from e

Elementary Particle Physics III
(素粒子物理学III)
Satoru Yamashita (山下) and Junichi Tanaka (田中)
•
E-mail
– [email protected] for Yamashita
– [email protected] for Tanaka
•
Website for materials (to be uploaded after each lecture)
– http://www.icepp.s.u-tokyo.ac.jp/~satoru/lecture/pp3/
– http://www.icepp.s.u-tokyo.ac.jp/~jtanaka/lecture/pp3/
1
Schedule of the Course (if no cancellation)
Monday 14:55-16:40
•
•
4/6 Introduction, QCD, Weak and EW unification (1) JT
4/13, 20 QCD, Weak and EW unification (2,3) SY and JT
– Short report (I)
•
•
Today’s lecture: QCD and
QCD in experiments
4/27 CKM Matrix and CP Violation (4) JT
5/11, 18 Higgs Mechanism, Higgs Search and Measurements (5,6) SY
– Short report (II)
•
•
•
6/1 Higgs Measurements and Supersymmetry (7) JT
6/8 Supersymmetry (8) JT
6/15 Neutrino Physics (9) SY
– Short report (III)
•
6/22, 6/29 New Physics Search at the Energy Frontier Experiments (10,11) JT
– Short report (IV)
•
•
7/6 Grand Unified Theories (12) SY
7/13 Search for LFV and Summary of this Course (13) SY
– Final Report
2
Today’s lecture
•
Quantum Chromodynamics (量子色力学)
– Flavor SU(3) and Color SU(3)
– Color自由度 (Color freedom)
• Confinement
– Asymptotic freedom
•
“QCD” in collider experiments
–
–
–
–
•
How to describe proton-proton collision
Deep inelastic scattering -> Parton model
PDF
Jets
Short Report I
-> http://www.icepp.s.u-tokyo.ac.jp/~jtanaka/lecture/pp3/
Deadline 27 April (4月27日)
3
http://www.icepp.s.u-tokyo.ac.jp/~jtanaka/lecture/pp3/
4
http://www.icepp.s.u-tokyo.ac.jp/~jtanaka/lecture/pp3/
5
Quark model
(復習も兼ねて)
6
Isospin
•
Nucleon(核子): proton (p) and neutron (n)
– Proton : 938.3MeV
なぜpとnの集合体(原子核)が存在できるか?
– Neutron : 939.6MeV
p <-> pは電磁気力で反発するはず
– Spin ½
Phenomenology of nucleon (nuclear force、核力) looks like the same between “p” and “n”.
It looks NOT to depend on “p” or “n” label.
-> SU(2) symmetry = isospin by Heisenberg, This is analogy of “spin”.
•
Nucleon SU(2)
p

p
0
– Triplet and singlet
– Triplet is a set of p mesons : p+, p0, p• p+, p- mass : 139.57MeV
• p0 mass : 134.98MeV
-> Forces between nucleon are carried by these particles.
– Singlet : h (547.9MeV)
p


