天文観測の観点からの 「夜間の発光」についてのレビュー (Review on Diffuse night sky brightness ) 2013/7/16 MPEWG 秋谷 祐亮 「光」を利用する観測 • イメージング観測;「見たま ま」の様子を記録する→対象領 域の形状や大きさを調べる • 分光観測;波長域を選ぶこと で、対象領域の温度や組成を調 べる • きっちりと分けられるものでも なく、2つが混ざったような観測 もある。 • どちらにしても、観測したい 「光」以外にも(場合によって は邪魔な)いろいろな光が存在 している。 ∂ni ∂ni ∂T Di K + − + ni ∂z ∂T ∂z Hi H A K(z) = [cm2 s−1 ] n(z) φi = −(Di + K) (5) 夜空には発光源がいろいろある (6) 神は言った。 ∇·B = 0 ∇×E = − ∇·D = ρ ∂B ∂t ∂D ∇×H = j+ ∂t そして光があった。 • 旧約聖書の創世記1章3節はともかく、Maxwellの式から電磁波 の伝搬が導かれる。 • 大気光観測を行う際に、大気光発光以外の光を考慮する必要が ある。また、ソースからの「光」は必ずしも可視域には限らな い。 • 参考レビュー論文:Ch. Leinert et al. The 1997 reference 1 of diffuse night sky brightness (Astronomy & Astrophysics Supplement Series 127, 1-99 (1998)) 夜空には発光源がいろいろある • 大気光観測を行う際に、 大気光発光以外の光を考 ASTRONOMY & ASTROPHYSICS JANUARY I 1998, PAGE 1 SUPPLEMENT SERIES 慮する必要がある。ま た、ソースからの「光」 は必ずしも可視域には限 Astron. Astrophys. Suppl. Ser. 127, 1-99 (1998) The 1997 reference of di↵use night sky brightness? Ch. Leinert1 , S. Bowyer2 , L.K. Haikala3 , M.S. Hanner4 , M.G. Hauser5 , A.-Ch. Levasseur-Regourd6 , I. Mann7 , K. Mattila3 , W.T. Reach8 , W. Schlosser9 , H.J. Staude1 , G.N. Toller10 , J.L. Weiland11 , J.L. Weinberg12 , and A.N. Witt13 1 2 3 4 らない。 5 6 7 8 9 10 • 11 参考レビュー論文:Ch. Leinert et al. The 1997 reference of diffuse night sky brightness (Astronomy & Astrophysics Supplement Series 127, 1-99 (1998)) 12 13 Max–Planck–Institut f¨ ur Astronomie, K¨ onigstuhl 17, D-69117 Heidelberg, Germany Astronomy Dept., University of California, 601 Campbell Hall, Berkeley CA 94720, U.S.A. Observatory, P.O. Box 14, FIN-00014 University of Helsinki, Finland Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena CA 91109, U.S.A. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, U.S.A. Service d’A´eronomie, BP. 3, F-91371 Verri`eres le Buisson, France Max–Planck–Institut f¨ ur Aeronomie, Max-Planck-Straße 2, D-37191 Katlenburg-Lindau, Germany Institut d’Astrophysique Spatiale, Universit´e Paris XI, 91405 Orsay Cedex, France Astronomisches Institut, Ruhr-Universit¨ at Bochum, D-44780 Bochum, Germany General Sciences Corporation, 6100 Chevy Chase Drive, Laurel, MD 20707, U.S.A. Hughes STX, NASA/Goddard Space Flight Center Code 685.9, Greenbelt, MD 20771, U.S.A. MK Industries, 2137E Flintstone Drive, Tucker, Georgia 30084, U.S.A. Ritter Astrophys. Res. Center, University of Toledo, Toledo, OH 43606, U.S.A. Received August 7; accepted September 8, 1997 Abstract. In the following we present material in tabular and graphical form, with the aim to allow the nonspecialist to obtain a realistic estimate of the di↵use night sky brightness over a wide range of wavelengths from the far UV longward of Ly↵ to the far-infrared. At the same time the data are to provide a reference for cases in which background brightness has to be discussed, including the planning for space observations and the issue of protection of observatory sites. We try to give a critical presentation of the status at the beginning of 1997. Key words: di↵use radiation — interplanetary medium — atmospheric e↵ects — astronomical dabases: miscellaneous — infrared: general — ultraviolet: general Contents 1. 2. 3. 4. 5. 6. Overview Brightness units Coordinate transformations Total sky brightness Tropospheric scattering Airglow 6.1 Airglow spectrum, UV to IR 6.2 Dependence on zenith distance 6.3 Variations Send o↵print requests to: Ch. Leinert ? Prepared by members of Commission 21 “Light of the night sky” of the IAU, including most of the recent (vice-)presidents. 