REFERENCE Abo-Amer, A.E., 2011. Optimization of

REFERENCE
Abo-Amer, A.E., 2011. Optimization of bacteriocin production by Lactobacillus
acidophilus AA11, a strain isolated from Egyptian cheese. Ann. Microbiol., 61, 445452.
Abrams, D., Barbosa, J., Albano, H., Silva, J., Gibbs, P.A., Teixeira, P., 2011.
Characterization of bacPPK34 a bacteriocin produced by Pediococcus pentosaceus
strain K34 isolated from “Alheira”. Food Control, 22, 940-946.
Adebayo, C.O., Aderiye, B.I., 2010. Antifungal activity of bacteriocins of lactic acid
bacteria from some Nigerian fermented foods. Res. J. Microbiol., 5, 1070-1082.
Agrawal, R., Rati, E.R., Vijayendra, S.V.N., Varadaraj, M.C., Prasad, M.S., Nand, K.,
2000. Flavour profile of idli batter prepared from defined microbial starter cultures.
World J. Microbiol. Biotechnol., 16, 687-690.
Ahmed, R.Z., Siddiqui, K., Arman, M., Ahmed, N., 2012. Characterization of high
molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr.
Polym., 90, 441-446.
Aksornchu, P., Prasertsan, P., Sobhon, V., 2008. Isolation of arsenic-tolerant bacteria from
arsenic-contaminated soil. Songklanakarin J. Sci. Technol., 30, 95-102.
Albano, H., Todorov, S.D., van Reenen, C.A., Hogg, T., Dicks, L.M.T., Teixeira, P., 2007.
Characterization of two bacteriocins produced by Pediococcus acidilactici isolated
from “Alheira”, a fermented sausage traditionally produced in Portugal. Int. J. Food
Microbiol., 116, 239-247.
Albesharat, R., Ehrmann, M.A., Korakli, M., Yazaji, S., Vogel, R.F., 2011. Phenotypic and
genotypic analyses of lactic acid bacteria in local fermented food, breast milk and
faeces of mothers and their babies. Syst. Appl. Microbiol., 34, 148-155.
Anastasio, M., Pepe, O., Cirillo, T., Palomba, S., Blaiotta, G., Villani, F., 2010. Selection
and use of phytate-degrading LAB to improve cereal-based products by mineral
solubilization during dough fermentation. J. Food Sci. , 75, M28-M35.
Ankolekar, C., Johnson, K., Pinto, M., Johnson, D., Labbe, R.G., Greene, D., Shetty, K.,
2011. Fermentation of whole apple auice using Lactobacillus acidophilus for potential
dietary management of hyperglycemia, hypertension, and modulation of beneficial
bacterial responses. J Food Biochem, DOI: 10.1111/j.1745-4514.2011.00596.x.
Aragozzini, F., Ferrari, A., Pacini, N., Gualandris, R., 1979. Indole-3-lactic acid as a
tryptophan metabolite produced by Bifidobacterium spp. Appl. Environ. Microbiol.,
38, 544-546.
Aranha, C., Gupta, S., Reddy, K.V.R., 2004. Contraceptive efficacy of antimicrobial
peptide Nisin: in vitro and in vivo studies. Contraception, 69, 333-338.
Aslim, B., Onal, D., Beyatli, Y., 2007. Factors influencing autoaggregation and
aggregation of Lactobacillus delbrueckii subsp. bulgaricus isolated from handmade
yogurt. J. Food Prot., 70, 223-227.
Audisio, M.C., Torres, M.J., Sabate, D.C., Ibarguren, C., Apella, M.C., 2011. Properties of
different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol. Res.,
166, 1-13.
Badarinath, V., Halami, P.M., 2009. Evaluation of bacteriocinogenic lactic acid bacteria
isolated from fermented milk and idli batter for probiotic applications. Int. J.
Probiotics Prebiotics, 4, 33-40.
Badel, S., Bernardi, T., Michaud, P., 2012. New perspectives for Lactobacilli
exopolysaccharides. Biotechnol. Adv., 29, 54-66.
128
Balasubramanian, S., Viswanathan, R., 2007. Properties of idli batter during its
fermentation time. J. Food Process Preserv., 31, 32-40.
Bao, Q.H., Liu, W.J., Yu, J., Wang, W.H., Qing, M.J., Chen, X., Wang, F., Zhang, J.C.,
Zhang, W.Y., Qiao, J.M., Sun, T.S., Zhang, H.P., 2012. Isolation and identification of
cultivable lactic acid bacteria in traditional yak milk products of Gansu Province in
China. J. Gen. Appl. Microbiol., 58, 95-105.
Barreau, C., Wagener, G., 1990. Characterization of Leuconostoc lactis strains from human
sources. J. Clin. Microbiol., 28, 1728-1733.
Barros, R.R., Carvalho, M.D.G.S., Peralta, J.M., Facklam, R.R., Teixeira, L.M., 2001.
Phenotypic and genotypic characterization of Pediococcus strains isolated from human
clinical sources. J. Clin. Microbiol., 39, 1241-1246.
Begley, M., Hill, C., Gahan, C.G.M., 2006. Bile salt hydrolase activity in probiotics. Appl.
Environ. Microbiol., 72, 1729-1738.
Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K., 2010. Isolation and probiotic
characterization of arsenic-resistant lactic acid bacteria for uptaking arsenic. Int. J.
Chem. Biol. Eng., 3, 167-174.
Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K., Wei, M.Q., 2012. Characterization
of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J. Appl.
Microbiol., 112, 1193–1206.
Bhunia, A.K., Johnson, M.C., Ray, B., 1987. Direct detection of an antimicrobial peptide
of Pediococcus acidilactici in sodium dodecyl sulphatepolyacrylamide gel
electrophoresis. J. Ind. Microbiol., 2, 319-322.
Bhunia, A.K., Johnson, M.C., Ray, B., Kalchayanand, N., 1991. Mode of action of
pediocin AcH from Pedicoccus acidilactici H on sensitive bacterial strains. J. Appl.
Bacteriol., 70, 25-33.
Bokulich, N.A., Mills, D.A., 2012. Differentiation of mixed lactic acid bacteria
communities in beverage fermentations using targeted terminal restriction fragment
length polymorphism. Food Microbiol., 31, 126-132.
Boris, S., Suarez, J.E., Barbes, C., 1997. Characterization of the aggregation promoting
factor from Lactobacillus gasseri, a vaginal isolate. J. Appl. Microbiol., 83, 413-420.
Bourouni, O.C., El Bour, M., Calo-Mata, P., Mraouna, R., Abedellatif, B., BarrosVelazquez, J., 2012. Phylogenetic analysis of antimicrobial lactic acid bacteria from
farmed seabass Dicentrarchus labrax. Can. J. Microbiol., 58, 463-474.
Brauman, A., Keleke, S., Malonga, M., Miambi, E., Ampe, F., 1996. Microbiological and
biochemical characterization of Cassava retting, a traditional lactic acid fermentation
for Foo-Foo (cassava flour) production. Appl. Environ. Microbiol., 62, 2864-2858.
Breitmaier, E., 2002. Structure Elucidation by NMR in Inorganic Chemistry: A practical
Guide. 3rd ed. John Wiley & Sons Ltd, England.
Broberg, A., Jacobsson, K., Strom, K., Schnurer, J., 2007. Metabolite profiles of lactic acid
bacteria in grass silage. Appl. Environ. Microbiol., 73, 5547–5552.
Brown, R.L., Chen, Z.-Y., Cleveland, T.E., Cotty, P.J., Cary, J.W., 2001. Variation in in
vitro alpha-amylase and protease activity is related to the virulence of Aspergillus
flavus isolates. J. Food. Protect., 64, 401-404.
Burianek, L.L., Yousef, A.E., 2000. Solvent extraction of bacteriocins from liquid cultures.
