kemp,H.K.T.WongandN.Happer(1979):Geochim.Cosmo
43,247−258.
Ohba.Y.(1964):Pedologist,8,108rl16.
Oscarson,D.W,,P.M.Huang,C,DeffosseandA.Herbillon(1981):Nature,291,505l・
Pankow,J.F.andJ.J.Morgan(1981):Environ.Sci,Technol,,15.1306r1313.
Petersorl,M,L.andR,Carpenter(1983):Mar.Chem..12,295321.
Posselt,H.S.,F.].AndersonandW.].Wetnr,Jr.(1968):Environ.Sci.Technol.,2,
Robbins,).A.andE.Callender(1975):Am.,.Sci.,215,512−533.
Schott,H.(1977):].Pharm.Sci.,66,1548−1550.
Shaikh,A.U.andD.E.Ta11man(1978):Anal.Chim.Acta,98,251259.
Sil16n,L.G.andA.E.MartelI(1964):StabilityConstantsofMetaトionComplexes,Spec・Publ,
17,TheChemicalSociety,London.
Smith,R,M.andA.E.Martell(1976):CriticalStabilityConstants.Vol.4,1norganic comple
Plenum.
Spencer,D.W.andP.G.Brewer(1971):J.Geophys.Res.,76,5877−5892−
Stumm,W.andG.F.Lee(1961):Ind.Eng.Chem..53,143146,
Stumm.W.andJ.).Morgan(1970)ニAquaticChemistry.JohnWiley&Sons,Inc,
Sugimura,Y.(1972):Taisekibutsu no Kagaku,Kaiyokagaku Kisokoza12,(Y,Miyake ed・)▲
TokaidaigakuPress,Chap.2,40and59.
Sung,W.andJ.,.Morgan(1981):Geochim.Cosmochim,Acta.45.2377−2383▲
Takamatsu,T.(1978):BunsekiKagaku,27,193198,
Takamatsu,T.(1980a):Res.Rep.Natl.1nst.Environ.Stud.(K.Okamotoed,),18,54−59・
Takamatsu,T.,H,AokiandT,Yoshida(1982a):SoilSci.,133,239246.
Takamatsu,T..H.AokiandT.Yoshida(1983a):Res.Rep.Natl.Inst.Environ.Stud..47,1
Takamatsu.T.,M.KawashimaandM.Koyama(1979a):BunsekiKagaku.28.596−も01.
Takamatsu.T,,M.KawashimaandM,Koyama(1979b):Paleo)imnologyof LakeBiwaan
JapanesePleistocene.(S・Horieed・)・Vol・7,264−274・
Takamatsu,T.,M.KawashimaandM.Koyama(1980b):Paleolimnologyof LakeBiwaand
JapanesePleistocene・(S・Horieed・)・Vol・8,187221・
Takamatsu,T.∴M.Kawashima,R.Matsushita and M.Koyama(1982b):Res・Rep.Natl・lnst.
Environ.Stud.(K.Okamotoed.),38,6880,
Takamatsu,T,,R.KusakabeandT.Yoshida(1983b):Res・Rep−Nat】・Inst・Environ・Stud■,47,249
−265.
74
Takamatsu,T,,R.KusakabeandT.Yoshida(1983c):SoilSci.,136,371−381.
Takamatsu.T.,R.NakataandT.Yoshida(1982c):BunsekiKagaku.31,540542.
Takematsu,N,(1979):J,Oceanogr,Soc,Jpn..35,36−42.
Tatekawa,M,(1979):KansaiShizenHogokikoKaiho,No,3,1r26.
Tatekawa,M,(1980):AnIntroductionto LimnologyofLakeBiwa.(S.Moried.).Kyoto,3541
Taylor,J.H,(1979):Environ.Sci.Technol..13,693p697.
Taylor,S.R.(1964):Geochim.Cosmochim.Acta,28,1273−1285.
Terashima,A.andT.Ueda(1982):Jap,J,Limnol▼,43,8187,
Tessenow.u(1974):Arch.Hydrobiol.Suppl.,47,ト79,
Tessier.A.,P.G.C.CampbeI】andM,Bissor)(1980):Can.J.EarthSci,,17,90−105.
Turekian,K.K.andK.H.Wedepohl(1961):Bull.Geol.Soc.Am..72.175p192.
Uren,N.C.andG.W,Leeper(1978):SoilBiol.Biochem.,10,85r87.
vanVeen,W_L.(1973):AntonieLeeuwenhoek.39,657r662.
Verdouw,H,andE,M,),Dekkers(1980):Arch.Hydrobiol.,89.509−532.
Wah)en,M,andR.C.Thompson(1980):Geochim.Cosmochim.Acta,44,333T339.
Wauchope,R.D.(1975):J.Environ.Qual.,4,355−358,
Wong,P.T.S.,Y.K.Chau,L.LuxonandG.A.Bengert(1977):TraceSubstancesinEnvironme
Health.(Hemphilled.).Xl,100−106.
Wood,,.M.(1974):Science,1S3,1049−1052.
WooIson,E.A.(1983):Bio】ogicalandEnvironmentalEffectsofArsenic.(B.A.Fowlered.)
78−80.
Yokoyama,T.andS.Horie(1974):PaleolimnologyofLakeBiwaandtheJapanesePleistocene(S.
Horieed.).Vol.2,3ト37.
Yokoyama,T..S.Ishida,T.Danhara,T.Hashimoto,T.Hayashi,A:Hayashida,
Nakajima,N.Natsuhara,).Nishida,Y.Otofuji,M.Sakamoto,K.Takemura
Torii,K.Yamada,S.YoshikawaandS.Horie(1976):PaleolimnologyofLakeBi
JapanesePleistocene.(S.Horieed.).Vol.4,52r66.
Yokoyama,T・,Y,Nakagawa and K.Takemura(1982):Paleolimnology of Lake Biwa and the
JapanesePleistocene.(S.Horieed.),Vol.8,65−91
一75−
ACKNOWLEDGEMENT
)ytisrevinUotyK,e止ltiSltrocaeRhcraesR(adkT.JdnatihsutaM,Rknahto siweW
forhelpinperformlngneutrOnaCtivationanalysis,thestaffsofShigaUniversityforassistancein
taking the sediment samples andin performing some of the experinlentalworks,and M.H.
TlmperJey(DSTR.NewZealand)forhishe]pfulreviewandcorrectionofChaptersIlandIII・
ThisseriesofstudieswaspartlyperformedundertheVisitingResearcher’sProgramofResearch
ReactorJnstitute.KyotoUniversity・
一76一
琵琶湖底混中の元素に関する陸水学
及び環境化学的研究
水質土壌環境部 高 松 武次郎(編)
この一連の研究は当研究所,水質士族環境部,土壊環境研究室の経常研究の一課題として昭和
52年に開始され.現在までの約8年間滋賀大学教育学部化学教室及び京都大学原子炉実験所の協
力を得て進められてきた。ここに得られた成果の一部をまとめた。
湖は地球規模での元素循環を反映する一つの反応槽と考えられる。溶存状態や粒子状で
ら流入した元素は一部ほそのままの状態で堆積したり,河川から流出したりするが,多く−ま生物,
化学,物理作用などを受けて湖水中で存在形態を変える。しかしいずれは湖底への堆積,大気へ
の揮散,河川への流出などにより系外に除かれる。また湖底に堆積した元素も杭成作用で存在形
態を変えたり,底泥中を移動,局在したり,湖水に再溶出したりすることが知られている。した
がって,湖内での元素挙動を湖環境や対象元素自身が持っ化学特性との関連で明らかに
と
は,その湖に固有の環境や元素挙動の解明に役立つばかりか,地球規模での元素循環の仕組を知
る手懸かりにもなる。
上の観点で研究を進めるに当たって様々なアブ仁・−一チが考えられたが,ここでは環境試料とり
わけ底泥試料を元素分析し,その分析結果の解析から元素挙動を推測する方法に重点をおいた。
多様な環境試料の中で掛こ底泥に注目した理由は,この試料が比較的元素濃度の高い試料で,一
度乾燥処理すれは保存中や分析操作中に目的元素が揮散,吸着などで失われたり,逆に汚染され
たりする危険性が少ないこと,またけい光Ⅹ線分析法や中性子放射化分析法を用いれは,煩雑な
元素の前濃縮や分離を行うことなく試料を非破壊で分析できることなど,いくつかの分析上の利
点が考えられたからである。また底泥は湖環境の履歴を湖水中での生物,化学,物理反応や堆積
後の続成作用の結果として保存していることも他の試料に比べ興味深い点であった。
また底泥の元素分析から元素の挙動に関する知見を得るためには,不確定な原田でかく乱され
ていない試料を得る必要があった。この点,琵琶湖とりわけ北湖中心部の底泥は(1)70m以上に
及ぶ水深のために風波によるかく乱が少ない,(2)河川流入物の直接影響が少ない.すなわち陸
源堆積物の割合やその変動が少ない,(3)庶陸生物によるかく乱が少ない,(4)厚さ1,000m以
上に及ぶ湖底堆積物のため,湧水によるかく乱が少ないなどの条件を備え,良い試料を提供して
くれた。またこの湖には温泉水の流入や湖底での火山ガスの噴出など火山活動の影響が
や北湖の流域が近年まで比較的人間活動の希薄な地域であったことも分析結果の解析を
る好都合な条件であった。
−77−
第1章 琵琶湖底泥及びマンガン塊中の
36元素の分布
京都大学原子炉実験所
郎 継 美 次
武 宗 睦
滋賀大学教育学部
松 嶋 山
高 川 小
水質土壌環境部
湖全域から,底泥コア(長さ30∼40cm)を30試料とェツクマソ採泥器による表面泥を47試料
採取した。また湖心部付近の底泥表面からほMn塊も採取した。試料は分凱 乾燥などを行った
後,中性子放射化,けい光Ⅹ線,原子吸光,比色などの分析法で元素分析した。定量した元素は
次の36種である:Mn,P,As,Sb,Fe,Ni,Co,Zn,Cu,Pb,Hg,Cr,Ti,Na,K,Rb,C
Sr,Ba,Sc,Hf,La,Ce,Sm,Eu,Yb,Lu.U,Th,Au.Ta,Nd,Br,N。
元素分布を元素間で統計的に比較したり,元素の底泥表面(鉛直方向)と岸から湖心部(水平
方向)への濃縮係数を算出したりすることにより,底泥中の元素分布の現況を明らかにした。ま
た各元素の分布を支配している元素の移動,固定践構を底泥環境や元素白身が持つ化学特性との
関連で考察した。
第2章 2佃iマンガンを多量に含む水和酸化マンガンが
底泥表面へのヒ素の蓄積に果たす役割
松
郎
武
川
嶋
継
宗
小
山
夫
睦
滋賀大学教育学部
高
水質土壌環境部
京都大学原子炉実験所
次
琵琶湖では底泥の薄い表層に高濃度のAsが蓄積されており,底泥中のAsの深度分布はMnの
それと酷似する。また湖心部の底泥裏面にしばしば小さなMn塊が発見されるが,ここにも高濃
度のAs(721〝g・gl)が含まれる。これらの事実はAsの蓄積がMnとの関連で起こっているこ
とを予想させたので,ここでほ水和酸化Mn(HMO)へのAsの吸着実験と底泥コア試料中のMn
の化学形態分析を行って,As蓄掛こ関するHMOの役割を示唆した。
琵琶湖の底泥表面酸化層には下層の還元層から常に豊富なMn2十が供給され,Mn2+を多量に含
む水和酸化Mn(Mn2+HMO)が形成される。この相は正の表面電荷を持ち,ヒ酸の吸着に大変有
効である。一方Asも下層で還元されて亜ヒ酸として表層に遅はれるが,表層でHMOと接触する
と直ちにと軌こ酸化され,最終的にMn2+HMOに吸着,吸歳されて保持される。
一78−
第3章 2価カチオン共存下での水和酸化マンガン
によるリン酸の吸着
滋賀大学教育学部
川 嶋 宗 継
滋賀大学教育学部 .堀
太 郎
京都大学原子炉実験所 小 山 睦 夫
水質土壌環境部
高 松 武次郎
第2章で,2価カチオンが共存すれば,水和酸化Mn(HMO)は中性付近でと酸を有効に吸着し,
この機構が琵琶湖底泥表面へのAsの蓄積に寄与していることを示した。ここではこの知見を拡大
し,2価カチオンを吸着したHMOのリソ酸吸着特性について検討した。その結果,HMOはア
ルカリ土類金属イオンやMn2+,Co2+,Ni2+などの遷移金属イオンが共存すれはpH6∼9の範囲
でリソ酸を強く吸着することが分かった。アルカリ土類金属間の比較では,リソ酸吸着に関する
有効性はBa>Sr>Ca>Mgの順で,金属イオン自身の吸着能の順と一致した。遷移金属イオンを
含む系では時間とともにリソ酸吸着曲線が変化したが,これは吸着した金属イオンが酸化物(例
えはMnO2,CoO,NiO)に変化したためと考えられた。実験結果は,琵琶湖底泥表面へのリソの
蓄掛こ2価カチオンを多量に吸着したHMOが少なからず寄与していることを示唆した。
第4章 亜鉛と銅の湖水から底泥への移行過程
における生物遺骸の役割
松
郎
武
川
嶋
継
宗
小
山
末 次
睦
滋賀大学教育学部
高
水質土壌環境部
京都大学原子炉実験所
Zn,Cu,Pb及びHgは北湖の底泥では表面から4∼5cmの深さにおいて,南湖では15∼25
cmの深さにおいて高濃度を示し,人為的負荷によるものと判断できる。これらの金属分布を詳細
に観察すると,濃度の高い表層で元素ごとに分布の様子が異なる。例えばZnとCuの分布を比較
すると,北湖でほ両元素とも表面で濃度が高いが,Zn濃度ほ表面直下で急速に減少し,一方Cu濃
度の高い層はよ1り深部にまで至っている。湖内から採取した植物ブランクトソに多量のZnとCu
が含まれたので,琵琶湖ではこれらの元素の多くはブランクトンの遺骸とともに沈殿すると推測
した。沈殿後,遺骸の初期分解に伴ってZnの大部分は底泥表面近くで急速に放出され湖水に回帰
するが,腐植質と強国に結合するCuの一部は遺骸の分解,腐植化過程において残存する。
79 1
第5章 ジメチルアルシン酸,モノメチルアルソン酸
及び無機ヒ素の鉛直分布
水質土壌環境部
高 松 武次郎
筑波大学環境科学
中 田 錬 平
筑波大学環境科学
吉 田 冨 男
滋賀大学教育学部
川 嶋 宗 継
湖心部から3本の底泥コア試料(長さ30∼40cm)を採取した。試料は0.5,l,2及び5cm
の厚さに分割し,凍結乾燥した後,ジメチル7ルシソ酸(DMA),モノメチル7ルソソ酸(MMA)
及び無機ヒ素(1As)の濃度を次の方法で分析した。まずヒ素化合物を試料から10MHClで浸出
した後,ペソゼソに抽出して分離.濃縮した。次に7ニオソ交換樹脂カラムを用いたクロマトグ
ラフィーでDMA,MMA及び1Asを分隠し,最後にフレームレス原子吸光光度法でヒ素を定量
した。
その結乳琵琶湖の底泥中のヒ素は大部分がトAsであったが,DMAとMMAもほとんどの試
料で検出され,その濃度はDMAで検出されないものから24,7〃g・kg ̄lの範謁を,MMAで20・8
から44.1〟g・kg ̄1の範囲を示した。底泥ほトAsのほぼ0.1%に相当するメチル化ヒ素化合物を含
んでいた。またDMAとMMAの詳細な深度分布をはじめて明らかにした。
第6章 高潮しゆんせつ穴でのマンガン,鉄の酸化還元
サイクルとリンの循環
滋賀大学教育学部
川 嶋 宗 継
滋賀大学教育学部
堀
太 郎
京都大学原子炉実験所 小 山 睦 夫
水質土壊環境部
高 松 武次郎
富栄養化した南湖のしゅんせつ穴で,1981∼1982年に水温,溶存酸素(DO),マンガン,鉄,
リン,ケイ酸,アンモニア,硝乳硫酸,硫化物の分布を調査した。その結果,成層期間中の庶
層水の還元過程は相対電子活動度(p亡)の減少とともに次の順で進行した:(1)DOの消費水和
酸化Mn(HMO)の還元(アンモニアの蓄積),(2)硝酸の還元(3)水和酸化鉄の還元(リソ酸
とケイ酸の放出),及び(4)硫化物の生成。
成層期にほ,DOが0になる境界の直上(表層水の最下部)で,粒状MnとFeのど−クがはっ
ー80−
きりと分離して現れた。この現象は表層水下部と底層水の間で通常“Manganouswheel”あるい
は“Ferrouswheel”と呼ばれる両元素の酸化還元サイクルが機能していることを示した。表層水
下部でのMnの沈でんほ微生物酸化によるHMOの生成と生成したHMOへのMn2+の吸着による
ものと考えられた。
リソの循環はFeの酸化還元サイクルに随伴したが,Mn2+,Ca2+,Mg2+を吸蔵したHMOもリ
ソの循環に少なからず寄与した。
第7幸 水深指標としての底泥中マンガン濃度
一過去200万年の古水深の予測一
松
郎
武
川
鳩
継
宗
小
山
美
睦
滋賀大学教育学部
高
水質土壌環境部
京都大学原子炉実験所
次
表面底泥コ7(長さ30∼40cm)中のMnとAs濃度は試料を採取した地点の水深と非常に良い
相関を示した。ここではこの相関関係を堀江らによって掘削された深層ポーリソグコア(200m,
1,000m及び1,400mコア)中のMn濃度に適用して,掘削地点の舌水深を予測した。その結果,
地点E付近の湖底は約200万年前から40万年前にかけて頻繁に浅くなったが,40万年前から近年
に至る問は現在とほは同様の水深(約60m)にあったと推測される。1.000mコアは全般にMn
濃度が低く,そのコアの採取地点である野州川河口はずっと岸近くに位置してきたと考えられる。
第8章 底泥表層に蓄積されたマンガンとヒ素の量
宗
山
睦
夫
武
鳩
京都大学原子炉実験所
郎 継
次
松
小
川
滋賀大学教育学部
高
水頭土壌環境部
底泥表層に蓄積されたMnとAsの量を底泥コアの表層(0∼2cm層)と下層(10cm以深)
に含有される両元素の平均濃度の差から推算した。その結果,Mnは4,350トン,Asほ73トン表
層に過剰に蓄積されていることが分かった。仮にこれらが湖水に溶出し.混合されたとすれは,
湖水濃度ほMnで160〃g・1▲1,Asで2.7J‘g・1 ̄1増加することになる。
−81−
謝 辞
中性子放射化分析を行うに当たり御指導,御協力下さった松下録治,高田実弥両氏(京都大学
原子炉実験所),底泥試料の採取と実験操作の一部をお手伝い下さった滋賀大学教育学部化学教室
の皆さん,及び第2章と第3章を校閲いただいたM_H.Tim匹rley氏(DSIR,NewZealand)
に感謝致します。
なおこの∼連の研究は一部京都大学原子炉実験所の共同利用研究として行われた。
−82−
Ap匹ndixI Morphomeけjcfea亡uresofLake8jwa
Totat
1tem
2 2 4 爪U
Location
Lake su一寸acearea(km2)
Lakevolume(km3)
Meandepth(m)
Maximumdepth(m)
Drainagearea(km2)
Aff】uent river
Erfluent river
N
Appendix2 Photograph of Mn concretions sampled from the sediment
surface at site G
83−
Appendix3 Themethodofneutronactivationanalysis
βeJβrmg氾α如乃〆斤∂,G,助旅,C∂,C,JA5,5∂,βれ立,エα,Ce,昭S,”,払yあ,⊥〟,扶
n,LU:7bandAu:Eachdriedsampleof200−300mgwasheatpsealedinapolyethylene
tut光WraPpedinacleanpolyethylenebagtopreventcontaminationduringhandlingand
irradiation.For determination oflongLlived unclides,eight samples were packedin an
irradiation capsule along with neutron spectrum monitors consisting of Co(50JJg),Cr
(50JJg),Sb(25FLg)andU(10〟g)impregnatedinasheetofMilliporefilter(HAWP,47mm
i_d.).Irradiationwascarriedoutforlhinapneumatictube(thermalneutronflux:2■75×
1013;epithermalneutronflux:1.09×1012ncm2s ̄1)ofKyotoUniversityReactor(KUR)・
After theirradiated samples were allowed to stand for7−10days.Y−ray SpeCtra Were
determinedforlhusingaGe(Li)diodedetectorwithanactivevolumeof53ml(ORTEC)
coupledtoa4KChannelpulseheightanalyzer(NAIG)andtapereCOrded・Theprograms,
designatedasCOVIDNandGAMMA.bothdevelopedbytheauthorsIWereuSedtoidentify
thepeaks,Calculatepeakareas,identifynuclidesandfinallya1lotconcentrationsbynormal−
izingcooloingperiods.detectorefficiency,nuClear constants and neutron spectrum with
whichthesamplesandspectrummOnitorswereirradiated・Theneutronspectr11m,thatis,
theratioofthethermaltoepithermalneutronfluxeswasdeterminedusingasetofCo,Cr,
SbandUmonitors.COVIDNmadeitpossibletocalculatepeakareasinamannersimi1ar
tomanualcalculationandGAMMAoperateSbyfittingpeakstoaGaussianfunctionplusan
exponentialwithabaselineofquadraticform・
Mnconcretions,Obtainableonlyinsmallamounts,Wereanalysedforlong−1ivednuclides
asfollows:about30mgofeachdriedsampleweresealedinaquartztubeinvacuumand
irradiatedforlOhwithCo,Cr,SbandUmonitorsspottedonapieceofaluminumfoilof99・9
%purityinthehydraulictube(therlTla】neutronflux:8,15×1013;epithermalneutronflux:
5.95×1012ncm,2s1).Theirradiatedsamplewasanalysedasdescribedabove・
DeIerminationdNa,KandMn:Tendriedsamplesof20p30mgsealedinpolyethylene
tutxsandthethermalneutronfluxmonitorofMn(25FLg)impregnatedinasheetofMi11ipore
filterwerepackedtogetherinacapsuleandirradiatedatKURfor5min・Thesesamples
werecooledfor2−3hpriortodeterminationoftheγraySpeCtra・Theconcentrationsofthe
elementswerecalculatedinawaysimilartothatforlongplivednuclides,uSingtheratioof
thermaltoepithermalneutronfluxesalreadydeterminedforlong−1ivednuclides・
ー85−
ApI光ndix4 ThemethodofXrayfluorescenceanalysis
Twenty50FLloftheinternalstandardsolution(Cs:100mg/ml,Se:1mg/ml)wereadded
to200500mgofthedriedsamples・AfterdryingagainatllO。Cforlhandmixinginan
agateball−millfor30min,theanalysisbasedondirectmeasurementofpowderedsamples
WaSperformedwithanenergyLdispersionX−rayfluorescencespectrometer(ORTEC,Model
TEFAL6111)equippedwitha PDPrll/05computor.The measurement conditions of the
instrumentareasfol】ows=target=Mo,VOltage=50kV,Current:50FEA,filter:Mo,XLray
path:air,andcountingtime:4KL8Ksec.SpeCtrumanalysiswasperformedwithaSEEK
PrOgram(developedbyORTEC)whichinclud占dbackgroundsubtraction,peaksearching,
andGaussianpeakfitting▲ TheanalyticallinesusedweretheLq.forPbandtheK。.for
theotherelements・TheL。11ineofCswasusedasaninternalstandardforK,Ca,Ti,Mn
andFe,andtheKα11ineofSewasselectedastheirtternalstandardforNi,Cu,Zn,As,Pb
RbandSr・Internalstandardizationispreferableinordertocompensateforinstrumental
andsampleloadingvariations■ Thecalibrationcurveswereestablishedbyplottingthepeak
ratio,Ix/Ⅰ..s.,Wherelx andIl.s.arethe peakintensities ofthe desiredelement and jnt
Standard,reSpeCtively■ Aseriesofartificia]referencestandards,preparedbyaddingknown
amounts of the desired elements to dried anhydrous sedimentary silicates,Were made
availableasprimarystandards・Inanalysingthesediment,FeandsometimesMn,uSually
themajormetallicelementsinsuchsamples,absorbXraySOfelementssuchasNi,Cuand
Zn・ThismatrixeffectoftenresultsinanunderestimationoftheanalyticalvaluesofNi,Cu
andZn・Therefore,inthepresentwork,thematrix effectcorrectionwasperformedby
referringtothecontentofFe(andMn).
ToanalysesampIessuch as the upper O.2cmlayerofthesedimentcore and the Mn
COnCretionsobtainabIeonlyinsmallamounts,aSimpledilutiorlprOCedurewasalsoused
instead of theinternalstandard method.The samp】e preparation was as fo】lows:the
samples or the calibration standards were thoroughly mixed with a tenfold weight of
microcrystallinece11ulose(Merk,forcolumnchromatography)inanagateball−mill,Two
hundredmgoftheresultantmixturewerethenmadeintopellets(13mmi_d.,Ca.lmmthick
usingadiefortheinfraredspectrophotometry・Celluloseactednotonlyasabinder,butalso
madeitpossibletominimizematrixitlterference.
−86−
Appendix5 RelativeconcentrationsofelementsinsedimentsfromLakeBiwato
thoseonaverageearth’scrust
Log(曙e。1m。。t/C:㌫st)
一1.0
−0.5
0
0.5
1.0
1.5
十
ca
Sr
Na
Ni
机9
℡a
Sc
Cr
PF。TiE。Cu乙。YbXUSmCeLa明地BaHf
Co
ThNdZ。血
t)ElementalconcentratiorlSinthelowerlayers(belowlOcmdepth)ofthesediment
coresfromthenorthernlake,
●りTaylor,1964.