6.4 Geocorona 6.5 Interplanetary emissions 6.6 Shuttle glow 7. Light pollution 8. Zodiacal light 8.1 Overview and general remarks 8.2 Heliocentric dependence 8.3 Zodiacal light at 1 AU in the visual 8.4 Wavelength dependence and colour 8.5 Zodiacal light in the infrared 8.6 Zodiacal light in the ultraviolet 8.7 Seasonal variations 8.8 Structures in the zodiacal light 8.9 The zodiacal light seen from other places 9. Coronal brightness and polarisation 10. Integrated starlight 10.1 Model predictions based on star counts 10.2 Ultraviolet 10.3 Ground-based UBVR photometry 10.4 Pioneer 10/11 spaceborne visual photometry 10.5 Near-and mid-infrared 11. Di↵use galactic light 11.1 Overview 11.2 Visual 11.3 Near-infrared 11.4 Thermal infrared 11.5 Ultraviolet 12. Extragalactic background light 13 Ritter Astrophys. Res. Center, University of Toledo, Toledo, OH 43606, U.S.A. 夜空には発光源がいろいろある Received August 7; accepted September 8, 1997 Abstract. In the following we present material in tabular and graphical form, with the aim to allow the nonspecialist to obtain a realistic estimate of the di↵use night sky brightness over a wide range of wavelengths from the far UV longward of Ly↵ to the far-infrared. At the same time the data are to provide a reference for cases in which background brightness has to be discussed, including the planning for space observations and the issue of protection of observatory sites. We try to give a critical presentation of the status at the beginning of 1997. Key words: di↵use radiation — interplanetary medium — atmospheric e↵ects — astronomical dabases: miscellaneous — infrared: general — ultraviolet: general Contents 1. 2. 3. 4. 5. 6. Overview Brightness units Coordinate transformations Total sky brightness Tropospheric scattering Airglow 6.1 Airglow spectrum, UV to IR 6.2 Dependence on zenith distance 6.3 Variations Send o↵print requests to: Ch. Leinert ? Prepared by members of Commission 21 “Light of the night sky” of the IAU, including most of the recent (vice-)presidents. 6.4 Geocorona 6.5 Interplanetary emissions 6.6 Shuttle glow 7. Light pollution 8. Zodiacal light 8.1 Overview and general remarks 8.2 Heliocentric dependence 8.3 Zodiacal light at 1 AU in the visual 8.4 Wavelength dependence and colour 8.5 Zodiacal light in the infrared 8.6 Zodiacal light in the ultraviolet 8.7 Seasonal variations 8.8 Structures in the zodiacal light 8.9 The zodiacal light seen from other places 9. Coronal brightness and polarisation 10. Integrated starlight 10.1 Model predictions based on star counts 10.2 Ultraviolet 10.3 Ground-based UBVR photometry 10.4 Pioneer 10/11 spaceborne visual photometry 10.5 Near-and mid-infrared 11. Di↵use galactic light 11.1 Overview 11.2 Visual 11.3 Near-infrared 11.4 Thermal infrared 11.5 Ultraviolet 12. Extragalactic background light さまざまな発光源 C h. Leinert et al.: T he 1997 reference of di use night sk y brightness 10-4 Airglow Lyα OH Brightness νlν ( W m-2 sr-1 ) 10-5 Zodiacal light OΙ CMB (2.726K) O2 10-6 10-7 Faint stars 10-8 Cirrus 10-9 10-10 0.1 1 10 100 Wavelength ( µm ) 1000 10000 v erv iew on the brightness of the sk y outside the low er terrestrial atm osp here and at high eclip tic and galactic latitudes. acal em ission and scat tering as w ell as the integrated light of stars are giv en for the S outh E clip tic P ole ( l = 27 , ) . T he bright m agnitude cut- o for the stellar com p onent is V = .0 m ag for 0 .3 – 1 µm . I n the infrared, stars brighter y betw een 1.25 and 4 .8 5 µm and brighter than 8 5 J y at 12 µm are ex cluded. N o cut- o w as ap p lied to the U V data, µm . T