 p
 
 
n
 
7
新しいタイプの粒子の発見
-> 新しい「保存」則
“Strangeness”
•
So-called “V events” was
observed in a cloud chamber
(霧箱) by Rochester and Butler
in 1947.
V is “Kaon” in the present particle
physics.
K0(ds) : 497.7MeV
This particle has a long lifetime.
-> It indicates that there is a kind
of “conservation”/”symmetry”.
-> “Strangeness” is introduced.
This is conserved in the strong
interaction but not in the weak
interaction.
Where is a “V” particle?
Typical lifetime
~10-23 (s) for strong
~10-16 (s) for EM
~10-8 (s) for Weak
8
Flavor SU(3)
•
A “Lambda” particle was also observed in cosmic rays (1947).
– Lambda (L0) : 1116 MeV
•
Hundreds of hadrons are “produced” by accelerators in 1960’s.
•
Toward establishing “quark model”
– Sakata model (坂田モデル) … 1955
What quarks are (p,n,L) made of/from?
• (p, n, L) is used to explain mesons.
– Gell-Mann - Nishijima formula (ゲルマン・西島の公式) … 1953
BS
Y
Q  I3 
 I 3  (or
 I3  Y )
2
2
– Quark model by Gell-Mann … 1964
• (u, d, s) is used to explain hadrons.
-> This is
I3 … isospin
B … Baryon number
S … strangeness
Y … hyper-charge
(“/2” depends on
definitions…)
“Flavor SU(3)”.
9
Mesons
•
Mesons (u,d,s) x (u,d,s) -> 3 x 3* = 8 + 1
octet + singlet
Spin 0
uu  dd
p 
2
uu  dd  2 s s
h8 
6
uu  dd  s s
h1 
3
0
We have spin 1 case and also if we’ll consider charm…, we can have 4x4* etc.
10
Color SU(3)ではこいつがポイント
3 x 3 x 3 = 1A + 8MS + 8MA + 10S
Baryons
S … “S”ymmetry,
A … “A”symmetry
M … “M”ixed
Spin 1/2
So far we observe JP=½+ mesons (spin=1/2 and parity=+).
11
Baryons
3 x 3 x 3 = 1A + 8MS + 8MA + 10S
Spin 3/2
Mesons/Baryonsの説明 -> Quark modelの成功 -> クォークは実在するのか?
“uuu, ddd, sss” is impossible in term of Fermi statistics. -> hint of “color” freedom?
カラーという新しい自由度? 12
1974 November revolution
A “charm meson” was discovered in 1974.
SLAC, SPEAR
Mark I
detector
e+e- → hadrons
e+e- → m+mBurton Richter (Right)
e+e- → e+e-
13
BNL, AGS
p + Be -> e+ + e- + X
Samuel C.C. Ting
GIM mechanism (1970)
-> will explain later
in this lecture
丁肇中
B.Richter and S.Ting received
the Nobel Prize in 1976.
14
Bottom quark
Fermi lab
p + Be, Cu, Pt
-> m+ + m- + anything
Narrow resonances around 9.5-10.5GeV
were observed in 1977.
Upsilon
bb states
Υ(1S)
Υ(2S)
Υ(3S)
Υ(4S)
Mass
(MeV)
9460
10023
10355
10579
Width
(MeV)
0.054
0.032 0.020
OZI rule
20
CELO@CESR
e+e- colliders
DORIS@Hamburg
CESR@Cornell
(~1980)
15
Color freedom
•
Evidence of this new freedom
– Theoretical viewpoint
• Success of the quark model
…
– Experimental results
• R-ratios
(->先週習った)
• Branching ratios of W boson
…
16
BR(W->ff’)
•
W bosons decay into ene, mnm, tnt, ud and cs.
– The coupling between fermions and W boson is the same among them.
e, m, t, u, c
W±
ne, nm, nt, d, s
1 ÷ 5 = 0.2 -> 20% for each?  WRONG
1 ÷ (3+3x2) = 0.11 -> 11% for each -> GOOD!
17
QCD: Color SU(3)
•
Mesons and Baryons including J/Ψ and Υ are made of quarks but
we never have results of quark itself, for example, mass distributions of quarks.
-> Only color-”neutral” particles are observed/observable.
•
New 3 charges for “color freedom” are introduced and their interaction is
invariant under SU(3).
R, G, B
•
 Analogy of the “three primary colors” (色の3原色)
There is singlet from 3x3* and 3x3x3. (See Flavor SU(3).)
– Our observable must be singlet, that is, colorless/color-neutral (無色).
• RR, GG, BB
• RGB, RGB
•
SU(3) has 8 different generators (生成子) like “pions in isospin SU(2)”.
-> We have 8 different gauge bosons, that is, gluons.
Gluons are exchanged between colored particles. -> “Strong” force
-> QCD = Quantum Chromodynamics (量子色力学), SU(3) gauge theory
18
QCD Lagrangian
The last 2 terms
-> See ex “QCD and Collider Physics”
(Cambridge University Press)
LQCD  Lclassical  Lgauge  fixing  Lghost