Lett. Appl. Microbiol., 31, 193-197.
Bustos, A.Y., Saavedra, L., de Valdez, G.F., Raya, R.R., Taranto, M.P., 2012. Relationship
between bile salt hydrolase activity, changes in the internal pH and tolerance to bile
acids in lactic acid bacteria. Biotechnol. Lett., 34, 1511-1518.
129
Carbonnelle, D., Muriel Duflos, Marchand, P., Chauvet, C., Petit, J.-Y., Lang, F., 2009. A
novel indole-3-propanamide exerts its immunosuppressive activity by inhibiting JAK3
in T Cells. J. Pharmacol. Exp. Ther., 331, 710-716.
Carr, F.J., Chill, D., Maida, N., 2002. The lactic acid bacteria: A literature survey. Crit.
Rev. Microbiol., 28, 281-370.
Chakravorty, S., Helb, D., Burday, M., Connell, N., Alland, D., 2007. A detailed analysis
of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J.
Microbiol. Methods, 69, 330-339.
Chen, Y.-s., Wu, H.-c., Yanagida, F., 2010. Isolation and characteristics of lactic acid
bacteria isolated from ripe mulberries in Taiwan. Braz. J. Microbiol., 41, 916-921.
Chung, T.C., Axelsson, L., Lindgren, S.E., Dobrogosz, W.J., 1989. In vitro studies on
reuterin synthesis by Lactobacillus reuteri. Microb. Ecol. Hlth. Dis., 2, 137-144.
CLSI, 2011. Performance standards for antimicrobial susceptibility testing: Twenty-first
informational supplement. No.: CLSI document M100-S21, Clinical and Laboratory
Standards Institute, Pennsylvania, USA.
Corsetti, A., Settanni, L., Lopez, C.C., Felis, G.E., Mastrangelo, M., Suzzi, G., 2007. A
taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum) kernels
and non-conventional flours. Syst. Appl. Microbiol., 30, 561-571.
Cotter, P.D., Hill, C., Ross, R.P., 2005. Bacteriocins: developing innate immunity for food.
Nat. Rev. Microbiol., 3, 777-788.
Cummings, J.H., Macfarlane, G.T., 1997. Role of intestinal bacteria in nutrient
metabolism. Clinical Nutrition., 16, 3-11.
da Cunha, L.R., Ferreira, C.L.F., Durmaz, E., Goh, Y.J., Sanozky-Dawes, R.,
Klaenhammer, T., 2012. Characterization of Lactobacillus gasseri isolates from a
breast-fed infant. Gut Microbes., 3, 15-24.
Dabour, N., LaPointe, G., 2005. Identification and molecular characterization of the
chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis
subsp. cremoris SMQ-461. Appl. Environ. Microbiol., 71, 7414-7425.
Daeschel, M.A., Klaenhammer, T.R., 1985. Association of a 13.6-Megadalton plasmid in
Pediococcus pentosaceus with bacteriocin activity. Appl. Environ. Microbiol., 50,
1538-1541.
Dashkevicz, M.P., Feighner, S.D., 1989. Development of a differential medium for bile
salt hydrolase-active Lactobacillus spp. Appl. Environ. Microbiol., 55, 11-16.
de Valdez, G.F., de Taranto, M.P., 2001. Probiotic properties of lactobacilli: Cholesterol
reduction and bile salt hydrolase activity. In: Spencer, J.F.T., de Spencer, A.L.R.
(Eds.), Food Microbiology Protocols. Humana Press, New Jersey, pp. 173-182.
Degeest, B., Vaningelgem, F., De Vuyst, L., 2001. Microbial physiology, fermentation
kinetics, and process engineering of heteropolysaccharide production by lactic acid
bacteria. Int. Dairy. J., 11, 747-757.
Desai, K.M., Akolkar, S.K., Badhe, Y.P., Tambe, S.S., Lele, S.S., 2006. Optimization of
fermentation media for exopolysaccharide production from Lactobacillus plantarum
using artificial intelligence-based techniques. Process Biochem., 41, 1842-1848.
Dicks, L.M.T., Heunis, T.D.J., van Staden, D.A., Brand, A., Sutyak Noll, K., Chikindas,
M.L., 2011. Medical and personal care applications of bacteriocins produced by lactic
acid bacteria. In: Drider, D., Rebuffat, S. (Eds.), Prokaryotic antimicrobial peptides:
From genes to applications. Springer, New York.
130
Ding, Y.-Z., Zhang, S.-Y., Liu, P., Yuan, W., Liang, J.-Y., Zhao, Z., Zhang, Y.-D., 2009.
Microbiological and biochemical changes during processing of the traditional chinese
food douzhi. Food control, 20, 1086-1091.
Dominguez, A., Bizani, D., Cladera-Olivera, F., Brandelli, A., 2007. Cerein 8A production
in soybean protein using response surface methodology. Biochem. Eng. J., 35, 238–
243.
Donohue, D.C., 2004. Safety of novel probiotic bacteria. 3rd ed. In: Salminen, S., von
Wright, A., Ouwehand, A. (Eds.), Lactic Acid Bacteria: Microbiological and
Functional Aspects. Marcel Dekker, Inc., New York, pp. 531-546.
Dordevic, T.M., Siler-Marinkovic, S.S., Dimitrijevic-Brankovic, S.I., 2010. Effect of
fermentation on antioxidant properties of some cereals and pseudo cereals. Food
Chem, 119, 957-963.
Duckstein, S.M., Lorenz, P., Stintzing, F.C., 2012. Conversion of phenolic constituents in
aqueous Hamamelis virginiana leaf extracts during fermentation. Phytochem Anal,
DOI 10.1002/pca.2359.
Dunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey,
D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E.M.M., O’Sullivan,
G.C., Shanahan, F., Kevin, J., 1999. Probiotics: from myth to reality. Demonstration
of functionality in animal models of disease and in human clinical trials. Antonie van
Leeuwenhoek, 76, 279-292.
Duskova, M., Sedo, O., Ksicova, K., Zdrahal, Z., Karpiskova, R., 2012. Identification of
lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. Int. J.
Food Microbiol., 159, 107-114.
Ehmann, A., 1977. The van Urk-Salkowski reagent - A sensitive and specific chromogenic
reagent for slica gel thin-layer chromatographic detection and identification of indole
derivatives. J. Chromatogr., 1332, 267-276.
El-Ziney, M.G., Debevere, J.M., Jakobsen, M., 2000. Reuterin. In: Naidu, A.S. (Ed.)
Natural food antimicrobial systems. CRC Press LLC, Florida.
Ennahar, S., Sashihara, T., Sonomoto, K., Ishizaki, A., 2000. Class IIa bacteriocins:
biosynthesis, structure and activity. FEMS Microbiol. Rev., 24, 85-106.
FAO/WHO, 2002. Guidelines for the evaluation of probiotics in food. Food and
Agriculture Organization, USA, London Ontario, Canada.
Farnworth, E.R., Champagne, C.P., Van Calsteren, M.-R., 2007. Exopolysaccharides from
lactic acid bacteria: Food uses, production, chemical structures, and health effects. In:
Wildman, R.E.C. (Ed.) Handbook of Nutraceuticals and Functional Foods. CRC Press,
Taylor and Francis Group, Florida.
Fluhe, L., Knappe, T.A., Gattner, M.J., Schafer, A., Burghaus, O., Linne, U., Marahiel,
M.A., 2012. The radical SAM enzyme AlbA catalyzes thioether bond formation in
subtilosin A. Nat. Chem. Biol., 8, 350-357.
Fuller, R., 1989. Probiotics in man and animals. A review. J. Appl. Bacteriol., 66.
Ganzle, M.G., Zhang, C., Monang, B.-S., Lee, V., Schwab, C., 2009. Novel metabolites
from cereal-associated lactobacilli – Novel functionalities for cereal products? Food
Microbiol., 26, 712-719.