he interstellar cirrus com p onent is norm aliz ed for a colum n density of 10 20 H - atom s cm 2 corresp onding to a tinction of 0 .0 5 3 m ag. T his is close to the v alues at the darkest p atches in the sk y. S ource for the long- w av elength 1.25 µm , are CO B E D I R B E and F I R A S m easurem ents as p resented by D ´esert et al. ( 199 ) . T he I R cirrus sp ectrum ng to the m odel of D ´esert et al. ( 1990 ) fi t ted to I R A S p hotom etry. T he short- w av elength data, 1.0 µm , are from ing sources: z odiacal light: Leinert & G r¨u n ( 1990 ) ; integrated starlight: 0 .3 µm , G ondhalekar ( 1990 ) , 0 .3 µm , 198 0 ) ; cirrus: = 0 .15 µm , H aikala et al. ( 1995 ) , = 0 .3 5 0 .75 µm , M at tila & S chnur ( 1990 ) , M at tila ( 1979) . T he al L ym an ↵( 121. nm ) and the O I ( 13 0 .4 , 13 5 . nm ) line intensities w ere as m easured w ith 6 the F aint O bj ect C am era 6 ubble S p ace Telescop e at a height of 10 km ( C aulet et al. 1994 ) . T he v arious references for the airglow em ission 6 can in S ect. 6 view • 夜空の明るさ=大気光+黄道光+星明かり+散乱 銀河光+銀河外からの光 6 6 • 大気による吸収や対流圏での散乱も無視できない over all of our wavelength range. –Extragalactic background light (IEBL ) in addition to the 輝度の単位 • 慣用的定義 • • S10単位;A0星基準、太陽基準 物理的定義 • • photons / cm2 s sr nm • W / m2 sr μm (流束) Rayleigh / nm = 106 / 4π photons cm2 s sr nm 【測光学的定義(正式): 1R = 106 / 4π photons cm2 s sr】 atm et sion sen to2.5 t val Ant (K viro pe tosec a inant etwaa senc 2.5 valu Ta (K Fig. 9. A low resolution night sky spectrum at Palomar pen Observatory, taken on November 28, 1972 (Turnrose 1974), sec compared to medium band measurements on Calar Alto (CA) and Ma was Ma and Fig. 28 in Sect. 6.3). An example for the variation of sky brightness with solar activity is given in Fig. 10. 全天の明るさ(1) • • • 遠紫外域(91.2 nm - 180 nm):主 に星明かりと星間塵による散乱 • Lyα(121.6 nm)の強い放射;中 性水素による太陽放射の散乱 • Geocoronaの流束は3kR(夜 間)から34kR(昼間)まで10倍 近く変動する 近紫外域(180 nm - 300 nm):黄道 光、星明かり、星間塵による散乱 可視光域:大気光、黄道光、対流圏 での散乱 • • 波長ごとに観測される強度は異な る(右上) 太陽活動の活発さに応じて大気光 の発光強度は変動する(右下) B B So Tab So a Fig. 9. A low resolution night sky spectrum at Palomar Observatory, taken on November 28, 1972 (Turnrose 1974), compared to medium band measurements on Calar Alto (CA) Re (19 Mau 5 A Mau B B Sou 4.4 Sou a a Ta 240 Refe me (197 5 fiel As ser lig cal 全天の明るさ(2) Ch. Leinert et al.: The 1997 reference of di↵use night sky brightness • • 近赤外領域 • 波長2μm以下の領域;OH大気光 (さまざまなバンド)が支配的 • 波長2μm以上の領域;大気の熱放 射が支配的 • 南極の冬は極端な低温のため波長 2μm以上の領域で様子が変わって くる(右下) 赤外領域 • • • Fig. 11. Near-infrared spectrum of the night sky brightness, meas camera (McCaughrean 1988). Note that 104 photons m 2 s 1 200 1 1994 Ta D Fig. 11. Near-infrared spectrum of the night sky brightness, measured just inside the cryostat window of the U camera (McCaughrean 1988). Note that 104 photons m 2 s 1 200 1 µm 1 correspond to 4.23 Wm 2 sr 1 µm 1 . F 1994 波長60μm以下の領域;黄道光 (熱放射)が支配的 Table 6. Minimum observed sky brightnesses DIRBE weekly averaged sky maps 波長60μm以上の領域;星間塵の 熱放射が支配的 水素原子由来の波長21cmの電波 が宇宙空間にたくさん (µm) 1.25 2.2 3.5 4.9 12 25 60 ⌫I⌫ = I (nW m 2 sr 393±13 150±5 63±3 192±7 2660±310 2160±330 261±22 1 ) I⌫ (MJy/sr) 0.16±0.005 0.11±0.004 0.074±0.004 0.31±0.01 10.7±1.2 18±3 5.2±0.4 R 対流圏による散乱効果 • 大気光、黄道光、恒星からの光自体も対流圏によ る散乱の影響を受ける。黄道光は15%以上、恒星 からの光については10 - 30%近い影響がある。 • 主にRayleigh散乱とMie散乱による。天の川や黄 道光の観測を利用した観測がある[Staude, 1975] • 一口に「対流圏の大気(あるいは空気)」と言っ ても、反射係数が水蒸気(1.33)とエアロゾル (1.5-0.1i)で異なるなど、単純な計算ではうまく いかない。 