1 a mn
  q j i Dm  m j q j  Gmn Ga
4
j
Lclassical
m
a
Gmn
  m Ana  n Ama  gf bca Amb Anc
Dm   m  igt a Ama
1 a
t  
2
a
This Lclassical is invariant under the following gauge transformation.
qe
i aTa
q
1
Am  Am   m a  f bca b Amc
g
g2
g … QCD coupling  S 
, Ta … SU(3) generators
4p
a
a
19
Gluon “Discovery”
in 1979
gluon
/Z
3-jets events (JADE, PETRA@DESY)
ee -> qqg
20
Gluons
RB, RG, BG, BR, GR, GB, (RR-BB)/√2, (RR+BB-2GG)/√6
gluon
quark
B
G
B
time
G
quark
21
Gluons can do “self interaction/coupling”
because they have color charges.
This is different from photons.
BR
GB
GR
time
22
Quark Confinement (クォークの閉じ込め)
•
Only color-neutral particles are observed/observable.
– Baryons (RBG, …)
– Mesons (RR, …)
23
QED
(Quantum electrodynamics)
VEM r   
ex)

  1 / 137
r
QCD
(Quantum Chromodynamics)
4 S
VQCD r   
 kr
3 r
ex)
 S ~ 0.2, k  1GeVfm -1
24
Running constants
and
Asymptotic freedom
25
“Running” coupling constants
Force strength changes as energy because of quantum effect.
1. “Radiative correction” (輻射補正) must exist.
2. “Divergence” must be treated properly.
-> We can use “renormalization prescription” (繰り込み).
Coupling constants are not “constant” but depend on energy scale.
-> We can use “renormalization group equation (RGE)” (繰り込み群方程式).
Example: measurement of electric charge “e” (QED) (=coupling )
観測量
Tree
e0
e0 e0
e0
e(Q2)
繰り込み
Divergence
due to loops
e0
e(m2)
e0
e0
e03
e05
e(m2)3
e(m2)5
26
QED coupling
2



m
 Q 2  
 m 2   Q 2 
1
log 2 
3p
m 
 
1
 m  
137
2
e
~137
~0.01
-> “Perturbation” works well in QED.
Also, we can get “high precision”
with a few higher order corrections.
27
QCD coupling
28
QCD coupling
1
b0 
4p
3
2

n

5

16


f
3

<=6
(only b0)
We can go to “higher orders in perturbation series…”, b1, b2, …
in principal but in the reality it is too difficult.
29
Asymptotic freedom
S gets smaller as energy increases.
-> We call it “asymptotic freedom”
(漸近的自由性)
S ~ 0.1 ->
We can use the perturbative theory
(pQCD). But if this S value gets larger,
we cannot use the pQCD.
1
2