一87−
Appendix6 RelativeconcentrationsofelementsinsedimentsfromLakeBiwato
those of shaIe
Lo9(践d山旭nt/C㌫1e)
−1.0
−0.5
0
0.5
1.0
1.5
C。Sr叫NILa喝山CrNaUC。ⅩF。馳県E。S。C。BaP
YbSbSmThZnCeTaPbBrASHfNd
.)Elementa]concentrationsinthelowerlayers(belowlOcmdepth)ofthesediment
cores from the northernlake,
CS伽
..)TurekianandWedepohl,1961.
一88−
=
Appendix7 Relativeconcentrationsofe)ementsinsedimentsfromLakeBiwato
thoseofpelag)CClay
叫(C㌫。1m。。t/C買1a。i。。1ay
ー1.0
−0.5
)
0
0.5
1.0
1.5
加配
十
+
m
釦l
01
Co
恥ぬ舶山地Sr喝貼P托訟α加瓜Ⅹ馳班毎日払馳U
色
;
+
寸
l
01
Yb
十
十
.)Elementalconcentrationsinthelowerlayers(belowlOcmdepth)ofthesediment
coresfromthenorthernlake.
..)Sugimura,1972.
ー89一
AppendixS Verticaldistributioncorrelationl光tWeenelementsinthesedimentcorefromsiteG
K
Na
Ca
Cs
Rb
Ba
Sr
Ti
Sc
Mn
Cr
Co
Fe
000
,
014 1.000
一
455 −0.120
001
1000
0,189 −0.216
774 0.273
503 0.205
0,551
1.000
0.405 −0.042
444 −0.616
0.5邑2 −0.083
0,338 −0.330
0.262
0.710
l.000
0.51:主
017(1
1.000
0.512 −0.491
0.397 −0.689
0.343 −0.676
0.727
l.000
0215 0.131
0.173 0,Z23
0,256 −0.005
0.530 0.653
012。1
0.587
1000
0.293 0.Z77
1.000
0.234 −0.146
0.185 −0.149
0.452+0.281
0,1(,9 0.020 −0.530
0,318
1.000
0.641 0.156
0.004
0.927 −0.319
0.014
0.57:1
0.2−12 0.705
0.409 −0.692
0.537
0.372 −0.232
0,206 −0.730 −0.808 −0.368
0,702 0.253
0.536
0.363 −0.663
0.398 −0.677 −0.525 −0.498
0.998 0.284
O
0,114
015l
(〉,446
0.207
0.128
0.143
0,050
0.413
0.05¢
0283 0.399
0.035
0,163 0.659
0.199 10.567
0.042 0352
0.1(〉9 −0.300
0.593
191110050928152606㈹182758
0.042 −0.017 −0.167
0.009 −0.461 −0.142
0346
0.635
0.005
0.156 0,600
00
O.328
0.705 」0.174
0
O
−0.004
0.274 0.074
3
0,03Z
3
O
0.102
0,108
︵B
O
0.407
0.072
0.586
7
0.259 0,052
0.942 −0.208
0.498 −0.161
O
O
4 4 7 9 q︶ 9 7
1 只︶ R 7 5 つ︺ 8
0.185
3
0.409 −0.599 0.560 0.385
0.436 −0.450
4一4
O
0.351 0.502
0.369 −0.234
O
一
O
0.382 −0.657 0,614 0.439
6‘U
O
0.379 0,510
0.4g2
﹁〇
O
O
O
O
︵U
L
5 7
八U
1
︵U
9
− 〓
′0 3
OO
4 9
0 5
100
.
O
O 5
︵U
0 つJ O
O
3
〇
. ▼
5 q︶ 3
0 ︵U O
bO 00 4
O
3 3
爪V n︶ ∩:U ︵
4一b ■b
一一一
1 0
5
一一一一一
〇二U O nU
〇〇
n︶ n
5
O O
4 ■〇.年 3 2
5 1
0
5 7 4 八8 6 亡じ一4 8 爪U
l き 轟U 4 5.4 1 7 1
3
O 八>
7
O︵リ
q▼
﹁〇
▲U
一一一
︵U O O
3 つん
■4 3 つ−RR 5
一一
q﹀ 7 q﹀
O ︵U ∧U
亡U 5
n> 爪U
9 1
5
D
OnV O
︵U
亡U 3
一一一一一一
∩︶
0
O
7
1
00556119866998認4013383722鵬2444917881515039〇
17
7‘9
99︻
▲7
47
12 6.4 8 1
7.つ︺ 2 ▲4 3 2.4 3 1
n
U5463644931499698755653153
ワ︼
2
C.D.:depthofcore.
l
0.186
Oハ:UO︵U O
八V 爪O
U n︶O
U
一﹁一一一
0,155
−0.055
O
−0.384
O几V八V n−U O
−0.2155
一一一一一
−0.119
O
0
0.222
−0.234
8
0
0.615
n:U
0.637
一一一一
0
0.371 0
O
0.635
O
0.519
O
Ni
1.000
O
O、0000
0.234
一
O
0.082
O
O,460
0n︶n︶
O
−0.14B
O
O
−0,148
O
−0.083
O
︵U
−0,230
O75033743713278777776755172上VZ︻b
−0.163
O
−0243
n
−0.421
n
0,425
一
0.650
0000
−0.363
爪V爪V
−0.455
O
−0.105
一一一
0.180
n二U
0.571
O
−0.408
一
0.489
O
0
O
0.608
0.850 −0
一
0.151
一009(】
▲0只
56q
1298518546612595216858粥38979249196929605A4
99
3ロ1 5 u0
−0.690
10
0.079
0.534
U
0.322
0.41(〉
097959247446196567581869962
077926001626780157675883694
1.000
0.238
I
−0.399
640132224Z O3010154 433232 C
0
ハ︶ n︶n O O O O O O n︶
一一 ¶一
ぜ、一−
NiC。Z。P。ASSbBrLaC。禦川Lu⋮ThU
∽晋Rb監監宗認諾NiC。託AS諾La監Y。L“諾。
c.D.
1.000
Appendix9 VerticaldistributioncorrelationbetweenelementsinthesedimentcorefromsiteD
C.D,
C.D.
I.L
N
Na
P
Rb
K
Ca
Cs
Sc
Sr
Cr
Ti
Mn
1.000
Ⅰ.L. 0.720
N
P
Na
K
Rb
Cs
Ca
−0.768
1.000
0.94
−0.96Z O.56
−0.757
O.688
O.477
0.822
ユ.脚
0.437
0.35
O.685
0.830
1.000
0.591 l.000
0.266 0−375 1.000
−0.611
−0.377
0.552
0.698
0.810
0.440 −0.560 0.431 0.170 1.000
1.000
0.3朗
0.867
0.726 −0.643 0.686 −0.404
0.611
−0.6郎
0.528
−0.20
−0.345
−0.768
0.777
0.47
0.74
Sr
0.800
O.846
−0.51
0.28
0.620
Ti
O.791
−0.74
−0.850
Cr
O.810
−0.44
−0.468
0.741
1.000
−0.315
Sc
Mn
0.762
0.25
0.23
−0.829
−0.823
0.673
−0.755
−0.569
−0.669
0.423
0.635
0.464
0.511
−0.794
0.561
0.599
0.692
0.580
−0.576
0.599
0.4娼
0.403
0.267
0.788
0.685
0.567
−0.610
0.523
1.000
0.679
0.799
0.052
0.628
0.690
1.000
0.813
0.618
0.600
一皿−r
Fe
O.479
−0.50
0.606
−0.375
0.378
0.Zll O.468
0.620
−0.220
0.417
0.537
0.831
Co
O.225
0.32
0.116
−0.374
0.472
0.397
0.454
0.039
−0.093
0.454
0.357
−0.008
Ni
0.291
0.31
0.282
0.293
−0.002
0.154
−0.270
0.186
0.544
Cu
0.920
0.77
0.朗2
0.889
0.592
−0.640
−0.603
0.455
0.866
−0.771
0.814
−0.371
0.714
0.朗0
−0.758
0.857
−0.570
0.559
0.8g3
−0.820
0.720
0.930
0.848
0.453
Zn
−0.894
Hg
−0.865
Pb
0.934
As
0.744
0,44
0.38
tl.50
0.70
La O.郎2
−0−40
Fe
Co
0.537
0.503
0.561
0.668
n.526
0.941
0.891
0.691
0.別9
0.948
0.767
0.685
−0.692
0.455
0.733
0.331
0.457
−0.348
0.050
0.92Z
O.220
−0.642
−0.851
−0.656
0.419
0.585
−0.808
O
C,D.:depthofcore
1.000
L
Fe l.000
Co −0.202 1.000
Ni O.043
0.105
1.000
Cu 0.448 −0.249
0,289
1.000
Zn 0.娼0 −0.435
0.206
0.858
1,000
1.000
Hg 0.573 −0.437
0.053
0.750
0.933
0.914
Pb −0.424 −0.354
0.111
0.822
0.932
As −0.095 0.104
0.5Zl O.822
0.613 0.406
La O.445
0.342 −0.202 −0.708 −0,79(〉 −0.749
0.709
−0.013
0.100
0.683
0.朗6
1.000
0.491
0.070
−0.818
−0.726
0.179
−0.67g
0.386
0.600
0.577
0.693
−0.797
0.871
−0.481
0.588
−0.500
0.038
−0.744
−0.748
0.503
0.843
−0,607
−0.108
−0.727
−0.769
1.000
【0.276
0.397
0.645
0.640
0.774
0.601
−0.708
ApTX・ndixlO Verticaldistributioncorrelationbetw?enelementsinthesedimentcore去fromthenorthernlake(averagevaluesofthecorrelation
coefficientsin24cores)
■思∵−
l・ll
0.291.M
0.18 0.851.m
l、25 0、7g O、671.00
Ⅷ.1g O.D5−0.㈹−0−011一帥
−0−8l−0一拍−0,20−0,41011.00
朋
−い
C.D∴depthofcore
ー∵∵
0.他州.04 q.1邑 D.03().Ⅷ 0.03−0.04−0.04 0.陀 0.10 0
0.%0.050.150.040.240.040.個0.12 q.330一鴨0.008.32D.2昌0.000.椚
0051D75725
州一個0,0卜0.14…10.41q.33q.53t=50,21旬.鵬0.D50.250.63q.050.2S−…4q.鴨0.2S O.020.14州30▼2も0・13骨・D70・17 ̄0
−Ml−0.Ol−816−0.000.詣0.300.550.520.30D.880.D40.220.70D.㈹0.28−0.17=70310.070.150・鵬0・410・098・160・09 ̄8
州.078.12=90.230.230.390.260.290.20D.帖−=70.120.390.140.24−0.110.138.120.030.030・010・040・070・010・15▼0・24
0.070.160.000.160.160.300.370.370.13−0一帖−=80.118.530.080・23一=50・098・31=90・820・D40・310・13−0・00=9−0
0.37−0.270.39−0.160.鵬1川3D.16=1=9−0.1卜0.020.158.240.05D.D20.20刀08Ⅷ.00D.070.封0■22−0.30−0.25−0・26▲0・】2▲0
0.04q.250.光0.2q O.39D.32D.粥0.53019−0.180.130.21¢.63=O D.270.250.010.15−0.87−0.34−0▲25−0.53−0.10−0・25▲0・03▲0
000866罰
Ⅶ93渕朋208g罰
0.160,39−0.510.48 0.鮎 0.511.00
0.03 0.03 0.Z3 0.07 0.22 D.24 D.471一00
0.18 0.18 =7 0.2D O.朋一0.05 0.朋 0,631.00
−0.24(仁ほ(=姐(.25 0.祖 0.120.領q.帆(1.1¢1.00
0.12−0.32−=7−0,210,310.310.310.29 0.23 8.331.川
0.03 0.09(‖ヰ 0.08 0,36−0.04 0.D4 0.210.518.13 0.121.M
D.39−0.OS0.050.15 0.25 0.24 0.410.510.32−0.12 0.04 0−311一㈹
D.4g0.D70.0ト8.12−0.ZlO−16 0−26 0,17 0,50−0.21D.040.110.511.00
0.14 =70.06 0.090,28 0.22 0.250.34 0.350.07 D.20 0.16 0.510.321.00
=5q.Tq q.750.Tl…T一=0一針姐ペ.随一q.qln.33q.17 q.q30.310.ヱ9也.041.00
0.200.10 030 0.15−0−110.29 0.㈹ 0,290.20 D.10 D.㈹0.D8 0.34 0.538・23 0−14l.00
0.088.438.390.350.190.Ol刀.040.390.390.25M20.280−530.180.370.240.291・00
0.058.398.180.36D.13−0.26欄.2ト0.030.28 0.0卜0.28 0.10 0.150.218.20 0.22 0.03 0・391.00
0.470.690.75 0.81808−0.188.39−0.03 0.168.320.210.170.130.168.05 0.駈0.02 0一光 0.381.00
0.d80.800.780.関−0.0巨0.29−0.37−=1=98.23D.370.180.D70.178.080−73=20.罰OJ2(.861・00
ーq.17…9q.71q一誠一0.ヱ7−0.19一=10.1卜0.30q.34n.ヱヱ0.ヱ7−0.u−…7−…80−64¢.35¢・ヱ2欄▼010・6島¢741・00
一0.63=80,600.540.D2−0.18Ⅷ.160.090.帖0.18−0.230−03−0−13−0.280.060.650.030・230・Z30・74 0・81D・551・00
0.470.740.呂D O.710.D3−0.22≠4ト0.080.010.33−0.30=5−0−250.29刀・070・800・03D・240・320・738・63D・580・621一川
0.480.帥0.570.52−=4」D.19Ⅷ.40−8.010.080.3ト0.380,22=30.160・090・620・020・280■370・690・830・550−760,771・00
0.390.670,750,弘0−15−0.38−D65−0.170,110.460.230・140,180・280・Og O■55−8・048・250−250−720▼730・480・560・780・731・00
=7−0.25−0,3=.210.430.390.528.410.230.15M50・210・658・11D・33−0■30=18・l仁=5−0,㍊0▼250▼61110D・28D・00刀・29
00949762702291黒
∽はNPNaKRbGMgCaSr鮎溢TiCr恥FeC。NiC。Zn鞄靴ASSbBrLaGSmYbL川m
c.D.Ⅰ.L.N P Na K Rb Cs Mg Ca Sr Ba Sc TiCr Mn Fe Co NiCu Zn =g Pb As Sb Br La Ce Sm Yb Lu HL Th U
Appt・ndixll Horizontaldistributioncorrelationbetweenelementsintheupper2cmlayersofthesedimentcoresalongthetransect
from Ado River to Ane River
00t〉
621
697
873
924
0
0
【0
160d
1530
556
364
629
7:三1
324
034 0
0
0
251 0
399
0
461 0
R17
0
660 −0
Cr
Ti
Mn
Fe
0
114
I)
168
.805
.L76
521
O
O
一
O八U−n〓〓:‖二U
一
nごn〓〓
一
O︵U
OハU︵U︵U爪VO
一一
一
n︶︵U
q〓り二b二汚7q−6175〓h〓b7
65ワ︼5一b一4人−727只︶7
n∵‖〓〓二‖二U
一
。4970qJ
一
O
OOハリOハリO
l
−0
−0
1.000
0.4−14
1,000
0.280
0.722
l.000
0.366 −0,542 −0,Z60
1.00D
O.90】 0.α&1+一一心.ユ09
0.557 l.000
0.966
0.599
0.455
0.289
0.793
0,423
0.956
0.794 −0.374
0.040
0.95()
0.301
0.1】0
0.541
0.929
0807 −0.061 −0.260
0,716
0.92B
O.706 −q.250 −0.418
0.757
0.905
0.536 0.483 −0.274
0.913
0.764
911 (〉,084
0,148
0.6ざ9
0.9Ⅰ8
0
640 −0.350 −0.230
0.857
0.854
0
744
0.241
0,307 −0.736 −0.896
0
478
0.249
0.1S2 0.565 0.479
0
412
0,524
0.397
0.134
0.311
518 −0.362 0.592
0.588
0836
0
0
745
().330
0.473
0,551
0.653
365
0.622
0.565 −0.784 0.711
411 0.607 0.598
0.861
0,722
0
778 −0.121
0.0(〉1
0.842
0.850
0
一
〇
09
O l10
.
.
.
10n〓U
Oんじ爪U O
10ハU爪V八U
l︵U
O74︹B爪V一b︻0
10︵UO∧U爪U︵U
一一一
ハU7︻J1.40005
一一一
一
O OO kU6367一b轟b9
〇〇O J﹁ワ∵只〓hニッ∴る︵
一
<U77013q〓コ〓b二b
一一
n∵只〓りこH5∧U759q︶9
一
一
。
OU852824榊963635諾頼諾828
一一
一 一
n〓‖〓‖0∩∵n:‖二‖二U n〃八U︵
O︵UハU OハU几V∧U爪V
〇9︵凸69700﹂﹁5︽b7■■﹁〇〇〇
O
一
nU︵Un︶n
一一
爪>03393611つJ5︻b nJ﹁〇2
nU
O222︻b一q52220£〓ユニJ二b
O人U
71Z
l一1只︶R∵‖〓ソ〓り二b
一
OO
一一一
一
一一
O
l
O
︵U9一b几bつ︼l︵リ︵凸91006q︶ハ089
0■120轟bハU.417:J〓バ.42UO3ハリ
1〇八U
票㌫託声慧La監YbLum甘
W.D.:Waterdepthatthesamp】ingsite、
127449<V5つJ9
一
一
O
丁.879
n∵n〓〃二じ二じ八
0,878
0.467
0,311
0.802
一
9f〉0
︻b一b亡U41ウ︺︵U76■b
98】 一0
953
OO∧U
854 0
904
O
867
646
n〓〓:〓二U∴U八U︵UO
35:Z
826 口
n︶n〓〓二じ二U︵ 000<U
一一
737 −0
0
868
171
7ヽ▲7712仁Ul只二八〓J7q〓b7‘U3
1693んU2.41Z2253J﹁5︻ユニ‖
857
11(I
000
947 1.OI)0
624 0.749
1.000
6gO O.480
0.067
903
0.989 0.708
733
0.77l −0.891
129 0435 0.460
5441771つ︺0仁リー▲95一b597
1729
0
894
O︻U
045
253
118
497
O
548 −0
074 0
34ア
︵U︵U︵U
3Z9
042 0
1000
八U6エリ人︼︵U3qUっJ519一14959っJ2
087 −0
000〇
2つJ︵y
n︶n〓‖:〓エリO
0.286
0.669
0.Z」璽7
7:∠8
056
一
0,836
0
0
0
㌻〓
:〃
エ︵りリU
0000n
n
0.831
717
848
247
▲:H〓7二h一q<V5りん5
7DO1427467
0645
898 −0
811 −0
0
O
O 781
0.913
0
0
1
0
636
一一
0.675
727
942
OUO
445 1.0(】0
168
0.574
1.000
616 0.706 0.036
483 −0.2別 −0,086
0
686
0.016
0.143
0
90tl 0.3〔〉6
0.140
0
279 −0,67B −0,175
0
684
0.107
0.284
0
648
0.118 0.271 0
677 −0,823
576 −0.815
725
852
431 −0
O80D8︵凸8007357日∂778
0.427
Sc
tia
Sr
000
874 −0
一b
146
623
1
611 0
8几b3200nD亡U97つ︼RU993・ヰ274
885
568
939
八UハリO
439
Ca
Cs
Rb
一一一一一
683
K
Na
1OOO
0︵UO
¢∽1
00()
969 1
9U2 (I
507 0
890 −0
454 O
a82 ()
435 0
147 0
270 0
907 0
081 −0
079 0
7(I2 0
947 0
843 (】
llZZ O
948 0
910
86:Z
82∂
988
893
1
P
N
4:占
ー
∵∴J=.∴︰・∵∵∵.∵J..ト√・
w.D. Ⅰ.L.
AppeTtdix12 Horizontaldistributioncorrelationtx}tWeenelementsinthelowerlayers(belpwlOcmdepth)ofthesedimentcores
alongthetransectfromAdo Riverto AneRiver
1LL
N
P
Na
K
Rb
Cs
Ca
Sr
Ba
Se
Ti
Cr
Mn
Fc
10()0
0,474
1.000
0.508
0.992
l.000
0.8Z7
0.838
0.85Z l.000
0.8邑9 0.58l 一打557 −D.891 1.0(】0
475
Co
Ni
735
一一
830
0.804 −0.72【) −0
0.904
0.460
0
0,7B4
0.6H2
0
一一一
0.867
0,5f〉2
一一一
iC13
一
825
050l
一
一一
−
0.839
0R91 −0.855 0.819 0,149
1.000
0.064
I),474 −0.129 −0.71Z 0.142
1,000
 ̄0▲499
0.821 0.311 0,483 −0.56I O.886 1.000
0,248 −0.091
0.4U9
0.6820,】02 −0.862 0.602
l.000
0.9ぢ7 0.811 −0.925 −0.431
0.898
0,l18 −0.353 rO.438
l.000
0.5()l 0.179 0.488 −0,508
0.446
0.739
0,388 −0.860
0.651 】.000
0.488
0,544
0.682
0.318 0.432 【)
398
0.576 −0.174
855 −0,265
0.958 −0
153 0.564 −0072
0.915
0.394 0 519 1.000
962 −0.823 −0
0.929 0
887 −0.354
094 −0.375 −0.398
0.993
0.664 −0 3(〉6
0.928 1.000
627 −0.250 0
0.555 0
689 −0719
724
0.330 −0.816
0.758
0.940
0
023
0.557
0.751
695 −04Z6 −0
0,673 0
7:Z9 0.528
5(〉7
0.133 0.793
0840
0.942 ▼0
016
0.612 【),843
163 0.26l 0
0.10R O
329 −07‘19
96g O,750 −0.885
0.34Z O.856
0
302
0.09(1 0.327
896 −0.692 −0
861 0.441
O.889 0
278 0.193 −0,528
0.967
0.7g5 0 245
0.866
0.978
0.913 I)
】68 −0.301 0.455
0.983
0728 −0
287
0.901
0.995
878 0.347
093l −O
058 0.487 −11183
0.950
0.479 0 489
0.990
0.954
554 −0.65:Z
n.450 0
782
0.427 0.852
0.669
0.978
0
197
0,441
0.670
0.045 0
842
0.701 0.603
0,238
0.618
0
198
0.142
0.218
807
0S54 −0.57:1 0
663 0,274
D.728 −0.75:Z 0.781 0
69R O.548 0.703
一口
536 −0.118
0.657 0.841 −0.91l −0
030 0.710 −0.856
613 −0.338
0.535 0
187 −0,356
0.204
0.355 0.165 −0
766 0527 0.334
860 0.242
(),988 −0
131 ,0.551 0,093
0913
0.419
rO 0.988
5ひ3
0.932
919 −0.61−1 0.77∈〉
0
O70 −0.294 −0.178
0.772
0.294 −0
724
0.830
0.742
906 ()
901
tl.257 −0.896
0
294
0.682 1)O17 −0.873 0.206
0 760 −0,936 −0.857
917 0
664
0.117 ().871 −0
585 0.874
0.331
0.687 −0,03l −0649
0.874 (),709
一一
0.別9 0.791 (),787
n.465
0.430
0.418
−0.753 0.034 −0,037
0283 −0.651 0.604
0,701
0937
0.931
0.135
0.797
0
760
−0.3(〉7 −0325 ¶0
356
0.699
0.792
818
0.744
0.922
913
0.234
0.917
910
0.3】4
0.934
894
−0.245
0.628
617
0.635
0.964
950
0,707 0936
922
0861 0.842
867
95167397977
芝
m甘P智慧慧聖Ti監監監託如諾La監YbL。m甘
W・D▼
705
Cu
Zn
Co l.UO(】
Ni O.94d l.000
Cu o.g68
0.736
】.000
Zn o.859 (I9二Z5
0.5()Z
Pb O.797 (l,884
0399
As O.635
0.676
().179
Sb O.983
0926
0.902
Br O.74(】
0.481
0,866
La
−0.941 −0.853 10.808
Pb
As
Sb
Br
La
Ce Sm Yb
Lu
Hf
Th
U
1.()00
0.992
1.000
0,900
0931 1.0()0
0.794
0,729
0,529
1000
0,362
0.269
0.218
0.749
1.000
0・816 】0.749 −0.658 −0,871 −0−750
1.000
0.772 0.939
n.も30
0.862
1.㈱
Sm o118
0.097 0.064
0306
0.289
0.452 10.055
0.061 0407 −0.102
1.000
Yb I),570
0.648
0.117
0.885
0,910
0.968
0.453
0.118 ∩.615 −0,712
0.576
1.000
Lu O.571
0.535 (l,261
0.7:Z5 0.712
0.818
0.411
0▲35l −0.768 0.581 0.834
0.朗1 1.000
1】f
−0,396 −0.49(〉
0.074 0.758
0.806
−09】9 −0.249
0・060
0,509
0510 −0.637 −0.929 −0.853
1.000
Th O.111
0.252 −0.370
().582 0.653
0315 −0・198 0・304
0.607
0,877 (),682 −0.914 1.000
0.810 q.021
U o.622
0.625
0.300
0.799
0.792
0.802
0.574
0・348  ̄0,5f〉8 −0.787
0.350
0.845
0.611 0.595
0.626
W・D▲=Waterdepthatthesamp】ingsite.
Appendix13 =orizontaldistributioncorrelationbetweenelementsintheupper2cmlayersofthesedimentcoresandtheEkmandredge
Sediments
w.D.I.L.
W.D.
1.000
1.L.
