Analysis of Hypergeometric Distribution Software Reliability Model

2001年度日本オペレーションズ。
1−C−8
リサーチ学会
春季研究発表会
Ama且ys五s⑳紆斑ype『ge⑳me屯『五cD五s七『弛Ⅷ舶omS①氏wa『e凪e且五ab組紬yM①de且
T.Dohi†(01307065),N.Wakana†,S.Osaki†(01002265)andKishorS・Trivedi‡
†HiroshimaUniversity,Higashi−Hiroshima,Japan,‡DukeUniversity,NC,USA
beenalreadydetectedandremovedbyt(1).Ingeneral,the
numberofnewlydetectedfaults bytheithtestinstance
1.INTRODUCTION
ThisarticleglVeSthedetailcdmathematicalresultson
t(i),Xi,Canberegardedasapositiverandomvariable・
thehypergeometricsoftwarereliabilitymodel(HGDSRM)
Then,thccumulativenumberofnewlydetectedfhultsby
proposed by Thoma et al・【1,2トIntheearlierpaper,
thetestinstancest(1),‥・,t(i)isCi=∑;=1Xj・
Thoma etal.【2】derived arecursiveformulaontheex−
Withthisnotation,theprobabilitythatxfaultscanbe
pectedcumulativenumberofsoftwarefaultsdetected up
newlydetectedbythetestinstancet(i)isgivenby
toithtestinstanceintestingphase.Sincetheirmodelwas
basedononlythemeanvalueofthecumulativenumberof
p〈ざ‘=∬】立方j=Cト1
Lhults,itwasimpossibletoestimatethesoftwarereliability
aswenastheotherprobabilisticdependabilitymeasures・
Byintroducingtheconceptofcumulativetrialprocesses,
Wederivetheprobabilitymassfunctionofthenumberof
SOftwarefhultsdetectedatithtestinstanceexplicitly.
J=1
〉
中m,帰㈹〉
(m ̄:ト1)(品)
▼n
(
u(i)
(1)
2.正丑GDSRM
whereO≦x≦min(w(i),m−Ci−1)andciistherealization
Suppose that the test ofasoftwareisasetofteslin−
StanCeS(such as test runs),Which consists ofinput test
ofthe random variable Ci.Since the above expression
dat,a a.nd observed test rcsult.Define the soft.ware test.
is the hyper−geOmCtric pmf,the sequentialmodelbased
onEq.(1)iscal1edtheHGDSRM・FtomEq・(1),themean
byD=(土(i)li=1,2,…,),Wheret(i)istheithtestin− number ofnewlydetected faults at theith testinstanCe
StanCe・Let B=(b(j)Ij=1,2,…,m)denoteaset of andit.s variance are
faultsremaininginthesoftwareattheinitialtime(i=0),
m ̄Ci_1
)坤)
Whereb(j)means the faultlabelled byj(=1,2,…,m) 中居弟=Cトホ(
打l
j=1
aIld m(>0)is theinitialnumber offaults・Ifasoft−
WareerrOrCauSedbyb(j)isobservedatthetestinstance and
t(i),thefaultb(j)issaidtobesensedbythetestinstance
(m−q−1)ci−11〃(哀)
L(i).SupposethatatestinstanCet(i)senscsw(i)software
可ズ‘一宏ズブ=Cト1]
j=1
fhults,Wherew(i)iscallcdthesensitivityJhctorandisthe
functionofthenumberoftestinstance(ortime)・Make
(2)
),(3)
m−1
thcfo1low皿gaSSumptions:
respectively・In(2],Substitutingci−1=∑=シ砧
(A−1)Thesoftwarefaultsthatmanifbstthemselvesupon
∑こiE【XkJ=ErCi−1】intoEq・(2),thefb1lowingrecur−
theapplicationofatestinstancet(i)mayberemoved
siveformulais obtained:
(丘xed)beforethenexttestinstancet(i+1)isapplied.
(4)
︸
(A−2)Nonewfaultsareintroducedduringthesoftware
Efq=E一弘】(ト慧)…(け
testing.This meanS that the software reliabilityis
ThiscanbesoIvedbytheinductionasfbllows【2】・
nondecreaslngaSthetestingprogresses.
ErG】=m〈1一口叫一望)
﹁■.﹂
︸
禁
(A−3)Arandomsetofw(i)softwarefaultsaresensedby
testinstanCet(i)outofthetotalminitialfaults・
t =m〈トexp[∑log(ト
LFfom these assumptions,itis evident that thenumber
ゴ=1
Offaultsdetected by the6rst testinstance t(1)is w(1).
