COMPORTEMENT DES ENROBES BITUMINEUX ET PROPRETE DES SABLES : APPROCHE PHYSICOCHIMIQUE Chi-Wei CHEN (PhD 2ème année), Myriam DUC (Ifsttar/GERS –SRO), Clôture de l’opération AGREGA Ifsttar (centre de Nantes) - Mardi 10 décembre 2013 PLAN DE LA PRÉSENTATION • Contexte de l’étude • Objectif Valorisation des sables non conformes contenant des fines argileuses dans les bétons bitumineux. • Le phénomène de désenrobage dans les bétons bitumineux contenant des fines argileuses lors la pénétration de l’eau dans le matériau – Essai Duriez – Nocivité des fines d’argile – Corrélation Duriez - nocivité (MB) • Essais préliminaires 2 CONTEXTE Étude à l’origine du projet de recherche (LR Autun) Sable FLETY / MONTAUTE (étude au LR Autun) : MB 2, MB 3, MB 4 Non-qualified Montaute sand in AC pavement (2006) In situ testing = NO PATHOLOGY DURING 5-6 YEARS on the portion of road realized with non-qualified Montaute or Fléty sands Thèse de Chi Wei Chen (Octobre 2012 – octobre 2015) financée par l’IFSTTAR Physical-chemical study of the possibilities for using the non-qualified clay-rich sands in asphalt concrete pavement Encadrement (GERS/ MAST): Erwan HAMARD (Ifsttar/MAST – GPEM), Yannick DESCANTES (Ifsttar/MAST – GPEM), Vincent GAUDEFROY (Ifsttar/MAST – MIT), Ferhat HAMMOUM (Ifsttar/MAST – MIT) Contrat UNPG en marge de la thèse 3 OBJECTIF Valorisation des sables non conformes contenant des fines argileuses dans les bétons bitumineux : utilisation d’une approche physico-chimique en couplant les propriétés d’usage et les propriétés des granulats Stripping potential in asphalt concrete (AC) pavement : the main problem to understand/solve to use non qualified sands Impermeable stripping in contact with water Sources of moisture in pavement systems (FHWA 1999) 4 DÉSENROBAGE EN PRÉSENCE D’ARGILE Mineral Electrostatic bonding (polar forces) Bitumen reactive components Stripping = loss of adhesive bond between the aggregate surface and asphalt binder due to WATER intrusion (Tarrer 1986) Clays that coat aggregate surface, severely weakens the bonding with bitumen, and then accelerates the stripping in AC pavement. (Kanitpong and Bahia 2003; Hicks et al. 2003) 5 SENSIBILITÉ A L’EAU : ESSAI DURIEZ Duriez test NF EN 12697-12 2008 = degradation of AC specimen from stripping Preheated fractions and bitumen in the mixer measuring specimens = compressive strength i of the sample conditioned under air compressive strength C of the sample immersed in water 2 minutes’ mixing storing in water with vacuum 2hrs compacting cooling down over night 28days in air and water respectively (ref 9% montm.) calibration de-moulding after Duriez test (28days’ 9% montm. in water) 6 NOCIVITÉ DES FINES D’ARGILE : ESSAI MB ClStructure of MB molecule MB value = measure of the specific surface area - SSA (or cation exchange capacity - CEC ) = indirect measure of mineralogy Molar mass: 319.85g/mol Rectangular (projected area):17Å x7.6 Å x3.25 Å Clay type Largest surface:130Å2 / (until 135 Å2) Kaolinite Illite MB molecule (Hang and Brindley, 1970) ( Hahner et al., 1996) Theoretical covering of clay particle by a monolayer of MB molecule The interlayer cations // K CEC MB (meq/100 (meq/100 g) g) 3-15 0.5-2 SSA (m2/g) 5-20 10-40 3-5 50-200 Montmorillonite Ca, Na… 70-120 6-13 700-800 Chlorite Sepiolite Palygoskite 10-40 20-30 3-5 n/a n/a // // Threshold : MB = 2 7 NOCIVITÉ DES FINES D’ARGILE : ESSAI MB Influence de la méthode de mesure sur la valeur de bleu Conformed M B 0 / 2 drop m ethod (g/k g) 4 Drop method (EN13043, NF EN 933-9) Non-conformed Unconform Flety DROP METHOD 3 Unconform Montaute (GEOTECHNICAL