0.197 1.000
N
K
P
Rb Ca
N
O.100
0.863 1.000
P
O.222
0.630
K
0,0()ア 0.5β0 0.509 0.583 】.000
−
Rb
Sr
Ti Mn Fe
Ni
Cu Zn Hg Pb As
0.540 1.000
O.051 0.067
0.037 0.356
けーい
−
−0.178 −0.045 −0.070
Sr
−0.289 −0.051−0.081−0.170 0.029 0・010 0・712 l・000
O.168
Mn
O.803 0.268 0.176 0.294 −0.鵬2 0・0鵬 −0・135 −0・218 0・100 l・000
Fe
O.440 0.571 0.411 0・409 −0・476 −0・023 0・008 −0・071 0・749 0・393 1・000
Ni
1.00(I
O.553 0.622 0.544 0.541−0.545 −0.155 −0.213 −0.400 0.435 0・401
0・617
Zn
0.002
0.036  ̄0.205 1.000
Ti
Cu
0.237
0.019
0.523 1.000
Ca
0.214 0.392 0.318
0.142
0・022 1・000
O.274 0.760 0.699 0.772 0.580 0・250 0・093 −0・287 0・260 0・246 0・443
−0.138 0.696 0.744 0.7010.603 0・298 0・016 0・174 0・080 0・009 0・207
O.705 1.000
0.442
0.805 1.000
Hg
−0・Z21 0・673 0・534 0・767 −0・718 −0・543 0・119 −0・321−0・278 −0・139 −0・197 0,382
0.819
0.935 1.000
Pb
0.093 0.635 0,678 0.662 【0.478 −0・260 0・046 −0・143 −0・052 0・017 0・088 0.380
0.529
O.902 0.151 0.099 0.175 0.041 0.029 0.198 0.342 0.121 0・719 0・439
0.818
0.901 0.884 1.000
As
W.D.:Waterdepthatthesamplingsite
0.196 −0.173 −0.2朗 0.147 1.000
Appendix14 AnalyticaldataontheEkmandredgesediments
2792▲Uつ︼ヘエ143︻b‘VつJワ︼3A二b2
八UOl亡U13312■︼33853964
︵Un−ハU︻‖スUハリ几UハU■‖エリ■‖エリハて‖二り人リリ1
N
1
N
NN
NNN
八じ八じ爪V︹UO
.2.1.1.2一﹂
8462252244658236795756B15907
0
ワ〓J53334.44つり222A.272917131︻凸︹凸nUワ︼人︼ 443149ほ362317
71爪V︵U亡J■lエV7ウ︶3473S一︶︵Udロ1〇一bl点じ一7一hこJこソニH一Lリ
。
9エリ∩凸7二U5900q︶3︹810UJq一1311八U10000ハ055261 5
3
221321111・l12121ウ︼■121
2 11
49
4哨
43
05
55
94
3昭
993鍋485961338n21135126633126241紬
45
3〇
3一
鍋5
12
09
44
47
37
77
55
49
69
294470344952954474837309
N
6
227
1
112946863061砿3876指70671835
790
ぬU0
6U1
1.一
99
4史
5人
︻b
4二h377︻−256115︻U︵U▲4233■b6
9
557576一b551411134
13
二J
︽b
21
2 5949
756
512
一l棉
766
518
〇O
lq
9只
U6
U︵67163︵U5上U<U一qOロ亡U3853456q
66川n8124n13213nn
1
6︶n
n
D亡一
柑﹀
15
81530778577
131。
。
1918031411舶餉33772457419307
50
指7
53
07
65
80
75
39
一49099021061724207弘1591821649779
9
1
7
3
45
93
一6
94
55
67
72
65
5錮
7 707888
(L)notanalysed・N▼D・=tJndetectable・Analyticalmethod=(C)colorinetry・(AA)atoTllicabsorptionspectrophotonletry,(ⅩRF)Ⅹ−rayfluorescerlCeanalysis
N
一−
1
−−
2
−−
9RUnU9977UO
.3.5.4一3.4﹂ 4
4343443442404242443523436434■
3917川柑16172261579211115於2
72
38
27
72
22
62
25
79
49
加
。一2515∽箭17諾312m44け6261612931
14邑
14。
321
7ぞ
O96900701n〓J135Z212560614∩906▲
︽bqUUORU﹁∂nVワ†4:︼l
r
.2.3一
32 13900
33 503()
−
慧∵1
32
31
3
’76.11.20
1
4
5
8
6
7
10
II
り
33
ll、
34
35
23
36
16
4
4
17
7
6
7
1ZZ14334413433445 21Z24221112
7‖7▼
。
二
::
7ニ6.
12
38
39
40
41
42
43
44
45
46
47
一43245170
’77,11.4
C;
X
’76.1l,20
A
B
C
D
3
。
▼
25▼臥9.6.仇97.L17▼1▼3、L8.一L9
47
.2
一<U2q︶97‘VO9121▲り几bq︶4﹂﹁ワ∵4252・4326 ・
19
404275744632845595053461956681ほ一37指8639016345銅222124806120耶668674654280664359595235禦466738㍑讐21
2
ワ=UOOOn∴Un=UOOOOOOOOOnUn∵nOOOOOOOO840ワ︼∩﹀nUnO8SOO5091
〓一一26〓一
2.33 0.45
2.()3 0.31
255 038
132965
2
23.423つ︶32432つ︺つ︺23ワ︼2つJ
3
一
ノ
ノ
3
2八U210310■nUAl只りq
−−
5662飢957172037301946973縄549434649〇
2
−
2
‘V47︵U3q︶nUOロ︵U︵り5Jrnて403︻bnU
蛸66躯17粥7749別2507679320620948砧mご
3
0000−1U人〓二UlハリO−n〓U︵UnUO<UOO
−−
ー360・−▲︵U9一りqU2只U‘リー12亡Jlフ〓U
55354■ヽつり︹UつJ︻b6亡U■4︻/つJウ一40n
37 4
2。749。銅⋮67.45515。574欝5。749775。m576試禦㌶95762613。湖⋮662讐45。闇49。試63608。64947。85723。4。。75。㌶諾禦
−−
1580 13RO
150n 1440
65ユ
ー
146() 123(I
3840 4000
4650 5400
45
198
27
42
122
190
113
13
02
00
nZ
55
24
65
71
15R
−
96一q3.4ワ︼︻∠4317几bOZ1480n
−
ノ
ノ
2一1201■﹁50‘U59βU20︵H7ZO
3631一l〓一部封一一29一29一21〓一
2
−−
0.4Z
29
−−
0.36
93
1()50
925 3
668
564 3
147() 1:Z80 4
1・120
1120 3
1310 11)20 4
1130
972 3
1340 1160 3
956
764 3
1050
856 3
276
339 〔)
893
472 3
184 203 0
570 689 2
34:Z
339 1
816 719 3
1500 1600 3
755
6】3
5
701 731 3
770
757 3
843 785 4
745 725 2
741 753 3
308
415 4
769
744 2
867
936 4
714 823 3
623
748 2
764
677 3
25 2
29 2
l一1001142っJ4332つJつん432■l
2
Ti Ni Cu Zr) Pb As
Fe
Mn
(%)
(%)
(〟g・gり
N P Si K Ca
(〟g・g■) (%) (%)
Sampling Samp】iIlg
site
Dale
ADpendix15.1AnaIytlCaldataonthesedimentcore
Samplingsite:A.Samplingdate:11/20,1976.Waterdepth:4.Om
N P K Ca
Ti Ni Cu Zn Pb As Rb Sr Hg
(〃g・g1)
(%)
2 5
7
6
q︶
6
6
0
7 エリ 2
9
5
5 5 ⊂J
9
AA
0.24
0.23
0.ZO
O.13
0.08
0_07
0.15
0.14
7
︹J
﹂一﹂一
2
d.
﹂
5
4
.4
5
・″nU
6
亡U
6 7一 爪U
nU
5
ごU 5
(.)notanalysed.Analyticalmethod:(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)Ⅹrayfluorescenceanalysis.
nU
八U
8
5
5
2 2
U OO 7
5
5
ハ⊂0
6 6 6 4 ご亡
じU ご
U64 dU
分U
7・亡U
亡U
48
7
︹B
5
1
910■
5
ワ︼
00
00 <U
2.27 0.27
ごU
2
784 4.76 4.61 り.50
240
d.
755 4.79 4.52 0.48
3
711 4.72 4.3ア 0.46
900
7
890
2,29 0.29
ハU
Z.28 0,25
320
9
3
RU 9 7 4
3l ワ
︼
1 1
360
つJ
740 4.53 4.40 0.44
0 4 一q l
4 6 4
5 4
J’こJ4
890
9
11
2.23 0.27
4
3
340
9
776 4.12 4,52 0.46
1
7
900
2,39 ().31 410
<U
∧U
2.40 0.34
3
759 4.71 4.51 0.44
320
7
781 4.77 4.53 ().43
5
2.27 0.30
3
380
7
761 4.11 3.92 0.33
834 4.91 4.98 0.44
1
4
840
︵む
4
2.26 0.26
2.66 0.3Ⅰ 990
2
3
3
380
4
410 1.73 1.68 0.18
6 0﹂7nO
0
360
6
2.07 0.15
5 30
一川サ
291 1.53 1.47 0.17
2、ワ︼
330
︹XU
0
2.21 0.15
Z
4
︵B1 ﹁〇
ワム
9
8 3 8
6
0
4 16
1
2
359 2.05 1.83 0.18
4
2
0
00
490
5 57
9
3
5
2.00 0.14
2 75
0
4
1
15 39
DO
ハリ
0
T⊥
683 3,79 3.25 0,29
︵XU
5
0
2.39 0.31 1290 1050 4.21 3.88 0.36
22 54
2.23 0.29 1000
410
380
5 76
3 00
4
1
3 2
1
1
5
2.29 0.36 1580 1380 4.49 4.13 0.36
27 58
940
(腫・gl)
XRF
AA XRF C XRF XRF
5
3
0
3
28−30
0
26−28
0
24−26
9
2224
1
18−20
20−22
3つJ一2 3 9一丁l ∧U 5 只り
りん l nU
4 ︵‖︶
1214
1618
O
7
3
10−12
14−16
爪U
4
讐/1
8−10
︵U
3
−
68
XRF
7
5
4−6
0
4
24
(%)
(〃g・g ̄り
(%)
C
6
L
11
05ハU592742353爪U5
0−2
Fe
Mn
(〃gすl)
2
3 ∩∠ 2
4
2
4
1
Appcndix15.2 Analyticaldataonthesedimentcore
Samplingsite:B、SamplirLgdate:u/20,1976・Waterdepth二3.Om・
N P K Ca
(%)
Sr Hg
Ti Ni Cu Zn Pb As Rb
(%)
28 56 361 61
2.40 0.41
813 4.20 4.47 0.54
29
56 429 64
q︺
712 4.52 4.45 0,51
27
52 430 59
6
920
699 4.72 4.38 0.50
29 47 200 50
3
2
2
44 176 44
400
2.36 0.35
910
741 4.42 4,24 0,50
28
46 175 45
400
2.50 0,33
900
705 4.42 4.45 0.50
20
44 154 37
Z.29 0.33
870
719 4.54 4.24 0.49
25
43 146 43
751 4.50 4.42 0.53
30
42 152 37
390
370
2.42 0.32
950
25
45 157 43
980
735 4.90 4.39 0.51
28
46 152 45
2.36 0.30
890
672 3.55 4.01 0.48
25
43 147 44
661 3.85 4.26 0.52
26
44 151 42
360
310
2.38 0.32
720
2.40 0.31
900
809 4.63 4.44 0.52
25
42 147 41
390
2.45 0.30
870
750 4.48 4.31 0.50
27
44 149 42
400
2.34 0.29
900
778 4.61 4.21 0.51
17
41 146 42
亡U 7
430
35 7 55 4
2 史
7
4U 4
1
780 3.99 4.61 0.53
2.34 0.33
亡U 4 4
1
780
410
1
1
2.54 0.34
9
2
310
1
0
5 5
2
44 190 46
30
7
2
23
719 4.58 4.31 0.50
7
2
737 4.56 4.56 0.52
920
3
3
850
2.28 0.33
O
2
︵U 爪U O
爪U ∧U ハU ハリ ハU ∧U 八U <U
4
7
∧﹁. 7
6
八1
U 7O 79 1 9
0つ
0J 35 1
3 9 1
9 9
2.37 0.37
420
1
2
O ハU
nU
4
ハ
U O
5
9 ∩8
2.41 0.36
920
1
1
2.35 0.37
4
3
4 34 4 41 57﹂﹁
912 4.68 4.48 0、51
5
2.40 0.42 1130
0
600
5
630
27 51 328 56
2.50 0.45 1350 1160 4.64 4,50 0.53
0
2.35 0.42 145け 1270 4,55 4.55 0.54 35
5
6
680
920
50 31Z 56
1
25 49 308 53
2.32 0.42 1680 1420 4,55 4,47 0.50
AA
3
99494979510
24 50 308 52
2.38 0、42 1500 1440 4.48 4.38 0,51
(〃g・gり
XRF
つ
1
4J 4
AA XRF C XRF XRF
(〟g・g ̄り
︵b
亡じ
6
0
りん
3
40−42
ハU
3840
9 0 6 3 2
qレ 9 9 ︵‖凸
3638
O
爪U
ハリ
2
4
7 8
2
2
34−36
6
八U
3234
<U
OO
<U
7
9
30−32
2
q︶
28−30
XRF
6
3
5
2
9
9
26−28
︵U
22−24
24−26
4
8
2
9
9
20−22
1
ロ0
18−20
9
■−
1618
5
14−16
9
、∴麗
1214
6
7
2
10−12
2
9
8−10
︵∪
68
八じ 爪U
7
5
6
2
2
3
4−6
,1 0 2
9 9 9 9
2−4
(〆g・gり
(%)
C
02
Fe
Mn
(〃g・g ̄1)
0,18
0.19
0.22
0.18
0.21
0.18
0.17
0.16
0.18
0.09
0.10
0.11
0.10
0.08
0.08
(−)notanalysed.Analyticalmethod:(C)coIorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)XLrayfluorescenceanaIysis.
6 6
9
﹁
Appendix15.3 Ana】yt上calda【aonthe5dimerl亡COre
SampLingsite:D.SampZingdate:11/20,1976.Waterdepth:4・Om・
9
O
4
0
pU
4
RU
230
︵U
7
ウJ
g
緋
︵占
ウJ
Z
欄
q︶
3
り山
4
7
3
5
J†
ワ︼
770
3
ワ山
21
1
0
53
2
l
3
57.2
55.7
54.8
53.D
2
3
■〇
▲‖日
∩︶
l▲
2
5
5
ハU
A﹁
︵O
∧U
qU
n
9
4
▲‖己
ハU
▲.、D
▲パ7.一’
4
︻XU
nU
亡U7−
6
9
3
7一b
6
6
6
7
−▲
6一hU
O
5
7
7
ワ︼
﹁∂
6
■4
6
0U
∩乙+貞
几〇
U. 〇
爪V
▲U 〇一誹
9 6
5 6
6 2
■.〇 5 5
8ノ
﹁〇 6
O
つJ
︵U
l1
5
7
5
5
7
O
9
6
几U
2
︵U
2
爪V
O
′0
O
9
︻‖b
エリ
︵VU
仁V
O
0
5
﹁∂
QU
5
ハリ
7
5
Z
AT
9
6
qリ
βU
﹁つ
06
1131187111533364
0
5
5
9 つJ 9J
5 6
7 ′D
q﹀ nJ 6 3 7 9 9
3 つJ・4・4一3・4・A﹁
59.9
4
3
55.3
9 爪V 6 q︶
っJ J︼ 3 3
53.2
1
3
52.6
QU 1 00 6 2.4 7 ︵h︶ 6
﹁○一h︶+⊂J 5 6 5 6 ﹁J 5
56.7
9
5
53.2
3
0
22
3
1
5
■U
l
9
ハリ
qU
76
3
つ]
7
1
3
2
O
5
6
ハU
ハU
0
3
ワ︼
2.4
9
7
ハU
9
3
∩>
7
5
3
qノ
O
ウん・l一3
▲U
▲U
QU
1
O
0
4
5.4
︻〓U
T−
つJ
O
5
4
ウJ
5
5
3
5 4 JT
A︼.4 4
▲︼ 4 4.4
一7
3 3
9U
つJ 3 ︹J
9
q﹀
0 7
4.4.4一■l一■A︼・4 AT・一7
l・0
︵リ バU
9 9 qU
3 3
0U ︵U 史U
︻U 爪V O
っJ
OU
nU
︵リ▼
n︶
A・一斗‖︶
O
EJ
︵U
5
3
n︶
■4
爪U U
﹂’.4.4
つJ 3 3
O O
3 3
O O
一寸
3
つJ
O一lU
八り
■U
<U
O
八V
人U
O
︵U
nV
八‖Y <U
3 3
3
0 爪U
7 免じ一h
75673566967。62362。65766669169。64。624659
2
︻U
抽出8987鍾96979890968484朗㌍
n︶
nU
731
凸J
八U
l
Ol
7 0
∧‖V
2 515
9
只︶ ︵U 7 3 9 qU・4 7 1
l l l ∧U 1 0 0 QU 只︶
5 3 広V ′0 0 3 ︵X︶
3 9 35 つ
J 3 3 3 3 3 3
2
3 nB
3
6
31 3﹁∂つ3
J
pU 2
O ハU
1
2 0U 5・4 1 1
q︶ ︵U O O ∧U
ac再vationana】ysj5.
−でロー.
1
2
QU
7
︵U 9︼ 4 6 qU一U 2.4 6 見︶ ︵U 2 4 6 QU
1 2 3・4 5 6 7 ︵b 9−1,l l l ヽ1 2 2 qム 2 2 3 3 ウJ 3 つJ
八U 1 2 へJ・4 5 6 7 hO 9 ▲U りん 4一b 立U ︵U 2 4 6 QU ▲‖U ワ︼.4
1 1 1 1 1 つ] ワ︼ 2 2 ウ︼ 3 3 3 3
1 5 兄 只
八U O ︵U
1
つJ nU ■4 5 2 3 ︵U ︽U 3 7 ワ︼ 4 ︻U 9 1
3
一﹁ 4 ﹂† ﹂T 4 4 ▲b 3 ′† ▲4・4 5 ▲4 5
ワ︼
ク︶ 2 2 2 2 Z 2 2 2 2 2 2 りん 2
9U
揖08
4
0
n8 1 4 つJ 7 1 q︸ 2 7 7 7 G︶ ∧U U
1 2 2 2 1 2 1 2 1⊥ l ヽ▲ 1 2 ︵′−
1
q﹀ 5 9一1 3 7.4.爪V一b 3 ■4 5 7 ︹J
.4 9 7 7・一7 3 3.4 ウJ 3 つJ 3 3・・4
64聞575755495347粛5351515150
妃U 5 3,1 3 3 爪V 5 β ハリ O O ︵︼U・4一
QU 8 QU PU QU 8 RU 7 7 8 ∩古 ︵VU 7 ︹凸
5
1
0
∧U,⊥
3
54.1
■〇
3
ウ︼
3・4・4
ト)not analysed.Analyticalmethod:(C)coIorimetT・y,(AA)atornicabsorptionspectrophotometry,(XRF)Xィayfluorescenceanalysis,(NAA)neutron
53.6
333▲︼3・43333・ヰA︼333434ノ733つJ33
2
q︺
3.710.37 18 50 250 62 90 143 10
1.110.39
qU
4
.1月.2J一1.2.2.2J.1.1一1一.1一.1﹂
﹂
14.5 61 5.612.148.6
20
51.4
柑
15.7 42 5.31l.647.1
3.39 0.40 15 47 237 70 98 151 8
1.09 0.40
0
5734
3
3
2
1.け5 0.39
599570577560533605538550506493㈹499434409366386359381372339312309353324
1.07 0.45
(〝g・g1)
(〝g・g ̄1)(頑㍗g ̄1)
51.7
26
1(I.154 5.412.749.0
21
8
3.飢lβ.3タ 24 j7 24き 66 90 144
23
1Z.8 52 6.312.346.5
29
3.90 0.40 22 52 254 68 94 149 15
13.7 53 4.712.850.7
17
7
XRF NAA
XRF
C NAA XRF AA XRF C XRF NAA XRF
Hg Co Cr Cs Sc La
Ti Ni Cu Zrt Pb Sr Rb As
Fe
(〝g・g1)
(%)
(%)
Mn
N P Na Ca K
(〃g・gり(%) (%) (〃g・g ̄り
恥h(Cm)さ孟;
Appendix15.4 AnalytlCaldataonthesedimelltCOre
Samplingsite=E.Samplingdate:8/5,1976.Waterdepth:75.Om.
37
11
4.
44
47
66
47
61
2.
46
60
3.2.2.L
46
□U
l▲
4
▼
.
1
2
.
7
q︶
■﹂J
9
5
56
5
4
54
3
53 50
9 一’
56
1
7.5.6.
53
爪U
55
9
7
¢U
.4
ワ︼
3
一b
6
5
4
3
仁U
一’
3
4
︻U
■〇
■.〇
4
9
︻U
.4
O
4
﹁〇
5
仁U
つJ
5
6 ⊂J
n︶
0
5 4
2 ︵占
O
・4
4
2 2
4
2 Z
ワ]
O ︵U
O
Z
O
3
3
O
2
2
O
3
3
O
9
つJ
2
3
.4
O
4
ハU
4
O
・4
O
5 5
﹁∂
3
O
4
八U
.4
7
・AT
7
.4
¢U
.4
⊂J
7
つJ
8
9
4
9
7 pU 7
7
.4 一4
・4
3
2
00
690 0.75 0.30
つL
50
970 0.69 0.28
⊂J
O ︻U
3 4
・4
2 1 ﹁1
爪じ 八U
O
D 9つJ 3
八U 9
27 2
1
30
870 0.70 0.30
840 0.77 0.31
1
0
2
爪U
Jq
?︼
qU
6
一q
9
9U
0U
0U
6
7
7
史U
n凸
O
つん
9U
l
エリ
l
A﹁
l
nU
ワリ
l
QU
O
l
−−00■
20
8
一† 仁U
Z
8
60 50 20
▲︼U
2
2
ハd 7
ハU
つJ
ハVU
2 つL
aTlalysis.
︵U
2 1
O ハU O
・4 1 6 .4 0 5 7 2
▲4
・几T 4 4 4 ■へ︶ 3
l
︵U
5
4
7
・4
ヽ1
・■り
−4
4
910 0.76 0.32
5
日U
7 pU 7
′0
1 ︻
7b 1
2 1 1
エU 6
﹁n︶+■d一・与
4 6
QU QU
9
4
亡り
4
5
7■b
2
3
エリ
5
5
7
QU
7
3
‘U
﹁〇
7
7
1
QU
7
6
2
O
色U
2
3
O
3
﹁〇
3
8
7
O
っJ
2
DU
9
Pリ
几U
ハU
n凸
7
.4
7
1
︻じ
ハU
3 ∧U EJ 1 9 4
O.L O.2.3.乙
一7.5.6.臥
9
L
9
っJ
9
ハリ
ハU
q−
5
2
0
4
3
4
q︺
・4
7 ▲¢
U ︻hU
b ︻b ︷b
7
6
﹁〇
4
︵U
2
1
O
5
6一
60
61一
4
3
1
0 6
5
4
.4
1
5
■4
2
80
1130 0.81 0.34
C
1
月
〇
ハb
■.〇
3
爪V
1
3
O
1
︵U
QU
7.
2762つJ
2
9
7
5
2
2
.4
9
.4
Z
20
970().79 0.33
C
6
︵U
AT
0
∩8
nD
2
1
0
7
nO
∠U
3
3
80
840 0.79 0.36
㌣
1
5
7
3
6
2
叩40
1040 0.81 0.34
‖
7
nU
1
.バー.4
2
2
70
l170−0.74 0.36
′
︹占
O
■4
5
2
00
1ユ90 0.80 0.35
gg
爪U
∩る
4
︽b
・A..4
q︶
4
3
爪U nU O ︵U O 爪U O ︹U ︵U ︵U ハU ︵U ︵U O ハU O
n
U 9 U3 53 63 一︵
8 7 62 3爪V
・4 9 99 6︵U
3 U爪V
3
0
A︼︻﹂
2 Z 2 2 t
2 7
2 ワ︼ lQU
り︼l▲
l l l 5
l Q
l 17 7
3
0 ∧..U O 八U O O ︵U ハU ハU ∧U ハリ O
4
1 ﹁〇 つJ On 7 エU 2 QU O 5
0U 八U ﹁〇 仁U 6 ︵U n8 ・4 1▲ ▲t 1 2
馳
1040 0.77 0.3Z
3 6 1 7 3 5 6 史U J︼ nU 2 2 QU ︵U 9 2
︵U nJ 4 2 3 3 3 5 ■﹂J ■4▲+一︼ 4 ・4 5 5 ︵b
2 つ] ワレ 2 つ﹂ 2 2 2 Z り] 2 2 2 Z 2 2
00
1060 0.710.36
3
2
4 っ
ウJ
J ■
2D 29 27 Z5 つワ
︼︼ 20 20 ?1
︼ 9
2 ︵
2U 1DU
1 7
1 7
1 ︻ノ
7 ︹ヱ 7 0 00 7 6 7 ∩凸 爪U ハU Z 2 Z l 1
1040 0.75 0.37
A
6
3
5
ハリ
2
‘5U 一d
︼ 7 6 00
b 6 6 ︻b ‘U
り少
d﹁
T−
(−)notanalysed・Analyticalmethod=(C)colorimetry.(AA)atomicabsorptionspectrophotometry.(XRF)Ⅹrayfluoreseenceana】ysis,(NAA)neutronactivation
.q4
1 0 0 9 5 エリ ﹁〇 6 3 00 5 ︵U 7 Q0
︼ q︼ q︸ ∩﹀ 9 qU 9 0∩ 7 7 7 7 7 ′0 ﹁〇 ︻/
3
0.43
−
︹鵡
4.83 0.43
4
0.41
一4
4.69 0.39
▲斗
5.01 0.43
■ヽ︶
4.92 0.40
4
6
4.82 0.43
n
3U ヘ︻
リ′−
6 9
3 7
2 9
仁U1 3qU
5 7
1 ・
へ4
J 一
1b 91 00 n3
J 9
3 5
2 9
4.98・D.4D
1220 0.7()0.34
Cs Sc
P Na Ca K
4.80 0.35
1(〉20 0.59 0.31
(メg・g ̄り
(〟g・gl)
Ti
(%)
Ni Cu Zn Pb Sr Rb
Fe
Mm
(%)
(〃g甘1)(%) (%) (〃g・g1)
C NAA XRF AA XRF C XRF NAA XRF
恥h(cm)∼あ
Appendix15.5 AnalytlCaldataonthesedimentcore
Samplingsite:F,Samplingdate二8/5,1976.
