「ストレンジネスとエキゾティクス・理論の課題」研究会 ( 志摩ビーチホテル, 2007 / 3/1 - 3/3) K凝縮ハイパー核の構造と安定性 武藤 巧 (千葉工大) 1. Introduction K凝縮原子核 (KCN) を実験室で生成する可能性 2. Formulation Chiral symmetry for kaon-baryon interaction + effective interactions between baryons 3. Numerical results ・KCN の構造・崩壊(A=20 )におけるハイペロン混在の効果 ・構造(バリオン数密度, バリオン混在度, 束縛エネルギー) ・K -分布, バリオン分布に対する一様分布の妥当性 4. Summary and concluding remarks 1. Introduction Deeply bound kaonic nuclear states の存在可能性 [ Y.Akaishi and T.Yamazaki, Phys.Rev. C65 (2002) 044005. ] [A. Dote, H. Horiuchi et al., Phys. Lett. B 590 (2004) 51; Phys.Rev. C70 (2004) 044313. ] ー K nuclear clusters [T.Yamazaki, A. Dote and Y.Akaishi, Phys.Lett. B 587 (2004) 167. ] Cold and dense matter の実験室での実現 K 凝縮状態 (無限系) との関連 ・KCN の構造・崩壊(A=20 )におけるハイペロン混在の効果 ・構造(バリオン数密度, バリオン混在度, 束縛エネルギー) ・K -分布, バリオン分布に対する一様分布の妥当性 2. Formulation ----- (anti)kaon condensation in the laboratory ----Kaon-condensed nucleus (KCN) Initial system ( A: baryon number Z ー|S|: electromagnetic charge |S| : strangeness ) K- mesons ( |S| : the number of K- ) + Target nucleus ( A: mass number, Z: atomic number ) RA uniform density (liquid drop picture) Systematic study of KCN by giving A, Z, |S| from O(1) to O(100) [ total energy of the KCN ] ( T= 0 ) surface energy Coulomb energy volume part =1 MeV/fm2 Volume part of the energy ・ Chiral symmetry Classical kaon field effective chiral Lagrangian Θ:chiral angle μ: chemical potential k: momentum S-wave K- - baryon int. baryons (p, Λ, n, Σー) ・ KN-sigma term (scalar int.) ・ Tomozawa-Weinberg (Explicit χSB breaking) term (vector int.) Kn = 305 MeV ・Nonrelativistic baryon-baryon effctive interactions in hyperonic matter [ S. Balberg and A. Gal, Nucl. Phys. A625 (1997), 435. ] ・ Saturation property, ・ Incompressibility K=306 MeV ・ hyperon potential depths repulsive case = 23.5 MeV at 0.16 fm-3 -3 V VΛ= 27 MeV at 0.16 fm - Volume part of energy density Baryon kinetic energy YN mass difference Baryon potential energy Kaon-baryon interaction and free kaons ・Strangeness conservation ・Charge conservation ・Baryon number conservation ・Chemical equilibrium for strong processes A = 20 500 Σ- の代わりに混 Z = 10 500 400 400 300 300 (MeV) 高密度領域で 在する可能性 energy / baryon Ξ- の効果: (MeV) energy / baryon 3. Numerical results < a possibility of density isomer > noncondensed state with Λ or Σ- mixing K- condensed state with Λ mixing K- condensed state with Λ, Σ- mixing initial free K-, N system free Λ, N system A = 20 Z = 10 |S | = 16 200 |S | = 16 200 |S | = 10 100 |S | = 10 100 |S | = 1 0 0.0 0.5 1.0 ( fm-3 ) 1.5 0 1.5 2.0 RA (fm) 2.5 3.0 (I) (II) (III) (MeV) energy / baryon Hyperon-mixed case noncondensed state with Λ or Σ- mixing K- condensed state with Λ mixing K- condensed state with Λ, Σ- mixing Kn = 305 MeV 500 400 A = 20 Z = 10 |S | = 16 300 free Λ, N system 200 100 0 0.0 (I) (I) (II) (III) 0.5 1.0 1.5 ( fm-3 ) 8.3ρ0 K- condensed state with nucleons only ハイペロン混在の効果 Energy minimum の位置は, 主として (1) classical K- (free kaon + kaon-baryon 引力) からの寄与 (2) Baryon potential の寄与 の密度 ρB 依存性で決まる。 