REFERENCE Abo-Amer, A.E., 2011. Optimization of bacteriocin production by Lactobacillus acidophilus AA11, a strain isolated from Egyptian cheese. Ann. Microbiol., 61, 445452. Abrams, D., Barbosa, J., Albano, H., Silva, J., Gibbs, P.A., Teixeira, P., 2011. Characterization of bacPPK34 a bacteriocin produced by Pediococcus pentosaceus strain K34 isolated from “Alheira”. Food Control, 22, 940-946. Adebayo, C.O., Aderiye, B.I., 2010. Antifungal activity of bacteriocins of lactic acid bacteria from some Nigerian fermented foods. Res. J. Microbiol., 5, 1070-1082. Agrawal, R., Rati, E.R., Vijayendra, S.V.N., Varadaraj, M.C., Prasad, M.S., Nand, K., 2000. Flavour profile of idli batter prepared from defined microbial starter cultures. World J. Microbiol. Biotechnol., 16, 687-690. Ahmed, R.Z., Siddiqui, K., Arman, M., Ahmed, N., 2012. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr. Polym., 90, 441-446. Aksornchu, P., Prasertsan, P., Sobhon, V., 2008. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil. Songklanakarin J. Sci. Technol., 30, 95-102. Albano, H., Todorov, S.D., van Reenen, C.A., Hogg, T., Dicks, L.M.T., Teixeira, P., 2007. Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. Int. J. Food Microbiol., 116, 239-247. Albesharat, R., Ehrmann, M.A., Korakli, M., Yazaji, S., Vogel, R.F., 2011. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst. Appl. Microbiol., 34, 148-155. Anastasio, M., Pepe, O., Cirillo, T., Palomba, S., Blaiotta, G., Villani, F., 2010. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation. J. Food Sci. , 75, M28-M35. Ankolekar, C., Johnson, K., Pinto, M., Johnson, D., Labbe, R.G., Greene, D., Shetty, K., 2011. Fermentation of whole apple auice using Lactobacillus acidophilus for potential dietary management of hyperglycemia, hypertension, and modulation of beneficial bacterial responses. J Food Biochem, DOI: 10.1111/j.1745-4514.2011.00596.x. Aragozzini, F., Ferrari, A., Pacini, N., Gualandris, R., 1979. Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterium spp. Appl. Environ. Microbiol., 38, 544-546. Aranha, C., Gupta, S., Reddy, K.V.R., 2004. Contraceptive efficacy of antimicrobial peptide Nisin: in vitro and in vivo studies. Contraception, 69, 333-338. Aslim, B., Onal, D., Beyatli, Y., 2007. Factors influencing autoaggregation and aggregation of Lactobacillus delbrueckii subsp. bulgaricus isolated from handmade yogurt. J. Food Prot., 70, 223-227. Audisio, M.C., Torres, M.J., Sabate, D.C., Ibarguren, C., Apella, M.C., 2011. Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol. Res., 166, 1-13. Badarinath, V., Halami, P.M., 2009. Evaluation of bacteriocinogenic lactic acid bacteria isolated from fermented milk and idli batter for probiotic applications. Int. J. Probiotics Prebiotics, 4, 33-40. Badel, S., Bernardi, T., Michaud, P., 2012. New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv., 29, 54-66. 128 Balasubramanian, S., Viswanathan, R., 2007. Properties of idli batter during its fermentation time. J. Food Process Preserv., 31, 32-40. Bao, Q.H., Liu, W.J., Yu, J., Wang, W.H., Qing, M.J., Chen, X., Wang, F., Zhang, J.C., Zhang, W.Y., Qiao, J.M., Sun, T.S., Zhang, H.P., 2012. Isolation and identification of cultivable lactic acid bacteria in traditional yak milk products of Gansu Province in China. J. Gen. Appl. Microbiol., 58, 95-105. Barreau, C., Wagener, G., 1990. Characterization of Leuconostoc lactis strains from human sources. J. Clin. Microbiol., 28, 1728-1733. Barros, R.R., Carvalho, M.D.G.S., Peralta, J.M., Facklam, R.R., Teixeira, L.M., 2001. Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J. Clin. Microbiol., 39, 1241-1246. Begley, M., Hill, C., Gahan, C.G.M., 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol., 72, 1729-1738. Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K., 2010. Isolation and probiotic characterization of arsenic-resistant lactic acid bacteria for uptaking arsenic. Int. J. Chem. Biol. Eng., 3, 167-174. Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K., Wei, M.Q., 2012. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J. Appl. Microbiol., 112, 1193–1206. Bhunia, A.K., Johnson, M.C., Ray, B., 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulphatepolyacrylamide gel electrophoresis. J. Ind. Microbiol., 2, 319-322. Bhunia, A.K., Johnson, M.C., Ray, B., Kalchayanand, N., 1991. Mode of action of pediocin AcH from Pedicoccus acidilactici H on sensitive bacterial strains. J. Appl. Bacteriol., 70, 25-33. Bokulich, N.A., Mills, D.A., 2012. Differentiation of mixed lactic acid bacteria communities in beverage fermentations using targeted terminal restriction fragment length polymorphism. Food Microbiol., 31, 126-132. Boris, S., Suarez, J.E., Barbes, C., 1997. Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J. Appl. Microbiol., 83, 413-420. Bourouni, O.C., El Bour, M., Calo-Mata, P., Mraouna, R., Abedellatif, B., BarrosVelazquez, J., 2012. Phylogenetic analysis of antimicrobial lactic acid bacteria from farmed seabass Dicentrarchus labrax. Can. J. Microbiol., 58, 463-474. Brauman, A., Keleke, S., Malonga, M., Miambi, E., Ampe, F., 1996. Microbiological and biochemical characterization of Cassava retting, a traditional lactic acid fermentation for Foo-Foo (cassava flour) production. Appl. Environ. Microbiol., 62, 2864-2858. Breitmaier, E., 2002. Structure Elucidation by NMR in Inorganic Chemistry: A practical Guide. 3rd ed. John Wiley & Sons Ltd, England. Broberg, A., Jacobsson, K., Strom, K., Schnurer, J., 2007. Metabolite profiles of lactic acid bacteria in grass silage. Appl. Environ. Microbiol., 73, 5547–5552. Brown, R.L., Chen, Z.-Y., Cleveland, T.E., Cotty, P.J., Cary, J.W., 2001. Variation in in vitro alpha-amylase and protease activity is related to the virulence of Aspergillus flavus isolates. J. Food. Protect., 64, 401-404. Burianek, L.L., Yousef, A.E., 2000. Solvent extraction of bacteriocins from liquid cultures. Lett. Appl. Microbiol., 31, 193-197. Bustos, A.Y., Saavedra, L., de Valdez, G.F., Raya, R.R., Taranto, M.P., 2012. Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria. Biotechnol. Lett., 34, 1511-1518. 129 Carbonnelle, D., Muriel Duflos, Marchand, P., Chauvet, C., Petit, J.-Y., Lang, F., 2009. A novel indole-3-propanamide exerts its immunosuppressive activity by inhibiting JAK3 in T Cells. J. Pharmacol. Exp. Ther., 331, 710-716. Carr, F.J., Chill, D., Maida, N., 2002. The lactic acid bacteria: A literature survey. Crit. Rev. Microbiol., 28, 281-370. Chakravorty, S., Helb, D., Burday, M., Connell, N., Alland, D., 2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods, 69, 330-339. Chen, Y.-s., Wu, H.-c., Yanagida, F., 2010. Isolation and characteristics of lactic acid bacteria isolated from ripe mulberries in Taiwan. Braz. J. Microbiol., 41, 916-921. Chung, T.C., Axelsson, L., Lindgren, S.E., Dobrogosz, W.J., 1989. In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb. Ecol. Hlth. Dis., 2, 137-144. CLSI, 2011. Performance standards for antimicrobial susceptibility testing: Twenty-first informational supplement. No.: CLSI document M100-S21, Clinical and Laboratory Standards Institute, Pennsylvania, USA. Corsetti, A., Settanni, L., Lopez, C.C., Felis, G.E., Mastrangelo, M., Suzzi, G., 2007. A taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum) kernels and non-conventional flours. Syst. Appl. Microbiol., 30, 561-571. Cotter, P.D., Hill, C., Ross, R.P., 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol., 3, 777-788. Cummings, J.H., Macfarlane, G.T., 1997. Role of intestinal bacteria in nutrient metabolism. Clinical Nutrition., 16, 3-11. da Cunha, L.R., Ferreira, C.L.F., Durmaz, E., Goh, Y.J., Sanozky-Dawes, R., Klaenhammer, T., 2012. Characterization of Lactobacillus gasseri isolates from a breast-fed infant. Gut Microbes., 3, 15-24. Dabour, N., LaPointe, G., 2005. Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl. Environ. Microbiol., 71, 7414-7425. Daeschel, M.A., Klaenhammer, T.R., 1985. Association of a 13.6-Megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl. Environ. Microbiol., 50, 1538-1541. Dashkevicz, M.P., Feighner, S.D., 1989. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl. Environ. Microbiol., 55, 11-16. de Valdez, G.F., de Taranto, M.P., 2001. Probiotic properties of lactobacilli: Cholesterol reduction and bile salt hydrolase activity. In: Spencer, J.F.T., de Spencer, A.L.R. (Eds.), Food Microbiology Protocols. Humana Press, New Jersey, pp. 173-182. Degeest, B., Vaningelgem, F., De Vuyst, L., 2001. Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria. Int. Dairy. J., 11, 747-757. Desai, K.M., Akolkar, S.K., Badhe, Y.P., Tambe, S.S., Lele, S.S., 2006. Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques. Process Biochem., 41, 1842-1848. Dicks, L.M.T., Heunis, T.D.J., van Staden, D.A., Brand, A., Sutyak Noll, K., Chikindas, M.L., 2011. Medical and personal care applications of bacteriocins produced by lactic acid bacteria. In: Drider, D., Rebuffat, S. (Eds.), Prokaryotic antimicrobial peptides: From genes to applications. Springer, New York. 130 Ding, Y.-Z., Zhang, S.-Y., Liu, P., Yuan, W., Liang, J.-Y., Zhao, Z., Zhang, Y.-D., 2009. Microbiological and biochemical changes during processing of the traditional chinese food douzhi. Food control, 20, 1086-1091. Dominguez, A., Bizani, D., Cladera-Olivera, F., Brandelli, A., 2007. Cerein 8A production in soybean protein using response surface methodology. Biochem. Eng. J., 35, 238– 243. Donohue, D.C., 2004. Safety of novel probiotic bacteria. 3rd ed. In: Salminen, S., von Wright, A., Ouwehand, A. (Eds.), Lactic Acid Bacteria: Microbiological and Functional Aspects. Marcel Dekker, Inc., New York, pp. 531-546. Dordevic, T.M., Siler-Marinkovic, S.S., Dimitrijevic-Brankovic, S.I., 2010. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem, 119, 957-963. Duckstein, S.M., Lorenz, P., Stintzing, F.C., 2012. Conversion of phenolic constituents in aqueous Hamamelis virginiana leaf extracts during fermentation. Phytochem Anal, DOI 10.1002/pca.2359. Dunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E.M.M., O’Sullivan, G.C., Shanahan, F., Kevin, J., 1999. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek, 76, 279-292. Duskova, M., Sedo, O., Ksicova, K., Zdrahal, Z., Karpiskova, R., 2012. Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. Int. J. Food Microbiol., 159, 107-114. Ehmann, A., 1977. The van Urk-Salkowski reagent - A sensitive and specific chromogenic reagent for slica gel thin-layer chromatographic detection and identification of indole derivatives. J. Chromatogr., 1332, 267-276. El-Ziney, M.G., Debevere, J.M., Jakobsen, M., 2000. Reuterin. In: Naidu, A.S. (Ed.) Natural food antimicrobial systems. CRC Press LLC, Florida. Ennahar, S., Sashihara, T., Sonomoto, K., Ishizaki, A., 2000. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev., 24, 85-106. FAO/WHO, 2002. Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization, USA, London Ontario, Canada. Farnworth, E.R., Champagne, C.P., Van Calsteren, M.-R., 2007. Exopolysaccharides from lactic acid bacteria: Food uses, production, chemical structures, and health effects. In: Wildman, R.E.C. (Ed.) Handbook of Nutraceuticals and Functional Foods. CRC Press, Taylor and Francis Group, Florida. Fluhe, L., Knappe, T.A., Gattner, M.J., Schafer, A., Burghaus, O., Linne, U., Marahiel, M.A., 2012. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat. Chem. Biol., 8, 350-357. Fuller, R., 1989. Probiotics in man and animals. A review. J. Appl. Bacteriol., 66. Ganzle, M.G., Zhang, C., Monang, B.-S., Lee, V., Schwab, C., 2009. Novel metabolites from cereal-associated lactobacilli – Novel functionalities for cereal products? Food Microbiol., 26, 712-719. Gao, Y., Li, D., Liu, S., Liu, Y., 2012. Probiotic potential of L. sake C2 isolated from traditional Chinese fermented cabbage. Eur. Food Res. Technol., 234, 45-51. Gao, Y., Li, D., Sheng, Y., Liu, X., 2011. Mode of action of sakacin C2 against Escherichia coli. Food Control, 22, 657-661. 