入門 計量経済学 第01回

Dynamics in Real Estate Market
Reitaku-University
不動産価格変動のダイナミクス
-マイクロ構造とマクロトレンド-
麗澤大学経済学部・准教授
清水千弘(Chihiro SHIMIZU)
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 1
2009/11/04
2008/05
2007/09
2007/01
2006/05
2005/09
2005/01
2004/05
2003/09
2003/01
2002/05
2001/09
2001/01
2000/05
1999/09
250.0
1999/01
1998/05
1997/09
1997/01
1996/05
1995/09
1995/01
1994/05
1993/09
1993/01
1992/05
1991/09
1991/01
1990/05
1989/09
1989/01
1988/05
1987/09
1987/01
1986/05
1985/09
1985/01
1984/05
1983/09
1983/01
Dynamics in Real Estate Market
Reitaku-University
主要都市における住宅価格変動の因果性
300.0
Tokyo_Condo
Tokyo_SingleHouse
LosAngeles
NewYork
London
HongKong
Melbourne
200.0
150.0
100.0
50.0
0.0
page. 2
Dynamics in Real Estate Market
Reitaku-University
International property cycles - Speed of adjustment
Capital index, December 2002 = 100
150
Australia
140
130
Japan
US
UK
120
110
100
90
80
12/02 6/03 12/03 6/04 12/04 6/05 12/05 6/06 12/06 6/07 12/07 6/08 12/08 6/09 12/09
2009/11/04
page. 3
Y1985Q1
Y1985Q3
Y1986Q1
Y1986Q3
Y1987Q1
Y1987Q3
Y1988Q1
Y1988Q3
Y1989Q1
Y1989Q3
Y1990Q1
Y1990Q3
Y1991Q1
Y1991Q3
Y1992Q1
Y1992Q3
Y1993Q1
Y1993Q3
Y1994Q1
Y1994Q3
Y1995Q1
Y1995Q3
Y1996Q1
Y1996Q3
Y1997Q1
Y1997Q3
Y1998Q1
Y1998Q3
Y1999Q1
Y1999Q3
Y2000Q1
Y2000Q3
Y2001Q1
Y2001Q3
Y2002Q1
Y2002Q3
Y2003Q1
Y2003Q3
Y2004Q1
Y2004Q3
Y2005Q1
Y2005Q3
Y2006Q1
Y2006Q3
Y2007Q1
Y2007Q3
Y2008Q1
Y2008Q3
Y2009Q1
Dynamics in Real Estate Market
1
2009/11/04
Reitaku-University
東京都区部のオフィス・住宅市場の動向
1.2
Office
Residential
0.8
0.6
0.4
0.2
0
page. 4
Dynamics in Real Estate Market
Reitaku-University
不動産市場分析:不動産市場を科学する
• 1.ミクロ分析とマクロ分析
• ミクロ分析:各経済主体の行動を分析
• マクロ分析:市場の変動を分析し,予測する
• 2.経済モデルと計量分析
• 理論経済モデルとは?
•
検証的分析と探索的分析
• 3.探索的分析(地価動向指標)の問題と予測の失敗
• (Grammar of Science)
•
予測ができるのか?
•
市場の効率性の理解
2009/11/04
Chihiro SHIMIZU 2008 [email protected]
page. 5
Dynamics in Real Estate Market
Reitaku-University
本日のご報告:
• 1.不動産市場のダイナミクス
• 2.不動産市場の効率性
• 3.賃貸料市場の変化-マイクロストラクチャ• 4.キャップレートの決定構造
• 5.社会構造の変化と不動産価格
• 6.公示地価への教訓
2009/11/04
page. 6
Dynamics in Real Estate Market
Reitaku-University
1. 不動産市場のダイナミクス
賃貸料(ドル)
資産市場:
価格評価
P=
賃貸市場:
賃貸料決定
R
i
D (R , Economy) = S
ストック
(平方フィート)
価格(ドル)
P = f (C )
C
δ
(ΔS = C-δS )
S=
資産市場:
建築着工
建築着工
(平方フィート)
賃貸市場:
ストック調整
Source:Denise Dipasquale,William Wheaton(1996).,Urban Economics and Real Estate Markets
2009/11/04
Chihiro SHIMIZU 2008 [email protected]
page. 7
Dynamics in Real Estate Market
Reitaku-University
GDPとSNA土地資産額の推移
600,000
2006
500,000
1990
GDP:10億円
400,000
1985
300,000
1980
200,000
1975
100,000
1970
0
0
500,000
1,000,000
1,500,000
2,000,000
2,500,000
SNA土地資産額:10億円
2009/11/04
page. 8
Dynamics in Real Estate Market
Reitaku-University
Gordon Growth Model: 資産価格とは?
不動産価値の決まり方
yit
pit 
R ft  R pi  G
•
•
•
•
経済活動/需給
キャップ・レート
Yit : 費用控除後の賃料収益
Rf : 安全資産の投資利回り
Rp : リスク・プレミアム
G : 収益のマクロ的な上昇率
Rp  f L( zi ),ξ
• L : 流動性リスク
• ξ:予期できぬリスク
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 9
Dynamics in Real Estate Market
Reitaku-University
長期的な期待:人口は減少していく
(千人)
140,000
130,000
120,000
110,000
100,000
90,000
80,000
70,000
60,000
2050
2040
2038
2036
2034
2032
2030
2028
2026
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
50,000
出典:国立社会保障・人口問題研究所『日本の将来推計人口』(平成14年1月推計)
による各年10月1日現在の推計人口より
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 10
Dynamics in Real Estate Market
Reitaku-University
団塊世代のリタイアとオフィス市場
日本の人口ピラミッド(中位推計)
1 0 年後(2 0 1 5 年)
現在(2 0 0 5 年)
(歳)
100
(歳)
100
90
90
80
80
70
70
60
60
団塊世代
50
50
男
男
女
女
団塊Jr
・ポスト団塊Jr
30
30
20
20
10
10
0
0
100
80
60
40
20
0
団塊Jr
・ポスト団塊Jr
40
40
120
団塊世代
0
20
40
60
80
100
120
(万人)
120
100
80
60
40
20
0
0
20
40
60
80
100
120
(万人)
出所)国立社会保障・人口問題研究所
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 11
1955.9
1956.9
1957.9
1958.9
1959.9
1960.9
1961.9
1962.9
1963.9
1964.9
1965.9
1966.9
1967.9
1968.9
1969.9
1970.9
1971.9
1972.9
1973.9
1974.9
1975.9
1976.9
1977.9
1978.9
1979.9
1980.9
1981.9
1982.9
1983.9
1984.9
1985.9
1986.9
1987.9
1988.9
1989.9
1990.9
1991.9
1992.9
1993.9
1994.9
1995.9
1996.9
1997.9
1998.9
1999.9
2000.9
2001.9
2002.9
2003.9
2004.9
2005.9
2006.9
2007.9
2008.9
対前年同期変動率(%)
Dynamics in Real Estate Market
2009/11/04
Reitaku-University
高度経済成長・列島改造・国際都市化・ファンドバブル
100
六大都市 工業地
80
六大都市 商業地
六大都市 住宅地
六大都市 工業地
60
六大都市 全用途平均
六大都市 住宅地
六大都市 商業地
40
六大都市 全用途平均
20
0
-20
-40
(注1)六大都市とは,東京都区部,横浜,名古屋,京都,大阪および神戸をいう。
(注2)市街地価格指数の変動率は各年3 月時点の前年同期比を用いている。
(出典)財団法人 日本不動産研究所 「市街地価格指数」
Chihiro SHIMIZU 2009 [email protected]
page. 12
Dynamics in Real Estate Market
Reitaku-University
日本の地価の長期動向: ECM推定結果
0.20
(ECM残差)
予測地価(t+1期)
0.15
地代(GDP)
資金コスト
0.10
誤差修正項
d(ln_lp)
0.05
0.00
-0.05
-0.10
2008
2005
2002
1999
1996
1993
1990
1987
1984
1981
1978
1975
1972
1969
1966
1963
1960
1957
-0.15
入門計量経済学B 第13回講義ノートより
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 13
Dynamics in Real Estate Market
Reitaku-University
2.日本の不動産市場は効率的か
• 効率性の検証
– 疑問1: 短期的に効率的か?
① uc一定のもとでの超過収益率の系列相関
Pi ,t 1  Pit   Rit
reit 
Pit
② 時変的なucのもとでの予測誤差の系列相関
eit  Pi ,t 1  Rit  Pit 1  ucit 
– 検定方法
xit  i 0  i1xi ,t 1  i 2 xi ,t 2  i 3 xi ,t 3   it
においてAR項の同時除外仮説を検定
2009/11/04
井上・清水・中神(2009)
page. 14
Dynamics in Real Estate Market
Reitaku-University
• 効率性の検証結果1: 短期的効率性①
2.4
1.6
0.8
test1
2009/11/04
井上・清水・中神(2009)
0
20km
page. 15
Dynamics in Real Estate Market
Reitaku-University
• 効率性の検証結果2: 短期的効率性②
2.4
1.6
0.8
test2
2009/11/04
井上・清水・中神(2009)
0
20km
page. 16
Dynamics in Real Estate Market
Reitaku-University
– 疑問2: 長期的に効率的か?
• 長期的に効率的ならば,変数間に共和分関係
が存在するはずである
eit  Pi ,t 1  Rit  Pit 1  ucit 
• 単位根検定を用いて検証
• 結果: 72市区中,68市区が1%水準で,残りの
4市区が5%水準で定常
2009/11/04
井上・清水・中神(2009)
page. 17
Dynamics in Real Estate Market
Reitaku-University
– マンションの市場価格と理論値
1
2
60
60
50
50
40
40
30
30
20
20
4
12
80
13
50
60
40
30
40
90
95
00
05
17
60
40
20
90
95
00
05
10
90
95
22
60
80
60
40
60
40
20
40
00
05
90
95
00
05
90
95
26
00
90
95
00
05
100
95
95
00
05
80
60
60
20
95
00
05
90
95
00
05
20
90
95
00
05
14 3
05
100
80
80
60
60
40
40
95
00
05
0
90
95
00
05
95
00
05
160
120
120
95
00
95
00
00
05
40
90
95
00
05
15 4
95
00
05
80
40
60
60
40
60
20
40
40
40
0
90
16 1
95
00
05
20
90
1 62
95
00
05
160
95
00
05
95
00
95
00
17 0
20
95
00
05
90
80
60
60
95
00
05
40
40
90
95
00
05
95
00
05
20
80
20
90
19 3
95
00
05
20
90
1 94
00
05
90
95
95
00
05
95
00
80
60
60
40
40
160
160
120
120
80
05
05
00
05
00
05
00
05
00
05
00
05
00
05
40
0
90
95
00
05
90
15 0
00
05
95
00
05
95
1 51
160
120
120
80
60
30
50
20
40
10
30
0
20
95
00
00
05
90
95
0
95
00
05
90
05
40
0
90
95
00
05
90
15 9
95
1 60
80
80
60
40
60
80
40
60
20
40
95
00
95
00
05
95
00
05
95
00
05
90
100
100
80
80
60
60
60
40
40
20
20
90
95
00
05
40
20
90
95
00
05
90
19 1
100
100
80
80
80
60
60
60
40
40
40
20
90
20 3
95
00
05
20
90
2 04
95
00
05
90
20 6
80
80
80
80
60
60
60
60
60
40
40
40
40
40
20
20
20
20
95
00
05
90
95
00
05
90
95
00
05
95
2 07
80
90
95
1 92
100
05
95
1 69
80
1 82
00
95
16 8
20
90
20
90
100
05
20
90
20
90
17 8
20 0
00
05
1 67
20
90
05
00
100
16 6
40
19 6
40
90
95
95
20
90
60
RP
2009/11/04
00
95
1 42
40
90
80
05
0
90
19 5
20
95
95
90
200
1 58
40
90
05
40
90
50
90
17 7
100
40
20
00
80
60
40
95
14 1
200
20
90
17 3
60
40
00
20
90
40
20
17 2
80
60
05
250
40
0
1 71
80
05
60
60
20
90
60
00
80
15 7
80
40
40
80
95
1 49
100
60
40
05
90
05
40
00
20
50
90
05
120
60
80
80
95
40
20
100
16 5
80
100
90
60
150
40
16 4
120
120
20
00
100
20
90
16 3
100
80
95
94
40
200
15 6
80
100
90
60
80
15 5
80
05
05
40
200
120
90
100
00
00
87
1 40
160
20
90
80
95
95
60
05
40
40
95
100
90
20
90
80
14 8
60
80
60
20
05
80
300
05
80
80
60
00
80
13 9
120
100
80
90
14 7
120
120
95
150
90
05
05
0
14 6
160
1 53
00
90
84
100
90
120
95
00
0
90
160
90
05
100
15 2
0
95
50
14 5
20
90
90
150
100
80
20
00
100
1 44
100
95
20
200
200
20
00
90
13 8
300
40
95
20
80
13 7
80
90
10
60
40
20
100
20
90
40
20
80
60
10 5
40
30
100
60
60
40
40
20
40
1 00
80
30
60
83
80
80
20
90
80
05
40
0
50
81
60
20
60
40
40
0
24
80
19
50
100
20
20
21
18
120
20
90
95
00
05
90
95
P _S TA R_NORM
井上・清水・中神(2009)
page. 18
Dynamics in Real Estate Market
Reitaku-University
3.賃貸料市場の変化-マイクロストラクチャ3.5
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 19
QT2006/1
QT2004/1
QT2002/1
QT2000/1
3. The most important link between asset prices
and goods & services prices is the one
1.0
through housing rents (Goodhart 2001)
QT1998/1
1.5
QT1996/1
The probability of no change in housing rents is
about 29 percent per year (Genesove 2003)
QT1994/1
–
2.0
QT1992/1
2. Housing rents are very, very sticky
2.5
QT1990/1
26.3%
5.8%
18.6%
1.9%
3.0
QT1988/1
Expenditures for housing services:
Housing rents:
Imputed rents from owner occupied housing:
Housing maintenance and others:
“Consumer Price Index (CPI) in Tokyo, 2005”
CPI rent
Selling price index
QT1986/1
1. Housing rents account for more than one
fourth of personal spending
198601
198607
198701
198707
198801
198807
198901
198907
199001
199007
199101
199107
199201
199207
199301
199307
199401
199407
199501
199507
199601
199607
199701
199707
199801
199807
199901
199907
200001
200007
200101
200107
200201
200207
200301
200307
200401
200407
200501
200507
200601
200607
200701
200707
200801
200807
Dynamics in Real Estate Market
3.0
2009/11/04
Reitaku-University
Comparison House Price and CPI-house in Tokyo
3.5
Tokyo_Condo
Tokyo_SingleHouse
Tokyo_SingleHouse_Rent
2.5
Tokyo_CPI
2.0
1.5
1.0
0.5
0.0
page. 20
198603
198609
198703
198709
198803
198809
198903
198909
199003
199009
199103
199109
199203
199209
199303
199309
199403
199409
199503
199509
199603
199609
199703
199709
199803
199809
199903
199909
200003
200009
200103
200109
200203
200209
200303
200309
200403
200409
200503
200509
200603
200609
200703
200709
200803
200809
Dynamics in Real Estate Market
4.000
3.500
2009/11/04
Reitaku-University
Comparison House Price and CPI-house in
Tokyo , LA, NY
5.000
4.500
Tokyo_SingleHouse
LosAngeles_HP
NewYork_HP
Tokyo_CPI
LosAngeles_CPI
NewYork_CPI
3.000
2.500
2.000
1.500
1.000
0.500
0.000
page. 21
Dynamics in Real Estate Market
Reitaku-University
New Rent versus CPI Rent
2009/11/04
page. 22
Dynamics in Real Estate Market
Reitaku-University
Frequency of Rent Adjustments
Rit  Rit  Rit1