FIELD) TUBIDIMETRIC METHOD (AGGREGATES FIELD) 2 Conform Flety PHOTOMETRIC METHOD MB0/2mmdrop method (Autu n) MB 0/2mm Photom etric method (stud y) (LABORATORY FIELD) (Chi Wei ‘s method thesis) MB 0/2mmChen tubidimetric (Na nte) Conform Montaute 1 1 1.5 2 2.5 3 3.5 4 0-2 mm fraction – undried MB0/2 (g/kg) Turbidimetric method (NF P 18-545) Batch Spectrophoto. method (IFSTTAR Paris) (2 hours contact of 0-2mm fraction of sand with MB, centrifugation, concentration of MB remaining in solution >> concentration of MB molecules that were adsorbed) 8 NOCIVITÉ DES FINES D’ARGILE : ESSAI MB Effet du séchage avant essai MB Natural sand undried, air dried, heating at 110°C 2.00 1,40 7.00 1,20 6.00 1,00 5.00 0,80 4.00 (IFSTTAR Nantes study, 2012) Drop method 1.80 1.60 1.40 MB (g/kg) M B ( g /k g ) MB (g/kg) 1.20 1.00 3.00 0,60 0.80 0.60 0,40 2.00 0,20 1.00 0.40 0.20 0.00 0.00 0,00 Sans séchage Air libre Etuve 110°C Sans séchage Air libre Mode de séchage Mode de séchage Sand Effet du séchage - Sable1 Averton Effet du séchage - Sable de Mantallot Sand 2 Etuve 110°C Sans séchage Air libre Etuve 110°C Mode de séchage Sand 3 Effet du séchage - Sable Mallet Increase of the temperature of drying >> decrease of the MB (irreversibility or partial reversibility of deshydratation) 9 NOCIVITÉ DES FINES D’ARGILE : ESSAI MB Effet de différents paramètres sur la valeur de bleu •No effect of filter paper (IFSTTAR study in 2012) •Effect of MB concentration, •Age of the MB solution •Variation of MB UV-visible spectrum with pH and salinity (Na, Ca…) ( Pentrák M. et al., 2012) Effect of contact time ( Neumann. et al., 2002) Immediately Bentonite SWy-1 5 hours 30 days (Bujdák J., 2006) High energy Low energy Variation of UV-vis. spectrum but is there a variation of MB value measured by drop method? 10 CORRÉLATION DURIEZ-MB The same MB value but different results in Duriez test TSR: Tensile Strength Retaining Qualified Non-qualified No stripping ? Severe stripping Effect of clay mineralogy ? Effect of cations on clays ? (KANDHAL, 1998) 11 CORRÉLATION DURIEZ-MB Effet du type de cation échangeable TOT clay structure cations bind with bitumen P e r c e n t a g e o f p o la r f o r c e s f r o m s u r f a c e e n e r g y (% ) 56 54 52 MB > SSA and CEC Impact of the nature of exchangeable cations >> polar forces (stripping) depends on cations on clay surface that bind with bitumen Tension surface energy: γ = γ D + γ P Polar forces measured by drop shape method on saturated Mont. with various cations (Neumann et al., 2002) Polar force of study (Sardaigne, hum.66%) Polar force of reference (SAz1, hum.33%) (Chi Wei Chen thesis) Ca2+. 50 48 46 Na+ // Mg2+ 44 Litterature K+ 42 minimum 40 Montm. water commercial K-Montm. commercial Na-Montm. commercial Ca-Montm. commercial Mg-Montm. commercial Variation of UV - visible spectrum of MB absorbed on SWy-1 bentonite exchanged with different cations, measured immediately after mixing. 12 ESSAIS PRÉLIMINAIRES Essais Duriez Aggregate content 100% Aggregate size 6mm EB6 (BBTM 0/6 discontinue): Diorite 2/6mm 75%; Sand 0.063/2mm 16% Filler 0.01/0.063 mm is limestone, Binder 35/50; richness 3.5; BCmin5 (25 gyration); Vmin12 max20; ITSR80; Diorite Diorite 4mm 2mm 0.063mm 0.001mm 25% Washed sand Washed sand Fines Fines 9% 0% Aggregate proportions and sizes (Delorme 2007) of EB6 discontinue Fine 0/0.063 mm = 9% in mixture with bitumen (= 35% in sand) 9% Filler 9% kaolinite 9 % illite 9% Montmorillonite Water sensitivity 13 ESSAIS PRÉLIMINAIRES Premiers résultats : essais Duriez No degradation of water resistance when there is no clay (Ref) i/C = 100xCW/CD Lowest water resistance 28 days Duriez test Reference without clay 1.00 1.00 9% raw kaolinite 100% for swelling clay (Mont.) 9% Avrel illite 0.90 9% Avrel montm. 