Simulation of wind turbine blades

Ghent University Wind Turbine Blade Research
Mathijs Peeters
http://www.composites.ugent.be
Wim Van Paepegem
Automated generation of wind turbine blade finite element models
Capabilities:




Automatic layup application
Rapid modification of models
Automatic fiber oriëntation for each element
Shell and Continuum models
 Handle prebent and swept blades
 Handle complicated layups with ply crossings
 Start from CAD or airfoils
INPUT:
 CAD file or normalised airfoils + planform
 References (planes, lines, curves, points, LE, TE)
 Ply edges relative to references
 Layup relative to ply edges and spanwise positions
B-spline/ thickness interpolation -> lofted shape
Find key locations (ply-edges, shear webs, paths)
Avoid high aspect ratio’s
Mesh
Make element sets (for each ply)
Abaqus input file
Mesh with element set per ply, web, deadmass
Automatic orientations per element (Distribution)
Automatic layup application
OUTPUT:
• Complete model
• Shell models (TOP or MID surface)
• Continuum models
• Automatic layup application
• Automatic dead mass application
• Automatic fiber oriëntation
• Paths for result extraction
Simulation of full scale certification tests
Simulation of certification tests -> validation
Saddles
Cables for load introduction
Future & related work
Future work
Related work
Validation of models
Effect of defects
Modeling of concepts for segmented blades (global & sub-models)
Component testing of best segmented blade concepts
Submodeling of blade root
Simplified Fluid structure interaction (BEM & FEA)
Fully coupled Fluid Structure Interaction (CFD & FEA)
Steady state
Gauss-Seidel iterations
Point-cloud interpolation
MATHIJS PEETERS
[email protected]
WIM VAN PAEPEGEM
[email protected]
Flow
equations
Structural
equations
Materials Science and Engineering
Technologiepark-Zwijnaarde 903
9052 Zwijnaarde, Belgium
http://www.composites.ugent.be