Way and Zodiacal Light cone were varied independently over the whole range occurring in practice. Some results from this study are reported in the following. Rayleigh散乱とMie散乱の効果 l.: The 1997 reference of di↵use night sky brightness 5.1. A uniform unpolarized source of unit brightness S ght sky brightThe brightness of tropospherically scattered airglow can scattering (see etermine its unbe estimated using the results obtained for a uniform unnd polarization. polarized source of unit brightness (extending over the ight come from entire visible sky) in the single scattering approximation, d starlight (ISL) which are given in Figs. 13 and 14. They give the intensity part determined ces under study of the scattered light and its polarization as a function of of 10 100 S10 , zenith distance of the observing direction z0 , for di↵erent Zodiacal light, of the zenith extinction ⌧R of the Rayleigh and ⌧M Due tovalues the limof the Mie component. be determined, urements aimed weaker compod EBL, must be Table 7. The correction factors for multiple scattering in a yleigh-Rayleigh and Mie- atmosphere for di↵erent values of the zenith extincpolarization) in tion ⌧R . See text for details nated by a uniWay and by the (1975) for variayleigh and Mie ng two di↵erent spheric aerosols 1.5 0.1i, as for ntation of Milky d independently e. Some results ing. • ⌧R FMS fMS 0.05 1.12 ± 0.04 0.95 ± 0.05 Fig. 13. Intensity and polarization of the atmospheric scat0.06 atmosphere, 0.90 ± 0.05 tered0.10 light in a1.22 pure±Rayleigh for a source of unit 0.15 and1.33 ± 0.06 ± 0.05 brightness various values of0.85 the zenith extinction ⌧R , as a function 0.20of zenith 1.44distance ± 0.07z 0.80 ± 0.05 Fig. 14. Same as Fig. 13 for two pure Mie atmospheres 散乱光の強度とpolarizationの大きさを、観測方向からの天 頂距離の函数として表してある。 brightness red airglow can r a uniform unnding over the approximation, ve the intensity • 天頂角が小さいときにはMie散乱は無視できる。 Fig. 15. The intensity of the scattered integrated starlight as a function of zenith distance, for di↵erent azimuths and zenith 17. The intensity thebrightness scattered zodiacal light for pure extincion values of the Rayleigh resp. Ch. MieLeinert components of the et al.: The 1997Fig. reference of di↵use nightofsky atmosphere. The galactic centre is assumed at the zenith, the Mie scattering with optical thickness ⌧M = 0.1, for particles with refractive index m = 1.33. Otherwise same as for Fig. 16 galactic equator crosses the horizon at A = 90 , 270 S [S ] 10 黄道光の散乱 S [S ] S 10 21 [S ] 10 Fig. 18. A typical height profile of airglow volume emission, as measured from the satellite OGO II. The peak near 90 km is due Fig. 15. The intensity of the scattered integrated starlight as to OH emission, the extended peak at higher altitudes Fig. 16. The intensity of the scattered zodiacal light for a pure to [OI] emission at 630 nm. From Reed & Blamont (1967) a function of zenith distance, for di↵erent azimuths and zenith Rayleigh atmosphere with optical thickness ⌧ = 0.1. Position R extincion values of the Rayleigh resp. Mie components of the Fig. 17. The intensity of the scattered zodiacal light for pure of the sunatmosphere. at azimuth The A = 90 , zenith z at=the 105zenith, , galactic centre distance is assumed the Mie scattering with optical thickness ⌧M = 0.1, for particles the eclipticgalactic is perpendicular to the horizon with refractive index m = 1.33. Otherwise same as for Fig. 16 equator crosses the horizon at A = 90 , 270 • 波長500 nmでの散乱の様子 • Polarizationは太陽の方向と直角方向としている S [S ] 10 大気光の発光源/高度 発光源 He+ O+ Lyβ Lyα O O O2 (Herzberg帯) N O Na O O Hα 擬連続光 O2 OH • • 波長 30.4 nm 83.4 nm 102.6 nm 121.6 nm 130.4 nm 135.6 nm 