131 Gashe, B.A., 1985. Involvement of lactic acid bacteria in the fermentation of TEF (Eragrosfis tef), an Ethiopian fermented food. J Food Sci, 50, 800-801. Ghosh, D., Chattopadhyay, P., 2011. Preparation of idli batter, its properties and nutritional improvement during fermentation. J. Food Sci. Technol., 48, 610-615. Gobbetti, M., 1998. The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends Food Sci Technol, 8, 267–274. Goldin, B.R., 2011. Probiotics and health: From fhstory to future. In: Kneifel, W., Salminen, S. (Eds.), Probiotics and Health Claims. John Wiley & Sons Ltd, West Sessex, UK. Goldin, B.R., Gorbach, S.L., Saxelin, M., Barakat, S., Gualtieri, L., Salminen, S., 1992. Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig. Dis. Sci., 37, 121–128. Gonzalez-Arenzana, L., Lopez, R., Santamaria, P., Tenorio, C., Lopez-Alfaro, I., 2012. Dynamics of indigenous lactic acid bacteria populations in wine fermentations from La Rioja (Spain) during three vintages. Microb. Ecol., 63, 12-19. Gori, K., Ryssel, M., Arneborg, N., Jespersen, L., 2012. Isolation and identification of the microbiota of Danish farmhouse and industrially produced surface-ripened cheeses. Microb. Ecol., DOI: 10.1007/s00248-012-0138-3. Gornall, A.G., Bardawill, C.J., David, M.M., 1949. Determination of serum proteins by means of the Biuret reaction. J. Biol. Chem. , 177, 751-766. Halami, P.M., Badarinath, V., Devi, S.M., Vijayendra, S.V.N., 2011. Partial characterization of heat-stable, antilisterial and cell lytic bacteriocin of Pediococcus pentosaceus CFR SIII isolated from a vegetable source. Ann. Microbiol., 61, 323-330. Halttunen, T., Finell, M., Salminen, S., 2007a. Arsenic removal by native and chemically modified lactic acid bacteria. Int. J. Food Microbiol., 120, 173-178. Halttunen, T., Salminen, S., Tahvonen, R., 2007b. Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int. J. Food Microbiol., 114, 30-35. Han, H., Takase, S., Nishino, N., 2012. Survival of silage lactic acid bacteria in the goat gastrointestinal tract as determined by denaturing gradient gel electrophoresis. Lett. Appl. Microbiol., 55, 384-389. Harrington, L.K., Mayberry, J.F., 2008. A re-appraisal of lactose intolerance. Int. J. Clin. Pract., 62, 1541–1546. Haskard, C.A., El-Nezami, H.S., Kankaanpaa, P.E., Salminen, S., Ahokas, J.T., 2001. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microbiol., 67, 3086-3091. Hata, T., Tanaka, R., Ohmomo, S., 2010. Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. Int. J. Food Microbiol., 137, 94-99. Heng, N.C.K., Wescombe, P.A., Burton, J.P., Jack, R.W., Tagg, J.R., 2007. The diversity of bacteriocins in Gram-positive bacteria. In: Riley, M.A., Chavan, M.A. (Eds.), Bacteriocins: ecology and evolution. Springer, Berlin. Holzapfel, W.H., Bjorkroth, J.A., Dicks, L.M.T., 2009a. Leuconostoc. In: De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., Whitman, W.B. (Eds.), Bergey’s Manual of Systematic Bacteriology Springer, New York, pp. 624-635. Holzapfel, W.H., Franz, C.M.A.P., Ludwig, W., Dicks, L.M.T., 2009b. Pediococcus. 2nd ed. In: De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., 132 Schleifer, K.-H., Whitman, W.B. (Eds.), Bergey’s Manual of Systematic Bacteriology Springer New York, pp. 513-520. Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S., Rastall, R.A., 2012. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr. Polym., 87, 846-852. Hubert, J., Berger, M., Nepveu, F., Paul, F., Dayde, J., 2008. Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem., 109, 709-721. Hughes, S.A., Shewry, P.R., Gibson, G.R., McCleary, B.V., Rastall, R.A., 2008. In vitro fermentation of oat and barley derived beta-glucans by human faecal microbiota. FEMS Microbiol. Ecol., 64, 482-493. Hummel, A.S., Hertel, C., Holzapfel, W.H., Franz, C.M.A.P., 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol., 73, 730-739. Hutkins, R.W., 2006. Microbiology and technology of fermented foods. 1 st ed. Blackwell Publishing, USA. ICMR-DBT, 2011. Guidelines for evaluation of probiotics in food. Indian Council of Medical Research, India, New Delhi. Iyer, B.K., Singhal, R.S., Ananthanarayan, L., 2011. Characterization and in vitro probiotic evaluation of lactic acid bacteria isolated from idli batter. J. Food Sci. Technol., 10.1007/s13197-011-0445-6. Jamuna, M., Babusha, S.T., Jeevaratnam, K., 2005. Inhibitory efficacy of nisin and bacteriocins from Lactobacillus isolates against food spoilage and pathogenic organisms in model and food systems. Food Microbiol., 22, 449-454. Jamuna, M., Jeevaratnam, K., 2004a. Isolation and characterization of lactobacilli from some traditional fermented foods and evaluation of the bacteriocins. J. Gen. Appl. Microbiol., 50, 79-90. Jamuna, M., Jeevaratnam, K., 2004b. Isolation and partial characterization of bacteriocins from Pediococcus species. Appl. Microbiol. Biotechnol., 65, 433-439. Jeevaratnam, K., Jamuna, M., Bawa, A.S., 2005. Biological preservation of foods bacteriocins of lactic aicd bacteria. Indian J. Biotechnol., 4, 446-454. Jiang, J., Shi, B., Zhu, D., Cai, Q., Chen, Y., Li, J., Qi, K., Zhang, M., 2012. Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Control, 23, 338-344. Jolly, L., Vincent, S.J.F., Duboc, P., Neeser, J.-R., 2002. Exploiting exopolysaccharides from lactic acid bacteria. Antonie van Leeuwenhoek, 82, 367-374. Joshi, D.N., Patel, J.S., Flora, S.J.S., Kalia, K., 2008. Arsenic accumulation by Pseudomonas stutzeri and its response to some thiol chelators. Environ. Health. Prev. Med., 13, 257-263. Kanmani, P., Kumar, R.S., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V., 2011. Optimization of media components for enhanced production of Streptococcus phocae PI80 and its bacteriocin using response surface methodology. Braz. J. Microbiol., 42, 716-720. Kaur, S., Kamli, M.R., Ali, A., 2011. Role of arsenic and its resistance in nature. Can. J. Microbiol., 57, 769-774. Kawai, Y., Saito, T., Kitazawa, H., Itoh, T., 1998. Gassericin A; an uncommon cyclic bacteriocin produced by Lactobacillus gasseri LA39 linked at N- and C-terminal ends. Biosci. Biotechnol. Biochem., 62, 2438-2440. 