Ghent University Wind Turbine Blade Research Mathijs Peeters http://www.composites.ugent.be Wim Van Paepegem Automated generation of wind turbine blade finite element models Capabilities: Automatic layup application Rapid modification of models Automatic fiber oriëntation for each element Shell and Continuum models Handle prebent and swept blades Handle complicated layups with ply crossings Start from CAD or airfoils INPUT: CAD file or normalised airfoils + planform References (planes, lines, curves, points, LE, TE) Ply edges relative to references Layup relative to ply edges and spanwise positions B-spline/ thickness interpolation -> lofted shape Find key locations (ply-edges, shear webs, paths) Avoid high aspect ratio’s Mesh Make element sets (for each ply) Abaqus input file Mesh with element set per ply, web, deadmass Automatic orientations per element (Distribution) Automatic layup application OUTPUT: • Complete model • Shell models (TOP or MID surface) • Continuum models • Automatic layup application • Automatic dead mass application • Automatic fiber oriëntation • Paths for result extraction Simulation of full scale certification tests Simulation of certification tests -> validation Saddles Cables for load introduction Future & related work Future work Related work Validation of models Effect of defects Modeling of concepts for segmented blades (global & sub-models) Component testing of best segmented blade concepts Submodeling of blade root Simplified Fluid structure interaction (BEM & FEA) Fully coupled Fluid Structure Interaction (CFD & FEA) Steady state Gauss-Seidel iterations Point-cloud interpolation MATHIJS PEETERS [email protected] WIM VAN PAEPEGEM [email protected] Flow equations Structural equations Materials Science and Engineering Technologiepark-Zwijnaarde 903 9052 Zwijnaarde, Belgium http://www.composites.ugent.be
© Copyright 2024 ExpyDoc