300 - 400 nm 519.9 nm 557.7 nm 589 nm 630.0 nm 636.4 nm 656.3 nm 400 - 700 nm 864.5 nm 600 - 4500 nm 発光層高度 > 1,000 km > 1,000 km > 1,000 km > 1,000 km 250 - 300 km 250 - 300 km 90 km 90 km 92 km 250 - 300 km 250 - 300 km > 1,000 km 90 km 80 km 85 km 発光強度(天頂付近) 10 R 3kR (夜) - 34kR (昼) 40 R (熱帯域) 30 R (熱帯域) 8 R / nm 3R 250 R 30 R (夏) - 100 R (冬) 60 R 20 R 4-6R 3 R / nm 1 kR 4.5 MR (OH全体で) 黄道光は大気光の2 - 3倍程度明るい(波長530nmで計測したとき) 天の川の明るさ:1 kR、満月の明るさ:1 MR th, the a pure osition 105 , Mie scattering with optical thickness ⌧M = 0.1, for particles with refractive index m = 1.33. Otherwise same as for Fig. 16 発光層の高度分布 HECHT ET AL.: TOMEX PHOTOMETER RESULTS D02S05 • 左:衛星「OGO Ⅱ」による観測 Fig. 18. A typical height profile of airglow volume emission, [Reed et al., 1967] as measured from the satellite OGO II. The peak near 90 km is due to OH emission, the extended peak at higher altitudes to [OI] emission at 630 nm. From Reed & Blamont (1967) • • • 高度90 km付近にOHによる発光 層、さらに高層にはOからの 630-nm発光層が見られている。 Figure 6. (top) The measured O2A VER (solid line) versus altitude compared to the four TIME-GC predictions (see Figure 3). (middle) Same but for greenline. (bottom) Same but for OHM (9, 4). On e plot a vertical solid line is shown offset from a vertical dashed line taken as a zero reference line. T solid line represents the one sigma error as function of altitude in the derived VERS based on uncertainties in the measured counting rates in Figure 5. 右:ロケットによる観測[Hecht et al., 2004] data and shown in Figure 7a. The agreement is quite good above 85 km except for the dip at 93 km. [26] Figure 9 shows a comparison between the derived [O] profile from the O2A data and the four TIME-GCM model predictions. Clearly the peak is lower in altitude and 実線が観測値を示している。 density is taken from TIME-GCM. Here th shows [O] data from O2A, the dashed line sh data from OHM using the Turnbull and Lowe solid line are the [O] data from OHM using the and the heavy solid line shows the [O] data 地上からの可視域観測(300 - 560 nm) 地上からの可視域観測(540 - 800 nm) 地上からの可視域観測(740 - 1000 nm) スペースシャトルから観測すると? 0 CO 0 C.O 0 -•- 0 c',,l -_ _ - o o • 0 0 0 _•o _ - _•o _ - ø ¸ 0 - ø ¸ _ - • _•o _ - -,• - oo 0 -? r•) _•o _ - -? _ - • - _o ¸ _ - _•o - oo _ - o o c• o•' • I EE FE I I 0 0 I o I 0 Lr3 El- o I 0 0 -- IAI 0•tñS 0NV/SH013--IAV•t 0 Lr3 o It-) o BROADFOOT ANDBELLAIRE: OBSERVATIONS OFTHENIGHTAIRGLOW 0 0 IAI 0•t/S0NV/SH013-1AV•t 17,131 地上観測と宇宙観測とを比較すると • 地上観測によるスペクトル図:[Broadfoot and Kendall, 1968] • スペースシャトルによる観測のスペクトル図: [Broadfoot and Bellaire, 1999] • 輝線によっては強度が異なる:例えばO2の762 nm 輝線→地球大気による吸収が存在し、地上での観測 が難しいものもある • 地上観測の方にHgの輝線が見える→街灯(水銀 灯)の散乱を受けたものと考えられる。いまなら Na輝線が混じるか? 寄り道(1)∼VISIの場合 • • VISIは分光観測を行って いる。特定の波長のみを 切り出してイメージング 的な観測をすることも可 能。 さまざまな輝線が観測で きている。バンドで光る OHの発光もより鮮明に 観測できるようになる予 定。(近日、観測テーブ ル書き換え予定) 種子島を出発してから、 はや1年ですか… (*_*) 400 ※ いたるところにOH Backward FOV Forward FOV O2 300 Intensity [R/nm] • O2 200 O 100 Na O O+ O O O 0 500 700 800 600 Wavelength [nm] 900 OH a 600 nm 4.5 µm 85 km 4.5 MR(all bands) 紫外域発光の観測 after Chamberlain (1961), Roach (1964), Roach & Gordon (1973), Meier (1991); see also the references in the sections on geocorona and ultraviolet airglow. b transformed to zenith, where necessary. 