4.1 - mathonline

4 – Breuken met letters
4.1 – Optellen en aftrekken
1 De onderstaande breuken zijn al gelijknamig dus je kunt ze direct optellen of aftrekken:
a 3 5 3+5 8
+ =
=
p p
p
p
b a
b a+b
+
=
2x 2x
2x
c
4
a
4+a
+
=
a +1 a +1 a +1
d
1
2
x +1
−
x
2
x +1
=
1− x
x2 + 1
e 3 + q 2 + q 3 + q − (2 + q) 3 + q − 2 − q 1
−
=
=
=
p
p
p
p
p
f 3+ a 3
a 1
−
=
=
2a
2a 2a 2
g 2a − 1
3
2a + 2 2( a + 1)
+
=
=
=2
a +1 a +1 a +1
a +1
h
2
x + 1 2 − ( x + 1) 1 − x
−
=
=
x+3 x+3
x+3
x+3
i 3q + 4 2 − q 3q + 4 − (2 − q) 4q + 2
−
=
=
1 − 2q 1 − 2 q
1 − 2q
1 − 2q
2 Eerst maak je de breuken gelijknamig, daarna kun je ze optellen of aftrekken:
a 2 5 2 ⋅ b 5 ⋅ a 5a + 2b
+ =
+
=
a b a ⋅b b ⋅a
ab
b 3 2 3 ⋅ q 2 ⋅ p 3q − 2 p
− =
−
=
p q p⋅q q⋅ p
pq
c
d
2+
p 2 ⋅ q p p + 2q
=
+ =
q
q
q
q
a+
a ⋅ (a + b)
a
a
a 2 + ab + a
=
+
=
a+b
a+b
a+b
a+b
e 2
2 ⋅ ( x − 1)
1
1⋅ x
2x − 2
x
2 x − 2 + x 3x − 2
+
=
+
= 2
+ 2
=
= 2
x x − 1 x ⋅ ( x − 1) ( x − 1) ⋅ x x − x x − x
x2 − x
x −x
f a −1
a − 1 2 ⋅ ( a + 1) a − 1 2a + 2 3a + 1
+2=
+
=
+
=
a +1
a +1
a +1
a +1 a +1
a +1
g
1 ⋅ ( 2 x + 3)
x
1
x⋅2
2x
2x + 3
−3
− =
−
=
−
=
2 x + 3 2 ( 2 x + 3) ⋅ 2 2 ⋅ ( 2 x + 3) 4 x + 6 4 x + 6 4 x + 6
h y
x2
−
3xy
y ⋅ 5 3xy ⋅ x 2 5 y 3x 3 y 5 y − 3x 3 y
= 2 −
= 2−
=
5
x ⋅5
5 ⋅ x2
5x
5 x2
5x 2
© Noordhoff Uitgevers
Uitwerkingen
1
4 – Breuken met letters
i
a ⋅ (a − b)
b ⋅ (a + b)
a
b
a 2 − ab ab + b2 a 2 + b2
+
=
+
= 2
+
=
a + b a − b ( a + b ) ⋅ ( a − b ) ( a − b ) ⋅ ( a + b ) a − b2 a 2 − b2 a 2 − b2
j 1 + a 1 − a (1 + a ) ⋅ ( a + b ) (1 − a ) ⋅ ( a − b ) a + b + a 2 + ab a − b − a 2 + ab 2a 2 + 2b
−
=
−
=
−
= 2
a − b a + b (a − b) ⋅ (a + b) (a + b) ⋅ (a − b)
a2 − b2
a 2 − b2
a − b2
k
1 1 ab b
a a + b + ab
+ =
+
+
=
a b ab ab ab
ab
1+
l a + 1 a − 1 ( a + 1)(a + 1) ( a − 1)( a − 1) a 2 + 2a + 1 − ( a 2 − 2a + 1)
4a
−
=
−
=
= 2
a − 1 a + 1 ( a − 1)( a + 1) (a + 1)( a − 1)
( a + 1)(a − 1)
a −1
m
x
x ( x − 2)
x2 + 4
2
2( x + 2)
+
=
+
= 2
x + 2 x − 2 ( x + 2)( x − 2) ( x − 2)( x + 2) x − 4
n x+6
x
x ( x + 3)
x 2 + 3x − 18 − ( x 2 + 3 x)
( x + 6)( x − 3)
18
−
=