Gao, Y., Li, D., Liu, S., Liu, Y., 2012. Probiotic potential of L. sake C2 isolated from
traditional Chinese fermented cabbage. Eur. Food Res. Technol., 234, 45-51.
Gao, Y., Li, D., Sheng, Y., Liu, X., 2011. Mode of action of sakacin C2 against
Escherichia coli. Food Control, 22, 657-661.
131
Gashe, B.A., 1985. Involvement of lactic acid bacteria in the fermentation of TEF
(Eragrosfis tef), an Ethiopian fermented food. J Food Sci, 50, 800-801.
Ghosh, D., Chattopadhyay, P., 2011. Preparation of idli batter, its properties and nutritional
improvement during fermentation. J. Food Sci. Technol., 48, 610-615.
Gobbetti, M., 1998. The sourdough microflora: Interactions of lactic acid bacteria and
yeasts. Trends Food Sci Technol, 8, 267–274.
Goldin, B.R., 2011. Probiotics and health: From fhstory to future. In: Kneifel, W.,
Salminen, S. (Eds.), Probiotics and Health Claims. John Wiley & Sons Ltd, West
Sessex, UK.
Goldin, B.R., Gorbach, S.L., Saxelin, M., Barakat, S., Gualtieri, L., Salminen, S., 1992.
Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig. Dis.
Sci., 37, 121–128.
Gonzalez-Arenzana, L., Lopez, R., Santamaria, P., Tenorio, C., Lopez-Alfaro, I., 2012.
Dynamics of indigenous lactic acid bacteria populations in wine fermentations from
La Rioja (Spain) during three vintages. Microb. Ecol., 63, 12-19.
Gori, K., Ryssel, M., Arneborg, N., Jespersen, L., 2012. Isolation and identification of the
microbiota of Danish farmhouse and industrially produced surface-ripened cheeses.
Microb. Ecol., DOI: 10.1007/s00248-012-0138-3.
Gornall, A.G., Bardawill, C.J., David, M.M., 1949. Determination of serum proteins by
means of the Biuret reaction. J. Biol. Chem. , 177, 751-766.
Halami, P.M., Badarinath, V., Devi, S.M., Vijayendra, S.V.N., 2011. Partial
characterization of heat-stable, antilisterial and cell lytic bacteriocin of Pediococcus
pentosaceus CFR SIII isolated from a vegetable source. Ann. Microbiol., 61, 323-330.
Halttunen, T., Finell, M., Salminen, S., 2007a. Arsenic removal by native and chemically
modified lactic acid bacteria. Int. J. Food Microbiol., 120, 173-178.
Halttunen, T., Salminen, S., Tahvonen, R., 2007b. Rapid removal of lead and cadmium
from water by specific lactic acid bacteria. Int. J. Food Microbiol., 114, 30-35.
Han, H., Takase, S., Nishino, N., 2012. Survival of silage lactic acid bacteria in the goat
gastrointestinal tract as determined by denaturing gradient gel electrophoresis. Lett.
Appl. Microbiol., 55, 384-389.
Harrington, L.K., Mayberry, J.F., 2008. A re-appraisal of lactose intolerance. Int. J. Clin.
Pract., 62, 1541–1546.
Haskard, C.A., El-Nezami, H.S., Kankaanpaa, P.E., Salminen, S., Ahokas, J.T., 2001.
Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microbiol., 67,
3086-3091.
Hata, T., Tanaka, R., Ohmomo, S., 2010. Isolation and characterization of plantaricin
ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. Int. J. Food
Microbiol., 137, 94-99.
Heng, N.C.K., Wescombe, P.A., Burton, J.P., Jack, R.W., Tagg, J.R., 2007. The diversity
of bacteriocins in Gram-positive bacteria. In: Riley, M.A., Chavan, M.A. (Eds.),
Bacteriocins: ecology and evolution. Springer, Berlin.
Holzapfel, W.H., Bjorkroth, J.A., Dicks, L.M.T., 2009a. Leuconostoc. In: De Vos, P.,
Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H.,
Whitman, W.B. (Eds.), Bergey’s Manual of Systematic Bacteriology Springer, New
York, pp. 624-635.
Holzapfel, W.H., Franz, C.M.A.P., Ludwig, W., Dicks, L.M.T., 2009b. Pediococcus. 2nd
ed. In: De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A.,
132
Schleifer, K.-H., Whitman, W.B. (Eds.), Bergey’s Manual of Systematic Bacteriology
Springer New York, pp. 513-520.
Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S., Rastall, R.A., 2012. In
vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic
acid bacteria. Carbohydr. Polym., 87, 846-852.
Hubert, J., Berger, M., Nepveu, F., Paul, F., Dayde, J., 2008. Effects of fermentation on the
phytochemical composition and antioxidant properties of soy germ. Food Chem., 109,
709-721.
Hughes, S.A., Shewry, P.R., Gibson, G.R., McCleary, B.V., Rastall, R.A., 2008. In vitro
fermentation of oat and barley derived beta-glucans by human faecal microbiota.
FEMS Microbiol. Ecol., 64, 482-493.
Hummel, A.S., Hertel, C., Holzapfel, W.H., Franz, C.M.A.P., 2007. Antibiotic resistances
of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol., 73,
730-739.
Hutkins, R.W., 2006. Microbiology and technology of fermented foods. 1 st ed. Blackwell
Publishing, USA.
ICMR-DBT, 2011. Guidelines for evaluation of probiotics in food. Indian Council of
Medical Research, India, New Delhi.
Iyer, B.K., Singhal, R.S., Ananthanarayan, L., 2011. Characterization and in vitro probiotic
evaluation of lactic acid bacteria isolated from idli batter. J. Food Sci. Technol.,
10.1007/s13197-011-0445-6.
Jamuna, M., Babusha, S.T., Jeevaratnam, K., 2005. Inhibitory efficacy of nisin and
bacteriocins from Lactobacillus isolates against food spoilage and pathogenic
organisms in model and food systems. Food Microbiol., 22, 449-454.
Jamuna, M., Jeevaratnam, K., 2004a. Isolation and characterization of lactobacilli from
some traditional fermented foods and evaluation of the bacteriocins. J. Gen. Appl.
Microbiol., 50, 79-90.
Jamuna, M., Jeevaratnam, K., 2004b. Isolation and partial characterization of bacteriocins
from Pediococcus species. Appl. Microbiol. Biotechnol., 65, 433-439.
Jeevaratnam, K., Jamuna, M., Bawa, A.S., 2005. Biological preservation of foods bacteriocins of lactic aicd bacteria. Indian J. Biotechnol., 4, 446-454.
Jiang, J., Shi, B., Zhu, D., Cai, Q., Chen, Y., Li, J., Qi, K., Zhang, M., 2012.
Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618
isolated from traditional Chinese fermented radish. Food Control, 23, 338-344.
Jolly, L., Vincent, S.J.F., Duboc, P., Neeser, J.-R., 2002. Exploiting exopolysaccharides
from lactic acid bacteria. Antonie van Leeuwenhoek, 82, 367-374.
Joshi, D.N., Patel, J.S., Flora, S.J.S., Kalia, K., 2008. Arsenic accumulation by
Pseudomonas stutzeri and its response to some thiol chelators. Environ. Health. Prev.
Med., 13, 257-263.
Kanmani, P., Kumar, R.S., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V., 2011.
Optimization of media components for enhanced production of Streptococcus phocae
PI80 and its bacteriocin using response surface methodology. Braz. J. Microbiol., 42,
716-720.
Kaur, S., Kamli, M.R., Ali, A., 2011. Role of arsenic and its resistance in nature. Can. J.
Microbiol., 57, 769-774.
Kawai, Y., Saito, T., Kitazawa, H., Itoh, T., 1998. Gassericin A; an uncommon cyclic
bacteriocin produced by Lactobacillus gasseri LA39 linked at N- and C-terminal ends.