P r(Rit  0)  1  P r( I  1)  P r( I  1)
N
it
R
it

 P r(Rit  0 | I itN  1) P r( I itN  1)
 P r(Rit  0 | I  1) P r( I  1)
R
it
2009/11/04
R
it
page. 23
Dynamics in Real Estate Market
Reitaku-University
State-Dependent or Time-Dependent Pricing:
Caballero-Engel’s definition of price flexibility
 log Rit*   t  it
X it  log Rit 1  log Rit*
Caballero-Engel(1993)
:Adjustment Hazard
 ( x)  Pr(Rit  0 | X it  x)
 log Rt
 t 0
 t
lim

Caballero-Engel’s
measure of price flexibility
  ( x)h( x)dx
Intensive margin
  x ' ( x)h( x)dx
Extensive margin
Caballero-Engel(2007)
 ( x)  Pr(Rit  0 | I itN  1, X it  x) Pr( I itN  1 | X it  x)
 Pr(Rit  0 | I itR  1, X it  x) Pr( I itR  1 | X it  x)
2009/11/04
page. 24
Dynamics in Real Estate Market
Reitaku-University
Adjustment Hazard Functions
x  (0.4,0.2] x  (0.2,0.0] x  (0.0,0.2]
x  (0.2,0.4]
Pr( I itN  1 | X it  x)
0.010
0.010
0.010
0.010
Pr( I itR  1 | X it  x)
0.042
0.042
0.042
0.042
Pr(Rit  0 | I itN  1, X it  x)
0.736
0.680
0.688
0.719
Pr(Rit  0 | I itR  1, X it  x)
0.000
0.009
0.038
0.091
 (x)
0.008
0.007
0.008
0.011
h(x)
0.082
0.312
0.348
0.161
Intensive margin:
 ( x)h( x)dx  0.0084
Extensive margin:
 x' ( x)h( x)dx  0.0013
2009/11/04
Caballero-Engel’s measure
of price flexibility
 log Rt
 0.0097
 t 0
 t
lim
page. 25
Dynamics in Real Estate Market
Reitaku-University
Micro-Macro Consistency : Calvo Parameter
1.45
1.40
R^{*}
R
CPI rent
1.35
1.30
 0  0.032 ( s.e.  0.004)
2009/11/04
1.10
1.05
QT2006/1
QT2004/1
QT2000/1
QT1998/1
QT1996/1
QT1994/1
1.00
QT1992/1
Rt*  Hedonic rent
1.15
QT1990/1
Rt  CPI rent
1.20
QT1988/1
Rt   log Rit di
Rt*   log Rit* di
1.25
QT1986/1
Rt  (1   0 ) Rt 1   0 Rt*
QT2002/1
 ( x)   0
Micro estimate: 0.975
Macro estimate: 0.968
page. 26
Dynamics in Real Estate Market
Reitaku-University
4.キャップレートの決定構造
• Jorgenson’s Theorem : Capital, Investment Behavior
• Neoclassical theory is the response of the demand for capital
to changes in relative factor prices or the ratio of factor prices
to the price of output.
• User cost / Yield
• Capital Depreciation Problem
•
•
2009/11/04
Jorgenson, D. W. (1963), "Capital Theory and Investment Behavior," American Economic Review, 53,
pp.247-259.
Hayashi, F., and T. Inoue (1991), “The relation between firm growth and Q with multiple capital goods:
Theory and evidence from panel data on Japanese firms,” Econometrica, pp.731–753.
Chihiro SHIMIZU 2009 [email protected]
page. 27
Dynamics in Real Estate Market
Reitaku-University
Stock Market vs. Asset Market
5.00%
Stock CR
Real CR
4.50%
4.00%
3.50%
3.00%
2.50%
2009/11/04
[email protected]
2008/11
2008/09
2008/07
2008/05
2008/03
2008/01
2007/11
2007/09
2007/07
2007/05
2007/03
2007/01
2006/11
2006/09
2006/07
2006/05
2006/03
2006/01
2005/11
2005/09
2005/07
2005/05
2005/03
2005/01
2.00%
page. 28
2002:Q1
2002:Q2
2002:Q3
2002:Q4
2003:Q1
2003:Q2
2003:Q3
2003:Q4
2004:Q1
2004:Q2
2004:Q3
2004:Q4
2005:Q1
2005:Q2
2005:Q3
2005:Q4
2006:Q1
2006:Q2
2006:Q3
2006:Q4
2007:Q1
2007:Q2
2007:Q3
2007:Q4
2008:Q1
2008:Q2
2008:Q3
2008:Q4
Dynamics in Real Estate Market
1.3
1.2
2009/11/04
Reitaku-University
Trends in Office Market:
1.4
NOI
Capital Value/m2
NewRent
1.1
1
0.9
0.8
0.7
0.6
[email protected]
page. 29
Dynamics in Real Estate Market
Reitaku-University
• Neoclassical theory is the response of the demand for capital
to changes in relative factor prices or the ratio of factor prices
to the price of output.
• User cost / Yield
• Capital Depreciation Problem
•
•
2009/11/04
Jorgenson, D. W. (1963), "Capital Theory and Investment Behavior," American Economic Review, 53,
pp.247-259.
Hayashi, F., and T. Inoue (1991), “The relation between firm growth and Q with multiple capital goods:
Theory and evidence from panel data on Japanese firms,” Econometrica, pp.731–753.
Chihiro SHIMIZU 2009 [email protected]
page. 30
Dynamics in Real Estate Market
Reitaku-University
Stock Market vs. Asset Market
5.00%
Stock CR
Real CR
4.50%
4.00%
3.50%
3.00%
2.50%
2009/11/04
[email protected]
2008/11
2008/09
2008/07
2008/05
2008/03
2008/01
2007/11
2007/09
2007/07
2007/05
2007/03
2007/01
2006/11
2006/09
2006/07
2006/05
2006/03
2006/01
2005/11
2005/09
2005/07
2005/05
2005/03
2005/01
2.00%
page. 31
2002:Q1
2002:Q2
2002:Q3
2002:Q4
2003:Q1
2003:Q2
2003:Q3
2003:Q4
2004:Q1
2004:Q2
2004:Q3
2004:Q4
2005:Q1
2005:Q2
2005:Q3
2005:Q4
2006:Q1
2006:Q2
2006:Q3
2006:Q4
2007:Q1
2007:Q2
2007:Q3
2007:Q4
2008:Q1
2008:Q2
2008:Q3
2008:Q4
Dynamics in Real Estate Market
1.3
1.2
2009/11/04
Reitaku-University
Trends in Office Market:
1.4
NOI
Capital Value/m2
NewRent
1.1
1
0.9
0.8
0.7
0.6
[email protected]
page. 32
Dynamics in Real Estate Market
Reitaku-University
Gordon’s Growth Model : Present Value, Discount Rate
yit
yit
pit 
 R ft  R pi  G 
R ft  R pi  G
pit
•
•
•
•
Yit : Net Operating Income
Rf :Risk Free Rate
Rp : Risk Premium
G : Growth in Real Rent
•
Gordon,M.J and E.Shapro,(1956), Capital Equioment Analysis: The Required Rate of Profit. Management
Science, Vol.3,pp.102-110.
Gordon,M.J,(1959), Dividends, Earnings and Stock Prices. Review of Statistics and Economics, Vol.41,
pp.99-105.
•
Rp  f L( zi ),ξ
• L : Liquidity Risk
• ξ : Unexpected Risk
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 33
Dynamics in Real Estate Market
Reitaku-University
Estimation Model
yit   0   xij j  exp 1it 

NOI Model
j
pit   0   xij  exp 2it 
j
Capital Value Model
j
ln(yit pit )  ln( 0   0 )   ( j   j ) ln xij  ( 1it  2it )
j
Yield or Capitalization Rate :
 ln y it  ln p it
( j   j ) 

 ln x ij  ln x ij
2009/11/04
[email protected]
page. 34
Dynamics in Real Estate Market
Reitaku-University
Estimation Results : See Table3
Unbalanced Panel Data : Pooling Data Analysis
Transaction Model
Age
Age × residential1
Age × residential2
Area
Area × residential1
Area × residential2
TS
TS × residential1
TS × residential2
TT
TT × residential1
TT × residential2
Adj. R-squared:
Number of Obs.:
2009/11/04
Cap Rate Model
α-β
α:NOI Model
0.033
0.010
0.000
-0.046
0.037
0.026
-0.034
-0.002
0.025
0.100
-0.119
0.061
0.358
1,173
0.033
0.010
0.001
-0.047
0.037
0.026
-0.035
-0.002
0.026
0.099
-0.117
0.062
-
-0.042
0.017
0.015
0.034
-0.044
0.007
-0.069
-0.024
0.082
-0.087
0.041
0.004
0.574
[email protected]
β:Capital Value
Model
-0.075
0.007
0.014
0.081
-0.082
-0.018
-0.035
-0.021
0.056
-0.186
0.158
-0.058
0.683
page. 35
Dynamics in Real Estate Market
Reitaku-University
Depreciation Effect on Capitalization Rate
Effects on Cap Rate (Transaction-based)
1.20
1.20
1.15
1.15
1.10
1.10
Office
Residential (Family)
Residential (Single)
1.05
1.05
1.00
1.00
0
2009/11/04
5
10
15
20
[email protected]
25
30
35
40
page. 36
0
Dynamics in Real Estate Market
Reitaku-University
Depreciation Effect on NOI and Capital Value
Effects on NOI (Transaction-point)
1.00
1.00
0.95
0.95
0.90
0.90
0.85
0.85
Office
Residential (Family)
Residential (Single)
0.80
Office
Residential (Family)
Residential (Single)
0.80
0.75
0.75
0
5
10
15
20
25
30
35
40
0
5
10
Effects on Price (Transaction-based)
1.00
1.00
0.90
0.90
0.80
0.80
Office
Residential (Family)
Residential (Single)
0.70
0.60
0.60
0
2009/11/04
Office
Residential (Family)
Residential (Single)
0.70
5
10
15
20
25
[email protected]
30
35
40
0
5
page. 37
10
Dynamics in Real Estate Market
Reitaku-University
Quantity Effect on Capitalization Rate
Effects on Cap Rate (Transaction-based)
1.40
1.40
1.30
1.30
1.20
1.20
1.10
1.10
1.00
1.00
Office
Residential (Family)
Residential (Single)
0.90
0.80
0.80
0.70
0.70
0.60
0.60
0
2009/11/04
0.90
5,000
10,000
15,000
20,000
[email protected]
25,000
30,000
35,000
40,000
page. 38
0
Dynamics in Real Estate Market
Reitaku-University
Quantity Effect on NOI and Capital Value
Effects on NOI (Transaction-point)
1.20
1.20
1.15
1.15
1.10
1.10
1.05
Office
Residential (Family)
Residential (Single)
1.00
1.05
1.00
0.95
0.95
0.90
0.90
0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
0
5,000
10,000
1
0
5,000
10,000
1
Effects on Price (Transaction-based)
1.60
1.60
1.50
1.50
1.40
1.40
1.30
1.30
1.20
1.20
1.10
Office
Residential (Family)
Residential (Single)
1.00
0.90
1.00
0.90
0.80
0.80
0
2009/11/04
1.10
5,000
10,000
15,000
20,000
25,000
[email protected]
30,000
35,000
40,000
page. 39
Dynamics in Real Estate Market
Reitaku-University
Accessibility Effect on Capitalization Rate:
Distance to Central Areas
Effects on Cap Rate (Transaction-based)
2.50
2.50
2.30
2.30
Office
Residential (Family)
Residential (Single)
2.10
1.90
1.90
1.70
1.70
1.50
1.50
1.30
1.30
1.10
1.10
0.90
0.90
0
2009/11/04
2.10
5,000
10,000
15,000
20,000
[email protected]
25,000
30,000
35,000
40,000
page. 40
0
Dynamics in Real Estate Market
Reitaku-University
Accessibility Effect on NOI and Capital Value:
Distance to Central Areas
Effects on NOI (Transaction-point)
1.00
1.00
Office
Residential (Family)
Residential (Single)
0.90
0.80
0.90
0.80
0.70
0.70
0.60
0.60
0.50
0.50
0.40
0.40
0.30
0.30
0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
0
5,000
10,000
1
0
5,000
10,000
1
Effects on Price (Transaction-based)
1.00
1.00
Office
Residential (Family)
Residential (Single)
0.90
0.80
0.80
0.70
0.70
0.60
0.60
0.50
0.50
0.40
0.40
0.30
0.30
0.20
0.20
0.10
0.10
0
2009/11/04
0.90
5,000
10,000
15,000
20,000
25,000
[email protected]
30,000
35,000
40,000
page. 41
Dynamics in Real Estate Market
Reitaku-University
Comparison: Transaction-based vs. Appraisal-based
Depreciation Effect on Capitalization Rate
Effects on Cap Rate (Transaction-based)
Effects on Cap Rate (Appraisal-based)
1.20
1.20
1.15
1.15
1.10
1.10
Office
Residential (Family)
Residential (Single)
1.05
Office
Residential (Family)
Residential (Single)
1.05
1.00
1.00
0
2009/11/04
5
10
15
20
25
30
35
40
0
[email protected]
5
10
15
20
25
30
35
40
page. 42
Dynamics in Real Estate Market
Reitaku-University
What is Capitalization Rate?
• Conclusions;
• Capitalization Rate is explained by
 ln y it  ln p it
( j   j ) 