−
=
=− 2
x + 3 x − 3 ( x + 3)( x − 3) ( x − 3)( x + 3)
( x + 3)( x − 3)
x −9
o x + 1 1 ( x + 1) x 2
y
x3 + x2 + y
+ 2=
+
=
y
x
yx 2
x2 y
x2 y
3 Eerst maak je de breuken gelijknamig (dit kan op een zuinige manier, want er zijn gemeenschappelijke
factoren). Daarna kun je ze optellen of aftrekken:
a a
c
a⋅d
c⋅c
ad + c 2
+
=
+
=
bc bd bc ⋅ d bd ⋅ c
bcd
b
−
2
3
2⋅ z
3 ⋅ x 3x − 2 z
+
=−
+
=
xy yz
xy ⋅ z yz ⋅ x
xyz
c 4a
b2 2a b 2 2a ⋅ 3a b 2 ⋅ b 6a 2 + b3
+
=
+
=
+
=
2bc 3ac bc 3ac bc ⋅ 3a 3ac ⋅ b
3abc
d 1 x − 1 1⋅ x x − 1 2 x − 1
+ 2 =
+ 2 = 2
x
x⋅x
x
x
x
e
2x
2
3a b
f
g
+
3y
4ab
2
=
2 x ⋅ 4b
2
3a b ⋅ 4b
+
3 y ⋅ 3a
2
4ab ⋅ 3a
=
8 xb + 9 ya
12a 2b 2
1
1
1⋅ y
1⋅ x
x+ y
1
+
=
+
=
=
x ( x + y ) y ( x + y ) x ( x + y ) ⋅ y y ( x + y ) ⋅ x xy ( x + y ) xy
1
1
+
=
1 ⋅ 6b2 c 4
4 a 5 b 2 c 6a 3 b 4 c 5 4 a 5 b 2 c ⋅ 6b 2 c 4
6b 2 c 4 + 4a 2 2a 2 + 3b 2 c 4
=
=
24a5b4 c5
12a5b4 c 5
+
1 ⋅ 4a 2
6a3b 4 c5 ⋅ 4a 2
=
6b 2 c 4
24a5b4 c 5
+
4a 2
24a5b4 c5
h r
q
p
r⋅r
q ⋅q
p⋅ p
r2
q2
p2
p2 + q2 + r 2
+
+
=
+
+
=
+
+
=
pq pr qr pq ⋅ r pr ⋅ q qr ⋅ p pqr pqr pqr
pqr
i
2
xy 2 z
−
3
x3 y
+
© Noordhoff Uitgevers
1
x2 z3
=
2 ⋅ x2 z3
xy 2 z ⋅ x 2 z 3
−
3 ⋅ yz 3
x3 y ⋅ yz 3
+
1 ⋅ xy 2
x 2 z 3 ⋅ xy 2
=
2 x 2 z 3 − 3 yz 3 + xy 2
x3 y 2 z 3
Uitwerkingen
2
4 – Breuken met letters
j
1
1
x2 y 1 ⋅ x
1⋅ y
2 x2 y − x + y
+ 2 = 2⋅ 2 −
+ 2
=
xy x
x y xy ⋅ x x ⋅ y
x2 y
2−
k a
b2 c
l
+
b
c
a2
b3
bc 2
a 2 + b3 + bc 2
+
= 2 + 2 + 2 =
ac ab ab c ab c ab c
ab 2 c
x
1
x (a − 1)
a +1
ax − x − a − 1
−
=
−
=
a( a + 1) a( a − 1) a(a + 1)( a − 1) a(a − 1)(a + 1) a (a + 1)( a − 1)
m y
− y2 + 3y − 1
1
y (2 − y )
1− y
y2 − 3y + 1
−
=
−
= 2
=− 2
1 − y 2 − y (1 − y )(2 − y ) (2 − y )(1 − y ) y − 3 y + 2
y − 3y + 2
n
1
2
x −4
o
−
1
2
x + 2x
3
a2 − a − 2
+
=
a −1
a2 + a
1
1
x
x−2
2
−
=
−
=
=
2
( x + 2)( x − 2) x( x + 2) x( x + 2)( x − 2) x( x + 2)( x − 2) x( x − 4)
=
3
a −1
3a
( a − 1)( a − 2) 3a + a 2 − 3a + 2
+
=
+
=
=
( a + 1)(a − 2) a( a + 1) a( a + 1)(a − 2) a( a + 1)( a − 2)
a( a + 1)( a − 2)
a2 + 2
a( a 2 − a − 2)
© Noordhoff Uitgevers
Uitwerkingen
3