22 Ch. Leinert et al.: The 1997 reference of di↵use night sky brightness • • ˚ to 1700 A ˚ at 17 A ˚ resolution. The data were obtained from the space Fig. 21. Left: Spectrum of the nightglow from 1250 A 宇宙機による上空での観測がほとんど c) Near infrared shuttle at a height of 330 km in January 1986 at minimum solar activity. The oxygen OI lines at 1304 ˚ A and 1356 ˚ A are the From 1 µmbands to 3 µm, in a curve layer around km heightspectrum. Right: brightest features. For the weakly visible Lyman-Birge-Hopfield the OH dashed shows a90predicted 観測条件によってはnightglowとdayglowの ˚ emission. There isona the gap same in the flight. OH The solid line Spectrum of the ultraviolet nightglow from 170 nm to dominates 310 nm atthe 29 airglow A resolution obtained spectrum 2.4contribution µm (see Fig. to 27)zodiacal which islight. important shows an appropriately scaled solar spectrum and is assumed to around show the From Morrison et al. 両方が観測される for balloon observations and also for the low background (1992) observations possible from Antarctica (see Sect. 4.3). Seen 上:1986年1月のスペースシャトルによる from the ground, longward of 2.5 µ airglow is only a small addition to theexamples thermal emission tropo観測(高度330 et overview al., thus enabling a “thumb-cinema” look at these spatioThese dokm)[Morrison not from give the at all a full on sphere (compare Fig. 11 in Sect. 4 above). Figures 25 and temporal variations. Quantitative examples for variation airglow variability but just demonstrate that it is a typical 26 show the1992] near-infrared OH spectrum at two resoluduring one night or variation with solar cycle can betions, seenonceproperty of this source of night sky brightness. with a low spectral resolution of = 160 ˚ A, in Figs. 8 and 10 in Sect. 4. Often a systematic decrease and once with a higher resolution of / = 250 800. 左:1990年12月のスペースシャトルによる In the visual spectral region, correlations between the of airglow emission during the course of the night Wavelength is oblists and intensities for the individual OH [OI] and NaD linesal., and “pseu観測(高度358 served, explained as result of the energy stored during day canprominent bands be found in Ramsay etkm)[Feldman al.airglow (1992) emission and Olivaet bands at 367 nm, 440 nm, is526 nm, 558 nm, & Origliadocontinuum” (1992). Obviously, the near-infrared airglow in the respective atmospheric layers. 1992] dominated634 by nm the and OH 670 bands. also denmThey have primarily been studied by Barbier (1956) night sky brightness the J (1.2 µm) and E.g., the corFigure 29 shows this for the OH emissions andtermine also the who established threein“covariance groups”. • • 28 赤外域発光の観測 3.0 1.0 (3-1) (4-2) (5-3) 1.15 (6-4) (7-5) 1.0 0.5 1.50 1.60 1.70 WAVELENGTH - MICRONS 1.80 0.5 1.10 1.20 1.30 WAVELENGTH - MICRONS (8-6) 1.5 x106 1.40 (9-7) 1.0 0.5 0 1.90 2.00 2.10 WAVELENGTH - MICRONS 4000 3000 2000 1000 (2-0) 1.4 1.6 1.65 1.7 Wavelength in vacuum (µm) 1.5 右:マウナケアからの地上観測[Ramsay et al., 2000 3000 1.75 1000 上:波長1.2μm以下の領域を分解能16nmで地上観 測[Harrison et al., 1973] • 1.55 2.5μm以上の波長域では対流圏からの熱放射の割 合の方が強い。 • 1.2 1.3 Wavelength in vacuum (µm) 2.20 1.5 • 1.1 0 0 (9-6) (8-5) 1.0 0 1.20 (7-4) Flux (photon s-1 arcsec-2 m-2 µm-1) 1.5 x106 1.10 WAVELENGTH - MICRONS (6-3) 0 5.0 (5-2) 1.00 6000 7.0 1.5 x106 0.90 0.95 WAVELENGTH - MICRONS 4000 (6-3) 0.85 2000 0 0.80 Flux (photon s-1 arcsec-2 m-2 µm-1) (5-2) (4-1) (9-5) 1.0 DIFFERENTIAL BRIGHTNESS (ZENITH) RAYLEIGHS PER MICRON 9.0 x105 0.70 0.75 WAVELENGTH - MICRONS (3-0) (8-4) 2.0 DIFFERENTIAL BRIGHTNESS (ZENITH) RAYLEIGHS PER MICRON 0.65 O2(0-1) (7-3) (6-2) 3.0 x105 Flux (photon s-1 arcsec-2 m-2 µm-1) (9-4) (5-1) (4-0) 2.0 1.05 DIFFERENTIAL BRIGHTNESS (ZENITH) RAYLEIGHS PER MICRON (8-3) 4.0 0 DIFFERENTIAL BRIGHTNESS (ZENITH) RAYLEIGHS PER MICRON (7-2) (6-1) DIFFERENTIAL BRIGHTNESS (ZENITH) RAYLEIGHS PER MICRON 6.0 x104 Ch. Leinert et al.: The 1997 reference of di↵use night sky brightness DIFFERENTIAL