 ln x ij  ln x ij
• Link between asset prices and stock prices in Real Estate
Investment Market.
•
2009/11/04
Client Pressure Problems in Appraisal Process
[email protected]
page. 43
Dynamics in Real Estate Market
Reitaku-University
5.社会構造の変化と不動産価格
• 米国での議論:
• Baby Boom, Baby Burst and Housing Market!
• 米国の住宅価格は,1987年~2007年まで47%下
落する!!!
• →社会構造の変化と不動産市場
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 44
Dynamics in Real Estate Market
Reitaku-University
出生者数の推移(JPN)
(Ten thousands)
300
5.0
Number of Live Births [Left Scale]
Total Fertality Rates [Right Scale]
Baby boom
(1947-49)
4.5
250
4.0
Echo baby boom
(1971-73)
200
3.5
3.0
150
2.5
Baby bust
(1955-60)
2.0
100
1.5
1.0
50
0.5
2010
2005
2000
1995
1990
1985
1980
1975
1970
1965
1960
1955
1950
1945
1940
1935
1930
1925
0.0
1920
0
Source: Ministry of Health, Labor and Welfare
2009/11/04
page. 45
Dynamics in Real Estate Market
Reitaku-University
出生者数の推移(U.S.)
(Ten thousands)
500
5.0
Baby boom
(1946~1960)
Number of Live Births [Left Scale]
Total Fertality Rates [Right Scale]
450
Echo baby boom
(1980~90's)
4.5
400
4.0
350
3.5
300
3.0
Baby bust
(1965-79)
250
2.5
2010
2005
2000
1995
1990
1985
1980
1975
1970
1965
0.0
1960
0
1955
0.5
1950
50
1945
1.0
1940
100
1935
1.5
1930
150
1925
2.0
1920
200
Source: National Center for Health Statistics, "National Vital Statistics Reports."
2009/11/04
page. 46
Dynamics in Real Estate Market
Reitaku-University
3-4(a).年齢別人口 30-44 (JPN)
(Ten thousands)
3,500
Baby boomer
(1947~1949)
3,000
Echo baby boomer
(1971~1973)
2,500
Baby buster
(1955-1960)
2,000
Age 40-44
1,500
Age 35-39
1,000
Age 30-34
500
2010
2005
2000
1995
1990
1985
1980
1975
1970
1965
1960
0
Source: Ministry of Internal Affairs and Communications Statistics Bureau
2009/11/04
page. 47
Dynamics in Real Estate Market
Reitaku-University
3-4(b). 年齢別人口 30-44 (U.S.)
(Ten thousands)
7,000
6,000
5,000
Age 40-44
Baby boomer
(1946~1960)
4,000
Age 35-39
3,000
2,000
Age 30-34
Baby buster
(1965-1979)
1,000
Echo baby boomer
(1980~90's)
2010
2005
2000
1995
1990
1985
1980
1975
1970
1965
1960
0
Source: U.S. Bureau of Census, "Population Estimates."
2009/11/04
page. 48
Dynamics in Real Estate Market
Reitaku-University
Mankiw=Weil (1989)住宅需要指標
• The aggregate amount of housing demand for the specific age of
each household member using the housing demand by household,
and they created ;
D

