Matthew Klenk

Investigating the Local Environment of Li in the Fast-Ion Conductor LLZ Using Molecular Dynamics to Understand
Diffusion Mechanics and Phase Transition Phenomena
Authors: Matthew Klenk; Wei Lai
Introduction
•
•
•
•
Garnet series Li7-xLa3Zr2-x,TaxO12
LLZ (x=0) composition
Fast-ion conducting solid
Promising material to replace volatile liquids in secondary Li
ion batteries
• Mechanics of Li diffusion and origin of phase transition are
still debated
Tetrahedral (Td)
Observing Diffusion events
Li Probability Density Function
Tetragonal (300 K)
Td-16e Oh-16f
Tetragonal (500 K)
Td-16e
Oh-32g
Oh-32g
Td-8a
Tetragonal (800 K)
Octahedral (Oh)
Bottleneck
Cubic (1100 K)
• At low Temps Lithium
almost exclusively at Td-8a,
Oh-32g and Oh-16f
• As temp increases density
starts to show on Td-16e
sites
• Li density is not complete
until phase change to cubic
about 900 K
Origins of Phase Transformation
• At low temperatures
diffusion events are rare
and rattling is observed
• In the two clusters shown
Oh lithium minimize their
interactions by avoiding
occupied Td sites or
surrounding an empty Td
• At high temperatures
diffusion is observed
• Td-8a Li push Oh-32 lithium
to Td-16e site
• Diffusion is highly
coordinated and Li typically
move in pairs
Li Diffusion Pathway Through Bottleneck
Oh
Oh Td Oh
Cage Occupancy
0.36
1.0
Oh-32g (500 K)
0.32
Td-8a (500 K)
0.8
Oh-16f (500 K)
0.24
0.6
2
MSD (Å )
Lattice Parameter and Phase Transition
0.20
0.16
Oh-32g (300 K)
0.12
13.2
Cubic
Td-8a (300 K)
0.04
0
100
13.1
200 300
Time (ps)
400
0.0
200 400 600 800 1000 1200 1400
Temperature (K)
500
Oh Clusters
Td Clusters
13.0
T10
T13
T00
T03
160
12.9
140
T11
T14
T01
T04
300
T12
T02
12.6
0
300 600 900 1200 1500
Temperature (K)
150
80
60
100
40
50
20
0
300
Conductivity
MD
AIMD (Miara)
AIMD (Jalem)
MD (Adams)
0
10
T12
T13
T14
600 900 1200 1500
Temperature (K)
O10
O11
O12
0.10
-2
0.08
T00
T01
T02
T03
T04
O00
O01
O02

-1
10
0.06
-3
10
-4
0.5
Expt (Matsui)
MD-corrected
1.0
 
1
 zie
2
Li7La3Zr2O12
0.04
1.5
2.0
-1
1000/T (K )
Dc / (kBT )
2.5
0.025
0.000
0.0
0.4
0.8
1.2
1.6
On-face-Li-to-edge Distance (Å)
• Using molecular dynamics to probe to the local environment
of Li we were able to predict phase transformation
phenomena and conductivity values close to those reported
in literature using diffraction and impedance spectroscopy
• The phase change from tetragonal to cubic of LLZ is initiated
by an order-disorder transition on lithium sites
• We are continuing our work to investigate intermediary
compositions on Li garnet.
References
Li5La3Ta2O12
10
 (S/cm)
T11
300
0.12
-1
10
T10
0
600 900 1200 1500
Temperature (K)
0.050
• Histograms of distance to
nearest oxygen (top) and edge
of tetrahedral (bot)
• Normal distribution suggests
that Li diffuses through the
center of the Bottleneck
• This counters claims of an edge
pass mechanism suggested by
DFT simulations
Summary
Number of Clusters
Number of Clusters
MD
MD (psedocubic)
ND (Wang)
ND (Awaka)
O12
O02
200
100
12.7
O11
O01
250
120
12.8
O10
O00
1.2 1.5 1.8 2.1 2.4 2.7
On-face-Li-to-oxygen Distance (Å)
0.075
0.2
0.08
Expt (Matsui)
Lattice Parameters (Å)
• Simulations predict a
phase transition at
900 K
• Lattice parameters
and transition temp
are in agreement
with experimental
results
• First simulations to
predict this
transition using MD
Tetragonal
Td-8a
Td-16e
Oh-16f
Oh-32g
0.4
Oh-16f (300 K)
0.05
0.00
Cage occupancy
0.28
Fraction
Td
1100 K (MD)
Fraction
Atomic MSD
Oh
0.10
200 400 600 800 1000 1200 1400
Temperature (K)
    /  ln N T ,V / (kBT )  N / 
• Conductivity (left) was calculated by applying
thermodynamic factor (right) to correct for not being Ideal
solution. Can be used as a proxy for coordinated diffusion.
2
N
• Phase transformation is coupled with order-disorder transition
on Li Td and Oh sites.
• Order-disorder transformation is initiated by Td-8a lithium and
Oh-32g lithium simultaneously diffusing to occupy Td-16e
• The degree of Oh only diffusion is low at lower temperatures
suggesting that Td-8a lithium are the most unstable and initiate
diffusion
1. Matsui, M.; Sakamoto, K.; Takahashi, K.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Imanishi, N., Phase transformation of the
garnet structured lithium ion conductor: Li7La3Zr2O12. Solid State Ionics 2014, 262, 155-159.
2. Wang, Y.; Huq, A.; Lai, W., Insight into lithium distribution in lithium-stuffed garnet oxides through neutron diffraction and
atomistic simulation: Li7-xLa3Zr2-xTaxO12 (x=0-2) series. Solid State Ionics 2014,
3. Miara, L. J.; Ong, S. P.; Mo, Y.; Richards, W. D.; Park, Y.; Lee, J.-M.; Lee, H. S.; Ceder, G., Effect of Rb and Ta Doping on the
Ionic Conductivity and Stability of the Garnet Li7+2x-y(La3-xRbx)(Zr2-yTay)O-12 (0 <= x <= 0.375, 0 <= y <= 1) Superionic
Conductor: A First Principles Investigation. Chemistry of Materials 2013, 25 (15), 3048-3055.
4. Adams, S.; Rao, R. P., Ion transport and phase transition in Li7-xLa3(Zr2-xMx)O-12 (M = Ta5+, Nb5+, x=0, 0.25). Journal of
Materials Chemistry 2012, 22 (4), 1426-1434.
5. Jalem, R.; Yamamoto, Y.; Shiiba, H.; Nakayama, M.; Munakata, H.; Kasuga, T.; Kanamura, K., Concerted Migration Mechanism
in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12. Chemistry of Materials 2013, 25 (3), 425-430.
Acknowledgements
This work is supported by the Ceramics Program of National
Science Foundation (DMR-1206356).
All simulations were performed on HPCC resources