0.80 0.74 0.70 74% Kaol. = raw material from 0.77 quarries 77% Illite / Mont. = commercial 0.60 products (crushed and dried) I/C ratio 0.50 0.40 Specimens for Duriez test 0.30 plays a role on AC water 0.20 0.11 0.10 0.00 MB 0-2mm The history of clay (treatments) 11% Ref. Kao. MB 2.7 Illite resistance Montm. MB 15 MB 68 14 ESSAIS PRÉLIMINAIRES Clay location and water intrusion in asphalt concrete (AC) Microstructural observation Pores Clay at interfaces Clay and stripping location Use of tracer X-ray tomography coupled with synchrotron (Ifsttar 2012) Clay in Mastic Sand Coarse grain 2mm ESSAIS PRÉLIMINAIRES Clay location and water intrusion in asphalt concrete (AC) Mont. / sand / coarse fraction - bitumen mixtures put in contact with MB solution 68 Bitumen M B a b so rb ed b y M o n tm . in A C m ix tu re (g /k g ) 67.6 Mastics: montm. + bitumen 67 Water may reach clay in bitumen matrix 66 Water intrudes through -Bitumen interfaces bitumen -Mastics: themontm.+ mastic coats sand+ coarse fracion+ bitumen -Montm. clay agregates 65 Montm. coats sand all fractions separeted Montm. coats coarse fracion+ sand+ bitumen Montm. coats coarse fraction Montm balls+ sand+ coarse fraction+ bitumen Montm.+ sand+ coarse fraction+ bitumen Montmorillonite balls in bitumen show the fastest intrusion of water Montm. Balls' mixture 64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Day of AC mixture contacts water 16 ESSAIS PRÉLIMINAIRES Identification et quantification de l’argile dans les sables MB value is not enough to establish the conformity For a MB value > possibility of several clay mineralogies in sand XRD measurements qualified sand Identification / quantification of clay fraction Non qualified sand Size distribution (wet sieving) Sample < 2µm % Sand + 4% 3% 3% Montmorillonite Arvel < 63 µm % 18.6% Amount of < 2 µm particles partial control of the sand qualification Master (TUC) Semi-quantification (fromSEMI < 2 µm Rietveld RIETVELD oriented lamella Quantification QUANT and particle size distribution) Minerals 97.1% 72.4% Quartz 9.5% Calcite 4.6/% Mordenite 0.4% hornblend 20% Feldspars 37.9% Swelling clay 2.9% 5.7% 2,9% 5.7% Smectite group 2.9% 5.7% Non-swelling clay 0.07% 22% Mica group 0.01% 5.5% Kaolinite group 0.01% 2.2% chlorite group 0.05% 14% Minerals 96.8% 70.4% minerals The method to quantify clay has to be chosen carefully The accuracy of quantification has to be discussed 17 ESSAIS PRÉLIMINAIRES Traitement à la chaux (1/2) Indirect tensile test (IFSTTAR, Nantes) Different preparation of sands Bitumen mixture with 9% of montmorillonite in sand (35% of mont. in sand) Lime treated sand MB = 68 MB after treatment decreases 18 ESSAIS PRÉLIMINAIRES Traitement à la chaux (2/2) EFFECT of LIME • Exchanged clay with Ca2+ • flocculation of clay • Calcium effect on claybitumen bonding • Formation of hydrates (?) Layered structure of calcium silicate hydrates (Richardson, 2007) May C-H-S structure be formed in AC mixture or is there a pH effect on MB UV-visible spectrum ? Validation in course Methylene blue adsorption on lime treated AC Monomers H-dimers H-aggregates lime marinating Adsorption of MB as a descriptor of C–S–H nanostructure (2010) 586 19 Merci pour votre attention 14-20 Boulevard Newton Cité Descartes, Champs sur Marne F-77447 Marne la Vallée Cedex 2 Tél. +33 (0)1 81 66 85 25 Fax. +33 (0)1 40 43 54 98 PhD student : [email protected] 20
© Copyright 2024 ExpyDoc