N
Dj
(1)
Dj is the amount of housing demand for the jth member in the
household, and N is the number of household members.
j 1
(2)
D j   0 Dummy0  1Dummy1     i Dummyi
• Dummy 0 is the dummy variable, and when age = 0, it becomes 1.
Combining formulas (1) and (2) above results in formula (3).
•
D  0
Dummy0
j
 1
Dummy1
j
   i
Dummy (3)
ij
• the amount of housing demand i for each age (age i) was estimated
2009/11/04
page. 49
Dynamics in Real Estate Market
Reitaku-University
Estimation Method of House Demand by Home ownership rates
• Home ownership demand:
• we hypothesize that the increase in this rate is equivalent to the
ownership demand occurring in that age group
•
Dj ,t  Oj ,t  O j ,t 1 N j ,t
Dj,t
Oj,t
Nj,t
: home ownership demand for j cohort over t period
: ownership rate for j cohort over t period
: population of j cohort over t period
• Mankiw and Weil (1989) pointed out that there were no significant
differences in the final housing prediction model estimates
whether using adult population data or an estimated housing
demand index based on individual data.
2009/11/04
page. 50
Dynamics in Real Estate Market
Reitaku-University
住宅需要の推計(JPN & U.S.)
12,000
6,800
10,000
6,400
8,000
6,000
MW Index (JPN)
6,000
Population-based index (JPN.)
5,600
4,000
5,200
2,000
0
4,800
1970
1975
1980
1985
1990
1995
2000
2005
2,000
12,000
1,600
10,000
1,200
MW Index (U.S.)
8,000
Population-based index (U.S.)
800
6,000
400
0
4,000
1970
1975
1980
1985
1990
1995
2000
2005
Source: Mankiw and Weil (1989), Ootake and Shintani(1994)
2009/11/04
page. 51
Dynamics in Real Estate Market
Reitaku-University
Sample Selection Bias in Published Land Price
•
• 加重平均地価指数:
•
同一地点の対前年比を加
重平均
• 調査地点の選定替えの実施:
• 変動率で整合性が取れなくなっ
た地点の入れ替え
•
変動率のラグ→Shimizu and
Nishimura(2004)(2006)
2009/11/04
Year
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
Nt:Number of
Samples in tperiod
9,346
9,338
9,183
9,442
10,322
10,867
11,146
11,339
10,782
10,782
10,774
10,557
10,591
10,821
10,868
10,901
10,906
11,223
13,519
17,966
19,947
19,948
19,919
20,143
20,249
20,445
20,447
20,544
20,630
20,618
20,274
20,273
19,426
18,834
Nt-1:Number of
Samples in tperiod
8,800
8,772
8,640
8,498
7,751
8,596
9,098
8,112
4,904
10,219
10,267
10,123
10,119
10,227
10,421
10,441
10,442
10,394
10,435
12,984
17,480
19,722
19,562
19,683
19,933
20,023
20,144
20,192
20,295
20,383
20,027
20,035
19,300
18,719
Nt/Nt-1
0.942
0.939
0.941
0.900
0.751
0.791
0.816
0.715
0.455
0.948
0.953
0.959
0.955
0.945
0.959
0.958
0.957
0.926
0.772
0.723
0.876
0.989
0.982
0.977
0.984
0.979
0.985
0.983
0.984
0.989
0.988
0.988
0.994
0.994
page. 52
Dynamics in Real Estate Market
Reitaku-University
Estimation Results of Hedonic Function
No Prefecture
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
2009/11/04
Hokkaido
Aomori
Iwate
Miyagi
Akita
Yamagata
Fukushima
Ibaragi
Tochigi
Gunma
Saitama
Chiba
Tokyo
Kanagawa
Niigata
Toyama
Ishikawa
Fukui
Yamanashi
Nagano
Gifu
Shizuoka
Aichi
Mie
Shiga
Kyouto
Oosaka
Hyougo
Nara
Wakayama
Tottori
Shimane
Okayama
Hiroshima
Yamaguchi
Tokushima
Kagawa
Ehime
Kouchi
Fukuoka
Saga
Nagasaki
Kumamoto
Ooita
Miyazaki
Kagoshima
Okinawa
area
rw
ts
tt
gesui
sui
gas
UX
-1.180
-1.245
-1.149
-1.108
-1.157
-1.259
-1.135
-1.216
-1.257
-1.142
-1.039
-1.096
-0.871
-0.919
-1.309
-1.080
-1.170
-1.057
-1.143
-1.370
-1.062
-1.154
-1.013
-1.116
-1.310
-0.994
-0.965
-0.983
-1.060
-1.094
-1.199
-1.054
-1.232
-1.083
-1.143
-1.018
-1.142
-1.240
-1.232
-0.992
-1.294
-0.919
-1.222
-1.139
-1.168
-1.122
-1.225
0.179
0.418
0.016
0.237
0.150
0.234
0.135
0.181
0.221
0.279
0.145
0.120
0.144
0.096
0.369
0.242
0.175
0.168
0.215
0.113
0.204
0.116
0.267
0.329
0.395
0.270
0.221
0.201
0.255
0.168
0.561
0.133
0.156
0.197
0.146
0.117
0.247
0.306
0.284
0.157
0.153
0.685
0.311
0.418
0.125
0.108
0.318
-0.051
-0.038
0.035
-0.112
-0.074
-0.054
-0.028
-0.111
-0.050
-0.062
-0.148
-0.168
-0.125
-0.107
-0.131
-0.062
-0.057
-0.129
-0.039
-0.062
-0.047
-0.070
-0.066
-0.071
-0.074
-0.080
-0.129
-0.123
-0.133
0.014
-0.182
-0.094
-0.086
-0.103
-0.048
-0.037
-0.163
-0.077
-0.038
-0.072
-0.062
-0.006
-0.033
-0.097
-0.057
-0.092
0.015
-0.409
-0.236
-0.321
-0.365
-0.396
-0.342
-0.193
-0.140
-0.244
-0.063
-0.173
-0.283
-0.724
-0.038
-0.331
-0.179
-0.414
-0.318
-0.155
-0.281
-0.213
-0.125
-0.417
-0.040
-0.158
-0.318
-0.342
-0.062
-0.049
-0.158
-0.177
-0.290
-0.266
-0.329
-0.010
-0.303
-0.264
-0.208
-0.272
-0.434
-0.186
-0.211
-0.265
-0.232
-0.273
-0.384
-0.367
0.288
0.187
0.217
0.143
0.230
0.220
0.165
0.206
0.151
0.271
0.109
0.077
0.086
0.040
0.112
0.294
0.157
0.070
0.028
0.330
0.193
0.131
0.146
0.060
0.111
0.134
0.083
0.077
0.054
0.151
0.103
0.089
0.110
0.114
0.022
0.062
0.011
0.180
0.218
0.280
0.094
0.101
0.116
0.106
0.259
0.095
0.112
0.004
0.325
0.086
0.232
0.199
0.398
0.148
0.312
0.258
-0.100
0.307
0.089
0.024
-0.082
0.103
0.212
-0.106
0.335
0.812
0.010
-0.082
-0.051
0.155
0.092
0.830
-0.003
0.106
0.387
0.205
-0.670
0.079
0.237
0.366
0.065
0.254
-0.125
0.176
0.182
0.096
0.143
0.199
0.695
0.140
-0.067
0.415
0.441
0.256
0.180
0.196
0.303
0.257
0.330
0.235
0.179
0.110
0.261
0.186
0.122
0.316
0.231
0.146
0.124
0.158
0.142
0.154
0.258
0.131
0.318
0.268
0.241
0.186
0.380
0.247
0.156
0.158
0.228
0.236
0.279
0.402
0.237
0.256
0.251
0.195
0.232
0.200
0.374
0.315
0.254
0.244
0.330
0.006
-6.221
0.360
0.530
0.284
0.574
-0.177
0.050
-0.428
-0.204
-0.264
0.231
-1.646
-0.578
0.782
-0.418
-0.583
-0.604
-0.335
1.087
-0.122
-0.323
0.080
0.623
0.212
-1.340
1.174
0.009
0.911
-1.254
0.032
-0.298
-0.680
-0.444
0.265
0.330
-0.573
-0.626
0.307
0.304
0.611
0.243
-0.298
-0.147
-0.640
0.634
-0.264
-2.586
UY
UXX UYY
cp1
cp3
cp6
cp7
-24.091 0.022 0.276 -0.108 -0.275 0.878 -0.951
-0.919
-0.216 -0.034 0.339 -0.732
-63.865
0.805 -0.117 -0.010
-0.589
0.040
-0.079 -0.037
-0.592
-151.022
1.896 -0.054 0.506
-0.776
-42.895
0.560 -0.056
-0.691
-80.239
1.076 -0.001 0.139 -0.387 -0.839
-0.274
-0.091
0.325 -0.710
-0.651
-0.021
-0.369
-0.168
0.008
-0.455
-2.411
-0.026 0.244 0.301 -0.599
1.430
-0.055 -0.042
0.074
-0.560
-0.001 0.012 0.135 -0.349 -3.136
0.947
-0.008 -0.054 -0.195 -0.589
-11.409
0.150 -0.108
-0.797
1.121
-0.110
-0.325
-165.220
2.257 0.026
-0.044 -0.407
-0.935
-0.020
-1.107
0.627
-0.017
-0.078 -0.349
90.043
-1.247 -0.085 0.460 0.202 -0.424
0.771
-0.052 0.066 0.129 -0.559
0.118
-0.058 0.159
-0.455
-0.449
-0.033 -0.141 -0.314 -0.383
-59.555
0.853 -0.032 -0.016
-0.635
0.532
-0.085 -0.198 -0.490 -0.669
1.080
0.004 -0.165 -0.188 -1.101
0.691
-0.031 0.040
-0.847
-70.375
1.000 -0.110 -0.020
-0.930
2.115
-0.100
-0.572 -0.342
-0.225
-0.022 -0.171
-0.413
-0.233
-0.063 -0.102
-0.941
-50.651
0.724 -0.038
-0.656
-0.258
-0.110
-0.616
-0.905
0.002 0.097
-0.729
0.399
-0.058
-1.079
-0.327
0.090
-0.063
0.088
-0.097
-0.462
34.366
-0.518 -0.108 -0.263
-0.498
34.104
-0.527 0.051
-0.292
-55.140
0.821 -0.035 0.635 0.039 -0.954
1.040
-0.120
-0.181 -0.774
-9.789
0.148 -0.012
-0.384 -0.831
-0.607
-0.009
-0.349
-0.765
-0.085
-0.040
-52.347
0.816 -0.038
-0.520
1.593
-0.028 -0.064
-0.590
48.458
-0.873 -0.043 0.070
-1.261
tm
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Number of adjusted
2
Samples
R
24,565
0.814
4,965
0.835
3,153
0.827
10,350
