Michele Aresta

INTEGRATION OF
BIOTECHNOLOGY AND CATALYSIS
FOR THE VALORIZATION OF WASTE STREAMS
Michele Aresta
CIRCC-IT
[email protected]
Partners and expertise
An-Ping Zeng
Biotechnologies
ARKEMA
Michele Aresta, Angela Dibenedetto
Chemical technologies
Luigi Palmieri, Gennaro Agrimi
Biotechnologies
Confidential
2
CH2 O CO
CH2 OH
R
cat.
CH
O CO
CH2 O CO
3 R COOCH3
OH +
R + 3 CH3OH
CH
R
CH2 OH
FAMEs
glycerol (water and salts!)
TG
MOH
+
CH3 O M + +
CH3OH
H2O
Watery
R COOH +
R COO M + +
MOH
FFAs
H2O
soaps
M = Na, K
Water free
M. Aresta, A. Dibenedetto,
A. Angelini, C. Pastore,
L. di Bitonto, "New catalysts
for the production of
biodiesel from bio-oils",
Patent MI2013A001730, 2013
CH2 O CO
R
O
CH
O CO
CH2 O CO
TG
R +
R
R C OH
FFAs
20+%
New catalyst
MeOH
R COOCH3
FAMEs
+ glycerol
Confidential
EU market of
bioglycerol and uses
12000
10000
t/y
8000
6000
EU production of
bioglycerol.
4000
2000
0
00 01 02 03 04 05 06 08 10 11 12 13
20 20 20 20 20 20 20 20 20 20 20 20
year
Main industrial
applications of
glycerol.
Confidential
Glycerol conversion
H3C
OH
Propanol
OH
OH
Glyceric acid
and other oxidation
products
O
O
OH
H3C
HO2C
OH
O
Propylene glycol
O
CH2OH
Glycerol carbonate
HO
OH
OH
HO
H
HO
Glycerol
3-HPA
OH
O
O
Glycidol
HO
OH
1,3-Propanediol
O
OH
HO
O
O
CHO
tBu
tBu
O
Branched polyesters
OH
OH
Glycerol diether
Acrolein
COOH
Acrylic acid
Confidential
408 K
CO2
cat.
O
408 K cat.
O
H2N
O
O
O
O
NH2
HN
O
O
+
NH
- 2 NH3
O
HO
OH
OH
H2N
CH2OH
NH2
CH2OH
CH2OH
M. Aresta,
A. Dibenedetto, F. Nocito, C.
Journal of Catalysis, vol. 268, pp. 106-114 , 2008
Ferragina,
M. Aresta, A. Dibenedetto, J. L. Dubois, C. Ferragina, F.
Nocito, Patent US 20110245513 A1, 2011
O
453 K cat. H N
- 2 NH3
O
A. Dibenedetto, F. Nocito, A. Angelini, I. Papai,
M. Aresta, R. Mancuso,
ChemSusChem, vol. 6, pp. 345-352 , 2013
CH2OH
Synthesis of chemicals
Confidential
Conversion of glycerol into 1,3-PDO
dehydratation
- H2O
Glycerol
1,3-PDO
3-HPA
isomerization
NADH/NAD+
Glycerol
Dehydratase (dhaB1-3)
Cell mass
by-product
(e. g. acetate, NADH)
1,3-PDO
oxidoreductase (dhaT)
Confidential
M
I
C
R
O
B
I
A
L
Substrate
(Biomass)
Cell factory
Sin
Molecular
machinery
using
enzymes
Intermediates
Pin
Products
(e.g. biofuels,
chemicals,
polymers etc.)
Confidential
B
I
O
C
O
N
V
E
R
S
I
O
N
TUHH-ARKEMA
Bioproduction of 1,3-propanediol, n-butanol and biogas from raw
glycerol and biomass hydrolysates
Laboratory
Miniplant process integration
Scale-up
and demonstration
An adapted strain for simultaneous
use of raw glycerol and hydrolysates.
Co-production of PDO and butanol.
In situ removal of butanol to reduce
product inhibition
Confidential
Confidential
CIRCC-ARKEMA
O
O
O
Conversion of 1,3-PDO
into TMC
O
O
catalizzatore
O
Applications
n
pTMC
Also co-polymer
with ε-caprolactone
- Biodegradable materials
TMC
- Polymers
- Film and coating materials
Eco-friendly route
O
HO
OH
O
New
catalysts
O
+
H2N
NH2
M. Aresta, A. Dibenedetto, L. di Bitonto, J. L.
Dubois, "Synthesis process of Trimethylene
carbonate from 1,3-propanediol and urea by
heterogeneous catalysts",
Patent EP 13192912.7, 2013
O
+
2 NH 3
Utilization
Benefits
- Absence of reaction solvent
- Low costs of the reagents
- Catalysts recovery and recycle
Confidential
Conversion of glycerol into PDO
using Lactobacillus reuteri DSM 20016
Glycerol-glucose
co-fermentation
46 g/L of PDO obtained (33 g/L using raw
glycerol)
Yield of 0.9 mol1,3-PDO/mol glycerol
L. reuteri DSM 20016 is a valuable probiotic.
Biomass can be used.
Possibile to use raw glycerol and cellulosic
hydrolisates as substrates
Confidential
12
Hydrogen
production
from raw bioglycerol
using strain ADK1:
utilization for the
hydrogenation of
polyenes
Produced gas (mmmol)
60
Substrate addition
50
40
No buffer (20 g/L)
30
Buffer (20 g/L)
20
Buffer with H2 removal (40 g/L)
Buffer with H2 removal (65 g/L)
10
0
0
50
100
150 200 250
Time (h)
300
350
Test conditions (g/L)
% Substrate
consumption
% gas
produced*
H2 (not optimized,
mmol/L.h)
Pmax
(atm)
No buffer (20)
88
58
14.28
3.2
Buffer (20)
100
100
25.87
5.3
Buffer with H2 removal (40)
74
44
13.4
3.2
Buffer with H2 removal (65)
64
34
14.38
3.6
* Respect to initial substrate 1:1 ratio
Confidential
Chemical (VPR) vs biotechnological H2 production
from bioglycerol
Comparison of the biological* vs catalytic# production di dihydrogen from glycerol
Concentration of
glycerol
Conversion of glycerol
Purity of H2
Presence of CO
Presence of CO2
Temperature
Pressure
2-6 %*
100% at 2% feed
> 99%
absent
traces
ambient
0.6 MPa
more than seven
Lifetime of the catalyst
days
organic acids,
Co-products
ethanol : only traces
1 – 20 %#
100% at 1% feed
90%
yes
present
500–600 K
2.0–3.0 MPa
one week
organic acids and
others
Confidential
CONCLUSIONS
● Integration of biotechnology and catalysis may bring to
the valorization of waste streams, solid-liquid-gases
● The integration can be: “a sequence of operations” for
the production/conversion of products, or “integrated
technologies” for single product conversion
● This zero-waste approach, with recovery/reuse of coproducts (ammonia) and use of recoverable and
reusable heterogeneous catalysts, converts waste
(liquid, solid, gases) into added value products
● This concept can find wide implementation
Confidential
15
Acknowledgements
We thank the European Union
7th Framework Programme
(FP 7/2007-2013)
under
Grant agreement n. 241718
EuroBioRef
for having supported this work
Confidential