Biosci. Biotechnol. Biochem., 62, 2438-2440.
133
Kawulka, K.E., Sprules, T., Diaper, C.M., Whittal, R.M., McKay, R.T., Mercier, P., Zuber,
P., Vederas, J.C., 2004. Structure of subtilosin A, a cyclic antimicrobial peptide from
Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and
reduction of alpha-thio-alpha-amino acid derivatives. Biochemistry, 43, 3385-3395.
Kelly, W.J., Asmundson, R.V., Harrison, G.L., Huang, C.M., 1995. Differentiation of
dextran-producing Leuconostoc strains from fermented rice cake (puto) using pulsedfield gel electrophoresis. Int. J. Food Microbiol., 26, 345-352.
Kim, B., Lee, J., Jang, J., Kim, J., Han, H.G., 2003. Leuconostoc inhae sp nov., a lactic
acid bacterium isolated from kimchi. Int. J. Syst. Evol. Microbiol., 53, 1123-1126.
Kim, J., Chun, J., Han, H.U., 2000. Leuconostoc kimchii sp nov., a new species from
kimchi. Int. J. Syst. Evol. Microbiol., 50, 1915-1919.
Klaenhammer, T.R., 1993. Genetics of bacteriocins produced by lactic acid bacteria.
FEMS Microbiol. Rev., 12, 39-86.
Knockaert, D., Raes, K., Wille, C., Struijsa, K., Van Camp, J., 2012. Metabolism of ferulic
acid during growth of Lactobacillus plantarum and Lactobacillus collinoides. J. Sci.
Food Agric., 92, 2291-2296.
Kodali, V.P., Sen, R., 2008. Antioxidant and free radical scavenging activities of an
exopolysaccharide from a probiotic bacterium. Biotechnol., 3, 245-251.
Kumar, A.S., Mody, K., Jha, B., 2007. Bacterial exopolysaccharides – a perception. J.
Basic Microbiol., 47, 103-117.
Kumar, H., Rangrez, A.Y., Dayananda, K.M., Atre, A.N., Patole, M.S., Shouche, Y.S.,
2011a. Lactobacillus plantarum (VR1) isolated from an Ayurvedic medicine
(Kutajarista) ameliorates in vitro cellular damage caused by Aeromonas veronii. BMC
Microbiol., 11, 152-162.
Kumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., Chakraborty,
C., Singh, B., Marotta, F., Jain, S., Yadav, H., 2012a. Cholesterol-lowering probiotics
as potential biotherapeutics for metabolic diseases. Exp. Diabetes Res.,
DOI:10.1155/2012/902917.
Kumar, R.S., Kanmani, P., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V., 2011b.
Lactobacillus plantarum AS1 binds to cultured human intestinal cell line HT-29 and
inhibits cell attachment by enterovirulent bacterium Vibrio parahaemolyticus. Lett.
Appl. Microbiol., 53, 481-487.
Kumar, R.S., Kanmani, P., Yuvaraj, N., Paari, K.A., Pattukumar, V., Thirunavukkarasu,
C., Arul, V., 2012b. Lactobacillus plantarum AS1 isolated from South Indian
fermented food Kallappam suppress 1,2-dimethyl hydrazine (DMH)-induced
colorectal cancer in male Wistar rats. Appl. Biochem. Biotechnol., 166, 620-631.
Kumar, S.R., Varman, D.R., Kanmani, P., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul,
V., 2010. Isolation, characterization and identification of a potential probiont from
South Indian fermented foods (Kallappam, Koozh and Mor Kuzhambu) and its use as
biopreservative. Probiotics & Antimicro. Prot., 2, 145-151.
Kumari, A., Akkoc, N., Akcelik, M., 2012. Purification and partial characterization of
bacteriocin produced by Lactococcus lactis ssp. lactis LL171. World J. Microbiol.
Biotechnol., 28, 1647-1655.
Lamprell, H., Mazerolles, G., Kodjo, A., Chamba, J.F., Noel, Y., Beuvier, E., 2006.
Discrimination of Staphylococcus aureus strains from different species of
Staphylococcus using Fourier transform infrared (FTIR) spectroscopy. Int. J. Food
Microbiol., 108, 125-129.
134
Lebeer, S., Vanderleyden, J., De Keersmaecker, S., 2010. Adaptation factors of the
probiotic Lactobacillus rhamnosus GG. Benef. Microbes, 1, 335-342.
Lee, J.S., Lee, K.C., Ahn, J.S., Mheen, T.I., Pyun, Y.R., Park, Y.H., 2002. Weissella
koreensis sp nov., isolated from kimchi. Int J Syst Evol Microbiol, 52, 1257-1261.
Lee, Y.-K., Puong, K.-Y., Ouwehand, A.C., Salminen, S., 2003. Displacement of bacterial
pathogens from mucus and Caco-2 cell surface lactobacilli. J. Med. Microbiol., 52,
925–930.
Leisner, J.J., Pot, B., Christensen, H., Rusul, G., Olsen, J.E., Wee, B.W., Muhamad, K.,
Ghazali, H.M., 1999. Identification of lactic acid bacteria from Chili Bo, a Malaysian
food ingredient. Appl. Environ. Microbiol., 65, 599–605.
Li, H., Yan, L., Wang, J., Zhang, Q., Zhou, Q., Sun, T., Chen, W., Zhang, H., 2012.
Fermentation characteristics of six probiotic strains in soymilk. Ann. Microbiol., DOI
10.1007/s13213-011-0401-8.
Lim, S., Im, D., 2009. Screening and characterization of probiotic lactic acid bacteria
isolated from Korean fermented foods. J. Microbiol. Biotechnol., 19, 178-186.
Liu, C.-F., Tseng, K.-C., Chiang, S.-S., Lee, B.-H., Hsu, W.-H., Pan, T.-M., 2011a.
Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J.
Sci. Food Agric., 91, 2284-2291.
Liu, S.-n., Han, Y., Zhou, Z.-j., 2011b. Lactic acid bacteria in traditional fermented
Chinese foods. Food Res. Int., 44, 643-651.
Maina, N.H., Tenkanen, M., Maaheimo, H., Juvonen, R., Virkki, L., 2008. NMR
spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and
Weissella confusa. Carbohydr. Res., 343, 1446-1455.
Majumder, A., Singh, A., Goyal, A., 2008. Application of response surface methodology
for glucan production from Leuconostoc dextranicum and its structural
characterization. Carbohydr. Polym., 75, 150-156.
Martin-Visscher, L.A., Gong, X., Duszyk, M., Vederas, J.C., 2009. The three-dimensional
structure of Carnocyclin A reveals that many circular bacteriocins share a common
structural motif. J. Biol. Chem., 284, 28674-28681.
Martin-Visscher, L.A., van Belkum, M.J., Garneau-Tsodikova, S., Whittal, R.M., Zheng,
J., McMullen, L.M., Vederas, J.C., 2008. Isolation and characterization of carnocyclin
a, a novel circular bacteriocin produced by Carnobacterium maltaromaticum
UAL307. Appl. Environ. Microbiol., 74, 4756-4763.
Masuda, Y., Ono, H., Kitagawa, H., Ito, H., Mu, F., Sawa, N., Zendo, T., Sonomoto, K.,
2011. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin
produced by Leuconostoc mesenteroides TK41401. Appl. Environ. Microbiol., 77,
8164-8170.
Mathur, S., Singh, R., 2005. Antibiotic resistance in food lactic acid bacteria - a review.
Int. J. Food Microbiol., 105, 281-295.
Mathys, S., von Ah, U., Lacroix, C., Staub, E., Mini, R., Cereghetti, T., Meile, L., 2007.
Detection of the pediocin gene pedA in strains from human faeces by real-time PCR
and characterization of Pediococcus acidilactici UVA1. BMC Biotechnol., 7, 55.