BRIGHTNESS (ZENITH) RAYLEIGHS PER MICRON Ch. Leinert et al.: The 1997 reference of di↵use night sky brightness 1992] 1.95 2 2.05 2.1 2.15 2.2 2.25 Wavelength in vacuum (µm) 2.3 2.35 Fig. 26. Near-infrared airglow spectrum as observed from Mauna Kea at spectral resolution / = 250 atmospheric transmission 0.75 the flux has been arbitrarily set to zero. Longward of 2.1 µm thermal a 6 6 6 2 発光の時間変化 30 Ch. Leinert et al.: The 1997 reference of di↵use night sky brightness • 輝度と発光の空間分布が時間的に変化する(修士のと Fig. 29. Variation of OH airglow, observed from Mauna Kea. Left: Short term variations (minutes) caused by the passage of wavelike structures. Right: Decrease of OH airglow during the course of a night, shown for several bands separately. From きに似たようなでも違う話をした気が…) Ramsay et al. (1992) • • • マウナケアからの地上観測[Ramsay et al., 1992] 左:波状構造の通過に伴う分単位の輝度変化 右:夜間の発光強度の時間変化 寄り道(2)∼「れいめい」の思い出 全データ (670nm) 2000 1500 1000 500 0 50 • VER [photons/cc/s] VER [photons/cc/s] 全データ (557.7nm) 40 30 20 Latitude [deg] 10 2000 1500 1000 500 0 50 40 30 20 Latitude [deg] 10 修士課程では「れいめい」による約1,200観測のデータ を用いて、大気光発光の季節変化(春夏秋冬)および緯 度変化を調べた。 • 「れいめい」の理学観測は今年3月で終了。工学試験目 的の運用はまだ続いている(はず)。 異なる波長での発光の変化の相関 29. Variation of OH airglow, observed from Mauna Kea. Left: Short term variations (minutes) caused by the passage avelike structures. Right: Decrease of OH airglow during the course of a night, shown for several bands separately. From say et al. (1992) • Barbier et al., 1956によれ ば、以下の輝線および波長での 発光強度にはよい相関が見られ る: • • • • O(557.7 nm etc. ) Na D線 擬連続光中の367 nm, 440 nm, 526 nm, 558 nm, 634 nm, 670 nm 右:467 nmの輝線の発光強度 (水平方向)と525 nmの発光 強度(鉛直方向)が極めて良い Fig. 28. Correlation between the di↵use sky emission at 467 相関を示している。[Leinert etnm (Str¨omgren b) and at = 525 nm. The brightness variations in both bands are mainly due to airglow. From Leinert al., 1995] et al. (1995) シャトルグロー • 衛星(宇宙機)の高度と太陽活動度に よっては、大気との作用によって赤 色∼近赤外域での発光が見られる。紫 外域での発光もある。 • N2 Lyman-Birge-Hopfield band(120 - 280 nm)について • • 太陽活動が中程度の時期に高度 250 kmで100 - 500 R/nm [Torr et al., 1985] • 太陽活動静穏時では高度330 km でも観測されなかった [Morrison et al., 1992] 上:STS-062ミッション(1994年3 月)での観測 「光汚染」 32 Ch. Leinert et al.: The 1997 reference of di↵use night sky brightness • 全天イメージャはたいてい人里離 7. Light pollution • れたところに置かれる;街灯りに Artificial lighting at earth contributes via tropospheric scattering to the night sky brightness over a large area よって空が「汚染」されるから。 around the source of light. Both a continuous component as well as distinct emission lines are present in the light pollution spectrum. A recent review of sky pollution is [Walker 1970, 1977]など都市 given in McNally (1994). の明かりによる光害の観測例がイ タリア/カナダ/アメリカで存在 7.1. Observations of sky pollution する。Walkerによれば以下のも Systematic broad-band observations of the sky pollution light near cities have been carried out by Bertiau et al. のが導かれる(らしい); (1973) in Italy, Berry (1976) in Canada & Walker (1970, 1977) in California. Berry showed that there is a relation(1)between 人口と街の明るさの相関 ship the population of a city and the zenith sky brightness as observed in or near to the city. Walker inter(2) 空の明るさを都市からの距離 preted his extensive observations by deriving the following relationships: (1) between the population and luminosity の函数として表す of a city; (2) the sky brightness as a function of distance from the city; and (3) between the population and the (3) 人口の増え方と都市からの光 distance from a city for a given sky pollution light contribution. The last two relationships are shown in Figs. 31 汚染の具合の間には定量的な増加 and 32. These figures can be utilized to derive an estimate for the sky