Visvesvaraya National Institute of Technology, Nagpur Department of Mathematics Assignment-3 (Functions of several variables) Subject: MAL-102 1. If u = (x2 + y 2 + z 2 )m/2 find m 6= 0 such that 2 2 ∂2u ∂x2 + ∂2u ∂y 2 + ∂2u ∂z 2 = 0. 2 ∂ u + y 2 ∂∂yu2 , where u(x, y) = x2 φ( xy ) + yψ( xy ) and φ, ψ are arbitrary func2. Find x2 ∂∂xu2 + 2xy ∂x∂y tions. 3. Let u = F (x − y, y − z, z − x), then show that ∂u ∂x + ∂u ∂y + ∂u ∂z = 0. 4. If f (x, y) = φ(u, v) and u = x2 − y 2 , v = 2xy then prove that 2 2 y 2 ) ∂∂uφ2 + ∂∂vφ2 . 5. If u = f x y z , , y z x 6. If u = tan −1 7. If u = csc −1 + ∂2f ∂y 2 = 4(x2 + then find x ∂u + y ∂u + z ∂u . ∂x ∂y ∂z x3 + y 3 then show that x−y 2 2 ∂2u = sin(2u) and (ii) x2 ∂∂xu2 + 2xy ∂x∂y + y 2 ∂∂yu2 = sin(4u) − sin(2u) (i) x ∂u + y ∂u ∂x ∂y ∂2f ∂x2 1 2 1 2 1 1 x +y x3 + y 3 ! 21 then show that 2 x2 ∂∂xu2 + ∂2u 2xy ∂x∂y ∂2u ∂x2 8. If u = f (x, y) where x = r cos θ, y = r sin θ. Show that 9. If z = ex sin y, where x = st2 and y = s2 t. Find ∂z ∂s and + 2 y 2 ∂∂yu2 = + ∂2u ∂y 2 ∂2u ∂r 2 = tan u 12 + 13 12 + 1 ∂2u r 2 ∂θ 2 tan2 u 12 + . 1 ∂u . r ∂r ∂z . ∂t 10. If z = f (x, y) where f is differentiable, x = g(t) and y = h(t). Given g(3) = 2, g ′(3) = when t = 3. 5, h(3) = 7, h′ (3) = −4, fx (2, 7) = 6 and fy (2, 7) = −8, then find dz dt 11. If u = f (x, y) where x = es cos t and y = es sin t, show that h h 2 ∂u 2 i ∂u 2 ∂2u ∂2u ∂u 2 −2s ∂ 2 u −2s + + , (ii) + = e + = e (i) ∂u ∂x ∂y ∂s ∂t ∂x2 ∂y 2 ∂s2 12. Find the equation of the tangent plane to the surfaces at the specified points (i) z = 9x2 + y 2 + 6x − 3y + 5, (1, 2, 18) (ii) z = y cos(x − y), (2, 2, 2). ∂2u ∂t2 i 13. Find the equation of the tangent plane and normal line, (i) at the point (−2, 1, −3) to the 2 2 ellipsoid x4 + y 2 + z9 = 3 and (ii) at the point (1, 0, 0) to surface z + 1 = xey cos(z). 14. Find the total differential of the functions (i) z = x2 + 3xy − y 2 (ii) v = y cos(xy) (iii) u = e−t sin(s + 2t) 1
© Copyright 2024 ExpyDoc