Waterdepth:87,Om.
P
Depth
(cm)
Mn
・J†gゴニ・
qU
−▲
3
3
9
7
2
nJ
5
1
3
3
5
2
3
nO
OU
1
9
4
1
■4
−
O
3
1
1
nJ
6
ロ0
7
00
−
0
−
O
2
<U
5.26
−101
<U
2090
2330
(AA)atomicabsorptionspectrophotometry.
O
2
5.36
(C)colorimetry,
2
5
6
2
9
1820
2770
(一)notanalysed.Analyticalmethodニ
八U
1
835
O
5
9
9
2
1
4648
3
0
6
40−42
42−44 1080
44−46
O
1
2290
O
7
2
nU
8朗
<U
3
38−40
3030
2
7
3638
一
﹁〇 5 5
3
1
2
6
0
34−36 1200
3040
5.12
O
2
2
32−34
4
史U
只U
0
3
交じ
2
2840
■4
爪じ
7
30−32 1170
4
6
亡U
0
3
6
QU
1
980
爪U
7
3
2830
4
亡U
4
24−26
26−28
﹂−
9
2
1J
⊥
ウ
0
6
3
2
2
爪U
5
7
3
ハリ
ハU
22−24
5
<U
7
18−20
2022
5
O
4
5
O
O
16−18
2
<U
∧U
14−16
5
O
<U
3
5
O
O
12−14
■月︼
<U
︵U
8−10
1012
O
ハU
6−8
4
4
O
46
nU
O
2−4
4
<U
爪U
02
00 ■バ︼ 0 3 1 3 5 ﹂7 9 只U 1 2
9
6 1 3 1 ︵凸 9 9 9 1 ∧.U
6一1
.2一.1
AA
7
4
C
Appendix15.6 AnalytlCaIdataonthesedimentcore
Samplingsite:G1・Sampllngdate:4/4,1977・Waterdepth:97.Om.
2.65
1720
4,70
483
5l(I
4.87
−
1940
49Z
一
026
2.56
O.2畠
2.78
け,70
0.70
0.Z8
0.28
2,60
2.63
4.64
477
5,】5
4.70
0.51
4.73
5.07
5.20
0.52
−
0.52
4.5
5t】
4.6
19.8
4.2
18.3
51
4.0
18.7
.55
5:1
4.4
4.8
17.5
17.6
O2一b3
(XRF)Xrayfluor亡∝enCea六a】ysis,(NAA)neulrona⊂tivationanalysis
 ̄
1.2
13
 ̄
0.9呂
1.09
 ̄
25
」
】47
23
27 19.3 78
68
143
1▲6
16.2
28 196
:Z7
25
−
26
19,7
17.2
230
73
1.8
1,5
1.9
1,9
2.0
2.5
2,0
1.7
1.7
69 1.9
18.7
25
23
7!〉
29
20.1
73
2.0
78
2.0
2,l
83
2.3
20
−
167
1‘土1
64
23
−
185
182
26 218
26
30
 ̄
70 1.9
187
70
一
26
25
−
18∩
−
2.0
78
1.9
Samplingsite:G−2.Samp]ingdale=4/4,1977.
36.2 12
386 11
46
48
42
40
42
41
41
41
43
7
86
40
7
80
6
8.3
41
39
1()1
1畠1
66 150 178
4Z
」
 ̄
154
146
7()
42
l.04
148
40
2 10,0
2
6.9
3
225()
8
203()
8 1970
3
−
1 1830
86r〉
970
980
2340
612199991000820111月u︹0
49
「
107
】41
155
155
4.g
3,7
3.0
0.97
0.16
0.96 012
1.04
1).07
l,06
0.〔嶋
1.01
0.06
099 0け7
1.0の
1.D9
1n6
】.01
1.01
0,99
l.06
l.06
106
1.00
1.04
0R3
l.OJ】
0.98
−
0.10
−
0.10
﹂一.1.1一.1一.1
4.3
54
1()9
400000Z。0。川30州9080馴004。g。関川仙407070
38
58
26
301
68
46
l
59
4.6
30
25
25
28
087788R8呂88989889888
4.5
4,Z
6【)
65
4f)
︵U
55
56
26
145
02A=6:h
︹U2468の246<nハリ
4
4.5
183
154
24
27
468024680Z46畠02468
4,3
53
29
24681111122Z2233333
02
53
l
4.8
205
27
148
 ̄
42
〇一.9一.〇
64
l10人U
4,4
5Z
150
41
2
4.4
36
62
〓一L。一=
71
55
17.4
58
16.7
69
18.8
68
34
4()
20.6 75
25
17,3
71
15.2 (〉7
184 67 1.9
1Rの
68
17.1
63
「
27
1t;.9
68
29
31
18.2 70 23
−
Z7
17.7
69
27
26
18,4
59
24
18.4
65
83
47
】44 168
144 17二1
149
44
4.4
78
.
59
3
3.3
n=‖O
54
l
4.6
3.7
130
.7.8.9川.9.9.9.1.〇,9.9
4.7
56
55
141
58
808318982773
4.0
51
人じのO
55
333233433343333333444535
0658618157028436746R8528
777鑓U‖ら789呂898877777只︶只 7777
l−1111一1111111ヽ▲1111
333ユ34:34334333333333333
人U9DO549Z428人U1097099176364
l l
O73畠8706=693411ヰ26q4680
t l
385315620688995355只︼7▼4=b4・
l
1
7789989C99988呂A988898888
R
53
147 178
()7
6
7一94一85
−
0.GG
8
n.7:Z
149t)
4,58
473
157
l‘18
64
二12
一.3ふ
.6一6一.8
0.66
4.57
4,64
−
1(〉20
36
147
1
一
2.60
2.77
143
57
‖0・6L。L。‖
0.69
0.2且
−
58
57一57粥一53
0■26
0・65
13514仁V182605693699Z O
111222223っ︶33344
069
234543151151551556575555 11111111111111111111111
−
∩=リ14103121222111Ⅰ3324333
067593064910213ブ〓8︰b1927
0▲58
4.70
136
185
33一26一祁一31一2928
り・61
】970
4.65
0.27
137 177
_
2.70
4.82
1Ⅰ4 150 158 139
9Ⅰ
23∩
46
55
76 174 54
G9
73 153 43
68
6〔1
132
37
73
53
132
:事3
70
55 1:15 31 67
58
13t
二13
66
55 133
31 64
56
1‘10
36
1;6
−
0甜
10100 4.57 4.92
4400
4.55
5.13
250〔1 463 5.23
2080
4.60
4.74
1700 428 430
195n
4.49 4.93
194() 459 5.08
1600 437 −l.27
慧7。1鵠76。補749認諾⋮捕66。餌拙⋮冊858891752655諾
06R O.29
0.62
−
ぐ%) こ%)
.5 .5一.5一j
lり︼−J45681
069 028 2.31
0.77 (),3二1 25Z
O80 0.3▲ 2.75
0.77
0.32
2,76
070 0.30 2.6ひ
0.74
0.33 :Z70
0.75
0.30
2.89
0,65 027 2.7t】
n.68
−
(肌▲■)
XRF XRF NAA XRF
3933詣30332629313434調2931一333329二
一5
29
9=65m434252534448= 4〇
q
−−ON■
苦い㌻㌻㌻川ほ‖1618M器24莞芸34莞4。
tk〆h(cI¶) は)サ
牒
Appendix15.7 AnalytlCaldataonthesedimentcore
Samplingsite:H.Samplingdate=4/4,1977・Waterdepth二89・Om・
309876ニU
5一.3.4﹂J﹂,9.8
n。。。︹
0988川877070
01〓一一〇一〇二一一一=一=
9135262926293031叩262728252631293029四2831
17。.811訓173146皿19Z147156一159.55一で14114。13814。162.7。
9.9.7
32
・
43
・
1
・
■
=0・7
6針7.99.8飢〇.仇7臥7.7.5.一7.臥7.6.7.7、6.
。
0
414943別645847556443一一一
1
9.32、6.乙4.臥5.4.〇2.仇〇.㍗一2.3L臥l9.7.
,。・4ゴ一
一二ノブ=
。
725651544651535052515052引57515353525255誠56
6.8.9﹂川.6
444643434445464949474850帥誠50餌505151495551
..6.1
1﹄
4.2.2.15一﹂J一.〇一.2
l1−.
0﹂.〇
7 ︵8 9
0.1l
j,〇.9.〇
3
0.1二1
0030帥聞0030卸30002080餌訓20細別訓00洲700030
即納㍑8783郎9292857787797974
5686詣3130321543光49一3226一5〇5〇一5〇一60
6れ︶
0.13
70746869626366666157616262朋忘7469駈696。65
7136け2528270531日18‖19一18‖一〇7一39
(−)undetectableoTnOtarLalysed.Ana)ytica】method:(C)co)orimetry・(AA)atomicabsorp(ionsp∝trOphotometryI(XRF)Xrayfluore監enCearLalysis・
(NAA)neutronactjvationarlalysis・
747465717071門75666666646971一7175677475舶70
0.18
捌04。川Ⅲ洞78〇一隅緋ふ一柵47。一皿柳1・。
0.13
Lu
〇
9.臥針臥67.軋9.8.5∵L臥9、7.針仇仇臥08.9.
0.11
‖▼8.9.臥臥q.9.108.軋ゝ8▼ゝ7.−8.ゝ軋−8.−9.
0.10
(〃g・E1)
■
㌻16810ほ‖16182022242628卸323←誠罰刑場.1.〇.〇,〇.1,〇一
〓こ■‘
0.09
K
N P
XRF
AA XIくF C XRF NAA XRF
xRF
As
Rb
Fe
(%)
Ti Ni Cu Zrl Pb Sr
(〝g・g ̄l)
(〝F・g▼■)
(〟g・g ̄り
(%)
Mn
(〟g・g ̄▲)
(%)
(〝g・g▲l)
ⅠL.
拠pth(cm)(%)
6
1
7
6
1
6
3
7
0
6
6
つJ
5
7
7
7
QU
9
4
ウJ
7
6
3
9
7
︵=O
7
5
4
0
9
9
3
6
7
1・4
4
9
5
4
︵0
9
6
4
2
3
史リ
9
エU
A
5
L
2.4
9
E
T
l qU
つJ 3
B
2
a
2.■q
1
u
a
2 0 日U
﹁D 3 4
3
l
2.4
O
つJ
︻U
3
l
3
4
7
0
5
■U
5
q︼
5
﹁〇
1
2
﹁つ
3
2
N
1
﹁▲
1
2
1
1
1
1
5
tD Y
m
・い
2
只︶
6
3
3
3
0
つJ
4
q
2
3
1
2
3
2
4
1
■・1
6
4
つJ
3
uU
つJ
4
9
1
︵U
仁U
3
O
5
り︼
4
6
1
qU
3
2 0U 4
l l
︻LU 9
〇.4
7
l ワ︼
l り︼ l
l l
り︶
2 6
7 0
1 2
つJ A.︹∠
1 2・l l
■4 7
2
■4
3
2
■4・
2
O
5 3
﹁〇
4 qU 2
1
4.4 4 4
︵U 5 7
つJ.4.4 3 5
5
O
5
3
ハU
5
﹁〇
9
5
4
5
O
人U
ワ4
︼
▲
つJ
7
8
QU
3
1.4
5
A﹁
3
5
︵︼U
3.4
d
‖
pU
J・■4
5
d▲
0
3
55
q︶
4
■4
5
0U
﹁〇
1
ハリ
6
5
5
9
5・4
9
1
5
∧U
9
1
l
7 1
6
l
7 67▲L6
U
八U
2 3
()undetectableor not analysed・Analyticalmethod:(C)colorimetry,(AA)atomic absorptio−1SpeCtrOphotornetry.(XRF)Xray fluorescence
analysis,(NAA)neutTOn aCtivation a11alysis.
−
7
2
9U
1
nb
﹁〇
−
7
7
4
q︶ 八U
2.4 5
7
﹁コ
9
■4
5
1
6
0
5.4
9
0
5
5
2
︹凸
−
7
6
QU
つJ
7
﹁D.4
5
5
3
O
︶U
−
7
5
2
1
5
1
5
∧U
1
0
3
0
11
5
ハリ
5
︻U−U
366394969272一79〇3一92一879798
O
O
≠U
S
O
︵凸
−
u
2 5 5 2 史リ 7 5 1 qU 6 5 0 7 3 ■1 9 ﹁J
5 5 ¢U 7 5 鑓U 7 4・4 5 5 6 5 0U 5 2 5
7
鑓り ︻U 9 7 3 ︵U ■4 4 5 1 2 2 7 4 ¢U 5 q︶
つ︺.4.一︼ ■4 5 5 4 4 3 4 4 4 4 4 3 3 3
7
9
7
9
l
9
QU
4
1
5・4
︵U
ハU
O
q︼
7 nU 7 2 qレ 3 q︶ 5一人V 3 5 ︹D 6t′ ′0 0 1
7 7 ﹁D ﹁つ.4一かU ﹁⊃ 5 5 5 仁U 5 5 5 5 5 5
Q︺.A
1
﹁〇
7
n>
5
︵U
几U
O
爪U
B
人じ
a
︵U
O
.b
︵U
645
2
7
4
2
︵U
O
︵U
︵U
︹D
2.1
5
︵U
︵U
ハU
︵U
5
nU
q︺
6
7
2.6 ().39
0
9
9
3
O
5
爪U
O
O
︵U
5
7
1
3.4
74
8
8
0
pU
︵U
ハリ
O
八U
9
9
︵U
≠U
O
︵U
︹U
八U
1
O
74
7.2
0
0
3
︵U
︻U
∧U
爪じ
nU
7
7
▲b
2
1
ハる
5
7.5
513 10.2 14.7
3.8 17.9
621 10.9 15.3
1.6
5.4
1
5.d▲.4
O
5
爪U
︵U
︹U
O
O
7
7
︵U
︹U
6
7
ロリ
q︶
9
39.5
2.0
2.5 15.4
78
3.6 15.3
7.9
0.50
4
5
0
O
O
︵U
nU
んり
C
0
1
g
一
一
42.6
1.2
1.2
−
40.4
0.8
一
一
636 14.2 16.2
3.2
0.46
3.1
0.49
2.8
ワ︼7172766日UO9■・l
0
.2﹂.〇﹂﹂.〇一.〇一.2.1▼2一.〇.2
5
0
O
ハリ
O
O
O
㌢
′
7
0.52
39.9
一
一
1.4■ 41.4
1.6
8.1 84
qU 7 1 9 1 6 よU ﹁〇 7 9 9 7 RU 爪U ︵︼U
3 2 2 1 2 1 ︼l l,1 1 1 1 1 ワ︼ 1 2 1
︻U
nU
O
︵U
.7一.7.7.7指.〇
〇
C
02394爪U
︵U
︵U
ハU爪じ爪U▲UOO
0
0
︵U
︵U nU
161682878373一
86一27一〇8一〇5一1614
︵U
O
︻U
O
ハU
H
gg
一77一78〇3一22一〇820
8.一針針.8.9.臥
▲b
6
0.55
79− 3.8
3.7
79
80
16.1
0
S
O
2.40﹁〇・40ハリ937S
99
︵‖U
ハU
八U
ハU
ハU
9
q︶
85 3.1
8.2
3.6 17.4
8.5
0.8 1.3
40.2
0.9
42.2
749 11.0 17.2
4.0 16.2
8.0
7.7
12.3
▼9.9.9.8月.9一.9 ▼一8.9.9一一8.8
ハリ O ︵U ︵U ︵り ︻U
几U
∧U O
C
2 3 7 5 3 6 5 7 4 りん 6 5・4 4 R︶ 0 3
5 5.4 5 7 5 ﹁〇 2 3 3 5 つJ 4 5 2 2 3
ワ︼ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ワ︼
∧U
7 5 1 2 1 9 3 QU.■q l 1 5 1 5 0 1 仝U
3 3 3 3 3 りん 3 2 つJ 3 ■4 3 3 つJ 3 3 2
nU
hU
nU
んU
ハU
QU
6
9 凸ノ 3 6 日U 2 2 dノ qU 1−4 2 八U 5 3 5−4
仁U 6 7 6 6 7 7 5 5 仁じ よU 7 7 6 6 5 ︻b
hU
l
一8.〇.9.9.9.6
︵U
O
O
ヘリ
︵U
7
2
︹る 7 3 9 6 ︹凸
ハリ 1 00 7 7 6
父
5
2
6
88 3.7
7
9.4
63() 12.9 17.0
6
516 13.0 16.7
2.5
3
2.9
3
97 3.3
0.43
一
一
1.0
45.5
一
一
44.5
42.9
577 11.4 15.7
0.13
9.4
16.3
0.8
1.2
725 11.4 15.8
2i,
584 11.8 16.5
4.1
0.9
0.9
1.9
20
2.2
0.45
−
88 3.7
3.1
6
91 3.8
9.2
17.0
一
−
682 1l.2 16.2
30 0.1l
一−
3
9.1
647 1l.5 15.8
2,0
26
l.2
0.017
5
729 10.9 15.4
2.0
23
2.1
0.50
1.5
47.9
1.3
1.6
−−
l.4
20.7
1.3 l.1 4g.4
21.6
−
4
47.1
1.0
1.1
45.3
l.0 1.2
19.2
−
−
7
l.0
7.7
824 12.4 14.6
3.4
32
2.2
27
只︶
As
5
ー・;■−
(〟g・g ̄l)
2.3
31
23
0.50
32−34
2.2
−
28
0.51
3032
81 3.5
0.53
2830
8.4
0.57
26−28
543 10.9 15.5
0.55
2426
1.8
0.55
2224
1.4 1.3
0.11
0.60
2022
3.7 0.55 2.9 18.6
24 19
0.5()
18−20
83
0.56
16−18
513 1l.6 15.9 8.7
0,50
14−16
0.15
23
只︶
1214
0.8
25
n︶
1〔l−12
1.9
−
0−56
0.54
0.53
810
4
20 17
0.47
68
8.9
0.47
2−4
48.5
−
10
39.1
1.2
1.2
73 3.4
24
0.46
46
2
lト.−
ZO.9
xRF NAA
XRF
40.1
0.8
7.6
23
Lu
15.6
715 11.0 14.3
23
(〟g・g ̄り
0,48
(〟g・gり
(〝g・g▼1)
(%)
(%)
Rb
Ni Cu Zn Pb Sr
Ti
Fe
Na
Ca K Mg
Mn
(%) (%) (〟g・g ̄り
AA NAA XRF AA AA XRF C XRF NAA XRF
(%)
P
gl)
恥h(cm)
−
Appendix15.8 Analytica]dataonthesedimentcore
Samplingsite:Ⅰ.Samplingdate:4/4,1977.Waterdepth:73.Om.
Appendix15.9 Analyticaldataonthesedimentcore
Samplingsite:J.Samplingdate:4/4,1977.Waterdepth:44・Om・
l
朋2513
︻
21
■
DJ
nU
︹凸
0
︵U
1
4
2
2
9
Z
L
A
史U
19ユ7
O
u
B
2
a
2
6 5 7
u 3E
3
りレ
仁U
l
RU
3
9
4
l
2
l
6
7
O
O
1
6
7
1
9
1
一〇2一一〇1m
7
2 ﹁J
9一7一一12
6一LU
714
J︼
N
nコ
S
6
7
Z
l
<U
O
ハU
ウ一 l
12
9 9 1
2
2 2
3 3
A﹁ 6
2 3
3
9 9
つJ エリ
へJ・・勺
4
5
nJ・4
エリ
2
■ヽU
︻b
9
4
︻b
4
ウリ
ワ]
6 9
2
八じ
つJ
7一
7
7
QU
4
7
つレ
︵ソ︼
︵∠
7 0∩
4.A一
7
q︺
7 7
5・4 り﹂ Z
7 7
6
5 几LU.4
Ar ﹁〇
0
5 8
9
鑓U ’1
7
l
︹凸
g 4
︻〓﹀
﹁〇
交じ一‖
l
9
鑓U
2
5
エリ
︻VU
3
3
3
1
nO
ロ0
7
1
7 9
5
l
rrU
6
QU
6
4
3
︻﹂J一b
5
0
﹁∂ 0
2
4
7
ワ︼
l
7
3
り山
OO
0
5
Ar
ロ0
1⊥
7
ー
6
︻‖凸
ユ
7
9U
l
ハVU
7
n8
0
9
8U
FJ
3.4
7
3
l
軍44453739謂433639
爪U
・
11
0
d
5
一一一85一一3045
5
‖
4
l
C
5
11
3
7
7B 7
︵U
0
7S 1
一†
b4
︵0
T
クリ
.h
qU
︵U
振
0
3
dJ
8
ウリ
4
T
5.一q
2
9
q﹂
■ヽ︶
1
5
仁U
っJ
6
O
7
2
4
2
3
5
▲︼
3
5
︻人U
3
3
nU
﹁∂
1
つJ
5
l
7
2
l. ■11
︻‖U
‘U
l
3
1
9 C
C
ト)ur)detectable.Analytiealmethod:(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)X−rayflutrencence
analysis.(NAA)neutronactivationanatysis・
4
l
l
6
nJ
■﹂J.4
7
﹁nU
5
5
6
0□
凸J
爪U
QU
−q 5 6 ‖﹁D
S
2 2 2 ワ
︼
O
2
O
几U
長V
l
O
O
ワ︼
い
9
6
︻︼U
7
︹八︶
い
0.51
3
O
︼
仁U
つ⊥
八U
l
O
︻U
7
nU
O
仁U
2
▲hU
けー
0.50
1
l
O
nV
8
ハリ
O
lト
nU 2.4
l l l
‘U
9
7
l
ノー○∽■
0.55
ワJ
︵‖︶
l
8
︵〓︼
O
l
1.A﹁.4
nU
︵U
nU
9
hU
O
5
︹凸
0U
9
9
6
ハD
4
い、−﹂h
2
2
97102721お02360203
O
(〃g・g1)
3
ハU
5
2
2
9 6 0 ¢U ︵U 7 1 1 7
4 3 4 9 ︵U 9 2.几T 2
0
5
2
エU
00101030704000射30
5
Z
0
4
2
4
Yb Lu
Rb
As
(〟g・g▼j) (〟g・gり
Cu Zr) Pb Sr
Ti Ni
Fe
(〟g・g ̄l)
(%)
(%)
(〟g・g1)
(元)
(〟g・g▲1)
Mn
K
N P
【kpth I.L.
(Cm)(%)
Appendix15,10 AnaIytlCaldataonthesedimentcore
Samplingsite:K.Samplingdate:4/4,1977.Waterdepth:35.Om.
K Ca Mg
P
Depth(。m)(些g・g−1)
(%)
(%)
Ti Ni Cu Zn Pb
(〟g・g1)
(%)
<U
5
4
7
8
1
0
︹盲
∩8
6
3
2
2
3
2
3
3
2
5
3
9
9
︵パ︶
︹B
1
00
1
00
1
7 8
史U ︹古 史U
7 7
7
亡U
4
6
RU
q︶
9
8 8
1
.
4
7 5
9
4
3
ごU
3
3 2 3
7 6
28
1
28
︹uJ
28
29
1
3
1
28
6
30
4 1 1 2 4 7 1 00
.4 4 4 3 3 2 4 3
1
33
9
1
31
1
l
7
3
1
29
4
4
3
3
9
3
(一〕notanalysed.Analyticalmethod:(C)colorirnetry,(AA)atornic absorptionspectrophotometry,
(XRF)X−rayfluorescenceanalysis.