133 Kawulka, K.E., Sprules, T., Diaper, C.M., Whittal, R.M., McKay, R.T., Mercier, P., Zuber, P., Vederas, J.C., 2004. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. Biochemistry, 43, 3385-3395. Kelly, W.J., Asmundson, R.V., Harrison, G.L., Huang, C.M., 1995. Differentiation of dextran-producing Leuconostoc strains from fermented rice cake (puto) using pulsedfield gel electrophoresis. Int. J. Food Microbiol., 26, 345-352. Kim, B., Lee, J., Jang, J., Kim, J., Han, H.G., 2003. Leuconostoc inhae sp nov., a lactic acid bacterium isolated from kimchi. Int. J. Syst. Evol. Microbiol., 53, 1123-1126. Kim, J., Chun, J., Han, H.U., 2000. Leuconostoc kimchii sp nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol., 50, 1915-1919. Klaenhammer, T.R., 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 12, 39-86. Knockaert, D., Raes, K., Wille, C., Struijsa, K., Van Camp, J., 2012. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides. J. Sci. Food Agric., 92, 2291-2296. Kodali, V.P., Sen, R., 2008. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol., 3, 245-251. Kumar, A.S., Mody, K., Jha, B., 2007. Bacterial exopolysaccharides – a perception. J. Basic Microbiol., 47, 103-117. Kumar, H., Rangrez, A.Y., Dayananda, K.M., Atre, A.N., Patole, M.S., Shouche, Y.S., 2011a. Lactobacillus plantarum (VR1) isolated from an Ayurvedic medicine (Kutajarista) ameliorates in vitro cellular damage caused by Aeromonas veronii. BMC Microbiol., 11, 152-162. Kumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., Chakraborty, C., Singh, B., Marotta, F., Jain, S., Yadav, H., 2012a. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp. Diabetes Res., DOI:10.1155/2012/902917. Kumar, R.S., Kanmani, P., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V., 2011b. Lactobacillus plantarum AS1 binds to cultured human intestinal cell line HT-29 and inhibits cell attachment by enterovirulent bacterium Vibrio parahaemolyticus. Lett. Appl. Microbiol., 53, 481-487. Kumar, R.S., Kanmani, P., Yuvaraj, N., Paari, K.A., Pattukumar, V., Thirunavukkarasu, C., Arul, V., 2012b. Lactobacillus plantarum AS1 isolated from South Indian fermented food Kallappam suppress 1,2-dimethyl hydrazine (DMH)-induced colorectal cancer in male Wistar rats. Appl. Biochem. Biotechnol., 166, 620-631. Kumar, S.R., Varman, D.R., Kanmani, P., Yuvaraj, N., Paari, K.A., Pattukumar, V., Arul, V., 2010. Isolation, characterization and identification of a potential probiont from South Indian fermented foods (Kallappam, Koozh and Mor Kuzhambu) and its use as biopreservative. Probiotics & Antimicro. Prot., 2, 145-151. Kumari, A., Akkoc, N., Akcelik, M., 2012. Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171. World J. Microbiol. Biotechnol., 28, 1647-1655. Lamprell, H., Mazerolles, G., Kodjo, A., Chamba, J.F., Noel, Y., Beuvier, E., 2006. Discrimination of Staphylococcus aureus strains from different species of Staphylococcus using Fourier transform infrared (FTIR) spectroscopy. Int. J. Food Microbiol., 108, 125-129. 134 Lebeer, S., Vanderleyden, J., De Keersmaecker, S., 2010. Adaptation factors of the probiotic Lactobacillus rhamnosus GG. Benef. Microbes, 1, 335-342. Lee, J.S., Lee, K.C., Ahn, J.S., Mheen, T.I., Pyun, Y.R., Park, Y.H., 2002. Weissella koreensis sp nov., isolated from kimchi. Int J Syst Evol Microbiol, 52, 1257-1261. Lee, Y.-K., Puong, K.-Y., Ouwehand, A.C., Salminen, S., 2003. Displacement of bacterial pathogens from mucus and Caco-2 cell surface lactobacilli. J. Med. Microbiol., 52, 925–930. Leisner, J.J., Pot, B., Christensen, H., Rusul, G., Olsen, J.E., Wee, B.W., Muhamad, K., Ghazali, H.M., 1999. Identification of lactic acid bacteria from Chili Bo, a Malaysian food ingredient. Appl. Environ. Microbiol., 65, 599–605. Li, H., Yan, L., Wang, J., Zhang, Q., Zhou, Q., Sun, T., Chen, W., Zhang, H., 2012. Fermentation characteristics of six probiotic strains in soymilk. Ann. Microbiol., DOI 10.1007/s13213-011-0401-8. Lim, S., Im, D., 2009. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol., 19, 178-186. Liu, C.-F., Tseng, K.-C., Chiang, S.-S., Lee, B.-H., Hsu, W.-H., Pan, T.-M., 2011a. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric., 91, 2284-2291. Liu, S.-n., Han, Y., Zhou, Z.-j., 2011b. Lactic acid bacteria in traditional fermented Chinese foods. Food Res. Int., 44, 643-651. Maina, N.H., Tenkanen, M., Maaheimo, H., Juvonen, R., Virkki, L., 2008. NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohydr. Res., 343, 1446-1455. Majumder, A., Singh, A., Goyal, A., 2008. Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydr. Polym., 75, 150-156. Martin-Visscher, L.A., Gong, X., Duszyk, M., Vederas, J.C., 2009. The three-dimensional structure of Carnocyclin A reveals that many circular bacteriocins share a common structural motif. J. Biol. Chem., 284, 28674-28681. Martin-Visscher, L.A., van Belkum, M.J., Garneau-Tsodikova, S., Whittal, R.M., Zheng, J., McMullen, L.M., Vederas, J.C., 2008. Isolation and characterization of carnocyclin a, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Appl. Environ. Microbiol., 74, 4756-4763. Masuda, Y., Ono, H., Kitagawa, H., Ito, H., Mu, F., Sawa, N., Zendo, T., Sonomoto, K., 2011. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl. Environ. Microbiol., 77, 8164-8170. Mathur, S., Singh, R., 2005. Antibiotic resistance in food lactic acid bacteria - a review. Int. J. Food Microbiol., 105, 281-295. Mathys, S., von Ah, U., Lacroix, C., Staub, E., Mini, R., Cereghetti, T., Meile, L., 2007. Detection of the pediocin gene pedA in strains from human faeces by real-time PCR and characterization of Pediococcus acidilactici UVA1. BMC Biotechnol., 7, 55. Matthews, A., Grimaldi, A., Walker, M., Bartowsky, E., Grbin, P., Jiranek, V., 2004. Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl. Environ. Microbiol., 70, 5715-5731. Mazzeo, M.F., Sorrentino, A., Gaita, M., Cacace, G., Di Stasio, M., Facchiano, A., Comi, G., Malorni, A., Siciliano, R.A., 2006. Matrix-assisted laser desorption ionization-time 135 of flight mass spectrometry for the discrimination of food-borne microorganisms. Appl. Environ. Microbiol., 72, 1180-1189. McDonald, L.C., McFeeters, R.F., Daeschel, M.A., Fleming, H.P., 1987. A differential medium for the enumeration of homofermentative and heterofermentative lactic acid bacteria. Appl. Environ. Microbiol., 53, 1382-1384. Meindl, K., Schmiederer, T., Schneider, K., Reicke, A., Butz, D., Keller, S., Guhring, H., Vertesy, L., Wink, J., Hoffmann, H., Bronstrup, M., Sheldrick, G.M., Sussmuth, R.D., 2010. Labyrinthopeptins: A new class of carbacyclic lantibiotics. Angew. Chem. Int. Ed., 49, 1151-1154. Millette, M., Luquet, F.-M., Ruiz, M.T., Lacroix, M., 2008. Characterization of probiotic properties of Lactobacillus strains. Dairy Sci. Technol., 88, 695-705. Mohania, D., Nagpal, R., Kumar, M., Bhardwaj, A., Yadav, M., Jain, S., Marotta, F., Singh, V., Parkash, O., Yadav, H., 2008. Molecular approaches for identification and characterization of lactic acid bacteria. J. Dig. Dis., 9, 190-198. Monachese, M., Burton, J.P., Reid, G., 2012. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl. Environ. Microbiol., 78, 6397-6404. Monteagudo-Mera, A., Rodriguez-Aparicio, L., Rua, J., Martinez-Blanco, H., Navasa, N., Garcia-Armesto, M.R., Ferrero, M.A., 2012. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J. Funct. Foods, 4, 531-541. Moraes, P.M., Perin, L.M., Ortolani, M.B.T., Yamazi, A.K., Vicosa, G.N., Nero, L.A., 2010. Protocols for the isolation and detection of lactic acid bacteria with bacteriocinogenic potential. LWT-Food Sci. Technol., 43, 1320-1324. Motlagh, A., Bukhtiyarova, M., Ray, B., 1994. Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Lett. Appl. Microbiol. , 6, 305-312. Mukherjee, S.K., Albury, M.N., Pederson, C.S., Van Veen, A.G., Steinkraus, K.H., 1965. Role of Leuconostoc mesenteroides in leavening the batter of Idli, a fermented food of India. Appl. Microbiol., 13, 227-231. Naidu, A.S., Bidlack, W.R., Clemens, R.A., 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr., 38, 13-126. Nel, H.A., Bauer, R., Vandamme, E.J., Dicks, L.M.T., 2001. Growth optimization of Pediococcus damnosus NCFB 1832 and the influence of pH and nutrients on the production of pediocin PD-1. J. Appl. Microbiol., 91, 1131-1138. Nieminen, T.T., Vihavainen, E., Paloranta, A., Lehto, J., Paulin, L., Auvinen, P., Solismaa, M., Bjorkroth, K.J., 2011. Characterization of psychrotrophic bacterial communities in modified atmosphere-packed meat with terminal restriction fragment length polymorphism. Int. J. Food Microbiol., 144, 360-366. Nigatu, A., Ahrne, S., Gashe, B.A., Molin, G., 1998. Randomly amplified polymorphic DNA )RAPD) for discrimination of Pediococcus pentosaceus and Ped. acidilactici and rapid grouping of Pediococcus isolates. Lett. Appl. Microbiol., 26, 412-416. Niku-Paavalo, M.L., Laitila, A., Mattila-Sandholm, T., Haikara, A., 1999. New type of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol., 86, 29-35. Nissen-Meyer, J., Rogne, P., Oppegard, C., Haugen, H.S., Kristiansen, P.E., 2009. Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr. Pharm. Biotechnol., 1, 19-37. 136 Olgen, S., Altanlar, N., Karatayli, E., Bozdayi, M., 2008. Antimicrobial and antiviral screening of novel indole carboxamide and propanamide derivatives. Z. Naturforsch., 63c, 189-195. Olympia, M., Fukuda, H., Ono, H., Kaneko, Y., Takano, M., 1995. Characterization of starch-hydrolyzing lactic acid bacteria isolated from a fermented fish and rice Food, “Burong Isda”, and its amylolytic enzyme. J. Ferment. Bioeng., 80, 124-130. Onda, T., Yanagida, F., Uchimura, T., Tsuji, M., Ogino, S., Shinohara, T., Yokotsuka, K., 2002. Widespread distribution of the bacteriocin-producing lactic acid cocci in Misopaste products. J. Appl. Microbiol., 92, 695±705. Osmanagaoglu, O., Kiran, F., Ataoglu, H., 2010. Evaluation of in vitro probiotic potential of Pediococcus pentosaceus OZF isolated from human breast milk. Probiotics Antimicrob. Proteins, 2, 162-174. Ou, C.C., Lin, S.L., Tsai, J.J., Lin, M.Y., 2011. Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization. J. Food Sci., 76, M260-M267. Ou, S., Kwok, K.-C., 2004. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric., 84, 1261-1269. Oupathumpanont, O., Chantarapanont, W., Suwonsichon, T., Haruthaithanasan, V., Chompreeda, P., 2009. Screening lactic acid bacteria for improving the Kanom-jeen process. Kasetsart J. (Nat. Sci.), 43, 557 - 565. Ouwehand, A.C., Vesterlund, S., 2004. Antimicrobial components from lactic acid bacteria. 3rd ed. In: Salminen, S., von Wright, A., Ouwehand, A. (Eds.), Lactic Acid Bacteria: Microbiological and Functional Aspects. Marcel Dekker Inc., New York. Pal, A., Ramana, K.V., Bawa, A.S., 2010. Simplification and optimization of deMan Rogosa Sharpe (MRS) medium for enhanced production of bacteriocin by Weissella paramesenteroides DFR-8. J. Food Sci. Technol., 47, 258-265. Palomba, S., Cavella, S., Torrieri, E., Piccolo, A., Mazzei, P., Blaiotta, G., Ventorino, V., Pepe, O., 2012. Polyphasic screening, homopolysaccharide composition, and viscoelastic behavior of wheat sourdough from a Leuconostoc lactis and Lactobacillus curvatus exopolysaccharide-producing starter culture. Appl. Environ. Microbiol., 78, 2737-2747. Papagianni, M., Anastasiadou, S., 2009. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microb. Cell Fact., 2009, 3-18. Parente, E., Brienza, C., Moles, M., Ricciardi, A., 1995. A comparison of methods for the measurement of bacteriocin activity. J. Microbiol. Methods., 22, 95-108. Patel, A.K., Singhania, R.R., Pandey, A., Chincholkar, S.B., 2010. Probiotic bile salt hydrolase: current developments and perspectives. Appl. Biochem. Biotechnol., 162, 166-190. Patel, S., Majumder, A., Goyal, A., 2012. Potentials of exopolysaccharides from lactic acid bacteria. Indian J. Microbiol., 52, 3-12. Paulo, E.M., Boffo, E.F., Branco, A., Valente, A.M.M.P., Melo, I.S., Ferreira, A.G., Roque, M.R.A., de Assis, S.A., 2012. Production, extraction and characterization of exopolysaccharides produced by the native Leuconostoc pseudomesenteroides R2 strain. An. Acad. Bras. Cienc., 84, 495-507. Petrova, P.M., Petrov, K.K., 2011. Antimicrobial activity of starch-egrading Lactobacillus strains isolated from Boza. Biotechnol. & Biotechnol. Eq., 25, 114-116. 137 Petry, S., Furlan, S., Crepeau, M.-J., Cerning, J., Desmazeaud, M., 2000. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol., 66, 3427-3431. Petushkova, J.P., Lyalikov, N.N., 1986. Microbiological degradation of lead-containing pigments in mural paintings. Stud. Conserv., 31, 65-69. Pingitore, E.V., Salvucci, E., Sesma, F., Nader-Macias, M.E., 2007. Different strategies for purification of antimicrobial peptides from lactic acid bacteria (LAB). In: MendezVilas, A. (Ed.) Communicating current research and educational topics and trends in applied microbiology. Formatex, Spain, pp. 557-568. Preetha, R., Jayaprakash, N.S., Philip, R., Bright Singh, I.S., 2007. Optimization of medium for the production of a novel aquaculture probiotic, Micrococcus MCCB 104 using central composite design. Biotechnol. Bioprocess Eng., 12, 548-555. Pringsulaka, O., Thongngam, N., Suwannasai, N., Atthakor, W., Pothivejkul, K., Rangsiruji, A., 2012. Partial characterisation of bacteriocins produced by lactic acid bacteria isolated from Thai fermented meat and fish products. Food Control, 23, 547551. Purama, R.K., Goswami, P., Khan, A.T., Goyal, A., 2009. Structural analysis and properties of dextran produced by Leuconostoc mesentroides NRRL B-640. Carbohydr. Polym., 76, 30-35. Raghavendra, P., Rao, T.S., Halami, P.M., 2010. Evaluation of beneficial attributes for phytate-degrading Pediococcus pentosaceus CFR R123. Benef. Microbes., 2010. Rathore, S., Salmeron, I., Pandiella, S.S., 2012. Production of potentially probiotic beverages using single and mixed cereal substrates fermented with lactic acid bacteria cultures. Food Microbiology, 30, 239-244. Rea, M.C., Ross, R.P., Cotter, P.D., Hill, C., 2011. Classification of bacteriocins from Gram-positive bacteria. In: Drider, D., Rebuffat, S. (Eds.), Prokaryotic antimicrobial peptides: From genes to applications. Springer, New York. Rea, M.C., Sit , C.S., Clayton, E., O’Connor, P.M., Whittal, R.M., Zheng, J., Vederas, J.C., Ross, R.P., Hill, C., 2010. Thuricin CD, a postranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci., 107, 9352-9357. Rebuffo-Scheer, C., Dietrich, J., Wenning, M., Scherer, S., 2008. Identification of five Listeria species based on infrared spectra (FTIR) using macrosamples is superior to a microsample approach. Anal. Bioanal. Chem. , 390, 1629-1635. Reddy, K.B.P.K., Raghavendra, P., Kumar, B.G., Misra, M.C., Prapulla, S.G., 2007. Screening of probiotic properties of lactic acid bacteia isolated from Kanjika, an ayruvedic lactic acid bacteria fermented product: an in-vitro evaluation. J. Gen. Appl. Microbiol., 53, 207-213. Reid, G., McGroarty, J.A., Angotti, R., Cook, R.L., 1988. Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol., 34, 344–351. Reis, J.A., Paula, A.T., Casarotti, S.N., Penna, A.L.B., 2012. Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng. Rev., 4, 124140. Roberfroid, M., 2007. Prebiotics: the concept revisited. J. Nutr., 137, 830S-837S. Rodas, A.M., Ferrer, S., Pardo, I., 2003. 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst. Appl. Microbiol., 26, 412-422. 138 Rodriguez, H., Curiel, J.A., Landete, J.M., de las Rivas, B., de Felipe, F.L., GomezCordoves, C., Mancheno, J.M., Munoz, R., 2009. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol., 132, 79-90. Rodriguez, N., Salgado, J.M., Cortes, S., Domínguez, J.M., 2012. Antimicrobial activity of D-3-phenyllactic acid produced by fed-batch process against Salmonella enterica. Food Control, 25, 274-284. Rohini, R., Reddy, P.M., Shanker, K., Kanthaiah, K., Ravinder, V., Hu, A., 2011. Synthesis of mono, Bis-2-(2-Arylideneaminophenyl) indole azomethines as potential antimicrobial agents. Arch. Pharm. Res., 34, 1077-1084. Rossetti, L., Giraffa, G., 2005. Rapid identification of dairy lactic acid bacteria by M13generated, RAPD-PCR fingerprint databases. J. Microbiol. Methods, 63, 135-144. Ruas-Madiedo, P., Sanchez, B., Hidalgo- Cantabrana, C., Margolles, A., Laws, A., 2012. Exopolysaccharides from lactic acid bacteria and Bifidobacteria. In: Hui, Y.H., Evranuz, E.O. (Eds.), Handbook of animal-based fermented food and beverage technology. CRC press, Taylor and Francis Group, Florida. Sabir, F., Beyatli, Y., Cokmus, C., Onal-Darilmaz, D., 2010. Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from Kefir. J. Food Sci., 75, M568-M573. Sadasivam, S., Manickam, A., 2008. Biochemical methods. New Age International Publishers Ltd., New Delhi. Sajid, I., Shaaban, K.A., Hasnain, S., 2011. Identification, isolation and optimization of antifungal metabolites from the Streptomyces malachitofuscus ctf9. Braz. J. Microbiol., 42, 592-604. Salminen, S., Wright, A., Morelli, L., Marteau, P., Brassart, D., de Vos, W.M., Fonden, R., Saxelin, M., Collins, K., Mogensen, G., Birkeland, S.-E., T., M.-S., 1998. Demonstration of safety of probiotics: a review. Int. J. Food Microbiol., 44, 93–106. Saluja, B., Gupta, A., Goel, R., 2011. Mechanism of arsenic resistance prevalent in Bacillus species isolated from soil and ground water sources of India. Ekologija, 57, 155-161. Samelis, J., Bleicher, A., Delbes-Paus, C., Kakouri, A., Neuhaus, K., Montel, M.