b
ln
Q
0
 S (Q 2 )
1
2


b
ln
m
0
 S (m 2 )
 b0 ln L QCD
2
LQCD~200MeV
1
 S (Q ) 
2
Q
 b0 ln
2
L QCD
2
30
Quark mass
Pole mass
MS-scheme mass
31
“QCD” use in Experiments
32
Properties of “QCD”
•
Color charge by gauge bosons: 8 Gluons (massless)
– Conserve quark flavor (u, d, s, c, b, t)
– Conserve electric charge
– Conserve P, C and T
• Confinement
• Asymptotic freedom
etc
-> Due to “Confinement”, we observed hadrons and jets in data NOT quarks/gluons.
-> Due to “Asymptotic freedom”, perturbative QCD works well in high energy regions.
How do we simulate/understand experimental outputs/results?
Parton model
Factorization
Hadronization
Parton shower etc
Based on QCD
with experiences
33
“Parton” by Deep Inelastic Scattering
•
Destruction of nucleus by high energy
electron
– Quarks and/or gluons in nucleus look like
“free point-like particles”.
parton = quark or gluon
-> Parton model
34
“Parton” using photons (from e)
Deep inelastic scattering
DESY(ドイツ)
HERA ep collider 1992-2007
(circumference ~ 6.3km)
Ee = 27.5GeV
Ep = 820, 920GeV
-> Ecm = 300, 318GeV
35
SLAC-MIT experiment : ep->eX
“Bjorken scale”
1969
36
37
Proton structure function
(HERA ep collider at DESY)
“Bjorken scaling”
38
Proton + proton -> two jets (dijets)
ET~1.2TeV
~1.3TeV
39
proton
Decay
Fragmentation
Hadronization
Parton shower
Perturbative QCD
(Matrix element)
proton
40
Pileup
Z->mm candidate with 25 proton-proton collisions (ATLAS)
Beamaxis
“a few mm” between vertices
(several cm in z)
80mb x 5 x 1033 cm-2 s-1 / 20MHz = ~ 20回/バンチ衝突
Inelastic scattering
cross section
(非弾性衝突の生成断面積)
Instantaneous
Luminosity
(瞬間ルミノシティ)
LHCの1秒間でのバンチ衝突回数
41
Proton
の中身の解釈・理解
Parton Distribution Function (PDF)
42
陽子・陽子衝突
We cannot use all the particle
energy in hardon collisions.
-> A “parton” inside a proton
is collided.
p1  ( x1 E1 ,0,0, x1 E1 ),
p2  ( x2 E2 ,0,0, x2 E2 )
sˆ  ( x1 E1  x2 E2 ) 2  ( x1 E1  x2 E2 ) 2  4 x1 x2 E1 E2
p1
p2
sˆ  x1 x2 s , s  2 E1 E2
x1、x2 … unknown parameters (we never know their values.)
43
Parton Density Function (PDF)
•
前ページのx1、x2がこれ。
•
陽子は単純にuudではなく、実際には
gluonや他のクォークも存在。
– uやdはvalence quark+see quark
– その他のクォークはsee quark (g->qq)
– Gluonも存在
•
x=0.3付近でuとdが大きくなる。
-> uud(valence)を反映している。
•
Q2を大きくするとlow xが増える。
44
実効衝突エネルギー
•
√s = √(x1x2) √s なので対象とする物理現象によって必要となるx1,x2が異なる。
– √s=8TeVで125GeVのヒッグスなら、
• √(x1x2) = 125/8000 = 0.016 ~ O(10-2)
x1 ~ x2 ~ O(10-2)
-> Gluon-gluonからの生成がメイン
– √s=13TeVで2TeVのSUSYなら(ペアなので4TeV)、
• √(x1x2) = 4/13 = 0.31 ~ O(10-1)
x1 ~ x2 ~ O(10-1)
-> Gluonのみならず、valence quarkからも生成。
45
PDF CT10 (NLO)
http://hepdata.cedar.ac.uk/pdf/pdf3.html
Q2=(10GeV)2
Q2=(100GeV)2
As Q2 increases,
valence quarks get smaller.
Also, contributions in low-x
get larger.
Q2=(1000GeV)2
46
LHC用のPDF
•
この図の意味
– √s=14TeVにおいて、ある(M,y)の事
象を起こしたい場合、x1とx2は自動的
に決まる。
DGLAP
extrapolation
•
PDF for LHC (or future hadron
colliders) might not be measured.