pollution at 45 deg altitude caused by a city 関係がみられる with 2000 4 million population and with a similar street lighting power per head as California. Starting with the city population Fig. 31 gives the distance at which the Fig. 31. Variation with city population of the distance at which the lights of a city produce an artificial increase of the night sky brightness at 45 deg altitude toward the city by 0.20 mag. This increase refers to an assumed natural sky brightness of V = 21.9 mag/200 . Observations by Walker (1977) are indicated by dots. Two models by Garstang (1986) are shown as solid lines. K is a measure for the relative importance of aerosols for scattering light. The uppermost dot refers to Los Angeles County, the cross below it to Los Angeles City. From Garstang (1986) 光汚染の経験モデル Ch. Leinert et al.: The 1997 reference of di↵use night sky brightness • • [Garstang 1986, 1989a,b, 1991]のモ デルでは以下のものが考慮されている: • • • 1次と2次のレイリー散乱 • • 光源の面分布の様子 エアロゾルによる散乱 地面による光の反射(表面の状況も含 めて) Fig. 32. Variation with distance from the city of the sky brightness at 45 deg altitude in the direction of the city. The dots indicate observations in V band by Walker (1977) near the city of Salinas. The solid curves are according to models by Garstang (1986). The brightness ratio is defined as b(Salinas at +45 ) b(Salinas at 45 ) , where b = sky brightness. b(sky background only at +45 ) Zenith distance +45 is towards and 45 away from the city. The solid curves are according to models by Garstang (1986). Curve 1: L0 = 986 lumens per head, K = 0.43, F = 11%. Curve 2: L0 = 1000 lumens per head, K = 0.5, F = 10%. L0 is the artificial lighting in lumens produced per head of the population. K is a measure for the relative importance of aerosols for scattering light. F : a fraction F of the light produced by the city is radiated directly into the sky at angles above the horizontal plane, and the remainder (1 F ) is radiated toward the ground. The dashed line is the relation ⇠ D 2.5 . From Garstang (1986) Fig. 33. Zenith distance dependence of sky pollution light according to the model calculations of Garstang (1986). Results are for sky pollution due to Denver as seen from a distance of 40 km in the vertical plane containing the observer and the center of Denver. Curve 1: sky background; Curve 2: Denver only; Curve 3: Denver and sky background. Negative zenith Ch. Leinert et al.: The 1997 reference of di↵use night sky b distances are away from Denver. From Garstang (1986) 天頂角依存性 街灯が「水銀灯→high pressure sodium type→low pressure sodium type」と変化 人工光(Hg, Na, K)のスペクトルのピーク がだんだん長波長側に移動してきている 8. Zodiacal light 103 Levasseur-Regourd and Dumont Helios A and B Pioneer 10 600 300 Ι [ S10 ] • 33 β = 16.2° 100 β = 31.1° 60 Fig. 180 33. Zenith distanc cording to the model ca are for sky pollution d of 40 km in the vertical center of Denver. Curv only;the Curve 3: Denver Fig. 34. Comparison of zodiacal light measurements along distances are away from 30 60 90 λ - λ (°) 120 150 天文観測では • 非常に遠くの銀河(多くは赤方偏移している)を観測 することも多く、遠くにある天体からの光量が小さい 場合も往々にしてあるので以下の「光」も問題になる (省略しますが): • • • 黄道光 • • 散乱銀河光 太陽コロナの明るさおよびpolarization (観測したい天体以外の)星明かり←Pioneer 10号 /11号での見積もり例もあるらしい 宇宙空間全体の背景放射(いわゆる3K波とか) まとめ • 地上には大気光以外にもさまざまな「光」が 降り注いでいる。それらの定量的な見積もり によってより精度の高い観測を行うことが可 能となる。 • 地上からも光は放出されていて、それらの対 流圏での散乱の効果は無視できない。 • 大気光の発光領域は紫外域から赤外域まで広 がっている。発光源の違いによって大きく異 なる特徴を示す。 以上です。 • • 祇園祭、宵山ですね。 本当はこれらの写真を「イメージング観測」の例として 出したかった…(出したら本題には戻って来れないだろうな) 上3点: 2013年5月から6月にかけ ての鴨川右岸イメージング 観測。 左2点: 森田「京都・鴨川河川敷に 坐る人々の空間占有に関す る研究」(1987)
© Copyright 2024 ExpyDoc