Matthews, A., Grimaldi, A., Walker, M., Bartowsky, E., Grbin, P., Jiranek, V., 2004.
Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl.
Environ. Microbiol., 70, 5715-5731.
Mazzeo, M.F., Sorrentino, A., Gaita, M., Cacace, G., Di Stasio, M., Facchiano, A., Comi,
G., Malorni, A., Siciliano, R.A., 2006. Matrix-assisted laser desorption ionization-time
135
of flight mass spectrometry for the discrimination of food-borne microorganisms.
Appl. Environ. Microbiol., 72, 1180-1189.
McDonald, L.C., McFeeters, R.F., Daeschel, M.A., Fleming, H.P., 1987. A differential
medium for the enumeration of homofermentative and heterofermentative lactic acid
bacteria. Appl. Environ. Microbiol., 53, 1382-1384.
Meindl, K., Schmiederer, T., Schneider, K., Reicke, A., Butz, D., Keller, S., Guhring, H.,
Vertesy, L., Wink, J., Hoffmann, H., Bronstrup, M., Sheldrick, G.M., Sussmuth, R.D.,
2010. Labyrinthopeptins: A new class of carbacyclic lantibiotics. Angew. Chem. Int.
Ed., 49, 1151-1154.
Millette, M., Luquet, F.-M., Ruiz, M.T., Lacroix, M., 2008. Characterization of probiotic
properties of Lactobacillus strains. Dairy Sci. Technol., 88, 695-705.
Mohania, D., Nagpal, R., Kumar, M., Bhardwaj, A., Yadav, M., Jain, S., Marotta, F.,
Singh, V., Parkash, O., Yadav, H., 2008. Molecular approaches for identification and
characterization of lactic acid bacteria. J. Dig. Dis., 9, 190-198.
Monachese, M., Burton, J.P., Reid, G., 2012. Bioremediation and tolerance of humans to
heavy metals through microbial processes: a potential role for probiotics? Appl.
Environ. Microbiol., 78, 6397-6404.
Monteagudo-Mera, A., Rodriguez-Aparicio, L., Rua, J., Martinez-Blanco, H., Navasa, N.,
Garcia-Armesto, M.R., Ferrero, M.A., 2012. In vitro evaluation of physiological
probiotic properties of different lactic acid bacteria strains of dairy and human origin.
J. Funct. Foods, 4, 531-541.
Moraes, P.M., Perin, L.M., Ortolani, M.B.T., Yamazi, A.K., Vicosa, G.N., Nero, L.A.,
2010. Protocols for the isolation and detection of lactic acid bacteria with
bacteriocinogenic potential. LWT-Food Sci. Technol., 43, 1320-1324.
Motlagh, A., Bukhtiyarova, M., Ray, B., 1994. Complete nucleotide sequence of pSMB
74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici.
Lett. Appl. Microbiol. , 6, 305-312.
Mukherjee, S.K., Albury, M.N., Pederson, C.S., Van Veen, A.G., Steinkraus, K.H., 1965.
Role of Leuconostoc mesenteroides in leavening the batter of Idli, a fermented food of
India. Appl. Microbiol., 13, 227-231.
Naidu, A.S., Bidlack, W.R., Clemens, R.A., 1999. Probiotic spectra of lactic acid bacteria
(LAB). Crit. Rev. Food Sci. Nutr., 38, 13-126.
Nel, H.A., Bauer, R., Vandamme, E.J., Dicks, L.M.T., 2001. Growth optimization of
Pediococcus damnosus NCFB 1832 and the influence of pH and nutrients on the
production of pediocin PD-1. J. Appl. Microbiol., 91, 1131-1138.
Nieminen, T.T., Vihavainen, E., Paloranta, A., Lehto, J., Paulin, L., Auvinen, P., Solismaa,
M., Bjorkroth, K.J., 2011. Characterization of psychrotrophic bacterial communities in
modified atmosphere-packed meat with terminal restriction fragment length
polymorphism. Int. J. Food Microbiol., 144, 360-366.
Nigatu, A., Ahrne, S., Gashe, B.A., Molin, G., 1998. Randomly amplified polymorphic
DNA )RAPD) for discrimination of Pediococcus pentosaceus and Ped. acidilactici
and rapid grouping of Pediococcus isolates. Lett. Appl. Microbiol., 26, 412-416.
Niku-Paavalo, M.L., Laitila, A., Mattila-Sandholm, T., Haikara, A., 1999. New type of
antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol.,
86, 29-35.
Nissen-Meyer, J., Rogne, P., Oppegard, C., Haugen, H.S., Kristiansen, P.E., 2009.
Structure-function relationships of the non-lanthionine-containing peptide (class II)
bacteriocins produced by gram-positive bacteria. Curr. Pharm. Biotechnol., 1, 19-37.
136
Olgen, S., Altanlar, N., Karatayli, E., Bozdayi, M., 2008. Antimicrobial and antiviral
screening of novel indole carboxamide and propanamide derivatives. Z. Naturforsch.,
63c, 189-195.
Olympia, M., Fukuda, H., Ono, H., Kaneko, Y., Takano, M., 1995. Characterization of
starch-hydrolyzing lactic acid bacteria isolated from a fermented fish and rice Food,
“Burong Isda”, and its amylolytic enzyme. J. Ferment. Bioeng., 80, 124-130.
Onda, T., Yanagida, F., Uchimura, T., Tsuji, M., Ogino, S., Shinohara, T., Yokotsuka, K.,
2002. Widespread distribution of the bacteriocin-producing lactic acid cocci in Misopaste products. J. Appl. Microbiol., 92, 695±705.
Osmanagaoglu, O., Kiran, F., Ataoglu, H., 2010. Evaluation of in vitro probiotic potential
of Pediococcus pentosaceus OZF isolated from human breast milk. Probiotics
Antimicrob. Proteins, 2, 162-174.
Ou, C.C., Lin, S.L., Tsai, J.J., Lin, M.Y., 2011. Heat-killed lactic acid bacteria enhance
immunomodulatory potential by skewing the immune response toward Th1
polarization. J. Food Sci., 76, M260-M267.
Ou, S., Kwok, K.-C., 2004. Ferulic acid: pharmaceutical functions, preparation and
applications in foods. J. Sci. Food Agric., 84, 1261-1269.
Oupathumpanont, O., Chantarapanont, W., Suwonsichon, T., Haruthaithanasan, V.,
Chompreeda, P., 2009. Screening lactic acid bacteria for improving the Kanom-jeen
process. Kasetsart J. (Nat. Sci.), 43, 557 - 565.
Ouwehand, A.C., Vesterlund, S., 2004. Antimicrobial components from lactic acid
bacteria. 3rd ed. In: Salminen, S., von Wright, A., Ouwehand, A. (Eds.), Lactic Acid
Bacteria: Microbiological and Functional Aspects. Marcel Dekker Inc., New York.
Pal, A., Ramana, K.V., Bawa, A.S., 2010. Simplification and optimization of deMan
Rogosa Sharpe (MRS) medium for enhanced production of bacteriocin by Weissella
paramesenteroides DFR-8. J. Food Sci. Technol., 47, 258-265.
Palomba, S., Cavella, S., Torrieri, E., Piccolo, A., Mazzei, P., Blaiotta, G., Ventorino, V.,
Pepe, O., 2012. Polyphasic screening, homopolysaccharide composition, and
viscoelastic behavior of wheat sourdough from a Leuconostoc lactis and Lactobacillus
curvatus exopolysaccharide-producing starter culture. Appl. Environ. Microbiol., 78,
2737-2747.
Papagianni, M., Anastasiadou, S., 2009. Pediocins: The bacteriocins of Pediococci.
Sources, production, properties and applications. Microb. Cell Fact., 2009, 3-18.