1
978 4.37 4,52 0.60
33
1
4.64 0.6l
35
1
2.45 0.43 1.00 1270
−
41
00
944
36
1
−
5
リJ 639 37 2
<U24 3
4 日つ
2.40 0.40
1
4.74 0,61
1
−
1
− 1140
2.26 0.39 1.02 1410 1030 4.67 4.50 0.59
つJ 3
690
−
4.36 0.57
3
−
2,40 0,40
−
4,92 0.64
3
−
840
1000
−
−
3
2.26 0.36
1150
1
2.43 0.39 0.99 1420 1090 4.69 4.67 0.61
2.50 0.41 −
1
850
3
2.47 0.40 1.Ol 1480 1240 4,86 5.05 ().66
1
3
930
1
4.89 0.61
2,30 0.41 0.99 1470 1230 4.92 4.87 0.61
1
−
900
史U54555253594159﹂7
2
5
1120
0
ー
2
30−32
2.42 0,39
9
28−30
■⋮一8・0
26−28
4
24−26
㍑
22−24
2
20−22
﹁⋮■
18−20
2
16−18
ー
5
14−16
8・6
12−14
1
q7
U
﹂
︵U
2.55 0.35 0.97 1400 1110 4.85 5.06 0.62
34
1
0
2.60 0.34 0.94 1420 1110 4,75 4.88 0.58
740
︵H︶
2
2
640
8.1
1
3
7.7
42
6
1
9
3
4
︻︶4
O
6
1
8−10
10−12
58
2
2.60 0.36 0.92 1510 1160 4.51 4.73 0.53
3
2.62 0.38 0.95 1530 1160 4.6S 4.69 0.53
700
2
670
7.4
1
7、4
6−8
1
4−6
1
2,65 0.41 0.96 1710 1430 4,98 5.09 0.57
1
2.54 0.42 1,00 1790 1460 5.26 5.03 0.56
820
1
910
7.9
0
9.4
2−4
2
9
0−2
n
qレ29 36 ﹂
2︼ 3 48 3
2 4
4
0U 5
AA AA XRF C XRF XRF
4
7
XRF
Fe
(%)
1
C
Mn
(%) (〟g・g1)
岬(cm)か掌
一一
一
ⅩRF
O−Z
lO.6 1310
2.26 0,36 0.94 6530 6010 5.20 5.18 0.45
37
82
237
2「4
8.4
960
2.72 0,37 0.94 3150 3550 5.00 5.22 0.49
26
66 153
4−6
8.0 1060
2.37 0.31 0.94 3090 3020 5.09 4.74 0.40
28
55
6「8
8.3
2.42 0.32 0.89 2670 2630 5.06 4.79 0.43
29
54 128
890
8「ユ0
β.0
朗0
10−12
8.0
750
12r14
 ̄
14r16
8.7
18岬20
一
−
−
8.9
−
− 2450 − 5・05 0,52 30
38「4()
−
2360
−
5.05 0.54
34
73
80
37 136
35 139
ユ43
72
72
7(1
35
−
2750
−
5.13 0.56
−
2870
−
5」9 0.57
38
41
−
2860
−
5.05 0.50
35
一
3100
5.29 0.51 41
61 146
33 146
70
31
33 134
38 136
27
33
35 146
27
73
31
37 134
59 143
71
71
34 132
35 136
56 146
59 141 28
72
70
34 136
3〔1 36 144
32
73
32 141 72
56 143
54 137
臥7 】ユ00 2.25 0.31 0.96 2670 2970 5.22 5_21 0_51 36
28
32
61 145
59 145
32 148
29 140 70
55 133
55 137
35
37
52 142
58 147
2.43 0.29 0.94 2590 2820 5.21 5,15 0.51 36
2.30 0.29
35
51135 33
2.24 0.28 0.94 2500 2630 5.10 4,94 0.50
2.23 0.29
8.9 1130
−
34−36
940
33
30
54 135
29
2,42 0.28 0.99 2580 2600 5,32 5.03 0.51 28
2.41 0.27
32
29
2,18 0.26 0,98 2550 2440 5.33 4.86 0.51 39
2.40 0.3l
8.7 1050
30−32
36嶋38
2.31 0.32
8.5 1000
26【28
32「34
131
134
83 129
45 144
▼ 2330  ̄ 4・710・47 30 58 144 40 30 144 70
2.52 0.31 0.95 2400 2460 5.26 5.25 0.55
2・30 0・27 一
一
22「24
28「30
54
9.0 1i20 2.27 0.30 0.∂9 2700 2580 5.30 4.94 0.51 31
20−22
24「26
29
2.70 0.31 0.90 2430 2500 5.08 4.99 0.48
2・43 0・28  ̄
990
−
16r18
2.45 0.28 0.89 2490 2420 4.97 4.74 Cし45
63
38
67
70
35 140
72
66
27
39 133
67
()notanalysed.AnaIyticalmethod:(C)colorimetry,(AA)atomicabstrptionspectrophotometr),.(XRF)Ⅹ−rayfluorescenceanalysis,
Appendix15.12 Analyticaldataonthesedimentcore
Samplingsite=M・Samplingdate:4/4,1977.Waterdepth:40.Om.
P Na K Ca Mg
Depth(cm);ごこ(FLg・g1)(%)
Mn
(%)
C AA
XRF
Fe
(%)(JLg・g−1)
AA AA XRF C XRF XRF
(%)
Ti Ni Cu Zn Pb
(〟g・g1)
(%)
XRF
7
1
0
0
1
1
O
1
7
19
9
9
18
6
‘20
17
9
14
7 9
18
∩凸
史U
−
−
O
1
5 5
9爪U4l0<
0U3l0l3lRl
U ハ1
リ
5
−
O
−
O
1
RU
1
−
︵U
︵U
0
0
2
1
0
5
1
1
1
9
1
−
1
1
−
1
2
16
20
亡U
1
2
1
15
亡じ
1
1■.1
3
0
4
7
八
H︶1 9 00
〇 0ハ
リ 9 O2 l
l5 l
l4 l4 l 史U 1<U2 ハリ 1O
3
1
2
18
2
1
21
00
2
7
19
5
0
4.72 0.63
5
4.79 0.65
5
−
858 3.69 4.53 0.60
899 −
2
1030
7
2.39 0.65
4.48 0.65
17
7
28−30
900 1.39 2.20 0,591.16
−
867 4,22 4.39 0.64
907
7
7.5
2,29 0.59
870 3.90 4,46 0.65
862
900 1.31 2.29 0,65
1.12 1040
4.57 0.68
9
2628
一
833
八U
7.8
一
一
5
2,36 0.61
24−26
一
750 1.49。2.30 0.61 1,211000
2022
22−24
2.38 0,66
842 3.69 4.54 0.64
5
7.7
一
7
一
960
3
18−20
720 1.49 2.49 0.67 1.22
4
1618
7.7
2
4
14r16
31
21
1
4,69 0.64
4
870
7
929 4.63 4.65 0.63
3
一
・4.・4.
3
2.27 0.66
4
4
−
0
3
900 1.72 2.27 0.63
1.22 1060
1
4
︹汽︶
3
12−14
8.3
■4
3
1012
00
3
997 4.15 4.83 0.63
2
3
l
940 4.47 4.54 0,60
8.3 1230 1.26 2.29 0.65
1.24 1120
5
O
3
8−10
45
8.0 1490 1.30 2.23 0.61
1.18・1210
4
O
6−8
朗0 3.29 4.39 0.62
44
g
7,9 1130 1.42 2.08 0.55
1.111100 1010 4,58 4.56 0.57
630 1.06 2.37 0.44
1.Og lOOO
5
4−6
3
8,8 1180 1.83 2.40イ 0.43 1.07 1710 1300 3.15 4.87 0.54
7.6
7
3
DO
0−2
2−4
2
9
3
4 4
ハU
0U
4
ハU
2
7 8
・4
9
6 9
2
( ̄)notanalysed・Analyticalmethed=(C)colorimetry,(AA)atomicabsorptionspectrophotometry.(XRF)Ⅹr早yfluorescenceanalysis,
1
O
1
Appendix15.13 Analyticaldataonthesedimentcore
Samplingsite:N.Samplingdate:4/4.1977,Waterdepth:94.Om.
P Na K Ca Mg
・
Ikpth(cm)Ll(pg・g−・)(%)
(%)
XRF
AA AA XRF C XRF XRF
Ti Ni Cu Zn Pb As
(%)
(〟g・g1)
(%)
XRF
︽U
7
9
1
6
53 132 32
23
54 132 30
2
27
q︶
50 132 30
6
55 137 33
29
DO
27
1
−
1
q︶
−
3
31 61 144 36
▲4
1
.
0
2
7
7
7
7 6
6 7
−
−
7
6 7
−
1
55 143 32
︵b
l l
38
00
5.17 0.56
0
一−
1▲
3130
3 1
2.280,33
4 3 4
−
4
980 1.20 2.50 0.32 1.18 3120 3270 4.87 5.20 0,54
35 60 151 3D
3 3
51 131 30
3 3
30
3
5.19 0.53
4 4 3
3380 −
﹂﹁
0,31
2
6
1
2,37
55 127 31
2553 131 29
6 1170 1.21 2.14 0.30
−
27
9
31 も0 137 27
3
5.12 0.52
つJ
−
3
3380
3
一
3
一
1
2.20 0,29
4
5.22 0,52
3
−
4
3340
4
−
4
一
つJ
2.36 0.33
3
870 1,13 2.08 0.260
3
5.00 0.48
3
−
3
3220
2
一
9 1160 l.15 2,34 0.32
1
4
2.27 0,26
55 136 38
4
−
26
6
5.02 0.50
4
−
q︶
2850
3
一
6
2.47 0,28
9
6
−
53 132 32
5
一
臥
26
2
3436
36−38
0.46
0
32−34
4.94
4
3032
−
1
28−30
3170
∧U
2628
一
ごU
22−24
24−26
一
9
18−20
20−22
7一8.一7.一針一臥一
−一﹁一︵−
14−16
16−18
2.52 0.28
1
l.12 2.54 0.30 0,95 3120 3290 4.60 4.96 31
0.44
48 138 33
3
7.5 820
2
10−12
12−14
52 123 30
nU
1.17 2.24 0.31 0.96 3230 3470 4,86 4.82 25
0.42
52 127 34
q︸
1.22 2.26 0.31 0,97 3760 4240 −5.09 5.17 0.4526
2
7.8 1060
7.9 1030
2
68
810
亡U
1.12 2.55 0.33 0.98 3580 4040 4.09 5.13 23
0.45
54 127 32
︵U
1.28 2.29 0.35 0.98 3850 3860 4.66 4.67 29
0.41
66 139 39
7.7 910
︵b
8.3 1090
46
只U
24
3
1.94 2,13 0.37 0.98 4660 4900 5.06 4.85 32
0.42
75 191 57
4.4
10.5 1360
(%)(〟g・g−1)
1
0−2
C AA
Fe
Mn
(%)
6
l l
3
()notanalysed.Analyticalmethod:(C)co]orimetry,(AA)atomicabsorptionspectrophotometry,(XRF)X−rayfluorescenceanalysis.
l l
6
4
l l
6 7 7
l l
3 4 4
l l
7 7
l
l
4 ■4
Appendix15.14 Analyticaldataonthesedimentcore
Samplingsite:0.Samplingdate:4/4,1977.Waterdeptll:61.Om・
P Na K Ca Mg
Depth(cm):ニこ(JLg・g1)(%)
Mn
(%)
Ti
Ni Cu Zn Pb As
(〟g・g ̄1)
(%)
−
75
7
2 2
75 74 67
2
仁U 9
1 3
2
−
75
<U
68
ハU
2
28
73
RU
31
29
l
︻uU
31
−
−
69
4
27
D
O q︶
3 3 3 3
ゥ山
29
3
00
35
70
1
34
32
73
︵U
5
4 爪U
3 1 4史U44 3
4
3
00
0 0.89 2,39 0.36 1.03 1410 1460 4.59 4.95 0.52
2
4.51 0,48
4
1280
0
1.011660 1580 4.88 5.03 0.52
2.30 0,29
5
4.91 0.50
5
1590
4
4.92 0.50
5
−
4
− 1600
5
4.70 0.56
0.98 1750
2.19 0.30
3
一
−
1.05 1670 1590 4,84 5.06 0,57
5
一
− 1390
39
79
5
亡U
5
2.41 0.35
1.16 1560 1550 4.70 4.98 0.57
42
36
77
5
−
4
一
4,94 0.54
39
3
9 7 史U
3 4 4 4 3 .4 4 4 3
5
2.30 0.34
−
4
5
−
− 1600
63
6
︵パ︶
5
8.2
5
30−32
5
2830
2,26 0.31
3 ﹂﹁ ハリ O 3
34 32 200 つ
J
ワ︺ 3 3
2628
9〇188
24−26
8・3一8・9
22−24
■
20−22
9・0
18−20
0.88 2.35 0.30 1.00 1430 1270 4.85 4.73 0,54
870 1.00 2.31 0.37
一
16−18
690 0.88 2.63 ().32 0.94 1560 1490 4,76 4.90 0.51
700
−
14−16
5
12−14
8.3
8.5
亡U l ﹁⊥ 1 6 ︵凸
り
山 3 2 3 2 2
8−10
36
00
0.84 2.50 0.32 0,911700 1680 4.64 4.99 0.48
3
0,90 2.58 0,35 0.99 1750 1770 4.61 4.89 0.49
790
3
840
8.3
58
47
2
8.3
0.97 2.4工 0.35 1.03 2150 2220 4、38 4.80 0.47
3
46
68
10−12
0.92 2.55 0.38 l.03 4650 540() 4.87 5.09 0.46
︵パ︶ 7 6
4ハU4qU3 7 .94.
4 4
さ;90
6
9.7 1180
8.2
6
7
7
5
2
り6
︼
0−2
24
7
AA AA XRF C XRF XRF
9
XRF
(%)
︵∂
<
U
C AA
Fe
(%)(JLg・gJJ)
2
7
(L)notanaIysed.Analytica)method:(C)co)orimetry,(AA)atomicabsorptionspectrophotometry.(XRF)X−rayfluorescenceanaIysis,
72
2 2 1
2 6
1
3
2
7
1⊥ 1
6 4
2
3 4
7 3
73 乃
■4
3
3
AJ)Pendj3(15・15 Ana】yt】Ca】dataor]tJleSedjmentcore
Samplingsite:P.Samplingdate:11/4.1977.Waterdepth:5・Om・
P Ca K Mg
(%)
(%)(〟g・g1)
(%)
Ti
Ni Cu Zn Pb Sr
(〟g・g ̄り
(%)
4−6
4.5
30 131 41
570 481 2.16 2.26 0.26 6 23
0,43 3.48 0.48
420
4.6
2.69 2.74 D.308
660 539
740
0,45 3.40 0.58
370
665
3.3
310
310
680
0.45 3.25 0,49
545
2.35 2.13 0,24
5
20
93 32
681 2.32 2.50 0.279
21
97 36
0_50 3.79 0.47
760
7 亡U
亡じ
4
3 ∧U 3
6 6
Analyticalmethod:(C)colorimetry.(AA)atomicabsorptionsp∝trOphotometry,(XRF)X ̄rayfluorescenceanalysis・
1
18−20
3.0
2.31 2.22 0.26
亡U
16−18
583
6
92 33
740
0.44 3.44 0.49
▲4
340
3,2
6
94 33
6 19
5
0.45 3.54 0.49700 627 2.27 2.33 0.26 10 18
︵‖O
0.48 3.63 0.52770
290
6
350
3.8
3
2.40 2.60 0.29
3.8
1214
6
29 119 44
23 102 36
7U4l3l3l5l
爪
7
8
nUl2
l
2,62 2.72 0.30
1012
1416
704
94 33
1
8−10
3.4
60 187 54
4
6−8
42D Cし41 3,23 0_57
18
811 3.33 3.67 0.41
5
960
0,45 2.61 0.75
6
580
21 60 200 54
0
7.0
3.92 3.78 0.42
6
2−4
669
8
870
0.40 2.44 0.72
6
600
5
7.3
2
12
5
22 69 283 59
0.41 2.37 0.75 1000 761 4.05 3.76 0.38
<U
750
4
7.4
.4
−〓−−
01
0
l
AA AA XRF C XRF XRF
八U93nU
6
9
XRF
C
Fe
Mn
!壬二(〟g.g1) (%)
Depth(cm):ニこ(JLg・gL)
AppeJldix15.16 ALlalyticaLdataonthesedimentcore
Samplingsite:Q.Samplingdate:11/4,1977.Waterdepth:21,Om.
Mn
Fe
(%) (〟g・g▼1)
(%)
Ca K Mg
(%)
ⅩRF
Zn Pb Sr
Ti Ni Cu
(〟g・gJl)
(%)
AA AA XRF C XRF XRF
23
nB
9
16
OO
630 5.75 4.57 0.14
679 4.83 4.65 0.13
Z3
亡U
930
9
0.44 2.51 0,21 810
り︺
0.42 2.62 0.25
280
4
320
2.5
4
3.3
16−18
︵‖凸 <U
l
1
14−16
757 5.19 5.14 0.21
4
22
5
890
4
6
0.44 2.73 0.36
只リ
DO
370
q︼
りム
3.6
一
13−14
9
0
31
9
52
45
9 亡U 5 9 史U 8 ︵U 2 ︵U ︹︶0 9
.
4
5 5 5 5 4
3 2
1 <U 9
53
1
交U 737 史U
7 0 00
7 亡U
7 ︵‖凸 7
8
715 4.65 4.64 0.29
3
880
55
7
8 3 737
7 ︻/
1
0.43 2,74 0.46
768 4、61 4.46 0.38
父U
l﹂
0.40 2.74 0.63 1000
8
360
765 4.39 4.04 0.46
3
4.9
430
980
0
6.1
0.29 2.39 0.81 95〔) 7〔)4 4.11 3.78 0.43
0.31 2.35 0.77
﹂T
1213
460
410
748 4.18 3,95 0.42
1
10−12
7.7
7.3
0 7 2
2
1
810
5 1 0
2
2
6−8
790 4.31 4.05 0.44
940
史U
0,29 2.61 0.83
55
5
0.33 2.59 0.91 990
440
2
510
7.4
63
3
7.5
4−6
2
2−4
840 4.22 3.99 0.45
1
0.35 2.48 0.94 1020
1
0.40 2.50 0.911300 1130 4.44 4.28 0,44
770
︹B
4
900
8.0
2 8 7
6
1
9.1
12
父U CU
5 5 4
9
1
11r㌫∵J
0−1
5
亡U
5 2
5 3
亡U
(うundetectable.Analyticalmethod;(C)co]orimetry.(AA)atomicabsorptionspectrophotometry,(ⅩRF)X−rayfluorescenceanalysis.
Ap匹ndix15.17 Analyticaldataonthesedimentcore
SampIingsite:R.SampIingdate二11/4,1977.Waterdepth:60,Om.
P Ca K Mg
Mn
(〟g・g1) (%)
Depth(cm)∼孟)
Ti Ni Cu Zn Pb Sr
(〟g・g▼り
(%)
5
2
5
1
9
3
5
3
5
▲4
−−
4
3
3
3
史U
1
1
9
■
4.2 O2 1ワ︼2
り2
ん
5
ワ︼
4
只U
5
5
1
4
5
4
3
3
2
2
2
0
2
3
1
1
7 7
1
6 6
<U1 92 3
1
7 7
て▲
5 7
1
亡U
l
l
5
1
O 4
6 6
ハリ
6 八U 6
史U
1
40
1
父じ
1
9 00 2
6
1
37
Analyticalmethod:(C)co)orimetry,(AA)atomicabsorpLionspectrophotometry.(XRF)X−rayfluorescenceanaJysis.
5
1
7
0.31 2.35 0.93 1770 1630 4.60 5.00 0.51
42
6
607
35
仁U
8.4
49
6
30−34
5
0.30 2.42 0.錮 1780 1640 4.32 4.80 0,50
5 6
869
︵=0
8.5
3
■4
0、29 2、17 0.811520 1390 4_10 4、35 0、45
2630
47
3
0.27 2.26 0.78 1600 1360 3.99 4.46 0.45
44
4
0.26 2.31 0.84 1540 1300 4.62 4,38 0.44
657
5
558
8.5
7
7.5
1822
44
1
0
1418
7
0,26 2,41 0.78 1560 1360 4.52 4.鳩 0.43
44
ワん
1
2
0.29 2.52 0.85 1600 1410 4.25 4.42 0.44
657
648
5
2
618
7.4
50
3
3
7
7.5
54
q︶
2
810
10−14
8.7
5
0.28 2.62 0.89 1620 1550 3.78 4.52 0.41
5
0.33 2.57 0,92 1800 1610 4.58 5.58 0.43
584
6
673
7.2
5
7.0
6−8
4
4−6
2
0.36 2.81 0,94 柑10 1850 4.47 4.95 0.46
O
4
2
6
7.4
22−26
4
2
723
.4
2
0.37 2.54 0,96 2050 1840 4.85 4.63 0.41
3−4
八U
5
2
6
884
5
2
7.6
6
2
1.5−3
59
72
nU
7
9
2
956
2
0.33 2.22 0.92 2330 2080 5.06 4.24 0.40
0.34 2.47 0,94 1930 1760 4.62 4.59 0.40
9.1
史U
7
qU
2
0.2−0.7 10.5 1100
0.7−1.5
61
3
3
0,37 2.30 0.86 4070 4490 5.12 4.75 0.40
XRF
4
00
4
0−0.2 15.0 1490
2
8 2 <U 9 9 7 7 ︹
︵H5
︶ 7
24
5︼4426ハ
4B 5
ワ
2U1 7 15 1﹁〇1 3 14 1
1
15 1
AA AA XRF C XRF XRF
3
XRF
Fe
(%)
1
C
(%)(〟g・g1)
1
Appendix15.18 AnalytlCaldataonthesedimenteore
Samplingsite:S.Samplingdate:11/4,1977.Waterdepth:43、Om.
P Ca K Mg
Mn
Fe
(〟g・g1) (%)
(%) (〟g・g ̄1)
(%)
4
5
4
2
1
1
5
1
1
2
1
7
5
1
2
1
1
5
6
1
4
6
2
5
3
1
︵U
4
1
7
0D
1
2
q︶
1
1
8
︵U
4
5
4
3
3
4
4
9
6 5
00
人︼ 5
Analyticalmethod:(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(ⅩRF)Xrayfluorescenceanalysis.
7
32
1
q︶
4 6
亡U
U
亡
3
0 3
3
1
.4. 3
6 AU
6 2
3 5
5
5 3 3
4 .4. 4 5
7 00
29
5
35
1
.4
35
44
93
34
3
1
3
31
1
1
47
0
1
43
1
46
6
45
1
43
4
54
1
53
6
53
1
1
868 3,78 4.27 0.50
0.37 2.76 0.90 1650 1460 4.65 4.86 0.44
1
540.
04735565.5
4
0.35 2.87 0.95 1470 1260 4.77 4.95 0.48
1
0.33 2.88 1,05
618
9 56
819 4.12 4.32 0.50
360
688
960
978
4
05
829 3.86 4,08 0.51
2
945
1
7
0.36 2.78 0.94
4()1 0.34 2.89 1.03
1
3U
亡
0.37 2.65 0.78 1200 1120 3.99 4.44 0.43
0.47 2.62 0.76 1570 1450 4.82 6.00 0.37
57
4
1
3
6.0
1
6.0
374
d.
3438
6.0
4
30−34
6,2
840
430
l
2630
6.0
3
1822
22−26
7.0
5.9
3
1418
0.35 2.72 0.80 1390 1180 3,53 3.92 0.38
1
500
1
801 0.32 2.59 0.90 1700 1670 3.90 4.37 0,40
7.1
1
7.2
8−10
17八6
U
68
2
0.34 2.69 0.92 2870 2940 4.37 5,18 0,42
1
2
とU
2
0.37 2.47 0.96 3220 3210 4.38 4.97 0.41
7,5 1120
9交じ3亡U7
2
6
2
7.8 1040
46
1
3
0.36 2.41 0,86 2380 1850 4.74 4.36 0.38
2.54
10−14
1U46
史
2
7
8.0 108〔) 0.34 2.62 0.95 2800 2870 4.62 5.00 0.43
1
2
8.5 1050
l.5−2.5
XRF
<
6U 62 64 73 71 71 72 7■4
7. ︵7
︶U7 7︻V
父U
U <
OU
O 1
7 5
7 5
2
3
0.71.5
2
0.35 2.52 0.85 2140 1950 5.22 4,71 0.41
0.20.7 10.2 118D O.33 2.45 0.87 2050 1700 4.80 4.29 0.40
ロ
0
4
4
00.2 10.8 1570
(〟g・g▲1)
AA AA XRF C XRF XRF
7
7
XRF
2
C
Ti Ni Cu Zn Pb Sr
(%)
Appendix15,19 Analyticaldataonthesedimentcore
Samplingsite:T.Samplingdate:11/4.1977.Waterdepth:71.Orn・
P Na K Ca Mg
Depth(cm)誌
(〃g・g ̄1)(%)
(%)
AA AA XRF C XRF XRF
(〟g・g1)
0.53 2.10 0.32 0,91 8740 8350 5.43 4.49 0.38
0.20.7 10.1 1220
0.60 2.31 0.33 0.99 4100 4200 5.20 4.51 0,40
0,71,5
0.63 2.51 0.33 1.01 2980 28】0 4.86 4.69 0.45
910
〓∽■
8.6 1300
7.9
880
0,57 2.59 0.29 0.92 2()10 1820 4.69 4.58 0.42
860
0.61 2.37 0.25 1.王9 2090 18ZO 4.鮎 d.46 0.42
7.7
830
0.61 2.45 0.22 0.95 1780 1600 4.86 4.53 0.46
14−18
7.9
別)0
18−22
8.5
980
2226
8.7
26−30
8.5
830
30−34
8.6 1100
890
0、62 2.47 0_27 0_98 1920 1670 5、05 4、72 0.48
0.53 2.30 0,26 0.99 1900 1550 4.89 4.45 0.47
31 149 69
37
26 148 68
39
24 151 62
舶
42
25 154 62
40
25 151 63
32
25 147 64
34
23 149 64
38
0.53 2,17 0.22 0.96 1900 1600 4.88 4,43 0.46
0.73 Z.36 0.2β 1.07 20▲iO 1760 5.07 4.郎 0.49
36 140 68
37
21 15‘璽
71
63
4
7.9
1014
49
﹂7
8−10
0.80 2.56 0.33 1.03 2430 2370 5.07 4.89 0,46
740
40 145
3
8.3
77 131 61
4
7.5 1010
6−8
61
一q
4−6
0.69 2.46 0.32 0.99 3020 2980 5.15 4.85 0.44
0.65 2.62 0.34 1.01 2420 2310 5.02 4,88 0.45
51 198 125 56
6 (;3
l
−
1.52.5
2.5−4
8.5
9 3 ごじ 亡じ 史U
3 5 9 6 4
3
2
↓.⊥
l
︶ 9 4 ∧U ワー 3 5 ﹂﹁ 2 ︻♭ 3 q
︶l 父lU q7
7 5 5 5 一斗 5 5 5 5 5 5
00.2 13.4 1660
Ti Ni Cu Zn Pb As Rb Sr
(%)
l
XRF
Fe
(%)
9 2 4 7 3 3 6 ハU 史リ 4 00 3 7. 7
3 3 ワJ 2 3 りム 2 3 2 3 ワ︼ 3 つJ 2
C AA
Mn
(%)(〟g・g1)
25 】50
31 26 141 64
0.43 2.25 0.29 1.05 2110 1990 5.12 4.75 0.50
4
Analyticalmethod:(C)colorimetry,(AA)atoTTlicabsorptionst)eCtrOphotometry,(XRF)ⅩrayEluorescenceanalysis.
65
3
Appendix15.20 AnalytlCaldataonthesedimentcore
Samplingsite二U.Samplingdate:11/4,1977,Waterdepth:66.Om.
N P
Ⅰ元plh l.L.