Mixing of hyperons ・(1) Kaon-baryon 引力がより強められる。 ・(2) ハイペロンの混在により核子の密度が相対的に小さくなる。 高密度での核子間斥力を避ける機構 (ハイペロンの混在によるバリオン運動エネルギーの減少効果は小さい。) High density and low energy state ができる。 Properties of the kaon-condensed nucleus (density isomer) ・large strangeness fraction :|S| / A ・Highly dense and compact object RA〜0.6 A 0.7 Kaon condensates + hyperons ( RA〜1.2 A 1/3 for ordinary nuclei) 1/3 ・Positive charge by proton is compensated by negative charge by KCoulomb repulsion effect is small. ・decay modes: weak processes Long lifetime A Z |S| RA / p -3 ( NK- ) fm ) fm ) / - / n / ΔE/A MeV) 20 10 10 1.64 1.08 0.16 0.34 0.21 0.29 +64 20 10 16 1.53 1.34 0.13 0.37 0.30 0.20 - 94 100 40 40 100 40 80 2.63 1.31 0.07 0.33 0.27 0.33 - 71 ・K -分布, バリオン分布に対する一様分布の妥当性 - の運動量 k = 0 (運動量空間での凝縮) S 波 K 凝縮 K (無限系) Classical kaon field ・K- 凝縮, バリオン系は空間的に一様分布 ・ストレンジネス数 |S| が充分に大きい -3 0.5 1.5 |S|=12 A=15, Z=8, V K = - 120 MeV |S|=12 K- field proton density 0.4 |S|=8 Thomas-Fermi approx. in the RMF model - 120 MeV (rad) K= A=15, Z=8, V ) ( fm i (有限系) [ Toshiki Maruyama, T. Tatsumi, T. Muto, preliminary result ] neutron density 1.0 |S|=8 0.3 |S|=4 |S|=4 0.2 0.5 0.1 0.0 0 |S|=1 |S|=1 1 2 r (fm) 3 4 0.0 0 1 2 r (fm) 3 4 4. Summary and concluding remarks Highly dense and compact object with kaon condensates ・高密度・低エネルギー状態の形成には Hyperon-mixing 効果が重要 ・ density isomer state の形成には たくさんの (negative) strangeness ( |S|=O(A) ) を核内に閉 じ込める必要。 ・decay mode は weak processes 長寿命 Kaon condensates とhyperon との共存により, EOS が著しく軟化 Consistency with neutron-star mass observation [ S. E. Thorsett, D. Chakrabarty, Astrophys.J. 512(1999) 288.] [D. J. Nice et al., Astrophys.J. 634 (2005) 1242. ] ・非常に高密度領域でのバリオン間の斥力効果の不定性 Future problems Realistic effects ・validity of uniform distribution of <K-> and baryons ・ambiguity of kaon - baryon attractive interaction ( s-wave scalar attraction ΣKn term) ・ baryon-baryon interactions at high densities (c.f. three-body repulsion between YNN, YYN, YYY ) [ S. Nishizaki, Y. Yamamoto and T. Takatsuka, Prog. Theor.Phys. 108 (2002) 703. ] Connection to (strange) quark matter Relativistic framework Formation mechanisms of kaon-condensed nuclei in the laboratory ・ By the use of high-intensity K- beam, K- should be trapped in a nucleus with total strangeness: |S | 〜A( > 10) (double ー K nuclear clusters . . . )
© Copyright 2024 ExpyDoc