2001年度日本オペレーションズ。 1−C−8 リサーチ学会 春季研究発表会 Ama且ys五s⑳紆斑ype『ge⑳me屯『五cD五s七『弛Ⅷ舶omS①氏wa『e凪e且五ab組紬yM①de且 T.Dohi†(01307065),N.Wakana†,S.Osaki†(01002265)andKishorS・Trivedi‡ †HiroshimaUniversity,Higashi−Hiroshima,Japan,‡DukeUniversity,NC,USA beenalreadydetectedandremovedbyt(1).Ingeneral,the numberofnewlydetectedfaults bytheithtestinstance 1.INTRODUCTION ThisarticleglVeSthedetailcdmathematicalresultson t(i),Xi,Canberegardedasapositiverandomvariable・ thehypergeometricsoftwarereliabilitymodel(HGDSRM) Then,thccumulativenumberofnewlydetectedfhultsby proposed by Thoma et al・【1,2トIntheearlierpaper, thetestinstancest(1),‥・,t(i)isCi=∑;=1Xj・ Thoma etal.【2】derived arecursiveformulaontheex− Withthisnotation,theprobabilitythatxfaultscanbe pectedcumulativenumberofsoftwarefaultsdetected up newlydetectedbythetestinstancet(i)isgivenby toithtestinstanceintestingphase.Sincetheirmodelwas basedononlythemeanvalueofthecumulativenumberof p〈ざ‘=∬】立方j=Cト1 Lhults,itwasimpossibletoestimatethesoftwarereliability aswenastheotherprobabilisticdependabilitymeasures・ Byintroducingtheconceptofcumulativetrialprocesses, Wederivetheprobabilitymassfunctionofthenumberof SOftwarefhultsdetectedatithtestinstanceexplicitly. J=1 〉 中m,帰㈹〉 (m ̄:ト1)(品) ▼n ( u(i) (1) 2.正丑GDSRM whereO≦x≦min(w(i),m−Ci−1)andciistherealization Suppose that the test ofasoftwareisasetofteslin− StanCeS(such as test runs),Which consists ofinput test ofthe random variable Ci.Since the above expression dat,a a.nd observed test rcsult.Define the soft.ware test. is the hyper−geOmCtric pmf,the sequentialmodelbased onEq.(1)iscal1edtheHGDSRM・FtomEq・(1),themean byD=(土(i)li=1,2,…,),Wheret(i)istheithtestin− number ofnewlydetected faults at theith testinstanCe StanCe・Let B=(b(j)Ij=1,2,…,m)denoteaset of andit.s variance are faultsremaininginthesoftwareattheinitialtime(i=0), m ̄Ci_1 )坤) Whereb(j)means the faultlabelled byj(=1,2,…,m) 中居弟=Cトホ( 打l j=1 aIld m(>0)is theinitialnumber offaults・Ifasoft− WareerrOrCauSedbyb(j)isobservedatthetestinstance and t(i),thefaultb(j)issaidtobesensedbythetestinstance (m−q−1)ci−11〃(哀) L(i).SupposethatatestinstanCet(i)senscsw(i)software 可ズ‘一宏ズブ=Cト1] j=1 fhults,Wherew(i)iscallcdthesensitivityJhctorandisthe functionofthenumberoftestinstance(ortime)・Make (2) ),(3) m−1 thcfo1low皿gaSSumptions: respectively・In(2],Substitutingci−1=∑=シ砧 (A−1)Thesoftwarefaultsthatmanifbstthemselvesupon ∑こiE【XkJ=ErCi−1】intoEq・(2),thefb1lowingrecur− theapplicationofatestinstancet(i)mayberemoved siveformulais obtained: (丘xed)beforethenexttestinstancet(i+1)isapplied. (4) ︸ (A−2)Nonewfaultsareintroducedduringthesoftware Efq=E一弘】(ト慧)…(け testing.This meanS that the software reliabilityis ThiscanbesoIvedbytheinductionasfbllows【2】・ nondecreaslngaSthetestingprogresses. ErG】=m〈1一口叫一望) ﹁■.