Na
(JLg・grL)
(⊂m)(%〕
Ca K Mg
MrL
(%).(%)(FLg・g▲l)
Fe
Ti Ni Cu Zn Pb Sr
(%)
Rb
(F.g・g■)
(%)
AA NAA XRF AA AA XRF C XRF NAA XRF
As
(F.g・gJl) (pg・gr■)
XRF
XRF NAA XRF NAA
2
nJ
16
︹鵡
l
7
凸J
21
5
6
QU
鎗リ
7
2
1
亡U
6
9
つJ
6
﹁〇
3
5.4
クー
﹁〇
7
7
4
6
6
5
︻VU
■〇
1
︻ノ
4
4
7
−q
ワ︼
7 凸J
0 史U
︵パ︶ つJ
q−一U 7
一一〇〇3一一一
56987436846
・LO
0l
O
7
686568808
7
53一7959一6775鎚 54 舗
爪U
6
nフ
(.)undetectable.Analyticalmethodニ(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)Xrayfll】OreSCenCe
analysis,(NAA)nel】trOnaCtivationanalysis.
︻‖凸
2
A
E
9
B
u
T
L
a
46
仁じ
N
T
1
︹∠・1
716572
■︺▼
d
‖
h
仁U・AT
5A.几h
(〃g・g1)
25
12
13
15
6
2
5
18
1
1416182022別
16
■﹂J
14
︻′.4
0
1 12
▲UU
8
Yb Lu U
20
26
7
7
爪U
.4
5
6
■〓か1
鵬5875鋪7148627259656267鵬稲537262676368718075737279
1
41卿92093
0
5
2
024681012
C
(%)
20
26
】9
18
20
Appendix15.21Analyticaldataonthesedimentcore
Samplingsite:V.Samplingdate:11/4,1977.Waterdepth:45・Om・
1
5
5
3
4
3
■4
6
3
3
つJ
7
6
﹁コ
1
3
9
00
1
︵古
4
7
5
3
3
6
5
﹁〇
ウJ
5
3
﹂T
4
1
只じ
3
ズU
6
﹁〇
6
4
ワ一っん
3
3
3
3
3
3
3
3
3
3
2
7.
4
2
5
1
6
6
几U
7
7
6
4
O
︵hV
6
▲4
7
仁U
6
1
仁V
OJ
ハU
﹁〇
6
ハU
3
5
2
5
5一q
3
3
3
5
4
2
3
3
4
2
7
3
2
5
7
〇
一〇一一
3
一・1
RU
2
5
A..4.4
6
5
9
11
2
・
4
LL4
5
7
1
︵U
1
l
O
3
‘U
5
1⊥ 5 1
6
よU
7
7 4
5
6
Z 3
﹁コ 6 5
■4 7
亡U
5
7
7 6
1 9
5
1▲
9
O
3 ︵U 7
1
ア
O
6
3 2
7 1 5
2 2
爪V O
2
︵B
<U
︵リ
O
5
人U
8
2
6
A−4
6
6
l
7
2
4576一436〇584566一
1
5
O
9
2
5
5
l
5
44
ハリ
ウJ
︵U
7
<U
一っ
3
g
g
9
3
4
L
1
00
1
u
5
5
﹁〇
b
Y
5
2
3ワレ22333322
50090546お3529290695
9
4
史じ
1
7
6
0
5
6
2
1
4
6
5
0
7︼
2
6
爪じ
つム
爪U
りん
1
八じ
4
<U
ハ
2
U
6
りん
︵〓V
1
︻∠ワ︼
nV
ワ山
︹‘
爪U
2
1
2
3
nU
八U
A.只︶
︵U
ワ︼
O
史
︵U
9
0
2
3
2
∧U
︵U
l
Z
2
2
鑓SU
2
3
a
l,1
1
2
B
nU
1
5
6
﹁〇
0J
5
7
9
5.4
C
〓↓−
5
7
16
76
7
ハU
4
7
O
7
3
7
9
9 9 へJ
1 1 11
7
hU
7
2
7 1
2
︵U
6 4
︻b ﹁〇 3
3 7
l⊥ l l
∩∠
5 5
2
l l
3
5 4
9 9
nU 爪U
O 2 2
1
6
︵b
l
nU.4.4二光
5
9
00
3
7
l
5
q︶
つJ
t▲
r∂
1
q﹀
クJ
0
丘U
1
9
7
ハU
5
7
1
4
C
89949589卵0706019707 7
hU
00
7
5
5
2 00 3 3 7 7 RU りん 4 ﹁〇
6 4 4 5 5 5.■q 5 5.4
7
b
S
4
4・4
7
6
−
0」
1−2
24
46
68
8−10
10−12
12−14
14−16
1620
4
00
5
2
鑓U
2 ワレ 2 9 2 J7 几h︶ n凸 l l
、い
qJ 9 0U OO ︵U ︵U 9 9 9 9
〇 〇〇 〇O 1 7 6 5 6 6 6
9 ︹B 8 9 0ノ 9 9 9 9 ︵∂
0 ︵U O O 八じ 八U O hU ︵U O
ワ︼ 9 7 1 2 QU O 2 5 9
m
O・4 9 免り 史リ 6 3 4 2
S 7
00 7 ワノ nO q︺ 9 nO 9 ︹B 7
7 6 4 7 ︵0 ﹁〇 7 7 亡じ 月V
7
7
U
3
3
T
2 一
0q
L‖
7
3
‖
仁U
5 4 2 4 9 2 9 9
4.4.44.454一斗44
5 7 ハJ 1 2 9 1 7′ ハU 9
7 2 2 ﹂﹁ 9 5 n−U ︻/ 5 4
2
7
u A
︵U 3 ﹂’3 7 ■4qU n占 U O
7 7 ワー7 7 ︹0 7 7・nO 只
B
1 6 DJ 4 4 1 5 9 ワ︼
2 1 1 2 2 2 ヽ.▲ l−2
a L
6 7 0∩O 1 7 りん.d ︹八︶ 2
2 9 ハリ 1 2 1 0 ▲U 9 史U
u E
6 0 9 2 6 つJ 9 一サ l 1
4.4 3 4.4 4 3 一斗.4 3
T
0 5 Z 1 7 00 1 3 ワレ 1
3 2 2 3 ワ︼ り‘2 ︹∠ 3 2
2
3
1
3
つJ
nU
2
9
1
︵X︶
4
qU
1・4
一’
3
2
1
3‘q
3
4
3
4
丘U
ハU
6
d N
64 4
3 亡U 7 3 4 3 3
4 ■q 4 4 ■4 4 ノ7 J’4
八U O O O nU O O ︵U O ∧U
a
333333333つJ
(−)urLdetectable.Analyticalmethed:(C)colorimetry,(AA)atomicabsorptionspectrophotometry,
(XRF)XrayEluorescenceanalysis,(NAA)neutronactivationanalysis・
Rb
As
(〃g・gl) (〃g・gl)
ⅩRF NAA XRF NAA
Ni Cu Zn Pb Sr
Tj
FeJ
(〃g・g1)
(%)
(%)
P Na Ca K Mg Mn
(腫・g1)(%) (%)..(%).(〟g・g ̄1)
C NAA XRF AA AA XRF C XRF NAA XRF
At)pendix15,22 Analyticaldataonthesedimentcore
Samplingsite:W.Samplingdate:11/4,1977.Waterdepth:90.Om.
Ti Ni Cu Zn Pb Sr
Fe
Mn
Ca K
P
l
∧U
q−8
5
5
3
2
0
00
■===■¶=
ハU
︵
﹁〇一1
1
﹂︼
1
八U
6
l
96
つ︼
7
︵U
︵U
3
ワ︼
..
ヽ▲
7
6
1
7
ウ︼‘リ
〇
3.ヰ
0
八U
4
2
5
5
0
■b 5
4 1
7.︵U
0 1
3 3 7
00 7
一〇1一一一一一一
9
4
2
5
6 4
(−)tlndetectable・Analyticalmethod:(C)colorimetTy,(AA)atomicabsorptionspectrophotometry,(XRF)Xrayfluorescenceana】ysis,
(NAA)neutronactivationanalysi5,
ハU
O
l
l
1
l
n︶
1
︵り
9
l l
7 2
1
1
3
4
4
7﹂6
45
6
7
5
3
5
3
0
3
6
9
1
4
3
5
3
3
3
8
n凸
2
2
A▲
鑓U
5
4
3
■4
9
2
4
ウ山
2
2
▲7
1
2
4
亡U
ワ︼
4.4.4
2
4
︵b
2
4
9
4
︻U
7
2
﹂︼
2
1
2
2
ワん
5
■﹁
つJ
つ︺
5
3
︵〓﹀一−2
﹁〇.4
9
1
gU
■1
l
▲4
︵U
5
2
9
2
2
Z
9
O
2
2
4
日U
6
1
80
ワ︼
00
8
■b
l
▲U
亡U
1
1
ウJ
2
6
<U
∧U
q︶
ワ︼
2
︵U
ハ8
2
7
8
nU
4
2
00
3
3
1.4
3
O
2
2
︵U
■4
3
O
3
2
4
2
つJ
2
O
2
2
5
2
﹁〇
2
ウJ
2
3
几U
2
りん
3一b
3
5
2
2
O
つ﹂
3
3
1
2
︵U
2
3
O
2
2
∫lU
2
L
9
ワ︼
・
1
.
8
3一■
5
3
2
0246048260
OO・l l ■1 1 ウ︼
5
上U
1
ク■
っJ
ウ︼
ワ︼
J1
5
つ︼
3
7
6
1
んU
5
O
0
O
O
O
00
八U
q︶
5 5
6
l l
l l
︻U
1
2
8
7
4
7
6
7
5
7
6
6
0
7
5
7
−
8
6
7
8
9
0
9
1
0
9
7
2 9
1 1
2 9
0 0
= 57一4437
nV ハリ t
5
︵U
7
n﹀ 0
3 4
9 8
5 9
6 6
1 9
4
3 2
1 6‘V 5
1
︵U ︵U O
9
6
O O
8 7
8 00
6
0 2
3
6一4H
︽b 6 5.4
︵U
6 5
︻○
5 5
7
q﹀ ︵U OO
7.︵︻ 3
0 0
O O O
3 0ウ 5
9 nU
1
8
■b 5
8
︻
︹D ︹n 6
3
4
4
人︼
3 1一b つ︶
7 6 7
史U 9 ﹁∂
7
0 亡U 2
2 ワ︼
7 1
2 2
qU
2 1
5
9 つ︼ ツ︼
9 RU ワ︸
ワ′7.︻
6 8
J−5
0
1
9
7 7
1 5
4
00
G
8
⊂J+只︶
1
2
5‘︶一b
1
1
6
3
8
0
8‘V
3
5
5
6
3
5
3一斗4一3
1
▲−0
4
7
上U
6
7
O
︵U
7
5
几b
0
2
つ︶
鑓︺・4
9
2
爪U
5
1
ゥ︶
2
史り
OO 5
5
5
4
7
6
3
人じ 1
爪U0O ︵U
O
8
ウJ
只d.R
5
8
1
2
1
8
5
2 1 2 4 6 9 つ︼ 轟b 9 7 2 6 ︵0 ︵b り﹂ 8‘U 5
7 7 7 7一b 7 ︻b一b 6 7 7 7 ■b 7 7 6、b ■P
3
2
7
つ︼ 6 RU O つ︶ 5 2 7 qU 爪U ハ凸 O l へJ り︼ 7 DO一†
qU 8 7 鑓U OO OO Oり 8 8 ︵U 9 9 9 9 UO 7 7 7
2
7
qU
3
∧U
2 ・4
8
﹁〇 ワ︼ 1 7 5 <U 7 q︶ 6 ﹁〇 1 8 1 0 ﹂−1 6 2
q﹀ 9 1 7.4 0 9U 3 亡U ウJ 4 3 つ︺ 6 5 5 7 6
8 DO
6
1
つん
1
0
1
7
992402㈹157692紀857578即舵m47011196
9 ︻b
7
・
5
0
〇
H00−
9 0
5 ︹凸
0 7 6 父︺一b 1 5 7 0 4 5
▲︼ 3 3 3 ▲4 5 ﹂−3 4 4 3
4
3
4 3 7
4.4︻﹂▼.︼ 3
9 qU
J†
0
0
■4
史U
8
▲︼
9
ハ8
3
7
︵ろ
0
7
3
3
6
■′
1
つ︺
9
ムU 1 4
0︺ ︻U 8 8 9 1 0 3‘V 轟b 5 3 3.4 9 7 7 4
つ︶.4 っJ 3 ウリ 4 4・4・▲▲・d ■4 ■︼ 4 4 3 3 つJ 3
爪︶
■0・=L6一
9
粥0063馳716765666462616462616265
858
759
︻8
つ︺
﹂︼
1
一4
2
0
5108甲85403129353443詭48454241473334
5076373544摘60595969
A.つ︼
7 2 [D q﹀ 6 3 1 ︵6 3 00 ﹁〇 7 4 ︹0 ︵6.4 3
72
85
8 9 7 8 亡U ﹁〇 5 ■b 5 5 ﹁〇 5 5 ﹁〇 5 6 ■b
7
(〟只・gり
1 0 5 ワ︼ 0 ︵U 5 2一b 0 7・﹂ 2 0 2 1 亡じ 人︼
nU O 5 ■b 2 0 亡U 9 1 Jヽ 5 8 亡U 2 9 9 9 7
7 3 1.4 00 6 7 史U.4一4 g 9 7 <U OU 9 9 9
5 5 5 ﹁∂ ■b 6 5 ﹁〇 6一b 5 5 5 亡U ▲︼一斗 4 4
U
Lt】
(〟g・g1)
(%)
(%)
(〃豆tg ̄1)
(%)
(叫g・g ̄1)
Appendix15,23 Ana】ytlCaldataonthesedimentcore
Samplingsite:Ⅹ.Samplingdate:11/41977.Waterdepth=90・Om.
5
ハU
5
90
1
0
6
〇
172
7
20
〇6
〇
︵U
l
︻/
9
1
3
2
7
5
50653333333
l,⊥llll1
1
O
5
3
3
O
0
︵毒
︵U
4
爪U
︵U
6
1
5
O
3
9
4
2
2
2
︵U
9
3
︵U
1
1
O
︵U
2
n>
6
2
OU
1−
0
5
5
5
ハU
1
ウ1
O
3
2
1
2
9
2
7
2
︵U
2
2
2
2
2
4
3
爪U
3
0
3
2 1 3 qU 3 5
︻U 9 7 9 9 7
5 4 4 A・4 4
4
O
4.4
︵U
つU2つん
4
史U
6
4.4
3
︵U
J.4.4.4.5.5一
4
︿U
9J
2
O
.3.4.4J
n︶
q︶
5
︵U
4
3
0
ー一一.9一.〇.〇.9
3
9
7744332ワ︼23
上U.4
0070907030机90001010錮
7
っん
2
4
O
5
3
9
∩8
︵U
1
7
OO
3
5
︵U
八U
q︶
0
9
q︶
八U
1
9
qU
O
ll
ハU
八U
O
2
q−1
2
2
9
ハU
0−D.2
l.2−2
2−4
4−6
6−8
−
〓?
810
1020
2030
3040
C
O
C
5
7
3
6
4
0
3
2
4
3
9
0
3
5
2
1 9 6
5
3
5 6
4
3 4 3
4 9
7 q︼・4
4
q︶ 2
9 8
3 QU ︵U
つ︼ 2 つ﹂
7
2 2
6 7
2 5
6
1
7 5
2
2
5
6 8
6 7
1 1
3
3
3
1
q−OP qU
6 6
9 7 1 3 ︵U 7
l ︵U l l ︵U OO
︹古 0 2
3
5
4
3
3
QU
3
gU
1 史U
q︶ l
1 1
3
9
QU
︵U
1
2
8
7
1
2
1
4
(−)notanalysed.Analyticalmethod:(C)colorimetry.(AA)atomicabsorptiorlSpeCtrOphotometry,(ⅩRF)Xrayfluorescenceanき1ysfs.
(NAA)neutT・On aCtivationanalysis.
1
8 qU 5
2 1 1
▲b 7
5
qU
3
3
6
5 5
1
5
2
1
9
6
︵U
5
6
7
l
7q︼ ︵U
2
5
1
︵b
1
l
qU
3
2
4
7
2
6
9
6
2
4
3
6
4
ハU
ワ︼
ウJ 3 3
1▲
3
7
5
7
5
︵占
2
1
3
日U
父U
4
3
6
3
O
几U
1
︵U
4
O
l
O
︵U
.3.3.3.3.3.3.3.2一2.3一
nU O O 八U O 八U ︵U ︵U 八U
O
O
O
l
n>
A一d.1
O
nV
96見じ5八U
O
ハリ
ハリ
rJ
O
2 2 1 ︵U QU O ︵U 7・2 4 日U
5 6 7 ロ0 7 7 7 6 7
11
.〇﹂.〇.1一5.4.4.3.3.3一
6ハU9611︻U696
RUQU6Rリ
︵‖凸
951819091027鍋565205一
ハU
り⊥ 5 4
2 0 q︼
5 ﹁〇 4
4.4.4
.1一5﹂.4.5月.6.4一7.〇一
鑓U
l
〇392372243023264435一
4
46555343343532353632一
47536258726664656565一
XRF NAA
ⅩRF AA AA XRF C XRF XRF
C AA
9 QU ︹B 9 1 ︹U O つJ
9 2 9
b
S
1− 1 q︶ 7 7 7 7 7 7
0U 7
0.20.7
0.7−1.2
(〟g・g ̄り
(〟g・g−1)
(%)
(%)
As
Ni Cu Zn Pb
Ti
Fe
Mr】
Ca K Mg
P Na
(%)(〟g・g1)
(%)
(〝g甘l)(%)
Appendix15.24 Analyticaldataonthesedimentcore
Samplingsite:Y.Samplingdate:11/4,1977.Waterdepth:83・Om.
P Na K Ca Mg
恥,th(。m)(〃g・g一】)(%)
(%)
(%)(〟g・g1)
XRF
AA AA XRF C XRF XRF
Fe
(%)
Cu Zn Pb As
Ti
(〃g・g▲1)
(%)
5
6
5
5
5
6
6
こU 6
6 6
Analyticalmethod:(C)colorimetry.(AA)atomicabsorptionspectrophotornetry,(ⅩRF)Ⅹ−rayfluorescerICeanalysis.
qU
8.11080 0.69 2,28 0.29 1.33 2820 2900 5.51 5.04 0.5357 142
38 30
3
34−38
2
57 1443824
980 0.70 2.24 0.32 1.30 2620 2830 5.28 5,02 0.55
8.3
6 亡U 6
亡U 6
亡U
3
5
4 亡
つU
J
︻/ ハリ 7
32 3
3 3 4
55 141 29
7.8 1020 0,71 2.30 0.311,21 2630 2770 5.39 5.18 0.55.29
30−34
6
2630
860 0.56 2,25 0.311.26 2450 24別) 5.14 4,90 0.52
57 146 31
30
3
56 14430Z9
8.0 1050 0.66 2.20 0.28 1.23 2600 2580 5.28 4.72 0.47
8,0
1
18−22
22−26
2
142 30
950 0.70 2.56 0.311.24 2540 2480 5.13 4.84 0.47 53 38
990 0.74 2.59 0.25 1.25 2640 2610 5,41 5.03 0.51 5727151 36
0
7.4
7.9
5
1418
54 127
7.9 1鵬0 0.68 2.23 0.30 1.18 3280 3500 5,30 4.84 0.44
32 28
8.0 1070 0.78 2.30 0.28 1,19 2800 2830 5.07 4,71 0.46 56 28
136 30
7
10−14
3055 129 22
6
810
30 58 134 32
970 0.77 2.52 0.29 1.23 291() 3190 5、04 4.81 0.46
g.1 830 0.76 2.64 ().33 1.20 2930 327() 5,07 4.96 0.47
八H︶
6−8
7.9
q︶ ︻b 7 7
ウJ3 4
3 3 3
46
61
q︶
2.5−4
79 163 3928
8.4 1120 0.73 2.33 0.34 1.16 3350 3430 5.06 4.58 0.43
5
1.5−2.5
9
4
0.7−1.5 10.11330 0.71 2.11 0,34 1.23 3310 3230 4.96 4.31 0.42
99 532 43
49
3
0−0.2 11.3 2000 0.86 2.04 0.38 1.31 4380 3910 5.83 4.69 0.42
98 332 48
50 179
0.2−0.7 12.3 1840 0.68 2.15 0.35 1.15 3590 3630 5.31 4.78 0.43
99 235 5636102
ワ
︼ l7 l7 ワ史
RU
1
.
2
l
︼U
3
3 15
21 9
4
・4
.4
■
dT9 34 31
1
1
1
1
1
1
1
1
1
1
1
1
1
C AA
Mn
(%)
3
Appendix15.25 Analyticaldataonthesedimentcore
Samplingsite:Z.Samplingdate=11/4,1977・Waterdepth:77・Om・
K Ca Mg
(%)
3
7
4
4
9
7、+OU
7
5
7,6
3
1
6
︵占
0
00
1
5
1
4
1
己U
00
1
1
1
1
7
5
7
4
7
7
7 7
5■ 00
9 7
2
亡U 6 仁U
5 6
1
1
1
1
4
3 qU 5
43
45
7
1
只︶
41
5
11
4タ
40
2
1
4
.4
45
9
5
37
7
3
1
41
5
1
30
43
4
23
2
1
29
7
1
4
22
7
1
30
亡U
5
1
4
1
38
3
2
d.
45
0
48
4
1
2
0∩
1 1
9
5
4 3
4
3
3
1
7 DO
5
3
亡U 6
1
1
2330 2280 4.94 4.74 0.64
8
2.21 0.38 1.18
2.26 0.42 1.16 2120 2300 5.11 4.72 0.64
5
1
2200 2220 4.86 4.72 0.64
XRF
1
2.31 0.38 1.17
1
2200 2100 4.95 4.56 0.60
1
2
2.10 0.39 1.12
4
4
6
2
7
2270 2110 4.65 4.64 0.63
4
2190 2220 4.68 4.81 0.66
2.21 0.38 1.15
1
5
6
3
1
6 7
2.34 0.40 1.11
1
5
3
2.32 0.38 1.18 2110 2130 4.69 4.81 0.66
3
つJ
2.15 0.38 1.08 2000 1890 4.60 4.56 0.64
5
7
2.26 0.42 1.14 1770 1940 4.50 4.84 0.66
6
4
3
2.250.37 1.18 1540 1480 4.69 4.55 0.63
1
4.46 0,63
2,23 0.42 1.09 1360 1270 4.32 4.55 0,64
1
2.38 0.47 1.17 1061 1000 4.22
4
4.32 0.59
991
八U
4.37 0.60
895 4.08
2.42 0.52 1.09
3
2.55 0.45 1.211090942 4.40
2
2.36 0.44 1.10 1080
4.35 0,62
︵
H︶
4 34 24 34 6 2 9 43
5
︻/ 5
4.36 0,59
829 4.47
5
史U
亡
U 5 ハb
5 16
933 4.59
亡じ
2.30 0.43 1,15 1130
9
4.30 0,59
4
2.51 0.42 1,05 1370 1070 4.61
4
1
3
30−32
32−34
2.65 0.42 1.14 1410 1320 4.37 4.35 0.61
0
1
2830
9
26−28
2.08 0.43 1,09 3390 3420 4.54 3,87 0.47
2
00
24−26
00
2224
(〃g・g1)
.4
7
2022
5
18−20
00
1618
2
14−16
︹八︸
12−14
4
10−12
Ti Ni Cu Zn Pb
(%)
.4
8
8−10
(%)
3
68
4
穴U
J−N−
4−6
7
24
交じ
12
D
4 11 3
3
4 6 00
7 92 4 55 6
2 U 6 5亡
<5
UO45
5
5 9 5亡U4 1 53亡U
6 6 6 66 亡
亡U 6
0.5−1
6
0
9
nU
00
00.5
ⅩRF
Fe
Mn
(%)(〃g・g ̄1)
AA AA XRF C XRF XRF
‖7
7
1
5
4
5
2
1
2 1.
3
7
6
4
4
45 .
1
7
4
Ana)yticalmethod:(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)X−rayfluorescenceanalysis・
Appendix15.26 AnalytlCaldataonthesedimenttcoreL
Samplingsite:α.Samplingdate:11/4.1977.Waterdepth=8l・Om
Na
史︶ 爪U DU O 3 9 7 2 6 1 3 4.d︼
1 5 5 5 7 4 6 9 4 仁U 7.4 3 2
8
10100pl︻一一
0 2 ■4 2 7 6 9 ︹凸 4 ¢U u
3 5 302
2 3 3.4 3.4.4.4 つJ 3 3 4 A
3 4
(−)undetectable.Ana】yticalmethed:(C)colorimetry.(AA)atornicabsorptionspectrophotometry.(XRF)Ⅹrayfluorescenceanalysis,
(NAA)neutT・OnaCtivationanalysis.