However,thenumberofnewLydetectedfaultsbyt(2)is Theaboveequationisderivedfromtheheuristicargument,
butiscorrectfromtheindependenceoftheBernoullitrials・
notnecessarilyw(2),Sincesomeofw(2)faultsmayhave
(5)
−64 −
Theoreml:FbrtheinitialnumberofremalnlngSOftware
faults m,SuppOSe that the sensitivity factorinith test
Suppose that theinitialnumber ofdetected払ults at
instancet(i)isdefinedbyw(i)・Then,theprobabilitythat
i=OisO・Ofourinterestisthederivationoftheproba−
xifaultsaredetectednewlyatithtestinstance,Et(xiI
bilityofthenumberofnewlydetectedfaultsbythetest
mパ〟(豆)),i岳
instanCe t(i).Let Xibe thenumberofnewlydetected
3.FURTHER RESUIノーS
faultsatithtestinstance.Wbmakethefo11owingaddi−
U(2)u(3) w(ト1)
tionalassumptions:
∑∑…∑
(B−1)Theinitialnumberoffhultsmremaininginthe エ2=0=3=0
ェi_1=0
SOftwareissu侃cientlylargerthanw(i),i・e・m≫w(i)
払rau豆=1,2,3,・‥
(B−2)In the software test,itisimpossible to de−
tect allfaults with probability one,i.e. m >
(10)
1血→∞∑;=1エト
Theorem2:Themeannumberofnewlydetectedfaults
LFtom
these
it
assumptions,
Canbeseenthatmin(w(i).m−Ci−1)=W(i)hasto be at,ith tcstinst,anCeis
alwayssatisfied.Infact,theseassumptionsareplausible
intuitivelyandareoftenusedinearliermodelingapproach.
SupposethattheprobabilityEl(xllm,W(1))thatxl
faultsisdetectedby thetestinstancet(1)isthehyper−
E【糎(壱卜誓苫1苫’*
エi=1ェi_1=0
(m一石三三当(謀ご・)
geometricpmf・Let為(x2fm,W(2))denotetheprobability
.㌻く
thatx2fhults aredctected newly at thesecond testin−
た=1
m
Tl=2
(U(れ)
StanCe,i.e.i=2.Thcn,itisstraightforwardtoobtain
(m ̄与幸一1)(謀ニk)
u(1)
ヰ2れひ(2)〉=∑ヰ1−m,叫)〉’
×
(11)
〇1=0
×P〈材m,Clル(2)〉・
(6)
w(ト1)− u(2)u(3) w(ト1)
wbere∑ =∑∑…∑.・
FtomLhesimi1armanlpulation,Wehave
エi−1=0
u(ト1)
ヰ巾両)〉=∑
〇2=0ェ3=0
ェi−1=O
Similar to Theoremland Theorem2,We Can derive
王i_1=0
analytical1yVar[Ci】and Var[Xi]aLSWellasthesoftware
軋1〈ヱト1■m,坤−1)〉中Im,q−1,㈹)
reliabilityP(∑ニ=j.1Xn=Olm・Ci−1・W(i))・AIso,it
CanbeshownthatEtGl=∑;=1E【XjlinEq・(11)・These
U(i−1) ×∑彗一1ト1恒(五−1)〉
resultsarenevertrivialandareallprovedbytheinduction・
ェi_1=0
×中1m,C砧ひ(豆)〉,
(7)
Wheretheright−handsideofEq・(7)isdueto(B−1)and
REFERENCES
【1】Y・Tblma,K・Tbkunaga,S・NagaBeandY・Murata,
(B−2).Then,theproblemistosoIvetheaboverecursive
equationwiththeinitialconditions:
Structuralapproach to the estimation ofthe num−
beI・Ofresidualsoftware faults based on the hyper−
geometricdistribution,m7h7・nS・SpPwarY,En9・
15(3),345−355(1989)・
可姉叩(1)
=1
(8)
【2]Y・Tblma,H・Yamano,M・OhbaandR・Jacoby,The
estimationofparameters ofthehypergeometricdis−
tributionanditsapplicationtothesoftwarereliability
and
ヰ2lmル(2))=
(m三;1)(u(宗L。。)
growthmodel,IEEE7hns.SojtwareEn9・17(5),
(9)
妄_∴妄
Thefo1lowlngisthemainresultofthisarticle.
−65 −
483−489(1991).