0.895
3,300
0.867
3,126
0.867
8,462
0.851
14,836
0.877
8,752
0.879
7,188
0.839
28,425
0.943
27,654
0.864
50,333
0.923
41,470
0.931
7,386
0.851
3,941
0.839
3,903
0.849
2,090
0.858
2,774
0.936
5,125
0.844
6,207
0.893
13,103
0.882
33,687
0.931
8,298
0.885
5,431
0.910
12,672
0.932
34,854
0.944
25,911
0.875
8,399
0.899
3,049
0.878
1,946
0.859
2,215
0.790
7,396
0.880
12,160
0.855
5,714
0.817
2,518
0.929
2,866
0.913
4,405
0.861
2,644
0.890
17,948
0.870
2,001
0.887
4,922
0.815
5,186
0.901
4,496
0.856
4,397
0.896
4,799
0.885
3,348
0.929
page. 53
Dynamics in Real Estate Market
Reitaku-University
3-1(a). Real House prices by prefectures (JPN)
900,000
800,000
700,000
600,000
500,000
400,000
300,000
200,000
100,000
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
0
Hokkaido
Aomori
Iwate
Miyagi
Akita
Yamagata
Fukushima
Ibaragi
Tochigi
Gunma
Saitama
Chiba
Tokyo
Kanagawa
Niigata
Toyama
Ishikawa
Fukui
Yamanashi
Nagano
Gifu
Shizuoka
Aichi
Mie
Shiga
Kyouto
Oosaka
Hyougo
Nara
Wakayama
Tottori
Shimane
Okayama
Hiroshima
Yamaguchi
Tokushima
Kagawa
Ehime
Kouchi
Fukuoka
Saga
Nagasaki
Kumamoto
Ooita
Miyazaki
Kagoshima
Okinawa
Source: Ministry of Land, Infrastructure, Transport and Tourism “Published Land Prices”
2009/11/04
page. 54
Dynamics in Real Estate Market
Reitaku-University
3-1(b). Real House prices by states (U.S.)
800,000
700,000
600,000
500,000
400,000
300,000
200,000
100,000
2008
2007
2006
2004
2005
2003
2002
2000
2001
1999
1998
1997
1995
1996
1994
1993
1991
1992
1990
1989
1987
1988
1986
1985
1984
1982
1983
1981
1980
1978
1979
1977
1976
1975
0
AL
AK
AZ
AR
CA
CO
CT
DE
DC
FL
GA
HI
ID
IL
IN
IA
KS
KY
LA
ME
MD
MA
MI
MN
MS
MO
MT
NE
NV
NH
NJ
NM
NY
NC
ND
OH
OK
OR
PA
RI
SC
SD
TN
TX
UT
VT
VA
WA
WV
WI
WY
Source: Office of Federal Housing Enterprise Oversight, “House Price Index”,
U.S. Census of Bureau, “Census of Housing: Median home value.”
2009/11/04
page. 55
Dynamics in Real Estate Market
Reitaku-University
3.2.Gini's coefficient : Comparison between Japan and US
0.450
Japan
0.400
USA
0.350
0.300
0.250
0.200
0.150
0.100
0.050
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
0.000
2009/11/04
page. 56
Dynamics in Real Estate Market
Reitaku-University
Cluster Classification in Japan by Appreciation Rate of Land Price
80
70
Cluster1
Cluster2
60
Cluster3
50
Cluster4
Cluster5
40
30
20
10
-20
-30
2009/11/04
page. 57
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
-10
1976
0
Dynamics in Real Estate Market
Reitaku-University
Cluster Classification in US by Appreciation Rate of House Price
30
Cluster1
25
Cluster2
Cluster3
Cluster4
20
Cluster5
15
10
5
-5
-10
2009/11/04
page. 58
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
0
Dynamics in Real Estate Market
Reitaku-University
House Demand by prefectures (JPN)
2,500,000
2,000,000
1,500,000
1,000,000
500,000
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
0
Hokkaido
Aomori
Iwate
Miyagi
Akita
Yamagata
Fukushima
Ibaragi
Tochigi
Gunma
Saitama
Chiba
Tokyo
Kanagawa
Niigata
Toyama
Ishikawa
Fukui
Yamanashi
Nagano
Gifu
Shizuoka
Aichi
Mie
Shiga
Kyouto
Oosaka
Hyougo
Nara
Wakayama
Tottori
Shimane
Okayama
Hiroshima
Yamaguchi
Tokushima
Kagawa
Ehime
Kouchi
Fukuoka
Saga
Nagasaki
Kumamoto
Ooita
Miyazaki
Kagoshima
Okinawa
Source: Ministry of Internal Affairs and Communications Statistics Bureau, “Census"
2009/11/04
page. 59
Dynamics in Real Estate Market
Reitaku-University
House Demand by states (U.S.)
6,000,000
5,000,000
4,000,000
3,000,000
2,000,000
1,000,000
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
0
AL
AK
AZ
AR
CA
CO
CT
DE
DC
FL
GA
HI
ID
IL
IN
IA
KS
KY
LA
ME
MD
MA
MI
MN
MS
MO
MT
NE
NV
NH
NJ
NM
NY
NC
ND
OH
OK
OR
PA
RI
SC
SD
TN
TX
UT
VT
VA
WA
WV
WI
WY
Source: U.S. Census of Bureau, “Population Estimates.”
2009/11/04
page. 60
Dynamics in Real Estate Market
Reitaku-University
地域別 住宅需要 vs.住宅価格(JPN)
Aomori
Age 35-39
Age 40-44
Tokyo
LP Index
Age 35-39
Age 40-44
LP Index
300
120 2,500
300
250
100 2,000
250
200
80
200
150
60
100
40
50
20
1,500
150
1,000
0
1980
Osaka
1985
1990
Age 35-39
1995
2000
Age 40-44
500
1980
Yamaguchi
LP Index
1,400
0
1975
2005
1,600
50
0
0
1975
100
1985
1990
Age 35-39
1995
2000
Age 40-44
2005
LP Index
300 300
140
250 250
120
1,200
100
200 200
1,000
80
800
150 150
60
600
100 100
40
400
200
0
1975
1980
1985
1990
1995
2000
2005
50
50
0
0
20
0
1975
1980
1985
1990
1995
2000
2005
Source: Ministry of Land, Infrastructure, Transport and Tourism , Ministry of Internal Affairs and Communications Statistics Bureau
2009/11/04
page. 61
Dynamics in Real Estate Market
Reitaku-University
地域別 住宅需要 vs.住宅価格(U.S.)
California
Age 30-34
35-39
40-44
OFHEO HPI
9,000
8,000
3,500
450
4,000
300
0
1980
Michigan
1985
Age 30-34
1990
1995
35-39
2000
40-44
350
2,500
300
2,000
250
1,500
200
1,000
100
500
150
100
50
0
0
1975
2005
OFHEO HPI
3,000
350
2,500
300
250
2,000
400
3,000
200
0
1975
OFHEO HPI
600
400
1,000
40-44
500
5,000
2,000
35-39
4,000
500
3,000
Age 30-34
700
7,000
6,000
Florida
200
1980
New York
1985
Age 30-34
1990
1995
35-39
2000
40-44
2005
OFHEO HPI
5,000
700
4,500
600
4,000
3,500
500
3,000
400
2,500
1,500
1,000
500
150
2,000
300
100
1,500
200
50
0
0
1975
1980
1985
1990
1995
2000
2005
1,000
100
500
0
0
1975
1980
1985
1990
1995
2000
2005
Source: U.S. Census of Bureau, “Population Estimates,” and OFHEO “House Price Index”.
2009/11/04
page. 62
Dynamics in Real Estate Market
Reitaku-University
住宅需要 vs.住宅価格
200
140
(DM7 5- 80 , LP75 -8 0)
120
(DM8 5- 90 , LP85 -9 0)
Chiba
Tokyo
(DM7 5- 80 , LP75 -8 0)
Washington
(DM8 0- 85 , LP80 -8 5)
(DM8 5- 90 , LP85 -9 0)
(DM9 0- 95 , LP90 -9 5)
Change rate of house price:%
Japan: 35- to 44year-old
population;
U.S.: 30- to 44-yearold population
Change rate of house price:%
150
California
Delaware
(DM8 0- 85 , LP80 -8 5)
Oosaka
(DM9 5- 00 , LP95 -0 0)
(DM0 0- 05 , LP00 -0 5)
Kanagawa
Kyouto
Kanagawa
(DM0 5- 08 , LP05 -0 8)
100
Hyougo
Okinawa
Chiba
50
Ibaragi
North Dakota
California
100
Wyoming
(DM9 0- 95 , LP90 -9 5)
(DM9 5- 00 , LP95 -0 0)
OregonNorth Dakota
80
(DM0 0- 05 , LP00 -0 5)
(DM0 5- 08 , LP05 -0 8)
60
Alabama
Nebraska
40
20
Arkansas
0
North Dakota
0
-50
-20
-30
-20
-10
0
10
20
30
40
50
-20
0
20
Change rate of house dem and:%
40
60
80
100
Change rate of house dem and:%
200
140
(DM7 5- 80 , LP75 -8 0)
California
Delaware
(DM8 0- 85 , LP80 -8 5)
Oosaka
120
(DM7 5- 80 , LP75 -8 0)
Washington
(DM8 0- 85 , LP80 -8 5)
(DM8 5- 90 , LP85 -9 0)
(DM8 5- 90 , LP85 -9 0)
Chiba
Tokyo
(DM9 0- 95 , LP90 -9 5)
(DM9 5- 00 , LP95 -0 0)
200
Kyouto
100
(DM0 0- 05 , LP00 -0 5)
Kanagawa
(DM7 5- 80 , LP75 -8 0)
(DM0 5- 08 , LP05 -0 8)
(DM8 0- 85 , LP80 -8 5)
Kanagawa
Hyougo
Oosaka
(DM8 5- 90 , LP85 -9 0)
Chiba
150
Okinawa
(DM9 0- 95 , LP90 -9 5)
Tokyo
50
(DM9 5- 00 , LP95 -0 0)
Chiba
Kyouto
Kanagawa
(DM0 0- 05 , LP00 -0 5)
Kanagawa
Ibaragi
(DM0 5- 08 , LP05 -0 8)
100
Hyougo
Okinawa
0
Chiba
50
Ibaragi
-50
-5
0
5
10
0
15
20
25
30
35
40
Change rate of house price:%
Change rate of house price:%
Change rate of house
price:%
Change
rate of house price:%
Mankiw House
Demand Index
150
North Dakota
Wyoming
California
100
(DM9 0- 95 , LP90 -9 5)
(DM9 5- 00 , LP95 -0 0)
140
80
Oregon
California
Delaware
120
(DM0 0- 05 , LP00 -0 5)