Parente, E., Brienza, C., Moles, M., Ricciardi, A., 1995. A comparison of methods for the
measurement of bacteriocin activity. J. Microbiol. Methods., 22, 95-108.
Patel, A.K., Singhania, R.R., Pandey, A., Chincholkar, S.B., 2010. Probiotic bile salt
hydrolase: current developments and perspectives. Appl. Biochem. Biotechnol., 162,
166-190.
Patel, S., Majumder, A., Goyal, A., 2012. Potentials of exopolysaccharides from lactic acid
bacteria. Indian J. Microbiol., 52, 3-12.
Paulo, E.M., Boffo, E.F., Branco, A., Valente, A.M.M.P., Melo, I.S., Ferreira, A.G.,
Roque, M.R.A., de Assis, S.A., 2012. Production, extraction and characterization of
exopolysaccharides produced by the native Leuconostoc pseudomesenteroides R2
strain. An. Acad. Bras. Cienc., 84, 495-507.
Petrova, P.M., Petrov, K.K., 2011. Antimicrobial activity of starch-egrading Lactobacillus
strains isolated from Boza. Biotechnol. & Biotechnol. Eq., 25, 114-116.
137
Petry, S., Furlan, S., Crepeau, M.-J., Cerning, J., Desmazeaud, M., 2000. Factors affecting
exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus
grown in a chemically defined medium. Appl. Environ. Microbiol., 66, 3427-3431.
Petushkova, J.P., Lyalikov, N.N., 1986. Microbiological degradation of lead-containing
pigments in mural paintings. Stud. Conserv., 31, 65-69.
Pingitore, E.V., Salvucci, E., Sesma, F., Nader-Macias, M.E., 2007. Different strategies for
purification of antimicrobial peptides from lactic acid bacteria (LAB). In: MendezVilas, A. (Ed.) Communicating current research and educational topics and trends in
applied microbiology. Formatex, Spain, pp. 557-568.
Preetha, R., Jayaprakash, N.S., Philip, R., Bright Singh, I.S., 2007. Optimization of
medium for the production of a novel aquaculture probiotic, Micrococcus MCCB 104
using central composite design. Biotechnol. Bioprocess Eng., 12, 548-555.
Pringsulaka, O., Thongngam, N., Suwannasai, N., Atthakor, W., Pothivejkul, K.,
Rangsiruji, A., 2012. Partial characterisation of bacteriocins produced by lactic acid
bacteria isolated from Thai fermented meat and fish products. Food Control, 23, 547551.
Purama, R.K., Goswami, P., Khan, A.T., Goyal, A., 2009. Structural analysis and
properties of dextran produced by Leuconostoc mesentroides NRRL B-640.
Carbohydr. Polym., 76, 30-35.
Raghavendra, P., Rao, T.S., Halami, P.M., 2010. Evaluation of beneficial attributes for
phytate-degrading Pediococcus pentosaceus CFR R123. Benef. Microbes., 2010.
Rathore, S., Salmeron, I., Pandiella, S.S., 2012. Production of potentially probiotic
beverages using single and mixed cereal substrates fermented with lactic acid bacteria
cultures. Food Microbiology, 30, 239-244.
Rea, M.C., Ross, R.P., Cotter, P.D., Hill, C., 2011. Classification of bacteriocins from
Gram-positive bacteria. In: Drider, D., Rebuffat, S. (Eds.), Prokaryotic antimicrobial
peptides: From genes to applications. Springer, New York.
Rea, M.C., Sit , C.S., Clayton, E., O’Connor, P.M., Whittal, R.M., Zheng, J., Vederas, J.C.,
Ross, R.P., Hill, C., 2010. Thuricin CD, a postranslationally modified bacteriocin with
a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci., 107,
9352-9357.
Rebuffo-Scheer, C., Dietrich, J., Wenning, M., Scherer, S., 2008. Identification of five
Listeria species based on infrared spectra (FTIR) using macrosamples is superior to a
microsample approach. Anal. Bioanal. Chem. , 390, 1629-1635.
Reddy, K.B.P.K., Raghavendra, P., Kumar, B.G., Misra, M.C., Prapulla, S.G., 2007.
Screening of probiotic properties of lactic acid bacteia isolated from Kanjika, an
ayruvedic lactic acid bacteria fermented product: an in-vitro evaluation. J. Gen. Appl.
Microbiol., 53, 207-213.
Reid, G., McGroarty, J.A., Angotti, R., Cook, R.L., 1988. Lactobacillus inhibitor
production against Escherichia coli and coaggregation ability with uropathogens. Can.
J. Microbiol., 34, 344–351.
Reis, J.A., Paula, A.T., Casarotti, S.N., Penna, A.L.B., 2012. Lactic acid bacteria
antimicrobial compounds: characteristics and applications. Food Eng. Rev., 4, 124140.
Roberfroid, M., 2007. Prebiotics: the concept revisited. J. Nutr., 137, 830S-837S.
Rodas, A.M., Ferrer, S., Pardo, I., 2003. 16S-ARDRA, a tool for identification of lactic
acid bacteria isolated from grape must and wine. Syst. Appl. Microbiol., 26, 412-422.
138
Rodriguez, H., Curiel, J.A., Landete, J.M., de las Rivas, B., de Felipe, F.L., GomezCordoves, C., Mancheno, J.M., Munoz, R., 2009. Food phenolics and lactic acid
bacteria. Int. J. Food Microbiol., 132, 79-90.
Rodriguez, N., Salgado, J.M., Cortes, S., Domínguez, J.M., 2012. Antimicrobial activity of
D-3-phenyllactic acid produced by fed-batch process against Salmonella enterica.
Food Control, 25, 274-284.
Rohini, R., Reddy, P.M., Shanker, K., Kanthaiah, K., Ravinder, V., Hu, A., 2011.
Synthesis of mono, Bis-2-(2-Arylideneaminophenyl) indole azomethines as potential
antimicrobial agents. Arch. Pharm. Res., 34, 1077-1084.
Rossetti, L., Giraffa, G., 2005. Rapid identification of dairy lactic acid bacteria by M13generated, RAPD-PCR fingerprint databases. J. Microbiol. Methods, 63, 135-144.
Ruas-Madiedo, P., Sanchez, B., Hidalgo- Cantabrana, C., Margolles, A., Laws, A., 2012.
Exopolysaccharides from lactic acid bacteria and Bifidobacteria. In: Hui, Y.H.,
Evranuz, E.O. (Eds.), Handbook of animal-based fermented food and beverage
technology. CRC press, Taylor and Francis Group, Florida.
Sabir, F., Beyatli, Y., Cokmus, C., Onal-Darilmaz, D., 2010. Assessment of potential
probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp.
strains isolated from Kefir. J. Food Sci., 75, M568-M573.
Sadasivam, S., Manickam, A., 2008. Biochemical methods. New Age International
Publishers Ltd., New Delhi.
Sajid, I., Shaaban, K.A., Hasnain, S., 2011. Identification, isolation and optimization of
antifungal metabolites from the Streptomyces malachitofuscus ctf9. Braz. J.
Microbiol., 42, 592-604.
Salminen, S., Wright, A., Morelli, L., Marteau, P., Brassart, D., de Vos, W.M., Fonden, R.,
Saxelin, M., Collins, K., Mogensen, G., Birkeland, S.-E., T., M.-S., 1998.
Demonstration of safety of probiotics: a review. Int. J. Food Microbiol., 44, 93–106.
Saluja, B., Gupta, A., Goel, R., 2011. Mechanism of arsenic resistance prevalent in
Bacillus species isolated from soil and ground water sources of India. Ekologija, 57,
155-161.
Samelis, J., Bleicher, A., Delbes-Paus, C., Kakouri, A., Neuhaus, K., Montel, M.-C., 2011.
FTIR-based polyphasic identification of lactic acid bacteria isolated from traditional
Greek Graviera cheese. Food Microbiol., 28, 76-83.