-C., 2011. FTIR-based polyphasic identification of lactic acid bacteria isolated from traditional Greek Graviera cheese. Food Microbiol., 28, 76-83. Samyn, B., Martinez-Bueno, M., Devreese, B., Maqueda, M., Galvez, A., Valdivia, E., Coyette, J., van Beeumen, J., 1994. The cyclic structure of the enterococcal peptide antibiotic AS-48. FEBS Letters, 352, 87-90. Santos, M.M., Piccirillo, C., Castro, P.M.L., Kalogerakis, N., Pintado, M.E., 2012. Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J Microbiol Biotechnol, 28, 2435-2440. Savage, D.C., 1992. Growth phase, cellular hydrophobicity, and adhesion in vitro of lactobacilli colonizing the keratinizing gastric epithelium in the mouse. Appl. Environ. Microbiol., 58, 1992-1995. Sawa, N., Zendo, T., Kiyofuji, J., Fujita, K., Himeno, K., Nakayama, J., Sonomoto, K., 2009. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl. Environ. Microbiol., 75, 1552-1558. Sawale, S.D., Lele, S.S., 2010. Statistical optimization of media for dextran production by Leuconostoc sp., isolated from fermented Idli batter. Food Sci. Biotechnol., 19, 471478. 139 Schagger, H., von Jagow, G., 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem., 166, 368-379. Schell, M.A., M., K., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M.C., Desiere, F., Bork, P., Delley, M., Pridmore, R.D., Arigoni, F., 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci., 99, 14422-14427. Schillinger, U., Geisen, R., Holzapfel, W.H., 1996. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Technol., 7, 158-164. Sekar, S., Mariappan, S., 2008. Traditionally fermented biomedicines, arishtas and asavas from Ayurveda. Indian Journal of Traditional Knowledge, 7, 548-556. Shang, N., Xu, R., Li, P., 2013. Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH. Carbohydr. Polym., 91, 128-134. Shibata, K., Flores, D.M., Kobayashi, G., Sonomoto, K., 2007. Direct l-lacticacid fermentation with sago starch by a novel amylolytic lacticacidbacterium, Enterococcus faecium. Enzyme Microb. Technol., 41, 149-155. Shimada, Y., Takahashi, M., Miyazawa, N., Abiru, Y., Uchiyama, S., Hishigaki, H., 2012. Identification of a novel dihydrodaidzein racemase essential for biosynthesis of equol from daidzein in Lactococcus sp. strain 20-92. Appl Environ Microbiol, 78, 49024907. Shin, M.S., Han, S., K, , Ryu, J.S., Kim, K.S., Lee, W.K., 2008. Isolation and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from Kimchi. J. Appl. Microbiol., 105, 331-339. Sica, M.G., Brugnoni, L.I., Marucci, P.L., Cubitto, M.A., 2012. Characterization of probiotic properties of lactic acid bacteria isolated from an estuarine environment for application in rainbow trout (Oncorhynchus mykiss, Walbaum) farming. Antonie van Leeuwenhoek, 101, 869-879. Silkin, L., Hamza, S., Kaufman, S., Cobb, S.L., Vederas, J.C., 2008. Spermicidal bacteriocins: lacticin 3147 and subtilosin A. Bioorg. Med. Chem. Lett., 18, 3103-3106. Silva, M., Jacobus, N.V., Deneke, C., Gorbachl, S.L., 1987. Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother., 31, 1231-1233. Singh, N., Kumar, D., Sahu, A.P., 2007. Arsenic in the environment: effects on human health and possible prevention. J. Environ. Biol., 28, 359-365. Sjogren, J., Magnusson, J., Broberg, A., Schnurer, J., Kenne, L., 2003. Antifungal 3hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol., 69, 7554-7557. Smaoui, S., Elleuch, L., Bejar, W., Karray-Rebai, I., Ayadi, I., Jaouadi, B., Mathieu, F., Chouayekh, H., Bejar, S., Mellouli, L., 2010. Inhibition of fungi and Gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635. Appl. Biochem. Biotechnol., 162, 1132-1146. Soden, D.M., O’Callaghan, J., Dobson, A.D.W., 2002. Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology, 148, 4003–4014. Sokol, P.A., Ohman, D.E., Iglewski, B.H., 1979. A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J. Clin. Microbiol., 9, 538-540. Soni, S.K., Sandhu, D.K., 1990. Indian fermented foods: microbiological and biochemical aspects. Indian J. Microbiol., 30, 135-157. 140 Soni, S.K., Sandhu, D.K., 1991. Role of yeast domination in Indian idli batter fermentation. World J. Microbiol. Biotechnol., 7, 505-507. Soni, S.K., Sandhu, D.K., Vilkhu, K.S., 1986. Microbiological studies on dosa fermentation. Food Microbiol., 3, 45-53. Srinivasan, R., Kumawat, D.K., Kumar, S., Saxena, A.K., 2012. Purification and characterization of a bacteriocin from Lactobacillus rhamnosus L34. Ann. Microbiol., DOI 10.1007/s13213-012-0486-8. St-Onge, M.P., Farnworth, E.R., Jones, P.J., 2000. Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. Am. J. Clin. Nutr., 71, 674-681. Sujaya, I.N., Amachi, S., Yokota, A., Asano, K., Tomita, F., 2001. Identification and characterization of lactic acid bacteria in ragi tape. World J. Microbiol. Biotechnol., 17, 349-357. Sutyak, K.E., Anderson, R.A., Dover, S.E., Feathergill, K.A., Aroutcheva, A.A., Faro, S., Chikindas, M.L., 2008a. Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect. Diseases Obstet. Gynecol., doi:10.1155/2008/540758. Sutyak, K.E., Wirawan, R.E., Aroutcheva, A.A., Chikindas, M.L., 2008b. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol., 104, 1067-1074. Suwanjinda, D., Pala-or, K., Panbangred, W., 2009. Simultaneous detection of pediocin gene and species differentiation between Pediococcus acidilactici and P. pentosaceus in a one-step multiplex-overlapping PCR method. Food Biotechnol., 23, 179-189. Swe, P.M., G.M., C., Tagg, J.R., Jack, R.W., 2009. Mode of action of dysgalacticin: a large heat-labile bacteriocin. J. Antimicrob. Chemother., 63, 679-686. Swe, P.M., Heng, N.C.K., Cook, G.M., Tagg, J.R., Jack, R.W., 2010. Identification of DysI, the immunity factor of the streptococcal bacteriocin dysgalacticin. Appl. Environ. Microbiol., 76, 7885-7889. Tankovic, J., Leclercq, R., Duval, J., 1993. Antimicrobial Susceptibility of Pediococcus spp. and genetic basis of macrolide resistance in Pediococcus acidilactici HM3020. Antimicrob. Agents Chemother., 37, 789-792. Teather, R.M., Wood, P.J., 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol., 43, 777-780. Teemu, H., Seppo, S., Jussi, M., Raija, T., Kalle, L., 2008. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Int. J. Food Microbiol., 125, 170175. Temmerman, R., Pot, B., Huys, G., Swings, J., 2003. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol., 81, 1-10. Tiwari, S.K., Srivastava, S., 2008. Statistical optimization of culture components for enhanced bacteriocin production by Lactobacillus plantarum LR/14. Food Biotechnol., 22, 64-77. Todorov, S.D., 2010. Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control, 21, 1011–1021. Todorov, S.D., Botes, M., Danova, S.T., Dicks, L.M.T., 2007. Probiotic properties of Lactococcus lactis ssp. lactis HV219, isolated from human vaginal secretions. J. Appl. Microbiol., 103, 629-639. 141 Todorov, S.D., Dicks, L.M.T., 2005a. Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. J. Basic Microbiol., 45, 312-322. Todorov, S.D., Dicks, L.M.T., 2005b. Effect of growth medium on bacteriocin production by Lactobacillus plantarum ST194BZ, a strain isolated from boza. Food Technol. Biotechnol., 43, 165-173. Todorov, S.D., Dicks, L.M.T., 2005c. Pediocin ST18, an anti-listerial bacteriocin produced by Pediococcus pentosaceus ST18 isolated from boza, a traditional cereal beverage from Bulgaria. Process Biochem., 41, 11-19. Todorov, S.D., Dicks, L.M.T., 2009. Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int. J. Food Microbiol., 132, 117-126. Todorov, S.D., Wachsman, M., Tome, E., Dousset, X., Destro, M.T., Dicks, L.M.T., de Melo Franco, B.D.G., Vaz-Velho, M., Drider, D., 2010. Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol., 27, 869-879. Topping, D.L., Clifton, P.M., 2001. Short chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev., 81, 1031-1064. Torriani, S., Felis, G.E., Dellaglio, F., 2001. Differentiation of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol., 67, 3450-3454. van Belkum, M.J., Martin-Visscher, L.A., Vederas, J.C., 2011. Structure and genetics of circular bacteriocins. Trends Microbiol., 19, 411-418. Van Reenen, C.A., Dicks, L.M.T., 1996. Evaluation of numerical analysis of random amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus plantarum and Lactobacillus pentosus. Curr. Microbiol., 32, 183-187. Vancanneyt, M., Zamfir, M., De Wachter, M., Cleenwerck, I., Hoste, B., Rossi, F., Dellaglio, F., De Vuyst, L., Swings, J., 2006. Reclassification of Leuconostoc argentinum as a later synonym of Leuconostoc lactis. Int. J. Syst. Evol. Microbiol., 56, 213-216. Vaquero, I., Marcobal, A., Munoz, R., 2004. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. , 96, 199-204. Vasiljevic, T., Jelen, P., 2001. Production of beta-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Innovative Food Sci. Emerg. Technol., 2, 75-85. Vijayendra, S.V.N., Rajashree, K., Halami, P.M., 2010. Characterization of a heat stable anti-listerial bacteriocin produced by vancomycin sensitive Enterococcus faecium isolated from idli batter. Indian J. Microbiol., 50, 243-246. Villarante, K.I., Elegado, F.B., Iwatani, S., Zendo, T., Sonomoto, K., de Guzman, E.E., 2011. Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World J. Microbiol. Biotechnol., 27, 975-980. Vinderola, C.G., Reinheimer, J.A., 2003. Lactic acid starter and probiotic bacteria: a comparative ‘‘in vitro’’ study of probiotic characteristics and biological barrier resistance. Food Res. Int., 36, 895-904. von Mollendorff, J.W., Todorov, S.D., Dicks, L.M.T., 2006. Comparison of bacteriocins produced by lactic acid bacteria isolated from Boza, a cereal based fermented beverage from the Balkan peninsula. Curr. Microbiol., 52, 209-216. 142 Wang, H., Yan, Y., Wang, J., Zhang, H., Qi, W., 2012. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS ONE, 7, doi:10.1371/journal.pone.0029452. Wang, J., Fung, D.Y.C., 1996. Alkaline-fermented foods: A review with emphasis on Pidan fermentation. Crit. Rev. Microbiol., 22, 101-138. Wang, Y.-C., Yu, R.-C., Chou, C.-C., 2006. Antioxidative activities of soymilkfermented with lactic acid bacteria and bifidobacteria. Food Microbiol., 23, 128-135. WHO, 2011. Guidelines for drinking-water quality. World Health Organization, Geneva. Wolf, C.E., Gibbons, W.R., 1996. Improved method for quantification of the bacteriocin nisin. J. Appl. Microbiol., 80, 453-457. Wu, S.-C., Su, Y.-S., Cheng, H.-Y., 2011. Antioxidant properties of Lactobacillusfermented and non-fermented Graptopetalum paraguayense E. Walther at different stages of maturity. Food Chem., 129, 804-809. Yang, Z., Suomalainen, T., Mayra-Makinen, A., Huttunen, E., 1997. Antimicrobial activity of 2-pyrrolidone-5-carboxylic acid produced by lactic acid bacteria. J. Food Prot., 60, 786-790. Ye, S., Liu, F., Wang, J., Wang, H., Zhang, M., 2012. Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF6. Carbohydr. Polym., 87, 764-770. Yoon, J.H., Kang, S.S., Mheen, T.I., Ahn, J.S., Lee, H.J., Kim, T.K., Park, C.S., Kho, Y.H., Kang, K.H., Park, Y.H., 2000. Lactobacillus kimchii sp nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol., 50. Yu, J., Wang, W.H., Menghe, B.L., Jiri, M.T., Wang, H.M., Liu, W.J., Bao, Q.H., Lu, Q., Zhang, J.C., Wang, F., Xu, H.Y., Sun, T.S., Zhang, H.P., 2011. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J. Dairy Sci., 94, 3229-3241. Zavaleta, A.I., Martinez-Murcia, A.J., Rodriguez-Valera, F., 1996. 16S-23S rDNA intergenic sequences indicate that Leuconostoc oenos is phylogenetically homogeneous. Microbiology, 142, 2105-2114. Zinedine, A., Faid, M., Benlemlih, M., 2005. In vitro reduction of aflatoxin B1 by strains of lactic acid bacteria isolated from Moroccan sourdough bread. Int. J. Agri. Biol., 7, 67-70. Zouhir, A., Hammami, R., Fliss, I., Hamida, J.B., 2010. A new structure-based classification of gram-positive bacteriocins. Protein J., 29, 432-439. 143
© Copyright 2025 ExpyDoc