North Dakota
(DM7 5- 80 , LP75 -8 0)
(DM0 5- 08 , LP05 -0 8)
Washington
(DM8 0- 85 , LP80 -8 5)
(DM8 5- 90 , LP85 -9 0)
60
North Dakota
California
100
Alabama
Wyoming
Nebraska
(DM9 0- 95 , LP90 -9 5)
(DM9 5- 00 , LP95 -0 0)
40
Oregon North Dakota
80
(DM0 0- 05 , LP00 -0 5)
(DM0 5- 08 , LP05 -0 8)
20
Arkansas
60
Alabama North Dakota
Nebraska
0
40
-20
20 -10
0
10
Change rate of house dem and:%
20
30
40
50
60
70
Arkansas
Change rate of house dem and:%
North Dakota
0
-50
-10
2009/11/04
-5
0
5
10
15
20
25
30
-20
-20
Change rate of house dem and:%
-10
0
10
20
30
40
50
Change rate of house dem and:%
200
140
(DM7 5- 80 , LP75 -8 0)
60
70
80
page. 63
Dynamics in Real Estate Market
Reitaku-University
住宅需要 vs.住宅価格
140
200
140
(DM7 5- 80 , LP75 -8 0)
Chiba
Change rate of house price:%
Tokyo
(DM8 5- 90 , LP85 -9 0)
120
(DM9 0- 95 , LP90 -9 5)
100
Change
of house
price:%
Change
rate rate
of house
price:%
Oosaka
Owner Occupied
Demand index
Delaware
(DM8 0- 85 , LP80 -8 5)
150
(DM9 5- 00 , LP95 -0 0)
Kyouto
Kanagawa
(DM0 0- 05 , LP00 -0 5)
Kanagawa
(DM0 5- 08 , LP05 -0 8)
100
Hyougo
Okinawa
Chiba
50
Ibaragi
0
California
(DM7 5- 80 , LP75 -8 0)
Washington
California
(DM8 0- 85 , LP80 -8 5)
(DM7 5- 80 , LP75 -8 0)
(DM8 5- 90 , LP85 -9 0)
(DM8 0- 85 , LP80 -8 5)
(DM9 0- 95 , LP90 -9 5)
(DM8 5- 90 , LP85 -9 0)
(DM9 5- 00 , LP95 -0 0)
(DM9 0- 95 , LP90 -9 5)
Delaware
120
100
California
Washington
North Dakota
Wyoming
California
North Dakota
Wyoming
80
80
Oregon North Dakota
(DM0 0- 05 , LP00 -0 5)
(DM9 5- 00 , LP95 -0 0)
Oregon North Dakota
(DM0 5- 08 , LP05 -0 8)
(DM0 0- 05 , LP00 -0 5)
(DM0 5- 08 , LP05 -0 8)
60
Alabama
Nebraska
60
Alabama
40
Nebraska
40
20
Arkansas
20
Arkansas North Dakota
0
North Dakota
0
-20
-50
-10
-5
0
5
10
15
20
25
-20
30
-20
-10
0
-20
-10
0
10
Change rate of house dem and:%
50
60
70
10
20
40 and:%
50
Change
rate of 30
house dem
20
30
40
60
70
80
80
Change rate of house dem and:%
200
(DM_ Co n tro l, LP85 -90 )
Oosaka
Delaware
120
(DM8 0- 85 , LP85 -9 0)
Tokyo
California
(DM_ Co n tro l, LP00 -05 )
Change rate of house price:%
Change rate of house price:%
Bubble era:
Owner Occupied
Demand index
Rhode Island
(DM8 5- 90 , LP85 -9 0)
150
Chiba
Kanagawa
Kanagawa
100
Hyougo
50
Okinawa
Ibaragi
100
(DM0 0- 05 , LP00 -0 5)
North Dakota
(LP9 5-0 0 , LP00 -0 5)
80
Nebraska
Arkansas
60
Wyoming
40
Oregon
0
20
0
-50
-10
-5
0
5
10
15
Change rate of house dem and:%
2009/11/04
20
25
30
-20
-10
0
10
20
30
40
50
Change rate of house dem and:%
page. 64
Dynamics in Real Estate Market
Reitaku-University
需要要因が住宅価格に与える影響
VAR Estimate : Japan
VAR Estimate : USA
grHousePriceIndex grHouseDemand grHousePriceIndex grHouseDemand
Constant
grHPI(Lag1)
grHPI(Lag2)
grHD(Lag1)
grHD(Lag2)
dRate
grGDP
F-statistic
Log likelihood
Akaike AIC
2009/11/04
0.000
(0.0020)
0.611
(0.0259)
-0.130
(0.0247)
-2.994
(0.6973)
4.274
(0.6712)
0.014
(0.0022)
0.418
(0.0615)
196.877
1882.096
-2.751
0.000
(0.0001)
0.000
(0.0012)
-0.005
(0.0012)
0.850
(0.0344)
0.048
(0.0331)
0.000
(0.0001)
-0.001
(0.0030)
1240.132
5983.415
-8.770
-0.001652
(0.0013)
0.03407
(0.0237)
0.066647
(0.0631)
0.066647
(0.0631)
-0.237661
(0.0620)
-0.011743
(0.0010)
0.353377
(0.0277)
240.292
2822.327
-3.680
Chihiro SHIMIZU 2009 [email protected]
0.001226
(0.0004)
-0.009078
(0.0085)
0.391596
(0.0228)
0.391596
(0.0228)
0.269695
(0.0224)
0.004687
(0.0003)
0.092434
(0.0100)
241.092
4375.800
-5.711
page. 65
Dynamics in Real Estate Market
Reitaku-University
需要要因が住宅価格に与える影響:日本
Response to Cholesky One S.D. Innovations ± 2 S.E.
Response of House Price to House Price
Response of House Price Housing Demand
.08
.08
.06
.06
.04
.04
.02
.02
.00
.00
-.02
-.02
1
2
3
4
5
6
7
8
9
10
Response of Housing Demand to House Price
2
3
4
5
6
7
8
9
10
Response of Housing Demand to Housing Demand
.004
.004
.003
.003
.002
.002
.001
.001
.000
.000
-.001
-.001
1
2009/11/04
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
Chihiro SHIMIZU 2009 [email protected]
6
7
8
9
10
page. 66
Dynamics in Real Estate Market
Reitaku-University
需要要因が住宅価格に与える影響:米国
Response to Cholesky One S.D. Innovations ± 2 S.E.
Response of House Price to House Price
Response of House Price to Housing Demand
.05
.05
.04
.04
.03
.03
.02
.02
.01
.01
.00
.00
-.01
-.01
1
2
3
4
5
6
7
8
9
10
Response of Housing Demand to House Price
2
3
4
5
6
7
8
9
10
Response of Housing Demand to Housing Demand
.016
.016
.012
.012
.008
.008
.004
.004
.000
.000
-.004
-.004
1
2009/11/04
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
Chihiro SHIMIZU 2009 [email protected]
6
7
8
9
10
page. 67
Dynamics in Real Estate Market
Reitaku-University
6.公示地価への教訓
• 不動産価格は予測できるか→市場の効率性
• キャッシュフローは市場を適切に反映しているか?
• キャップレートは,どのように決定されているのか?
• 需要ショックは価格変動に影響を及ぼすか?
• →どうしたらいいのか???
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 68
Dynamics in Real Estate Market
Reitaku-University
時点修正課題への対応:
• Valuation Error, Smoothingはなぜ起こるのか?
• 起こってはいけないのか?
0.98
0.96
Index:2000.01=1
0.94
0.92
Test01
0.9
0.88
Test02
0.86
Test03
0.84
実績
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
200202
200201
200112
200111
200110
200109
200108
200107
200106
200105
200104
200103
200102
200101
0.82
page. 69
199701
199702
199703
199704
199801
199802
199803
199804
199901
199902
199903
199904
200001
200002
200003
200004
200101
200102
200103
200104
200201
200202
200203
200204
200301
200302
200303
200304
200401
200402
200403
200404
200501
200502
200503
200504
200601
200602
200603
200604
200701
200702
200703
200704
200801
200802
200803
200804
Dynamics in Real Estate Market
1
9
9
7
第
一
四
半
期
=
0
:
対
前
期
変
動
率
2009/11/04
Reitaku-University
住宅価格指数の比較
0.04
0.02
0
-0 .02
-0 .04
ヘドニ ック指数:RRPI
-0 .06
-0 .08
-0 .1
ヘドニ ック指数:ハリファ ックス型
-0 .12
リピ ートセールス指数:香港大学型
-0 .14
リピ ートセールス指数:ケースシラ ー型
Chihiro SHIMIZU 2009 [email protected]
page. 70
199701
199702
199703
199704
199801
199802
199803
199804
199901
199902
199903
199904
200001
200002
200003
200004
200101
200102
200103
200104
200201
200202
200203
200204
200301
200302
200303
200304
200401
200402
200403
200404
200501
200502
200503
200504
200601
200602
200603
200604
200701
200702
200703
200704
200801
200802
200803
200804
Dynamics in Real Estate Market
-0.12
2009/11/04
Reitaku-University
複数回サンプルの比較:ヘドニック指数
0.02
0
-0.02
-0.04
-0.06
-0.08
-0.1
o ver1
o ver2
o ver3
o ver4
Tra d itio n a l Rep ea t S a les
-0.14
Chihiro SHIMIZU 2009 [email protected]
page. 71
Dynamics in Real Estate Market
Reitaku-University
複数回サンプルの性質1
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 72
Dynamics in Real Estate Market
Reitaku-University
複数回サンプルの性質2
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 73
Dynamics in Real Estate Market
Reitaku-University
複数回サンプルの性質3
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 74
Dynamics in Real Estate Market
Reitaku-University
地価回復が遅れた原因-最有効使用1:機会損失が発生しているビル:2004年
オフィスの分布
機会損失ビルの分布
Source) Shimizu and Karato(2010), Microstructure of Office Investment Market in Tokyo Metropolitan Area,(forthcoming)
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 75
Dynamics in Real Estate Market
Reitaku-University
地価回復が遅れた原因-最有効使用2:機会損失が発生しているビルの特性
表 6. パネル・データの概要
年次
変数
単位
観測値の数
平均
1996
RR
円
40516
8399
RC

