Introduction

How Moldex3D correlates
fiber simulations and
products strength
2015 CSMA Taipei
Joe Wang
Technical Research
Content
> Introduction
> Problem and challenges
> Numerical investigation
– Theory and assumption
– Investigation Model and Information
> Result and discussion
> Summary
2
Introduction
Lightweight Driven by CAFE Standard ( The Corporate
Average Fuel Economy )
The Obama
administration
ushered in a new
era of fuel
efficiency
standards by
announcing
aggressive new
regulations that
will nearly double
fuel economy by
2025 to 54.5 miles
per gallon
1 Liter  23.17
Km
4
Lightweight Driven by CAFE Standard
5
How to Achieve?
> It may sound difficult, the technology to meet 54.5 mpg is
well known and affordable.
> Four key technologies needed:
> Lightweight, high strength materials
> Enhancing turbocharged gasoline engine efficiency
> Improved, lower-cost hybrids technologies called “parallel 2-clutch”
systems
> Plug-in hybrids and battery electrics with lower cost, advanced
lithium batteries
6
Injection Molding Lightweight
Technologies
Foaming
7
Fiber
Co-injection
Gas-assisted
Inhomogeneous microstructure
Crystallinity
8
Fiber orientation
Polymer stretching
Why isn’t broken at center?
> Process Induced Anisotropy
Source: Oak Ridge National Laboratory
9
Molecular origins
400K, 666 chains of [CH2]100
10
Jeffery’s orbit
https://www.youtube.com/watch?v=5mmFs5MkhRI
11
Features of Fiber Orientation Distribution
skin layer
skin layer
core width
shell height
shell height
extreme point
12
Fiber length effect
13
Fiber content effect
30 wt%
50 wt%
14
Fiber matrix Interaction model
polymer matrix
coupling agent
cluster
aligned fiber
flow direction
15
Fiber orientation from thermodynamic aspect
16
iARD-RPR Model for LFRT
• US Patent and Journal of Rheology, 2013, Tseng and coworkers
(Moldex3D) developed the three-parameter iARD-RPR fiber
orientation model
> The iARD model means the improvement of the ARD model
> The RPR model is indicative of Retarding Principal Rate to slow
down the fast transient orientation rate.
 A
 HD  A
 iARD (C , C )  A
 RPR ( )
A
I
M
 HD  (W  A  A  W)   (D  A  A  D  2A : D)
A
4
Jeffery hydrodynamics
slow response
rotary diffusion
Best-Paper Award
• US Society of Plastics Engineers (SEP)
– Automotive Composites Conference & Exhibition (ACCE) 2013
– Three dimensional predictions of fiber orientation for injection molding of long
fiber reinforced thermoplastics
http://speautomotive.wordpress.com/2013/08/24/spe-announces-2013-acce-best-paper-winners/
Benefit of iARD-RPR Model
> A simple formula with linear superposition
 A
 HD  A
 iARD (C , C )  A
 RPR ( )
A
I
M
> Only three fitting parameters with physical meaning
> Using inlet condition is particularly NOT necessary.
> Correspondingly, ARD-RSC Model with a lot of parameters
is complicated
 ARD-RSC  W  A  A  W   {D  A  A  D  2[ A  (1   )(L  M : A )] : D}
A
4
4
4
4
 γ{2[D r  (1   )M 4 : D r ]  2tr(D r ) A  5(D r  A  A  D r )
 10[ A 4  (1   )(L 4  M 4 : A 4 )] : D r }.
b5 2
b4
D r  b1I  b2 A  b3 A  D  2 D
γ
γ
2
20
Patented technology
21
Plate-like talc filler (AR<1)
Source: Granlund, et. al, JOURNAL OF POLYMER SCIENCE,
PART B: POLYMER PHYSICS 2014, 52, 1157
22
Youngs modulus in the part
23
Digimat is the gateway
UI Embedded
Seamless
Neutral
file
Process induced
defects/anisotropy
24
Moldex3D-Digimat-LS DYNA simulation
製品CAD
樹脂流動解析
配向アウトプット
構造解析用Mesh作成
連成解析実行
配向マッピング
性能評価
材料モデル作成
25
連成解析パラメータ設定
25
Orientation mapping
TO
P
モジュールを利用したプロセス
□マッピングの目的
Meshの分割に,「樹脂流動=細かい,構造解析=粗い」の違いがあるため
※細かいMesh分割では構造解析の計算コストが過大となります.
流動解析におけるウェルドライン位置(参考)
流動解析用Mesh
(細かいMesh分割)
構造解析用Mesh
(粗いMesh分割)
Digimat-MAPによるマッピング結果
26
26
Impact results
き裂パターン(モデル1)
計算時間
モデル1:1h 6m 4s
モデル2:4h20m4s
TO
P
拘束位置
ウェルドライン
解析全体像
Headform反力履歴
き裂パターン(モデル2)
ー:モデル1(等方性)
ー:モデル2(連成解析)
ウェルド部にき裂
連成計算では反力が1/2程度に低下
27
27
Fiber orientation effect
> 本事例は,実機とのValidationを行っていませんので,繊維
配向を考慮することによる定量的な評価はできませんが,解
析結果から以下のことが示唆されます.
– ダンベル試験結果より作成した等方性材料での強度評価は,危険側
(過大な)評価となる可能性が高いです.
– 繊維配向を考慮することで,ウェルドラインなどの流動パターンの影
響による強度低下を考慮出来ます.
X方向の配向
Y方向の配向
ウェルドライン
等方性材料では段差形状のためき裂が進展しにくい
き裂の発生位置はウェルドを境に,急激に
繊維の配向が変化している.
28
28
Fiber structural features
Orientation
http://www.en.emi.fraunhofer.de
Length
Concentration
29
Length degradation during plastication
Feed
section
30
Transition Meeting
section section
nozzle
part
Detailed screw size simulation
Original length = 10 mm
加工條件
31
Unit:mm
塑化完纖維長度
Plastication 25RPM
1.93
Plastication 60RPM
1.10
Fiber mixed during compression zone
2.28
Fiber mixed during mertering zone,enlarged
nozzle
5.74
Predicting manufacturability at design stage
1mm rib
0.5 mm rib
This high concentration
region suggests longer
fibers accumulate
before entering the
thinner rib region. The
fiber content in the rib
region is smaller.
32
Complete fiber reinforced process
portfolio
Hybrid
Short fiber
Molding Compound
Long fiber
Resin Transfer Molding
Fiber Mat compression Multi-component molding
33