1
3
2
4
6
0
7
︻U
7
3
︻U
3
︻b
RU
1
3
6
5
6
2
3
Z
7
■4
1
つJ
■4
7
つJ
几U・d▲
2
nU
﹁⊃
人U
nO
6
︵U
爪じ
9
q
O
3一l
O
つJ
nU
3
ワ︼
6
3.4
7
3
0
3
a
2
1
U
3
2
仁U
3
q︶
3
9
爪U
7
6
3
4
鑓U
︵U
7
ロU
4
ロU
︻U
︻U
ワ︼
4
只︶
q
ハU
q﹀
﹁コ
O
∧U
O
︵U
4
5.4
L
︹U
5
7
ハU
nU
爪U
つJ
︻U
2
q︺
1
O
9
1
︵U
0
1
りム
3
︻U
2
9
3
nU
3
3
3
3
3
O
3
q︶
3
O
2
OU
3
O
︵U
9
︵b
nU
OU
7
︵U
¢U
︵U
9
ハU
6一b
〇
ハリ
﹁〇
︻b
ハリ
2
7
nU
ハU
八U
O
O
ハU
O
4
︵古
3
O
6
︵U
4
︵b
As
2
︷じ
0
7
0
4
5
7
A︶
﹁0
3
4
3
7
9
8
3
3
︵U
3
8
4
9
4
7
9
q︶
﹁〇
0
9
只
5 2
1
2
9
3
2
A▲ 仁U OU
︹0
9
3 0
︵U
qリ
0 AU
︵U
6 ﹁コ 5
00
人U
︵U q︸ q︶
9
nU
7
7
5
qU
﹁コ
9
A.つJ
6 9
ワ︼ 2
りん
00
7
9 ¢U
︵U O
5.4 5 4
︵U
O ︽U
qU OU
1 2
6
1
2 1
︵U
3 仁U
2
6 7
丘U 7 3
q︶
9 爪U
5 つ︼ ︵U
1 0
7
只︶
0
2 2
4 9
1 2
0 1
2
︵U
2
6
2
7
2 1
8 ロU 7
2 1
l 1
9
3 1 3
﹁〇 9
1 ↓l l
7
2
7 日U 7
l l,1
︵h
I DU ハリ
父︶
只U
2
l
ハリ ア 5
q︶
2 1
2
4 6
7
︻U
つJ 3 つJ
3 J︼
つJ つJ
9
3 2
2
2
1
3
7 7
1 3
1
7
3 1
5 2 0
仁U
OU一b
9 八U
5 7
■4 2
1 7 6
■4
1
4
5 5
0
ハU
1
2
7
5
5
6
1
9
2
4
0U
只︶
1 9
︵U ︵U
3
つJ
8
4
▲U
︻b 5
7一b 7 ︵U 2 5.4 只︶ 1
つJ 4 4 4・4.4 5 5 4
0 1 0
9
q−5 q︶
2
ロU
1
3
4
5
O
6
5
4
4
3
0
3
1
﹁つ
5
4
人U
4
4
2
4
O
5
3
4
1
4
9
0 5 2 ■4
■4 4 4 3
一一L一一一二 ︼
7
2
LL3
O
O
▲U
7
︵U
▲b
qU
q−7
5
4
4
1
椚6070亜28382822475045655396
67 6
7 7 7 7 5 9 q︶ 6 7 7 7 7 7
11,1
3
4 5 4
4 4 3
︹凸 9 nU 2 5 5 7 6 4 4 2 2 9一l
3 つ
3J 3 ■4 4 A・4 4 4 4 4 4 4 3 4
O
7
3
5
3
︵U
J︼.d︼
2
0
7
りん
1
4
4
4
︵U
QU
3
鑓U 3 史U 4
3 4 3 4・4
5329一59一
2
︵U
d5 N
O
2.4.4
︻U
3
T
4
3
E3
4
3
4
▲U
3
9
3
7
3
一斗■4.4一4
5
つJ・■■.−斗︻J
2
︵n
5
4
つJ
9
O
ハリ
O
l
﹁⊥ 0
八U 5 5 ︹古 l▲ 5 2 00 1 6 ﹁〇.4 2
ハU 3 2 4 3 6 A﹁ 4 2 3 つ,4 2 4
3 5
2 ワ︼ 2 2 ワ︼ 2 りん 2 2 2 2 2 2 2
QU
1▲・4
ハリ
9
nU
7
1
nU
7
ワ︼
O
7
0
nU
6
■4
‖U
9
︵b
0
2
0
4 ︻U ︵U 3
4 ‖D 5 7 5 5 ︻U 4 7 6 0 9 日U ・9
9 ︹B 只U 7 9 7 9 7 仁U 7 0nU 65 6A﹁
7 3 2
14−18
QU
7
(〝g・g▼l)
nU ︻U ︵U O O O ▲U−U ハU ︵U ︵り ∧U O ︻U
7 6 7
6 2 2 A﹁ 4 日り・4 hU 1 5 つ,4 6 7︿b
5 1 nU 9 ロU 6 7 0U 9 QU ハリ 7 0 qU
n凸
3438
2
7
30−34
5
日0
26−30
八U
18−22
2226
q︶
7
10−14
つ.4
7
8−10
4
7
6呂
2
7
4−6
﹂︼
9U
2−4
3
12
nc
︹凸
1 2 2 9 鎗U 5 草U 6 8 6 9 00 7 ⊂J
rD 6 4 Z 2 ワ︼ 2 つん 2 2 2 2 りん 2
XRF NAA
3−1
0.5−1
︵B
9 2 ︵U 5 2・4 7 1 んU 9.4 7 A.7
¢U 5 0 RU 3 5 4 EU つ] 6B4 0U.
44 27 ハリ 6 仁V 5 4 6 7 6 6 6 只︶ QU
﹁〇 6 7 6 EU 6 6 ︻b 仁U 6 6 6 6 ︵b
2
﹁〇
3
7
凸ノ
2
4
ハU
0
q︼
5
9
4 2 0 7 仁U O O O 1 0 だUh 7 T5 だU
3 3 3 1 9 1 2 4 1 4.4 1 1 ︵U﹁つ 6
﹁〇 5 5 5 4 5 5 ﹁つ ﹁〇 5 5 5 5 5
6
3
3
6
∼ NAA
5
ロU
QU
(〝g・g1)
4・4一q・4
︻b
2
2
ロU
2
nU
1
3
00
ハリ
8
Co CT・ Sb Ba Cs Sc Sm Ce Yb Lu
QU
5.4
233〔〉
■4
8
5
2500
1
2210
1
﹁〇
2480
1
2050
﹁つ
1940
5
2300
4・4.4
2160
3
5・4
2390
4
5
2210
1
﹁コ
2650
■1
5
360〔1
︵U ︻U 爪U O O ︵U O O ︻U O ハリ ハU ∧U ハリ 5 8 ︵U 3 3 6 6 2
2 1 5 4 几U 6 qU.4 4 ﹁〇 7 ﹁〇 97 75只︶ 只︶ 只︶ 只︶ q︺ 0︶ 鑓U ロU ロ0
5 仁U 2 nU A﹁ 3 2 1 2 2 4 1 4 2
¢U・4 3 3 2 2 ワ︼ 2 りん 2 2 2 2 2
4980
9
つム 3
1▲・4 3 5 2 4 7 2 3 2 ¢U‖5 3 3
4 4 ■4 4・4 4・4 ﹁〇 ﹁⊃ 5 5 5 5・4
5 3
0
a
u
6 爪U 3 5 7一l 史︺ ▲h ﹁〇 QU l▲ ︻b 6 4
0 ︻X︶ ︵わ ︻ 5 5 5 ﹁⊃ ﹁〇 5 6 5 5 6
XRF
C AA NAA XRF
(%)
1()110
00.5
(〟g・g ̄1)
(〟g・g ̄l)
(%)
(%)
Rb
Ti Ni Cu Zn Pb Sr
Fe
Ca KI Mg
Mrl
(%) (〟g・g▼l)
AA AA XRF C XRF NAA XRF
(%)
(%)
Dq火h(。m)三上こ(〟g・gl)
Appendix15.27 Analyticaldataonthesedimentcore
Samplingsite:β.Samplingdate:11/4,1977,Waterdepth:58・Om・
7
l
3
2
︻ヽ︶
ワ一6
5
9
﹂﹁.4一4
ア
6
1
つJ
3・バー・4
6
7
5
3
3
7
7
7
4
︻b
3
B
3
L
5
3
3
Z
4
り︼.4一6
.A一.4.■て
T
O
1
7
A︼
︿▲U
︻八︶
5
9 ﹁︺
1
4 4・■†
‖=一
‖‖‖一一一一・6:
4
︵U
O
7
7
O
ウレ
l
9
2
O
Z
0
7
0・4
hU
∧U
3
4・4
3
6
〓
nU
5
︵U
1
4
2
U
4
2
0
5・
O
6
O
3
rD
O
5
⊂J
7
﹁〇
ハU
5
6
7
7
︵U
・AT
0
6
4
7
つJ
﹁〇
3
5
3
2
爪U
9
つJ
■〇
7
qU
4.A︼
9
▲h
Jq・4..4
5
つム
5
6
6・4
qU
︵U
9
つJ・4・4
1
9
0n
6
O
爪U
﹁〇
O
OU
﹁〇
5 2・A−5
■﹂J一1 3
nU
3 1
5
っJ
.4
5
O□
4 4.4
乙右4.4.4.7.L9.7.も4.6、5.
9
q︺
貼554336302926292725262733
7
つJ
3
■﹂J
■へ︶.■斗
5
qU
1
︻U
7
▲‖0
⊂J
几﹁U
3
3
つJ
9
7
7・4
ウレ
﹁〇
3
3
7
7
1
5
2
ウJ
1 ︵U 5.−勺 5 3 0 へ〇
85つJ9
3っ
J22∩‘22り︼222
qU一1
14
11
6
3
■4
0
9
7
2
7
7
4
4
5
9
O
CU
7
<U
∧U
7
6
5
(−)urLdetectableoTrnOtana】ysed.Analyticalmethod:(C)colorimetry,(AA)atonicab50rptionspectrophotometry,(XRF)X−ray
fluore∝enCeanatySis,(NAA)neutronactivationanalysis・
つJ
9
1
︻﹂U
仁U
7
つJ
爪U
a
u E L■L30・9
93899077645249595360由585856
﹁つ3.42232323ワ︼333
O
∧U
7
5
一5156一一一︻ 7〇一一
d N
48505550544855535856粥545955
nU
︵U
0
1
5
T
︵U
5
.Ln
.2.2.9j.9.2.1.2.2﹂∵j.4.5
⊂J 5 4 5 4 ﹁〇
5 5 5 ■﹂J
9
4.4.4
9
︻‖V
O
■■q
4
∧U
1
∧U
ハU
1▲
︵〓﹀
1
qU
O
O一‖︶
2
︷U
7
5
O
ハU
5
Ar ﹁〇 l ↓1 5 6 つJ 3 9 7 ワレ pU 2 つJ
一トロ..4 ハy 7 qU 9 ハV 爪V 長V 7 S ▲.O l
4
1.4一︻‖0
ハリ
几U
l
0
爪U
0
鎗U
0
∧U
5.4.皿.。4.4一寸.4・4▲
9
一斗.几T
1
∧U
n﹀
(〟g・g1)
つJ
O
一斗
ハU
︵U
ハnU
∧U
つJ
Yb Lu
5
2
7
3
9
9
7・几T・d▲
5
2
ワ︼
O
︵U
5
6
︵U
2
O
9.4
2
7
9
鎗U
<U
O
中U
2
ハリ
n>
∩︶
5
5‘リ
ア
7
7
9
︵U
0
9
3
9
っJ
Z
3
︵U
OO
▲‖︶
gU
ハ>
▲‖︶一4
﹁〇
︻ヽ︶
つJ
0
3
2
3
3
2
O
6
3
Z
n︶
2
2
・・ヰ
3
O
3
2
︵U
3
■U
3
1
つJ
O
つJ
つ]
3
O
爪〓
OO
<U
q﹀
0
nJ
ロU
On
7
U
7
7
9
7
7
?J
0
几火︶
ハU
7
OU
1g−22
QU
QU
14−18
QU
0,5−1
23
12
34
46
68
10−14
8−10
︵U
ハ‖︶
U
6.4
0
仁V
m
S
︻b
2
∧U
S
ワ山
0
ハU
31
B
O
b
C
O
4
2
2
爪V
S
3034
ウ︶
5
2
臥9.9.針針〇.一〇.〇.〇.9.9.針9.
2
1
5.L∴L′仇︹山6.6.臥︻軋Dれ7.臥㍗
4.㌻∩よっ山L2.一2.乙3.乙3.3.も
7 6
9
7772
9
4・4・
7975717372凱一76相79朗開拓粥
7 RU ︻b 5 6 1
5 qU.4 q﹀ 2 7
9.L∴仇nLょいq.一臥3.臥9.L L乙
l ワ︼ 9︼ l 1 1
,1 り︼ 1 1 2 ワ︼
Z
0
、“
869088銅8783一9497979091約94
㈹040606鵬000400090009990806
AA AA XRF C XRF NAA XRF
ⅩRF
C
7 0 7 2 1 7
■﹂J <U O つJ.4
.7通用.8月.7.7.8.7.7J J.7
<U
n︶
▲日
2226
−−誉T−
26−30
43090592幻917690970525
∧U
っJ
00.5
(〟g・g ̄▲) (〟g・g ̄l)
(〃g・gl)
(%)
As
Rb
Ni Cu Zn Pb Sr
Ti
Fe
Mn
K Mg
(%)
(%) (〟g・g「1)
(%)
Appendix15.28 Analytica】dataonthesedimentcore
Samplingsite:6.Samplingdateこ11/4,1977.Waterdepth:2.5m.
P
K Ca Mg
Depth(cm)(JLg・g.) (%)
5
6
0
4
5
ハリ
▲4
4
6
6
9
3
7
0
1
6
4
6
5
8
亡U
仁U
3
5
8
00
5
6
亡U
3
6
0
5
1
6
4−
2
7
.4
5
7 140 77
8 135 81
35
2
7
5
9
ハU
6
4.49 0.48
6 153 76
4
4.28 0,49
935 4.66
960
3
843 4.66
650
RU
3
980
2.10 0.35 0,82 1100
28−32
4
2.10 0.33 0.76
24−28
3
620
3
20−24
4.58 0.51
亡U 5 6
4.96 0.53
875 4.76
亡じ
982・5.11
2」5 0,32 0.84 1060
1
2.34 0.29 0.90 1150
00
2.41‘0.36 0.92
530
9
460
1820
4︼33n3
U 2
2
ワ
16−18
1
4.79 0.55
4.93 0.54
4
960 934 5.00
1
843 4.74
470
7
1
2.38 0.36 0.89 1020
1416
3
3
4.53 0.53
2.21 0.30 0.80
00
960
390
2
4.69 0.55
778 4.48
一]▲
788.4.49
3
950
4
2.30 0.30 0.78
3
4
460
2
4
1012
6
4.29 0.50
4
723 4,51
9
880
5
2.29 0.27 0.80
3
360
6
810
4.59 0.49
5
4.5と1 0.45
6
756 4.52
ロ0 00
1 1
920
2.33 0.28 0.80 .940 771 4.62
5
1
2.50 0.36 0.77
360
3
1
370
6−8
1
1
46
5
1
4.25 0.43
3
1
804 4.59
1
1
4.29 0.40
990
9
1
942 4.95
2.28 0.33 0.82
2
1
2,09 0.36 0.83 130〔)
490
9
1
640
Oロ263025りん
7
2
1−2
1
2
4.41 0.45
62
3
3
2,13 0.35 0.82 1850 1600 4.92
6
3
860
XRF
2
5
4.21 0.46
2−4
12−14
(〟g雫1)
AA AA XRF C XRF XRF
2.28 0.42 0.82 2080 1780 4.87
860
0.5−1
Ti Ni Cu Zn Pb As Rb
(%)
3 0
7U 94亡U
.4 47 4
亡U41 44 3
003
0
70 亡
4 14 041 4<U﹂︼
0−0.5
XRF
(%)
亡﹀
UU5392︹2
J
︹
C
Fe
Mn
(%)(〟g・g ̄り
11 138 84
5
Analyticalmethod=(C)colorimetry,(AA)atomicabsorptionspectrophotometry,(XRF)Ⅹ−rayfIuorescenceanalysis・
一b
7 7
5 3
4
3 2
0
2
Appendix16 ProbablespeciesofelementsintheoxidizedandredueedlayersofsedimentinLakeBiwa
Oxidizdlayer
Reducedlayer
Solidphase
Fe Fel+2)Ⅹ,FeS,FeS2,
[FezOユ・nH20]
Mll Mn(+2)X
Fe+Z,Fe(+2)L
As As(十3)Ⅹ,ⅩAsO㍗.
As(+3)しHAsOヱ,
[AsS;,HzAsOi]
[As2S。]
Sb Sb(+3)X,Sb2S,,
Sb(OH)ユ,XSb(Oll),.
Aqueousphase
Aqueousphase
−…−→, Fe(十2,+3)L
→ Mn十之.Mn(+2)L
M†l◆2,Mn(+2)L
Sb(OH)ユ・aq.,
Sb(+3)L,SbS盲
一−−−−−→ H2AsO;,[As(十3)L]
Solid phase
FelOも・nIiモ0、.
Fe(+2.+3)Ⅹ
2).3),4)
Mn(+2)X,MnOx・nH20
(Eh>cα.600mV)
ⅩAsO∴[As(+3)Ⅹ]
沌拍.
Total dissolved
sulride:10 ̄β10 ̄‘M
Sb(OH)盲.[Sb(+3)L]
XSb(OH)言,[Sb(+3)Ⅹ]
油壷.
Pb+3,Pb(+2)L
Pb(十Z)Ⅹ,PbO2
(Eh>r仇600mV)
抽出.
Hg,Hg(+2〉Ⅹ
ⅩCrO∴Cr(+3)Ⅹ,
ざdfd.
←S
[Sb?〕
Pb Pb(+2)Ⅹ,PbS
−−N∽−
Hg HgS,Hg,[Hg(+2)X]
Cr Cr(+3)X,[Cr(Of砧]
U UO=,U(十4)X,
UO2(+2)X
V VO(+2)X.Ⅴ(十3)X,
XVOJ3.[VO(OH)。,
V(OH)l]
Ce Ce(+3)X
Ⅰ】b十2,Pb(十2)L,
[PbSi2]
◆ ̄S
HgS;】,Hg.[Hg(+2)L]
←S Hg,HgOti十,Hg(十2)L
Cr(OH)言,Cr(十3)L
←一=7 CrOi≧,Cr(Ofi);,
U(OH);2,UO;(Otl)十,
←−−−−
U(十4)L,UO2(+2)L
H2VOi,VOOtl◆,
VO(+2)L.V(OH)言,
Ⅴ(+3)L
Ce十】,Ce(十3)L
Cr(+3)L
[Cr(OH)3]
UOz(OH)∴UO⊇(+2)L
UO2(+2)X
←−=
? H之VOi
−−
−→
Ce+3,Ce(+3,+4)L,
Ce(OH);g,Ce(0Ii汀,
Tota】dissoIved
carbonate:10510 ̄1M
XVOこJ
Ce(+3,+4)X,Ce(OH).
(Eh>e〃.400mV)
1)Eh−pHdiagTamforeachelementwasillustrateda25’C,1atm.byrefrencetothefollowingliteratures:G▲Charlot.”L’an81ysequa】itativeetlesreactioTIS
ensol11tion”,4e昌dition,1957,MassonetCie;LG.Sil16n,A.E.Martell,t’StabilityconstantsoLmetaトioncoTTIPlexes’’,Spec.pub.No.17,1964.CTlem.S()C.
(London).
2)J.D.Hem,ChemicalfactorsthatinfltlenCetheavaitabilityofiTOnandrrlaTlganeSeinaqueotJSSyStemS,Geol.Soc.AmeT・Bull.,Spec.pap.140,1724(1972)
3)R.R.Weiler.TheinterstitialwatercompositioninthesedimentsoftheGreatLakes.1.Western LakeOntario,Limr[01.Oceanogr,18,91B−931(1973)
4)G.Brtlmmer,Redoxpotentialetmdredoxprozessevonmar)gan−,eisen、undschwefetverbindungeninhydro叩Orpher)b6denundsedimenten,Geoderma12,207
−ZZ2(1974)
X:1nsolubleorganicsubstance.hydrousoxidesofmanganE5eandiron,OrC]ay,etC・
L:Solubleorganicsubstanc
[]:Minorco爪Stituentineachphase
←S:Rtentionbysulfideformationcanbeexpected.
AppeTtdix17 ModeIforcyclesofmetalsinLakeBiwa
旭適ql止1m
匪ぬpl出血(B)
Supply:Bio]ogicaldetritus(BD).Organicsubstanees(L(5)andL(ins)aresolubleand
irLSOlubleorganicsubstancesrespectively),Hydrousoxidesofmanganese
(MnO.r)andiron(FeOx),C]ay;Metalionsaresupt)1yedasoccluded,COmplexed,
andadsorbedformsinadditiontosomesimpleinorganiccomplexesandfree
aquo−ions(Me舛つ.
(R1):Releaseofmeta]ionsbymicrobialdecompositionofmetalcomp】exes(i,e.MeL
(s)→Me几++R.R:Organicresidue);CataIyticoxidationofMn2+,Catalyzer:
MnOx,FeOx,quartZ,feldspar,microorganism,etC.
(R−2):Complexformation;Oxidation;Adsor7)tion;Dissolutionbyeomplexformation
(MeXl+L(s)→MeL(s)+ⅩI);MetalioTlreleasewithloweringofpHandby
hydrousoxide(MnOxorFeO.r)LL(s)interaction.
(R3)= CompIexformation;Sulfideformation;Stlbstitutionreactioni(Mn2+.MeT十)+
Me,Ⅹ1→(Mn,Mel)Xl+Me冒+);Dissolutionbycomplexformation;Metalion
releasewithloweringofpH andbyhydrousoxide−L(s)interaction.
L雷(ins):insolubleorganicsubstanceresistedtodecomposition.
:underlinedspeCleSShowstheminorconstituentineachproduction.
−126一
■・、l
2
3
十+
539
ハU33︵U qU2 4 4 596
2 554 3Ar l l 11 111 1 1
2
As
28.1
l.1
27.1
Ce
24.3
Co
∴■1
Ni
22−2
Fe
17.7
Mn
13.2
Elen廿ent(3+〕
−11)g K些
Ba‥
50.1
Fe
Ⅰ}b
35.4
Cr
ししI
35.1
A】
Cd
32.7
Bi
\111‖
28.7
Co
28.1
Zn■
27.9
Ni‥
25.5
61
Sb
36.3
A﹁
5 2
つJ 1 4
2
Elemt(3+)
52.5
Zrl
迦1ent(2+)
+
Cd
434222
Pb
++十++十 3T
t−11
−log K50
α0 443257■472461一b535
+jO
11
72 535 70 1 7 ﹁〇 7 7 6只︶973 56 7
U︵﹁〇 32 q−20122 つJ3.4 555.43 4.4
Hg
+
、
法字La琵N。訂実記Er諾Lu
Element ぐ2+つ
(4+)50.6
(4+)53.1
(ThO)23.3
(UO2)19.3
(4+)56.0
(3+)37.4
(3+)4l.8
(4十)64.8
−1ng Kso
20.2
20.】(at22℃)
】5.8(a122℃)
9,4
19.7
Mg Ca◆
18.2
Sr●
18.1
Appendix18 Solubility products of metal−hydroxide,Sulfide and
arsenate
ValuesarebasedonthedatacompiledbySil16nandMartell
(1964).伽Hydroxide,Tempニ25℃,Ks。=(Me爪り(OHr)わ;03)
Sulfide,Temp:25℃,K5。(2+)=(Me2+)(S2▼),K5。(3+)=
(Me3+)2(S2.)3,●ニValue for(HAs02)2(ⅠⅠ2S)3;(C)AI−Senate.
Temp:20℃,Ks。(2+)=(Me2+)3(As0▲3 ̄)2,K,。(3+)=
(Me3十)(AsO.3 ̄),..:Elementswhicharelargelyaccumulated
inMnconcT・etions(concentrationfactoT・>0.8),◆ニEIements
whichareslightlyaccumulatedinMnconcretions(concen−
trationfactor=0.3−0.8)
一127−
Iog(Solublllty.M)
+10
)(
−10
−20
−40
−30
㌔ a㌔﹂千尋i
O
n
d扉u㌔っr
C
⊥
H
=l
A
tll
(\1’/)
F
l】l
N
C
Z
C
P
C
S
H
Appendix19 Maximumsolubilityofmetalionas(A)sulfideand(B)hydroxide
ConcentTationlevel二(1)mg、kg1,(2)〃g・kg∴(3)pg・kg ̄1.
(A)Temp:25−C,pH:6,5,Totalsulfideconcentrationinsolution=
(a)10 ̄6M,(b)10▼5M,(c)10 ̄4M;(B)Tempこ25凸C,pH:7.0.
−128−
109(Solubility.M)
−10
0
a r a q一 B S
C机 へぢ刃h帽り
Mn2+
iCd
叫rqぺり可し
…
∴
Nl
Nd
Pr
Y
Tm
m
S
E
u
d
E
r
b
G
O
Y†山H︻⊥n
u
b
y
ZC
u
S
C
129
−20
−30
−40
国立公害研究所特別研究成果報告
第1号 陸水域の富栄養化に関する総合研究−霞ケ浦を対象域として一昭和5】年度.(1977)
第2号 陸上植物による大気汚染環境の評価と改善に関する基礎的研究椚和51,52年度 研究報告.