Samyn, B., Martinez-Bueno, M., Devreese, B., Maqueda, M., Galvez, A., Valdivia, E.,
Coyette, J., van Beeumen, J., 1994. The cyclic structure of the enterococcal peptide
antibiotic AS-48. FEBS Letters, 352, 87-90.
Santos, M.M., Piccirillo, C., Castro, P.M.L., Kalogerakis, N., Pintado, M.E., 2012.
Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J
Microbiol Biotechnol, 28, 2435-2440.
Savage, D.C., 1992. Growth phase, cellular hydrophobicity, and adhesion in vitro of
lactobacilli colonizing the keratinizing gastric epithelium in the mouse. Appl. Environ.
Microbiol., 58, 1992-1995.
Sawa, N., Zendo, T., Kiyofuji, J., Fujita, K., Himeno, K., Nakayama, J., Sonomoto, K.,
2009. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin
produced by Lactococcus sp. strain QU 12. Appl. Environ. Microbiol., 75, 1552-1558.
Sawale, S.D., Lele, S.S., 2010. Statistical optimization of media for dextran production by
Leuconostoc sp., isolated from fermented Idli batter. Food Sci. Biotechnol., 19, 471478.
139
Schagger, H., von Jagow, G., 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel
electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal.
Biochem., 166, 368-379.
Schell, M.A., M., K., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M.C., Desiere,
F., Bork, P., Delley, M., Pridmore, R.D., Arigoni, F., 2002. The genome sequence of
Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract.
Proc. Natl. Acad. Sci., 99, 14422-14427.
Schillinger, U., Geisen, R., Holzapfel, W.H., 1996. Potential of antagonistic
microorganisms and bacteriocins for the biological preservation of foods. Trends Food
Sci. Technol., 7, 158-164.
Sekar, S., Mariappan, S., 2008. Traditionally fermented biomedicines, arishtas and asavas
from Ayurveda. Indian Journal of Traditional Knowledge, 7, 548-556.
Shang, N., Xu, R., Li, P., 2013. Structure characterization of an exopolysaccharide
produced by Bifidobacterium animalis RH. Carbohydr. Polym., 91, 128-134.
Shibata, K., Flores, D.M., Kobayashi, G., Sonomoto, K., 2007. Direct l-lacticacid
fermentation with sago starch by a novel amylolytic lacticacidbacterium, Enterococcus
faecium. Enzyme Microb. Technol., 41, 149-155.
Shimada, Y., Takahashi, M., Miyazawa, N., Abiru, Y., Uchiyama, S., Hishigaki, H., 2012.
Identification of a novel dihydrodaidzein racemase essential for biosynthesis of equol
from daidzein in Lactococcus sp. strain 20-92. Appl Environ Microbiol, 78, 49024907.
Shin, M.S., Han, S., K, , Ryu, J.S., Kim, K.S., Lee, W.K., 2008. Isolation and partial
characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated
from Kimchi. J. Appl. Microbiol., 105, 331-339.
Sica, M.G., Brugnoni, L.I., Marucci, P.L., Cubitto, M.A., 2012. Characterization of
probiotic properties of lactic acid bacteria isolated from an estuarine environment for
application in rainbow trout (Oncorhynchus mykiss, Walbaum) farming. Antonie van
Leeuwenhoek, 101, 869-879.
Silkin, L., Hamza, S., Kaufman, S., Cobb, S.L., Vederas, J.C., 2008. Spermicidal
bacteriocins: lacticin 3147 and subtilosin A. Bioorg. Med. Chem. Lett., 18, 3103-3106.
Silva, M., Jacobus, N.V., Deneke, C., Gorbachl, S.L., 1987. Antimicrobial substance from
a human Lactobacillus strain. Antimicrob. Agents Chemother., 31, 1231-1233.
Singh, N., Kumar, D., Sahu, A.P., 2007. Arsenic in the environment: effects on human
health and possible prevention. J. Environ. Biol., 28, 359-365.
Sjogren, J., Magnusson, J., Broberg, A., Schnurer, J., Kenne, L., 2003. Antifungal 3hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ.
Microbiol., 69, 7554-7557.
Smaoui, S., Elleuch, L., Bejar, W., Karray-Rebai, I., Ayadi, I., Jaouadi, B., Mathieu, F.,
Chouayekh, H., Bejar, S., Mellouli, L., 2010. Inhibition of fungi and Gram-negative
bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635.
Appl. Biochem. Biotechnol., 162, 1132-1146.
Soden, D.M., O’Callaghan, J., Dobson, A.D.W., 2002. Molecular cloning of a laccase
isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia
pastoris host. Microbiology, 148, 4003–4014.
Sokol, P.A., Ohman, D.E., Iglewski, B.H., 1979. A more sensitive plate assay for detection
of protease production by Pseudomonas aeruginosa. J. Clin. Microbiol., 9, 538-540.
Soni, S.K., Sandhu, D.K., 1990. Indian fermented foods: microbiological and biochemical
aspects. Indian J. Microbiol., 30, 135-157.
140
Soni, S.K., Sandhu, D.K., 1991. Role of yeast domination in Indian idli batter
fermentation. World J. Microbiol. Biotechnol., 7, 505-507.
Soni, S.K., Sandhu, D.K., Vilkhu, K.S., 1986. Microbiological studies on dosa
fermentation. Food Microbiol., 3, 45-53.
Srinivasan, R., Kumawat, D.K., Kumar, S., Saxena, A.K., 2012. Purification and
characterization of a bacteriocin from Lactobacillus rhamnosus L34. Ann. Microbiol.,
DOI 10.1007/s13213-012-0486-8.
St-Onge, M.P., Farnworth, E.R., Jones, P.J., 2000. Consumption of fermented and
nonfermented dairy products: Effects on cholesterol concentrations and metabolism.
Am. J. Clin. Nutr., 71, 674-681.
Sujaya, I.N., Amachi, S., Yokota, A., Asano, K., Tomita, F., 2001. Identification and
characterization of lactic acid bacteria in ragi tape. World J. Microbiol. Biotechnol.,
17, 349-357.
Sutyak, K.E., Anderson, R.A., Dover, S.E., Feathergill, K.A., Aroutcheva, A.A., Faro, S.,
Chikindas, M.L., 2008a. Spermicidal activity of the safe natural antimicrobial peptide
subtilosin. Infect. Diseases Obstet. Gynecol., doi:10.1155/2008/540758.
Sutyak, K.E., Wirawan, R.E., Aroutcheva, A.A., Chikindas, M.L., 2008b. Isolation of the
Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived
Bacillus amyloliquefaciens. J. Appl. Microbiol., 104, 1067-1074.
Suwanjinda, D., Pala-or, K., Panbangred, W., 2009. Simultaneous detection of pediocin
gene and species differentiation between Pediococcus acidilactici and P. pentosaceus
in a one-step multiplex-overlapping PCR method. Food Biotechnol., 23, 179-189.
Swe, P.M., G.M., C., Tagg, J.R., Jack, R.W., 2009. Mode of action of dysgalacticin: a
large heat-labile bacteriocin. J. Antimicrob. Chemother., 63, 679-686.
Swe, P.M., Heng, N.C.K., Cook, G.M., Tagg, J.R., Jack, R.W., 2010. Identification of
DysI, the immunity factor of the streptococcal bacteriocin dysgalacticin. Appl.
Environ. Microbiol., 76, 7885-7889.
Tankovic, J., Leclercq, R., Duval, J., 1993. Antimicrobial Susceptibility of Pediococcus
spp. and genetic basis of macrolide resistance in Pediococcus acidilactici HM3020.
Antimicrob. Agents Chemother., 37, 789-792.
Teather, R.M., Wood, P.J., 1982. Use of congo red-polysaccharide interactions in
enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl.
Environ. Microbiol., 43, 777-780.
