AIS広域モニタリングによる危険物積 載タンカーリスク軽減対策について 沢野伸浩 星稜女子短期大学 AIS(Automatic Identification System) • SOLAS条約によって300トン以上の船舶に 搭載が義務付けられた装置 • 自船の位置、速度、目的地、識別子、大き さ、積み荷種類等を「データ放送」により周 囲に送信 • VHF帯の電波を使う • 通信原理はモデムやFAXとほぼ同じ • 転送されるデータは「デジタル」 AIS データの受信と国際的共有 gCAPTAINによる船舶航行データのリアルタイム配信 AIS データの受信と国際的共有 残念ながらオホーツク海エリアの情報はない 自前で受信! AIS Data Receiving Station at Soya 42km = 22.5 NM AIS Antenna Position 141.948009E, 45.516399B AIS Data Receiving Station at Soya ↓AIS Antenna Roof top of Soya Fishery Association, about 15mH AIS Data Receiving Station at Soya AIS Data Receiving Station at Soya Transas T300 Data recoding laptop How we process AIS data 09/06/01 00:00:03,$GPRMC,135736.148,V,36000.0000,N,72000.0000,E,0.00,,091203,,*3B 09/06/01 00:00:03,!AIRSS,00129,00227,00096,00189*58 09/06/01 00:00:03,!AIVDM,1,1,,A,144OQg002?b;6WnJ>klJ<`9N0@Lt,0*6F 09/06/01 00:00:04,$GPGGA,135737.148,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,0.0,M,0.0,0000*7F 09/06/01 00:00:04,$GPRMC,135737.148,V,36000.0000,N,72000.0000,E,0.00,,091203,,*3A 09/06/01 00:00:04,!AIVDM,1,1,,B,1459rbP00h::ImhJ>?F:S8UP05kd,0*1B 09/06/01 00:00:05,$PRPT[Pos. unknown][Zones = 1][A=2087;B=2088]*5C 09/06/01 00:00:05,$AIALR,,,,*5709/06/01 01:20:03,$PRPT[Pos. unknown][Zones = ][A=2087;B=2088]*5C 09/06/01 01:20:04,$GPGGA,151736.856,0000.0000,N,00000.0000,E,0,00,50.0,0.0,M,0.0,M,0.0,0000*7A 09/06/01 01:20:04,$GPRMC,151736.856,V,36000.0000,N,72000.0000,E,0.00,,091203,,*3F 09/06/01 01:20:04,!AIVDM,1,1,,A,144OQg002B:92<6J=c;bS8SN061<,0*15 09/06/01 01:20:04,!AIVDM,1,1,,B,1459rbP00k:9`B<J>1obK`aN061<,0*5D 6bit character code that have to be decoded into normal character How we process AIS data 09/04/01 00:01:34,!AIVDM,2,2,2,B,5,0,273149600,0,7941849,UFMK ,KAPITAN SERGIEVSKIY ,79,1032798,1,02041800,6.0,VLDV-KORSAKOV-VLDV ,0,0 09/04/01 00:01:35,!AIVDM,1,1,,B,1,0,273149600,0,0,13.2,0,141,46,24.900,45,49,42.780,270.0,276,59,0,0,0,32937 09/04/01 00:01:37,!AIVDM,1,1,,B,1,0,273824020,0,0,9.0,0,141,48,20.340,45,49,49.140,276.5,341,4,0,0,0,2282 09/04/01 00:01:45,!AIVDM,1,1,,A,1,0,273149600,0,0,13.2,0,141,46,21.420,45,49,42.780,271.0,276,11,0,0,0,23784 09/04/01 00:01:47,!AIVDM,1,1,,A,1,0,273824020,0,0,9.0,0,141,48,18.300,45,49,49.380,277.8,342,14,0,0,0,114691 09/04/01 00:01:51,!AIVDM,1,1,,B,1,0,273450570,0,0,11.1,0,141,52,16.500,45,55,01.200,117.0,110,21,0,0,0,230171 09/04/01 00:02:11,!AIVDM,1,1,,B,1,0,273450570,0,0,11.1,0,141,52,21.360,45,54,59.460,117.5,112,60,0,0,0,245764 09/04/01 00:02:14,!AIVDM,1,1,,B,1,0,273149600,0,0,13.2,0,141,46,12.600,45,49,42.900,271.0,275,38,0,0,0,67190 09/04/01 00:02:18,!AIVDM,1,1,,B,1,0,273824020,0,0,9.0,0,141,48,11.820,45,49,50.340,280.7,338,47,0,0,0,81923 09/04/01 00:02:21,!AIVDM,1,1,,A,1,0,273450570,0,0,11.1,0,141,52,23.460,45,54,58.620,118.2,113,50,0,0,0,165743 09/04/01 00:02:24,!AIVDM,1,1,,A,1,0,273149600,0,0,13.2,0,141,46,09.480,45,49,42.960,270.0,275,51,0,0,0,2304 09/04/01 00:02:25,!AIVDM,2,2,9,A,5,0,273824020,0,8857796,UEFY ,NIKOLAY KASATKIN ,70,332291,1,04031700,4.5,$$$VLADIVOSTOK$$$ ,0,0 Decoded for one path of the vessel How we process AIS data for GIS Date and time Name of the vessel destination X Y coordinate Data have to be arranged one line for one each navigation of the vessel Putting data into GIS 2009.04.01 – 2009.04.30 (17-23 were not acquired) Putting data into GIS 2009.05.01 – 2009.05.31 Putting data into GIS 2009.06.01 – 2009.06.30 解析1 航行密度の解析 航行密度の高い場所を把握 GSH Hamada Time-line & Statistical Analysis Channel line Some 40km channel of Soya is divided into 8 parts (about 5km each part) Time-line & Statistical Analysis April, 2009 (126 vessels) 8 7 6 5 ←(E2W) →(W2E) 4 3 2 1 -30 -20 -10 0 10 20 30 Number of vessels crossed the channel line Time-line & Statistical Analysis May, 2009 (277 vessels) 8 7 6 5 ←(E2W) →(W2E) 4 3 2 1 -80 -60 -40 -20 0 20 40 60 80 Number of vessels crossed the channel line Time-line & Statistical Analysis June, 2009 (462 vessels) 8 7 6 5 ←(E2W) →(W2E) 4 3 2 1 -150 -100 -50 0 50 100 150 Number of vessels crossed the channel line 実際にこんな場合が起こっ ています。 5月21日の例 結論 • 現状の解析は船舶は「危険物積載船舶」のみを抽 出しているわけではない。 • さらに年間にわたる全データの解析から、航行海 域の危険度の面的な分布を明らかにする(船の軌 跡ベクトルに沿って衝突確率分布でバッファリング 後、航行に応じて確率を積分する → 藤井理論)。 • が、面的な分布のみを明らかできても意味はなく、 微少領域(高密度領域)に船舶が入る(出る)時間 間隔をポアソン分布でモデル化し、その確率分布 を同時に把握する。 • 以上で、「衝突」「座礁」等の空間・時間的分布の確 率論的モデル化が可能となる。 • 「時間×空間」の確率論的モデルができると、「回 避予測」の合理性が担保できる。 Acknowledgements: • This research was completely supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Specific Research type B. No. 19310110, Research Representative Nobuhiro Sawano. • Also, supported by the same grant of Grant-in-Aid for Specific Research type B. No. 21310111, Research Representative Sei’ichi Hamada.
© Copyright 2024 ExpyDoc