(1978)
(改 称)
国立公害研究所研究報告
奴第3号 A compaTative study ofadults andimmature stagesofnineJapanesespeciesofthegenus
Chironomus(Diptera,ChiTOnOmidae)・(1978)
(日本産ユスリカ科・C執れ川仇Ⅵ∽ 属9種の成虫,サナギ,幼虫の形態の比較)
第 4 号 スモッグチャンバーによる炭化水素一望葉酸化物系光化学反応の研究一昭和52年度 中間報
告.(1978)
第 5 号 芳香族炭化水素一室素酸化物系の光酸化反応機構と光酸化二次生成物の培養細胞に及ぼす影
響に関する研究一昭和5l,52年度 研究報告(1978)
第 6 号 陸水域の富栄養化に関する総合研究(Ⅱ)番ケ浦を中心として.一斗昭和53年度.(1979)
※第 7 号 Arr”rphologicalstudyofadultsandimmaturestagesof20Japanesespeciesofthe family
ChilOnOmidae(Diptera).(1979)
(日本産ユスリカ科20種の成虫,サナギ,幼虫の形態学的研究)
媒第 8 号 大気汚染物質の単一および複合汚染の生体に対する影響に関する実験的研究一昭和52.53年
度 研究報告.(1979)
第g 号 スモッグチャンバーによる尉ヒ水素一審素酸化物系光化学反応の研究一昭和53年庭 中問報
告,(1979)
第10号 陸上植物による大気汚染環境の評価と改善に関する基礎的研究昭租51−53年度 特別研究
報告.(1979)
第11号 Studies on the effects ofair pouutants on plantsand mechanisms orphytotoxicity.(1980)
(大気汚染物質の植物影響およぴその柄物毒性の機構に関する研究)
第12号 Multielement analysis studies bynameandinductivelycoupledplasmaspectroscopyutilizing
COmputer−COntrOlledinstTumentation.(1980)
(コンピュータ制御装置を利用したフレームおよび誘導結合プラズマ分光法による多元素同時
分析)
第13号 StudiesonchironomidmidgesoftheTamaRiver・(1980)
Parll.The distribution ofchiTOnOmid speciesir)atributaryin relation to thedegree orpol・
1utionwithsewagewater・
Part2.DescTiptlOnOf20speciesorChiTOnOmirlaeIeCOVeredrromatributary・
(多摩川に発生するユスリカの研究
¶一講1報 その一支流に見出されたユスリカ各種の分布と ̄F水による汚染度との関係一
一節2報 その一支流に見出されたChilOnOminae亜科の20種について−)
第14号 有機廃棄物.合成有機化合物,重金属等の土壌生態系に及ほす影響と浄化に閲する研究−昭
和53,54年度 特別研究報告.(1980)
巣第15号 大気汚染物質の単一および投合汚染の生体に対する影響iこ関する実験的研究−昭湘54年度
特別研究報告.(1980)
第16号 計測車レーザーレーダーによる大気汚染遠隔計己軋(1980)
数第17号 流体の運動および輸送過掛こ及ぼす浮力効果【臨海蝿域の気象特性と大気拡散現象の研尭
1一昭柾53,54年度 特別研究報告.(1980)
 ̄ Vll−
第18号 PrepaTation,amlysisandcertification ofPEPPERBUSHstarLdaTdTefeIenCematもrial▲(1980)
(環境標準試料「リョウプ」の調製,分析および保証値)
※第19.号†陸水域の富栄養化に関する総合研究(Ⅲ)−一霞ケ浦(西浦)の潮流一昭和53,54年度.
(1981)
第20号 陸水域の富栄養化に関する総合研究(Ⅳ)−霞ケ浦流域の地形,気象水文特性およびその湖
水環境に及ばす影響一昭和53,54年度.(1981)
第21号 陸水域の富栄養化に関する絵合研究(Ⅴ)一環ケ浦流入河川の流出負荷量変化とその評価一
昭和53,54年度.(1981)
第22号 陸水域の富栄養化に関する総合研究(Ⅵ)一霞一ヶ浦の生態系の構造と生物現存量一一昭和53,
54年慶.(1(蛤1)■
第23号 陸水域の富栄養化に閲す、る総合研究(Ⅶ)一湖沼の富栄養化状射旨捷に関する基礎的研究一
昭和53,54年度.(1981)
第24号 陸水域の富栄養化に関する総合研究(Ⅶ)言栄養化が湖利用に及ぼす影響の定塵化に関す
る研究】一昭和53,54年皮 (1981)
第25号 陸水域の富栄養化に関する総合研究(Ⅸ)−〟了cr叩∫由(藍藻類)の増殖特性一昭和53,
54年度.(1981)
第26号 陸水域の富栄養化に関する総合研究(Ⅹ)一藻掛吾養試験法によるAGPの測定一昭和53.
54年度.(1981)
第27号 陸水域の富栄養化に関する総合研究(Ⅲ)一研究総括一昭和53,54年度.(19飢)
第28号 複合大気汚染の植物影響に関する研究一昭和54,55年虔 特別研究報告.(1981)
第29号 StudiesonchironomidmidgesoftheTamaRiYer.(1981)′
Part3,SpeciesofthesubfamilyOrthocladiinaerecordedatthesummeisurYeyandtheiTdistTi・
butioniJlrelationtothepollutionwithsewagewaters,
Part4.ChironomidaerecoTdedatawintersurvey.
(多摩川に発生するユスリカ規の研究
一策3報 夏期の調査で見出されたエリユスリカ亜料orthocladii爪ae各種の記載と,その分
布の下水汚染度との関係について
一策4報 南浅川の冬期の調査で見出された各種の分布と記載−)
常第30号 海域における富栄養化と赤潮の発生機構に関する基礎的研究一昭和54,55年度 特別研究報
告.(1982)
第31号 大気汚染物質の単一および複合汚染の生体に対する影響に関する実験的研究一昭紬55年度
特別研究報告,(1981)
第32号 スモッグチャンパーによる炭化水素一軍葉酸化物系光化学反応の研究一環境大気中における
光化学二次汚染物質生成捜構の研究(フィールド研究1)一昭和54年度 特別研究報告.(1982)
第33号 臨海地域の気象特性と大気拡散現象刀研究一大気運軌と大気拡散過程のシミュレーション
一昭和55年皮 特別研究報告.(1982)
第34号 環境汚染の遠隔計測・評価手法の開発に関する研究一軒和55年度 特別研究報告.(1982)
第35号 環境面よりみた蝿域交通体系の評価に関する総合解析研究.(1g82)
第粥号 環境試料による汚染の長期モニタリング手法に関する研究一昭和55,56年度 特別研究報告.
(1982)
第37号 環境施策のシステム分析支援技術の開発に関する研究・(1982)
#38号 Preparation,analysisandcertificalionofPONDSEDIMENTcertifIedref℃TenCematerial・(1982)
(環境標準試料「地底質」の調製.分析及び保証値)
第39号 環境汚染の遠隔計測・評価手法の開発に関する研究一昭和56年度 特別研究報告.(1982)
−V111 ̄
第40号 大気汚染物質の単一及び複合汚染の生体に対する影軌こ関する実験的研究一昭和56年度 特
別研究報告.(1983)
第41号 土壌環境の計測と評価に関する統計学的研究.(1983)
第42号 底泥の物性及び流送特性に関する実験的研究.(19田)
粟第43号 StudiesonchironomidmidgesoftheTamaRiver.(1983)
Part5.AnobservationonthedistributionofChironominaealongthemainstreaminJunewith
descrlptionof15newspecies・
PaJt6.DescrlPtionofspeciesofthesubfamilyOrthocladiinaerecoveredfromthemainstream
htheJune5urVey.
Palt7.AdditioTlalspeciescollectedinwinterfTOmthemainstream.
(多摩川に発生するユスリカ類の研究
一第5報 本流に発生するユスリカ頸の分抑こ関する6月の調査成績とユスリカ亜科に属す
る15新種等の記録−
一策6報 多摩本流より6月に採集されたエリユスリカ亜科の各種北ついて.−
一第7報 多摩本流より3月に採集されたユスリカ科の各種について−)
第胡号 スモッグチャンパーによる炭化水素一室素酸化物系光化学反応の研究一環墳大気q】における
光化学二次汚染物質生成機構の研究(フィールド研究2)一昭和54年度 特別研究中間報告.
(1983)
第45号 有機廃棄物.合成有機化合物,重金属等の土壌生態系に及ぼす影響と浄化に関する研究¶昭
和53年∼55年皮 特別研究報告,(1983)
第46号 有機廃棄物,合成有機化合物,茶会属等の土壌生態系に及はす影響と浄化に関する研究−昭
柏54,55年度 特別研究報告 第】分冊.(1粥3)
第47号 有機廃棄物,合成有機化合物,重金属等の土壌生態系に及ぼす影響と浄化に関する研究一昭
和54,55年度 特別研究報告 第2分冊.(】湘3)
第48号 水質観測点の適正配置に関するシステム解析.(1983)
第49号 環境汚染の遠隔計測・評価手法の開発に関する研究一昭柵57年度 特別研究報告.(1984)
第50号 陸水域の富栄養化防止に関する総合研究(Ⅰ)−一霞ヶ浦の流入負荷真の算定と評価一昭和
55−57年度 特別研究報告.(1984)■
第51号 陸水域の富栄養化防止に関する組合研究(n)一霞ケ浦の湖内物質循環とそれを支配する因
子一昭和55−57年度 特別研究報告.(1984)
第52号 陸水城の富栄養化防止に関する総合研究(m)一霞ケ浦高浜入における隔離水界を利用した
富栄養化防止手法の研究−昭和55−57年皮 特別研究報告.(1%4)
第53号 陸水域の富栄養化防止に関する総合研究(Ⅳ)一霞ケ浦の魚頬及び甲殻類現存塁の季節変化
と富栄養化一昭和55−57年度 特別研究報告.(1984)
第別号 陸水域の富栄養化防止に関する総合研究(V)−霞ヶ浦の富栄養化現象のモデル化−一昭和
55−57年慶 特別研究報告.(1984)
第55号 陸水域の富栄養化防止に関する総合研究(Ⅵ)冨栄養化防止対策←昭和55∼57年度 特
別研究報告.(1984)
第舐号 陸水域の富栄養化防止に関する総合研究(Ⅶ)湯ノ湖における富栄養化とその防止対策一
昭和55∼57年度 特別研究報告.(1984)
弟57号 陸7k域の富栄養化防止に関する総合研究(Ⅶ)一十隠悟報告」一昨沌55−57年度 特別研究報
告.(1∈B4)
第調号 環境試料による汚染の長期的モニタリング手法に関する研究一昭和55−57年度 特別研究総
合報告.(1躯4)
第盟号 炭化水素一撃葉酸化物一硫黄酸化物系光化学反応の研究光化学スモッグチャンバ
オゾン生成機構の研究一大気中における有機化合物の光酸化反応機構の研究一昭和55∼57
年度 特別研究報告(第1分冊).(1盟4)
第60号 炭化水素、窒素酸化物一硫黄酸イヒ物系光化学反応の研究一光化学エアロゾル生成槻構の研究
一昭和55−57年皮 特別研究報告(第2分冊).(1%4)
第61号 炭化水素、窒素酸化物一硫黄酸化物系光化学反応の研究一環境大気中における光化学二次汚
染物質生成機横の研究(フィールド研究1)一昭和55−57年皮 特別研究報告(第3分冊).
(1981)
第62号 有害汚染物質による水界生態系のかく乱と回復過程に関する研究一昭和56−58年度 特別研
究中間報告.(1984)
第63号 海域における富栄養化と赤潮の発生桟橋に関する基礎的研究一醐口56年度 特別研究報告.
(19糾)
弟朗号 複合大気汚染の植物影軌こ関する研究一昭和54∼56年慶 特別研究総合報告.(1984)
第65号 Studiesoneffectsofahpollutantmixturesonplants−Partl▲(1984)
(複合大気汚染の植物に及ぼす影響一第1分冊)
第66号 StudiesorLeffectsofairpollutantmixturesorLphnts−Part2.(1984)
(複合大気汚染の植物に及ぼす影響一第2分冊)
第67号 環境中の有害物質による人の慢性影響に関する基礎的研究一昭和54−56年度 特別研究総合
報告.(1984)
第鴨号 汚泥の土壌還元とその環境に関する研究一昭和56−57年度 特別研究総合報告.(慄4)
第69号 中禅寺湖の富栄養化現象に関する基礎的研究.(】粟4)
第70号 StudicsoIIChironomidmidgesinlakesoftheNikkoNationalPark(1984)
Pa∫tl.EcologicalstudiesonchironomidsinlakesoftheNikkoNationalPark・
ParID.TaxonomjcalandmoTPhoIoglCalstudiesonthcchironomidspeciesco11ectedfromlakes
h theNikko Nationall〉aTk.
(日光国立公園の柳沼のユスリカに関する研究
一策1都 日光国立公園の湖のユスリカの生態学的研究−
−第2部 日光国立公園の湖沼(こ生息するユスリカ類の分類学的,形態学的研究一
策71号リモ∵−トセンシソグによる残雪及び雪田相生の分布解帆(1984)
第72号 尉ヒ7k第一窒素酸化物一硫華酸化物系化学反応の研乳環囁大気中における光化学二次汚
染物質生成機構の研究(フィールド研究2)一昭和55−57年度 特別研究報告(第4分冊).
(1985)
第73号 炭化水素一室素恨化物一硫黄酸化物系化学反応の研究」一理困55−57年度 特別研究総
合報菩.(1985)
第74‡ヲ・都市域及びその周辺の自然環㈲二係る環境指標の開発に関する研究.環境指標一その考
え方と作成方法昭和59年度特別研究報告.(1984)
第75りr Limno]og・CaL之Indenvironmen(aEstudiesorelementsinthesedimenlorLakeBi“′2l.(1985)
琵琶湖庇iJ糾】の元射こ関する陸水学およひ環境化学rl加肝究
※残部なし
Report of Speci&1Rese&rCh Prqject the N&tionallnstitute for Environment81Stlldies
No・1■Man activity and aquatic enviTOnmentWith specialIeferences to Lake Kasumlga11TaProgIeSS
TepOrtin1976,(1977)
No.2*Studies on evaluation and amelユOration ofair pouution by plants−Progressreportin1976−1977.
(1978)
【StartingwithReportNo.3,thenewtitleforNIESReportswaschangedto:】
Research Report fromthe N8tion81InstittLte for Environment&1St11dies
薫No・3 AcomparativestudyofadultsandimmaturestagesornineJapanesespeciesofth仁genuSChironomzJS
(Diptera,Chi−OnOmidae)・(1978)
No・4+SmogchambcrstudiesonphotochemicalleaCtionsofhydrocarbon−nitIOgenOXidessystem−PTOgreSS
JepOrtin1977・(1978)
No.5■Studies onthephotooxidationproductsofthealkylbenzerLe−nitrogenoxidessystem,andontheir
effectsonCulturedCe115ResearcllrepOrtin1976・1977,(1978)
No,6+Man activity and aquatic enYironment一with speCialreferences to Lake Kasumigaura−ProgTeSS
repoftin1977−197臥(1979)
欒No・7 ^morphologlCalstudyofadultsandimmaturestagesor20JapanesespeciesofthefamiIyChiTOnO一
midae(Diptera).(1979)
兼No,8*StudlesonthebiologlCaleffectsofsingleandcombinedexposuleOfairpollutantsReseaTChreport
in1977−1978.(1979)
No,9+SmogchamberstudiesonphotochemicalTeaCtionsorhydIOCarbon−nitIOgenOXidessystem−ProgIeSS
reportin1978・(1979)
No.10+Studieson eYaluation and amelioration ofaiT pOllution by plantsProgressreportin1976−1978・
(1979)
No,11Studiesontheeffectsofai∫pOllutantsonplantsandmechanismsofphytotoxicity・(1980)
No.12 Multielementanalysis studies by name andinductively coupled plasmaspectroscopyutillZingconl−
puteJ−COntrOlledinstrumentation・(1980)
No.13 StudiesonchiTOnOmidmidgesortheTamaRiver.(1980)
PaT11,¶e distTibl】lioT10ichiIOnOmidspeciesinatTibutaTyinTelationtolhedegIeeO−p(〉llution
Withsewagewater.
Part2.I)escriptior)Of20speciesofChiTOnOminaerecoveredfromatTibutary.
No.14*StudiesorLtheerfectsoforganicwastesortthesoilecosystemProgressreportin1978−1979・(1980)
姓No.15■StudiesonthebiologicaleffectsofsingleandcombinedexposureofairpollutantsrResearchTePOrt
il11977−1978.(1980)
No.16+RemotemeasurementofairpollutionbyamobilelaserTadar.(1980)
滞No・17*Tnnuenceofbuoya爪CyOnfluidmotionsandtransportprocessesMeteorologlCalcharacteristicsand
atmosphericdiffusionphenomenainthecoastalregionProgressreportin197B・1979・(1980)
No.18 Preparation,analysisandcerlificationofPEPPER】】USHstandardreferencematerial▲(1980)
蝋No・19●CompTehensiYe StudiesontheeⅦtTOphicationo−†㍑血−Wate一色TeaSLakecu一丁entOrKasumigaura
(Nishiura)−1978−1979.(1981)
No.20■ComprehensiYeStudiesontheeutrophicationoffresh−WateTareaS−GeomorphologicalandhydTOme・
teorologicalcharacteristicsofKasumigaurawate−Shedasrelatedtothelakeenvironment−1978−1979・
−
−
(1981)
Xl−
No・21■Comprehensive studies on the eutIOphication offresh・WateT areaSp Varlationofpollutantloadby
irLnuentTiverstoLakeKasumigaura−1978−1979.(1981)
No.22*Comprehensive studies on the eutrophication of fresh・Water areaS−StruCture Ofecosystem and
StandingcTOpSinLakeKasumigaura1978−1979・(1981)
No・23*ComprehensiYe StudiesontheeutrophicationoffreshrwateraTeaS−AppllCabihtyoftrophicstate
indicesforlakes1978−1979.(1981)
No.24*ComplehensiYeStudiesontheeutrophicationorfresh−WaterareaS−Quanlitativeanalysisofeutrophi・
cationerfectsonmainutilizationoflakewaterresou(CeSr1978−1979.(1981)
No.25■ComprehensiYe Studieson theeutrophic且tionoffresh−WaterareaS−GrowthcharacteristicsofBlue−
GreenAlgae,坤C和叩∫Jf∫1978−1979■(1981)
No.26*Comprehensive studieson theeutrophicationoffresh−WaterareaS−Determinationofargalgrowth
potentialbyalgalassayprocedure−1978・1979・(1981)
No・27*Comprehensivestudiesontheeutrophicationoffresh−WaterareaSrSummaTyOfresearchesr197&・
1979.(1981)
No.28+Studiesoneffectsofairpollulantmixturesor)plantsProgressTepOtin1979−1980・(1981)
No.29 Studieson(hiTOnOmidmidgesoftheTamaRiveT.(1981)
Part3,SpeciesofthesubfamilyOrthocladiinaerecordedatthesummersuⅣeyandtheirdistribution
in relation to the pollutian with sewage waters.
Part4.ChiTOnOmidaerecordedatawintersurvey.
※No,30+Eutrophication aTid red tidesin thecoastalmalineenvlrOnment L Progressreportin1979−1980・
(1982)
No.31■St11diesonthebiologicaleffectsofsingleandcombinedexposureofaiTpOllutants−Researchreport
h1980.(1981)
No.32+Smogchamberstudiesonphotochemicalreactionsofhydrocarbon−nitrogenoxides5yStemProgress
reportin1979Researchonthephotochemicalsecondarypollutantsformationmechanisminthe
enviEOnmentalatmospheTe(Partl)▲(1982)
No.33■MeteorologicalcharacteristicsandatmosphericdiffusionphenomenainthecoastalreglOrlrSimulat−
ionoratmospheJicmotionsanddi汀usionp【OCeSSeSPTOgreSSrepOftin1980■(19B2)
No,34*ThedevelopmentandevaluationofremotemeasurementmethodsforenvilOnmentalpollutionRe−
SearChreportin1980■(1982)
No.35*CompEehensiveeYaluationofenvilOnmentalimpactsofroadandtraffic・(1982)
No.36*Studies on the method roIlongte∫m enVi−OnmentalmonitorlngProgressrepoftin1980−19別・
(1982)
No,37*StudyonsupportingtechnologyforsystemsanalysisofenviIOnmentalpol]Cy−Theevaluationlabo−
ratoTyOrMan一号nYironmentSystems・(1982)
No.38 Preparation,analysisandcertificationofPONDSEDIMENTcertifiedIeferencemateml(1982)
No,39■The development and eYaluation of remotemeasuTementmethodsforenvironmentalpollution L
ReseaIChJ叩Ortin1981・(1983)
No.40・Studiesonthebiologicaleffectsofsingleandcombinedexposureofairpo11utants−ResealChreport
加1981.(1983)
N。,41*Statisticalstudiesonmethodsofmeasurementandevaluationofchemicalconditionofsoil■(1983)
環No,42*ExpeTimentalstudiesonthephysicalpropeTtiesofmudandtTleCharacteTisticsofmudtransportationL
(1983)
芽N。.43 StudiesonchiIOnOmidmidgesoftheTamaRiveL(1983)
− Ⅹ11一−
Part5.AnobservationonthedistribtJtionofChiTOnOminaealongthemainstTeaminJune,Withdes−
CrlptlOnOr15newspecies.
Part6・DescriptionofspeciesofthesubfamilyOrthocladiinaerecoYeredfromthemain5treaminthe
JunesuⅣey・
Part7.Additionalspeciescollectedinwinterfromthemainstream・
No.44+Smogchamberstudiesonphotochemicalreactionsofhydrocarbon−nitTOgenOXidessystem−ProgTeSS
reportin1979rResea.chonthephotochemicalsecondaTypOllutantsfoTmationmechanisminthe
environmentalatomosphere(Part2),(1983)
No.45ヰStudiesontheerfectoforganicwastesonthesoilecosystemOutl川eSOfspeciahesearchprojeetr
1978−1980.(1983)
No.46*Studiesontheeffectoforganicwastesonthesoilecosystem−ReseaTChreportin1979・1980,Partl・
(1983)
No.47*StudiesontheeffectororganicwastesonthesoilecosystemReseaTChrepoTtin1979−1980,PaTt2・
(1983)
No.48*StudyonoptimalallocationofwaterqualltymOnitoringpoints・(1983)
No,49*ne dモYelopment and evaluation o一丁emOte meaSu−ement method ro−enYiTOれmentalpollution−
ResearchlepOltin1982.(1984)
No.50*ComprehensivestudiesontheeutrophicationcontTO)offreshwatersEstirnationofil−putloadingof
bkeKasumigauIa.1粥0−1982.(1984)
No,51*Compreher[SivestudiesontTleeut10PhicationcontrolofrreshwatersThefunctiorlOftheecosystem
andtheimportaTTCeOfsedimentinnationa)cycleinLakeKasumigau−a・一1980−1982・(1984)
No.52*ComprehcnsiYe Studies on the eutrophication controIoffreshwatersEnclosure experiments ror
restorationofhighlyeutrophicshallowI−akeKasumigaura・1980−1982・(1984)
No.53蠣Comprehensivestudiesontheeutrophication controIoffreshwaters−Seasonalchangesofthebio−
massoffishandcrustaciah LakeKastJmigauraanditsrelationtotheeutrophication・r1980−1982・
(1984)
No,54+Comprel−enSiYeStudiesontheeut−OPhicationcontroloffresllWaterS−Modelinglheeutrophicationof
bkeKasumigaura.1980・1982.(1984)
No.55*Comprehensive studies on theeutTOphication controloffreshwaters−MeasuresfoTetJtTOphicatiorl
col山01.一1980−1982.(1984)
No・56*ComprehensivestudiesontheeutrophicationcontTOloffreshwaters−EutrophicationinLakeYunoko・
一1980・1982.(1984)
No.57+ComprehensiYe Studies on theeutrophication controloffreshwatersSurrLmaryOfresearches・▼
1980−1982,(1984)
No.58■St11diesonthemethodforlongternenYironmentalmonitoTlng−OutllneSOfspecialreseaTChpTO)eCt
in1980−1982.(1984)
No.59■Studiesonphotochemicalreactionsofhydrocarbon−nitrogen−Sulferoxides system−Photochemical
ozone formation studied by theevacuable smogchamber p Atomosphericphotooxidation mecha−
nismsofselectedorganiccompoundsResearchreportin1980−1982PaTtl・(1984)
No.60■Studies on photochemicalreactiorlS Of hydrocarbon・nitrogcn・Sulfer oxides system Formation
mechanisTr[SOfphotochemica)aerozoILReseaIChreportin1980−198=PaTt2.(1984)
No.61*Studiesonphotochemicalreactionsofhydrocarbon−nitrogen−SulferoxidessystemResearchonthe
photochemicalsecondaTy pO11utants formation mechanismin the environmentalatmospheTe
(P紺tl).−ResealChreportin1980−1982・(1984)
 ̄Ⅹ111一
No・62■Effectsoftoxicsubstancesonaquaticecosystems−ProgIeSSrepOrtin1980−1983.(1984)
No・63■EutrophicationandredtidesinthecoastalmaTineenYironment−ProgTeSSrePOrtin1981.(1984)
No,64*Studiesoneffectsof血pollutantmixturesonplants−Finalreportin1979−1981.(1984)
No,65 StudiesoneffcctsofairpollutantmixtuTeSOnplants−Partl,(1984)
No・66 Studiesoneffectsofairpo11utantmixturesonplantsrPaIt2・(1984)
No.67+Studies on unfavourable effects on human bodyregardingtoseveraltoxicmaterialsintheerLViron−
ment,uSingepidemiolo由Calandanalyticaltechniques−Projectresearchreportir[1979−1981,(1984)
No・68*StudiesontheenYironmentalcffectsoftheapplicationofsewagesludgetosoilResearchreportin
1981−1ウ83.(1984)
No,69*FtJndamentalstudiesoTltheeutrophicationofI・akeChuzenji−BasicTeSeaTChIepOrt.(1984)
No.70 Studies on chironomid midgesinlakesofthe Nikko NationalPaTk−Partl.EcologicalstudiesorL
ChiTOnOmidsinlakesoftheNikkoNatiomlPaTk・PartnLTaxc・nOmicalandmorphologicalstudieson
thechironomidspeciescollectedrromlakesintheNikkoNationalPark.(1984)
No.71*Analysiso】1distributionsorremnant snowpackandsnowpatchvegetationbyremotesensing.(1984)
No・72 Studies on photoehemiealreacLions of.hydroearbonnitrogen oxidesSurruT OXidesSySlem
−ResedrehonlhephotochemicalsecondaTypO‖utants fDrmation meehanismin†he environ−
mentalalmosphere.Research■reporlin1980−】982.(1985)
No.73 Studies on photochemicaL TeaCtions orhydrocarbonnilrogen oxides−Surrur OXidesL5yS(em.
Finalrepor【in1980−19S2一(】粥5)
No.74 A eomprehensivesludyonthedeve]opment orjndicessystemforurbaniIndsuburban environ・
men(a]quality.Environmenta]indicesbasicnotion formation,(1984)
No.75 LimnoLogicalLLndenvironmen(aL studiosoreLemenlSjnthesedimenlorLakeljiwa・(1985)
*inJapanese
弾out or s【ock