Teemu, H., Seppo, S., Jussi, M., Raija, T., Kalle, L., 2008. Reversible surface binding of
cadmium and lead by lactic acid and bifidobacteria. Int. J. Food Microbiol., 125, 170175.
Temmerman, R., Pot, B., Huys, G., Swings, J., 2003. Identification and antibiotic
susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol., 81,
1-10.
Tiwari, S.K., Srivastava, S., 2008. Statistical optimization of culture components for
enhanced bacteriocin production by Lactobacillus plantarum LR/14. Food
Biotechnol., 22, 64-77.
Todorov, S.D., 2010. Diversity of bacteriocinogenic lactic acid bacteria isolated from boza,
a cereal-based fermented beverage from Bulgaria. Food Control, 21, 1011–1021.
Todorov, S.D., Botes, M., Danova, S.T., Dicks, L.M.T., 2007. Probiotic properties of
Lactococcus lactis ssp. lactis HV219, isolated from human vaginal secretions. J. Appl.
Microbiol., 103, 629-639.
141
Todorov, S.D., Dicks, L.M.T., 2005a. Characterization of bacteriocins produced by lactic
acid bacteria isolated from spoiled black olives. J. Basic Microbiol., 45, 312-322.
Todorov, S.D., Dicks, L.M.T., 2005b. Effect of growth medium on bacteriocin production
by Lactobacillus plantarum ST194BZ, a strain isolated from boza. Food Technol.
Biotechnol., 43, 165-173.
Todorov, S.D., Dicks, L.M.T., 2005c. Pediocin ST18, an anti-listerial bacteriocin produced
by Pediococcus pentosaceus ST18 isolated from boza, a traditional cereal beverage
from Bulgaria. Process Biochem., 41, 11-19.
Todorov, S.D., Dicks, L.M.T., 2009. Bacteriocin production by Pediococcus pentosaceus
isolated from marula (Scerocarya birrea). Int. J. Food Microbiol., 132, 117-126.
Todorov, S.D., Wachsman, M., Tome, E., Dousset, X., Destro, M.T., Dicks, L.M.T., de
Melo Franco, B.D.G., Vaz-Velho, M., Drider, D., 2010. Characterisation of an
antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food
Microbiol., 27, 869-879.
Topping, D.L., Clifton, P.M., 2001. Short chain fatty acids and human colonic function:
Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev., 81, 1031-1064.
Torriani, S., Felis, G.E., Dellaglio, F., 2001. Differentiation of Lactobacillus plantarum,
Lactobacillus pentosus, and Lactobacillus paraplantarum by recA gene sequence
analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ.
Microbiol., 67, 3450-3454.
van Belkum, M.J., Martin-Visscher, L.A., Vederas, J.C., 2011. Structure and genetics of
circular bacteriocins. Trends Microbiol., 19, 411-418.
Van Reenen, C.A., Dicks, L.M.T., 1996. Evaluation of numerical analysis of random
amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus
plantarum and Lactobacillus pentosus. Curr. Microbiol., 32, 183-187.
Vancanneyt, M., Zamfir, M., De Wachter, M., Cleenwerck, I., Hoste, B., Rossi, F.,
Dellaglio, F., De Vuyst, L., Swings, J., 2006. Reclassification of Leuconostoc
argentinum as a later synonym of Leuconostoc lactis. Int. J. Syst. Evol. Microbiol., 56,
213-216.
Vaquero, I., Marcobal, A., Munoz, R., 2004. Tannase activity by lactic acid bacteria
isolated from grape must and wine. Int. J. Food Microbiol. , 96, 199-204.
Vasiljevic, T., Jelen, P., 2001. Production of beta-galactosidase for lactose hydrolysis in
milk and dairy products using thermophilic lactic acid bacteria. Innovative Food Sci.
Emerg. Technol., 2, 75-85.
Vijayendra, S.V.N., Rajashree, K., Halami, P.M., 2010. Characterization of a heat stable
anti-listerial bacteriocin produced by vancomycin sensitive Enterococcus faecium
isolated from idli batter. Indian J. Microbiol., 50, 243-246.
Villarante, K.I., Elegado, F.B., Iwatani, S., Zendo, T., Sonomoto, K., de Guzman, E.E.,
2011. Purification, characterization and in vitro cytotoxicity of the bacteriocin from
Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and
human cervical carcinoma (HeLa) cells. World J. Microbiol. Biotechnol., 27, 975-980.
Vinderola, C.G., Reinheimer, J.A., 2003. Lactic acid starter and probiotic bacteria: a
comparative ‘‘in vitro’’ study of probiotic characteristics and biological barrier
resistance. Food Res. Int., 36, 895-904.
von Mollendorff, J.W., Todorov, S.D., Dicks, L.M.T., 2006. Comparison of bacteriocins
produced by lactic acid bacteria isolated from Boza, a cereal based fermented
beverage from the Balkan peninsula. Curr. Microbiol., 52, 209-216.
142
Wang, H., Yan, Y., Wang, J., Zhang, H., Qi, W., 2012. Production and characterization of
antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS ONE,
7, doi:10.1371/journal.pone.0029452.
Wang, J., Fung, D.Y.C., 1996. Alkaline-fermented foods: A review with emphasis on
Pidan fermentation. Crit. Rev. Microbiol., 22, 101-138.
Wang, Y.-C., Yu, R.-C., Chou, C.-C., 2006. Antioxidative activities of soymilkfermented
with lactic acid bacteria and bifidobacteria. Food Microbiol., 23, 128-135.
WHO, 2011. Guidelines for drinking-water quality. World Health Organization, Geneva.
Wolf, C.E., Gibbons, W.R., 1996. Improved method for quantification of the bacteriocin
nisin. J. Appl. Microbiol., 80, 453-457.
Wu, S.-C., Su, Y.-S., Cheng, H.-Y., 2011. Antioxidant properties of Lactobacillusfermented and non-fermented Graptopetalum paraguayense E. Walther at different
stages of maturity. Food Chem., 129, 804-809.
Yang, Z., Suomalainen, T., Mayra-Makinen, A., Huttunen, E., 1997. Antimicrobial activity
of 2-pyrrolidone-5-carboxylic acid produced by lactic acid bacteria. J. Food Prot., 60,
786-790.
Ye, S., Liu, F., Wang, J., Wang, H., Zhang, M., 2012. Antioxidant activities of an
exopolysaccharide isolated and purified from marine Pseudomonas PF6. Carbohydr.
Polym., 87, 764-770.
Yoon, J.H., Kang, S.S., Mheen, T.I., Ahn, J.S., Lee, H.J., Kim, T.K., Park, C.S., Kho,
Y.H., Kang, K.H., Park, Y.H., 2000. Lactobacillus kimchii sp nov., a new species from
kimchi. Int. J. Syst. Evol. Microbiol., 50.
Yu, J., Wang, W.H., Menghe, B.L., Jiri, M.T., Wang, H.M., Liu, W.J., Bao, Q.H., Lu, Q.,
Zhang, J.C., Wang, F., Xu, H.Y., Sun, T.S., Zhang, H.P., 2011. Diversity of lactic acid
bacteria associated with traditional fermented dairy products in Mongolia. J. Dairy
Sci., 94, 3229-3241.
Zavaleta, A.I., Martinez-Murcia, A.J., Rodriguez-Valera, F., 1996. 16S-23S rDNA
intergenic sequences indicate that Leuconostoc oenos is phylogenetically
homogeneous. Microbiology, 142, 2105-2114.
Zinedine, A., Faid, M., Benlemlih, M., 2005. In vitro reduction of aflatoxin B1 by strains
of lactic acid bacteria isolated from Moroccan sourdough bread. Int. J. Agri. Biol., 7,
67-70.
Zouhir, A., Hammami, R., Fliss, I., Hamida, J.B., 2010. A new structure-based
classification of gram-positive bacteriocins. Protein J., 29, 432-439.
143