•
既存の実験で求めた陽子の分布を
DGLAP方程式を使って、LHCの領域ま
で発展させる。
– Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi equation
– Altarelli-Parisi equation
47
事象の生成@計算機: モンテカルロ・シミュレーション
qq  g  tt  W  bW b  qqbqqb
どうする?
48
事象の生成@計算機: モンテカルロ・シミュレーション
Factorization Theorem
m(factorization scale)でハードプロセスから切り離して実験結果を
適切に説明できる。
PDF+PS+…
ハードプロセス
+…
PDF+PS+…
mより小さいscaleはすべてPDFに押し付けてしまう。
PDFのscale mまで発展していく過程の中でクォークやグルーオンを出す。
この手法をパートンシャワー(Parton shower, PS)と呼び、
それらのクォークやグルーオンはInitial state radiation(ISR)によって生成されたという。
m ~Qにとると断面積などはデータと合っているように見えるが、
あまり根拠がないので 0.5倍, 2倍して不定性を見積もることが多い。
49
qq  g  tt  W  bW b  qqbqqb
50
qq  g  tt  W  bW b  qqbqqb
ハードプロセスは
まじめに計算する。
Matrix Element(ME)
51
qq  g  tt  W  bW b  qqbqqb
ハードプロセスから切り離して
PDFとPatron showerにおまかせする。
52
qq  g  tt  W  bW b  qqbqqb
検出器
シミュレーションへ
ハードプロセスから切り離してPatron showerにおまかせして
QCDのスケール(~200MeV)になったらハドロン化する。
(Final state radiation + Fragmentation/Hadronization)
53
qq  g  tt  W  bW b  qqbqqb
すべてのオーダーの計算をしないため、
結合定数sのスケールが大事になる。
(全部やれば原理的にはスケールに依存しない。)
-> 途中で止めた計算結果でも十分正しいスケールがあれば便利。
考えているプロセスの典型的なエネルギースケールがそれに相当。
54
LOの生成断面積計算結果はscaleの選び方に強く依存する。
 本当は依存してほしくないが、計算を途中で止めている以上仕方ない。
計算のオーダーを上げるとスケールの依存性はなくなるので、経験的には
NLOやNNLOの計算をして、交差するところがscaleとして「いい点」(職人技?)
いろいろなプロセスの計算結果を総合すると、経験的には
s-channel -> √s、 t-channel -> pT の付近がよい。
TevatronでのTopの生成断面積
生成断面積の依存性はsの依存性。
高次の計算をすると不定性はなくなっていく。
(全部計算すれば依存しなくなる。)
LOとNLOの断面積の比をk-factor
(NNLOとの比でもOK)
k-factor = σ(NLO)/σ(LO)
Q
55
Jet
56
Proton + proton -> two jets (dijets)
ET~1.2TeV
~1.3TeV
57
Jet Reconstruction
“Jets” are reconstructed from
energy deposits in calorimeters
and/or tracks.
In this lecture, we focus on
“jet” algorithm used in
hadron colliders.
58
“Good” Jet Algorithm
E
1-z
Eg ~ (1-z)E
z
Eq ~ zE
q
Splitting function
q -> 0 … “collinear”
z -> 1 … “soft”
Gluon emission probability -> infinity
If a jet algorithm used is proper,
our measurements should be insensitive to such collinear/soft gluons.
Collinear- and infrared-safe:
- “Collinear” splitting should not change jets.
- “Soft” emission should not change jets.
Typical “cone” type algorithms are not “collinear- and infrared-safe”.
kT, anti-kT type algorithms are “collinear- and infrared-safe”.
59
“kT” algorithms
JHEP04(2008)063
dij is the smallest
-> merge
diB is the smallest
-> Particle i is set to “a jet”.
kti, yi and fi are transverse momentum, rapidity and azimuth of particle i.
p=1 … kT
p=0 … Cambridge/Aachen
p=-1 … anti-kT
1 E  pz 1 E  pz E  pz 1  E  pz
y  ln
 ln
 ln
2 E  p z 2 E  p z E  p z 2  mT
Massless -> pseudo rapidity h
2

E  pz
  ln
mT

h   ln tan
q
2
60
JHEP04(2008)063
Anti-kT is geometrically also good.
61
Gluon spin
62
3-jet events
TASSO experiment at DESY using PETRA (e+e- experiment)
PLB 97 (3-4), 453
Gluon spin = 1
63
Others
64
QCD in low energy regions
“Non-perturbative” -> Use Lattice QCD with super computers.
65
Short Report I
忘れずに!
66