円
100 万円
40516
40516


-

2001
標準偏差
最小
最大
2836
2837
26542
4720
−10.91
765
55.11
3018
−2712.34
6451
−0.01
40516
2607
0.06
−2.25
0.25
7.07
0
−153.73
1
−0.01
37909
−11.51
56.90
−2712.34
−0.01
RR
RC
円
円
40516
40516
6402
4808
2162
779
2163
3073
20232
6570

100 万円
-
40516
40516
−7.19
0.09
37.66
0.28
−1878.82
0
0.02
1
3576
36940
−1.44
−7.75
4.21
39.38
−101.27
−1878.82
0.00
0.02



注. RR は再開発された用途での賃貸料,RC は再開発されなかった場合の賃貸料を示している.
Source) Shimizu and Karato(2010), Microstructure of Office Investment Market in Tokyo Metropolitan Area,(forthcoming)
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 76
Dynamics in Real Estate Market
Reitaku-University
地価回復が遅れた原因-最有効使用3:再開発の確率
表 7. 再開発確率のプロビット推定
全サンプル
地域 1
地域 2
地域 3
0.3181
(0.0093)
0.0576
(0.0058)
0.4447
(0.0250)
0.3407
(0.0219)
−13.5617
(0.4317)
−5.7765
(0.1630)
−9.3597
(0.5139)
−9.7961
(0.6578)