﹂ ︸ 禁 (A−3)Arandomsetofw(i)softwarefaultsaresensedby testinstanCet(i)outofthetotalminitialfaults・ t =m〈トexp[∑log(ト LFfom these assumptions,itis evident that thenumber ゴ=1 Offaultsdetected by the6rst testinstance t(1)is w(1). However,thenumberofnewLydetectedfaultsbyt(2)is Theaboveequationisderivedfromtheheuristicargument, butiscorrectfromtheindependenceoftheBernoullitrials・ notnecessarilyw(2),Sincesomeofw(2)faultsmayhave (5) −64 − Theoreml:FbrtheinitialnumberofremalnlngSOftware faults m,SuppOSe that the sensitivity factorinith test Suppose that theinitialnumber ofdetected払ults at instancet(i)isdefinedbyw(i)・Then,theprobabilitythat i=OisO・Ofourinterestisthederivationoftheproba− xifaultsaredetectednewlyatithtestinstance,Et(xiI bilityofthenumberofnewlydetectedfaultsbythetest mパ〟(豆)),i岳 instanCe t(i).Let Xibe thenumberofnewlydetected 3.FURTHER RESUIノーS faultsatithtestinstance.Wbmakethefo11owingaddi− U(2)u(3) w(ト1) tionalassumptions: ∑∑…∑ (B−1)Theinitialnumberoffhultsmremaininginthe エ2=0=3=0 ェi_1=0 SOftwareissu侃cientlylargerthanw(i),i・e・m≫w(i) 払rau豆=1,2,3,・‥ (B−2)In the software test,itisimpossible to de− tect allfaults with probability one,i.e. m > (10) 1血→∞∑;=1エト Theorem2:Themeannumberofnewlydetectedfaults LFtom these it assumptions, Canbeseenthatmin(w(i).m−Ci−1)=W(i)hasto be at,ith tcstinst,anCeis alwayssatisfied.Infact,theseassumptionsareplausible intuitivelyandareoftenusedinearliermodelingapproach. SupposethattheprobabilityEl(xllm,W(1))thatxl faultsisdetectedby thetestinstancet(1)isthehyper− E【糎(壱卜誓苫1苫’* エi=1ェi_1=0 (m一石三三当(謀ご・) geometricpmf・Let為(x2fm,W(2))denotetheprobability .㌻く thatx2fhults aredctected newly at thesecond testin− た=1 m Tl=2 (U(れ) StanCe,i.e.i=2.Thcn,itisstraightforwardtoobtain (m ̄与幸一1)(謀ニk) u(1) ヰ2れひ(2)〉=∑ヰ1−m,叫)〉’ × (11) 〇1=0 ×P〈材m,Clル(2)〉・ (6) w(ト1)− u(2)u(3) w(ト1) wbere∑ =∑∑…∑.・ FtomLhesimi1armanlpulation,Wehave エi−1=0 u(ト1) ヰ巾両)〉=∑ 〇2=0ェ3=0 ェi−1=O Similar to Theoremland Theorem2,We Can derive 王i_1=0 analytical1yVar[Ci】and Var[Xi]aLSWellasthesoftware 軋1〈ヱト1■m,坤−1)〉中Im,q−1,㈹) reliabilityP(∑ニ=j.1Xn=Olm・Ci−1・W(i))・AIso,it CanbeshownthatEtGl=∑;=1E【XjlinEq・(11)・These U(i−1) ×∑彗一1ト1恒(五−1)〉 resultsarenevertrivialandareallprovedbytheinduction・ ェi_1=0 ×中1m,C砧ひ(豆)〉, (7) Wheretheright−handsideofEq・(7)isdueto(B−1)and REFERENCES 【1】Y・Tblma,K・Tbkunaga,S・NagaBeandY・Murata, (B−2).Then,theproblemistosoIvetheaboverecursive equationwiththeinitialconditions: Structuralapproach to the estimation ofthe num− beI・Ofresidualsoftware faults based on the hyper− geometricdistribution,m7h7・nS・SpPwarY,En9・ 15(3),345−355(1989)・ 可姉叩(1) =1 (8) 【2]Y・Tblma,H・Yamano,M・OhbaandR・Jacoby,The estimationofparameters ofthehypergeometricdis− tributionanditsapplicationtothesoftwarereliability and ヰ2lmル(2))= (m三;1)(u(宗L。。) growthmodel,IEEE7hns.SojtwareEn9・17(5), (9) 妄_∴妄 Thefo1lowlngisthemainresultofthisarticle. −65 − 483−489(1991).
© Copyright 2024 ExpyDoc