10.5011
2.9883
7.6478
8.0016


(0.3327)
0.9910
(0.0903)
0.8993
(0.4046)
0.9832
(0.4998)
0.9846

(0.0006)
(0.0055)
(0.0017)
(0.0019)
81032
40516
1160.1
[.000]
−15071.5
30110
15055
98.8
[.000]
−2567.9
19898
9949
315.3
[.000]
−3792.0
30468
15234
242.8
[.000]
−8043.3

Constant
Number of obs.
Individual Number of groups
Wald (chi squared)
Log likelihood
Note. ( )内は標準誤差を示している.被説明変数はその区画が再開発された場合 1,現状のままであれば 0 となる 2 値変数である.
はランダム効果を含む誤差構造の相関係数.Wald はすべてのパラメータが 0 であるという帰無仮説に対する検定統計量(自由度 1 の
カイ 2 乗分布にしたがう).[ ] は確率値を示す.
Source) Shimizu and Karato(2010), Microstructure of Office Investment Market in Tokyo Metropolitan Area,(forthcoming)
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 77
Dynamics in Real Estate Market
Reitaku-University
Chihiro Shimizu: http://www.cs.reitaku-u.ac.jp/sm/shimizu/
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2009/11/04
論文:
Shimizu,C, K.G.Nishimura and T.Watanabe(2009), “House Prices and Rents in Tokyo - A Comparison of Repeat-sales and Hedonic
measures-,” 一橋大学物価研究センターWorking Paper,No.41. Journal of Statistics and Economics (forthcoming)./Paper
Shimizu,C(2009), “Investment Characteristics of Housing Market -Focusing on the stickiness of housing rent-,”麗澤大学経済社会総合研究
センターWorking Paper,No.34.(Real Estate Investment, Nova Science Publishers, Inc.より出版予定)./Paper
清水千弘・渡辺努(2009),「日米における住宅価格の変動要因」(伊藤隆敏編『アメリカ特集』所収,フィナンシャル・レビュー95号/財務省財
務総合政策研究所./Paper
谷下雅義・長谷川貴陽史・清水千弘(2009),「景観規制が住宅価格に及ぼす影響-東京都世田谷区を対象としたヘドニック法による検証-」
計画行政,Vol.32,No.2, pp.71-79.
清水千弘・渡辺努・西村清彦(2009)「住宅市場のマクロ変動と住宅賃料の粘着性」季刊住宅土地経済,No.72, pp.10-17.
清水千弘(2009)「都市基盤整備財源としての受益者負担金制度の課題」計画行政第32巻第1号,pp.74-82.
清水千弘(2009)「住宅賃料の粘着性の計測-住宅市場の変動とマクロ経済政策への応用-」麗澤経済研究,第17巻第1号, pp.29-50.
Shimizu,C(2009), “Estimation of Hedonic Single-Family House Price Function Considering Neighborhood Effect Variables,” 東京大学空間
情報科学研究センターDiscussion Paper, No.93./Paper
原野 啓・中川雅之・清水千弘・唐渡広志(2009)「情報の非対称性下における住宅価格とリフォー ム」東京大学空間情報科学研究センタ
ーDiscussion Paper,No.94./Paper
Shimizu,C, K.G.Nishimura and T.Watanabe(2008), “Residential Rents and Price Rigidity: Micro Structure and Macro Consequences,” 一橋大
学物価研究センターWorking Paper,No.29, revised 2009, RIETI Discussion Paper Series 09-E -044./Paper
清水千弘(2008),「企業不動産戦略の経済学的意義-外部性への配慮と企業の責任-」季刊不動産研究,第50巻,第2号,pp14-23.
清水千弘(2008),「ヘドニック住宅価格関数推定上の課題-過少定式化バイアスへの対応-」資産評価政策学,第10巻第2号(通巻17号
),pp.56-61.
清水千弘(2008),「近隣外部性を考慮したヘドニック住宅関数の推定」麗澤経済研究,第16巻第1号, pp.29-44.
Shimizu,C and K.G.Nishimura(2007), “Pricing structure in Tokyo metropolitan land markets and its structural changes: pre-bubble, bubble,
and post-bubble periods,” Journal of Real Estate Finance and Economics, Vol.35,No.4,pp.495-496.
清水千弘・唐渡広志(2007),「土地利用の非効率性の費用」住宅土地経済, Vol.64(2007年春季号),pp.22-29.
清水千弘・唐渡広志(2007),「住宅価格の非線形性」麗澤経済研究,第15巻第1号,pp.53-77.
Shimizu,C,K.G.Nishimura and K.Karato(2007), “Nonlinearity of Housing Price Structure -Secondhand Condominium Market in Tokyo
Metropolitan Area-,”東京大学空間情報科学研究センターDiscussion Paper,No.86, submitted to “Urban Studies"./Paper
Chihiro SHIMIZU 2009 [email protected]
page. 78
Dynamics in Real Estate Market
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2009/11/04
Reitaku-University
Shimizu, C., H.Takatsuji, H.Ono and K.G.Nishimura, (2007), “Change in house price structure with time and housing price index”, RIPESS
(Reitaku Institute of Political Economics and Social Studies) Working Paper, No.25./Paper
原野啓・清水千弘・唐渡広志・中川雅之(2007a)「リピートセールス法による品質調整済住宅価格指数の推計」住宅土地経済No.65(2007年
夏季号),pp.12-19.
原野啓・清水千弘・唐渡広志・中川雅之(2007b)「わが国におけるリピートセールス法による住宅価格指数の推計課題」麗澤経済研究,第
15巻第2号,pp.113-133.
Shimizu,C and K.G.Nishimura (2006), “Biases in appraisal land price information: the case of Japan,” Journal of Property Investment &
Finance, Vol.24, No.2,pp. 150- 175.
Shimizu, and H.Ono, (2006), “Incorporting Land Characteristics into Land Valuation for Reconstruction Areas”, RIPESS (Reitaku Institute of
Political Economics and Social Studies) Working Paper, No.20./Paper
Shimizu,C, K.G.Nishimura and Y.Asami(2004), “Search and Vacancy Costs in the Tokyo housing market: Attempt to measure social costs of
imperfect information,” Regional and Urban Development Studies,Vol.16,No.3,pp.210-230./Paper
学会報告:
清水千弘・川村康人,「既存住宅市場と住宅価格」,都市住宅学会(名城大学),2009.11.
清水千弘・川村康人,「不動産特性とキャップレート」,日本不動産学会,(豊橋技術科学大学), 2009.10.
清水千弘・川村康人,「介護保険財源の地域負担構造」,日本計画行政学会(香川大学),2009.9.
Shimizu,C, K.G.Nishimura,T.Watanabe and K.Karato,House, Price Index in Tokyo Special District,ISA International Housing Conference
2009,(The University of Glasgow's Department of Urban Studies ),2009.9.
Shimizu,C, K.G.Nishimura,T.Watanabe and K.Karato,House, Price Index in Tokyo Special District,SWET: Summer Workshop on Economic
Theory2009,2009.8.
Shimizu,C, K.G.Nishimura and T.Watanabe,House, House Prices and Rents in Tokyo - A Comparison of Repeat-sales and Hedonic measures,United Nations, 2009 Ottawa Group Meeting(Neuchatel, Switzerland, 27-29 May 2009),2009.5.
Shimizu,C, and T.Watanabe,House,Housing Market Bubbles in Japan and the US,International Economy on U.S. Economy(Ministry of
Finance),2009.3.
Shimizu,C, K.G.Nishimura and T.Watanabe,Residential Rents and Price Rigidity-Micro Structure and Macro Consequences-,NBER-TCERCEPR Conference on Sticky Prices and Inflation Dynamics(Asian Development Bank Institute.),2008.12.
原野啓・中川雅之・清水千弘・唐渡広志「レモンモデルのテスト:リフォームと中古住宅価格」応用地域学会(釧路公立大学),2008.11
Shimizu,C, H.Takatsuji, H.Ono and K.G.Nishimura,Change in house price structure with time and housing price index,第9回 マクロコンファレ
ンス(慶応義塾大学),2007.12.
Chihiro SHIMIZU 2009 [email protected]
page. 79
Dynamics in Real Estate Market
•
•
•
•
•
•
•
Reitaku-University
谷下雅義・長谷川貴陽史・清水千弘,土地利用規制が住宅価格に及ぼす影響の分析,第36回土木計画学研究発表会(八戸工業大学),2007.11.
清水千弘,近隣外部性が宅地価格に与える影響-宅地価格構造の非線形性-,資産評価政策学会秋季全国大会(都市センターホテル),2007.11.
清水千弘「東京都区部事務所市場における土地利用の非効率性-収益格差が土地利用転換に与える影響」CSIS DAYS2007,全国共同利用研究発
表会(東京大学柏キャンパス),2007.11.
原野啓・清水千弘・唐渡広志・中川雅之「リピートセールス法による品質調整済住宅価格指数の推計」,日本経済学会2007年度秋季大会(日本大学
経済学部),2007.9
原野啓・清水千弘・唐渡広志・中川雅之(2007)「リピートセールス法による品質調整済住宅価格指数の推計」,日本不動産学会2007年度秋季全国大
会(北海道大学・学術交流会館),2007.11.
清水千弘・唐渡広志,土地利用の転換コスト,日本不動産金融工学学会2006年定期大会報告(明海大学),2006.03.
清水千弘・唐渡広志,土地利用の非効率性の費用,応用地域学会第19回研究発表会(北九州市立大学),2005.12.
2009/11/04
Chihiro SHIMIZU 2009 [email protected]
page. 80