統計力学演習問題 (2) 番号: 名前: [1](1)(a) (2) ∫ ∫ F · dr = C F· C ∫ 1 dr dt dt ∂Fy ∂Fx − = 2 − (−5y) ∂y ∂x = 5y + 2 ̸= 0 (3t2 + 2t2 , −5t · t2 ) · (1, 2t)dt = 0 [2](1)(a) 5 −2 3 1 =− 3 = ∫ ∫ F · dr = C F· ∫ C 1 dr dt dt (2t · t2 , t2 ) · (1, 2t)dt = 0 =1 (b) C1 : r = (t, 0) (0 ≤ t ≤ 1) C2 : r = (1, t) (0 ≤ t ≤ 1) ∫ ∫ F · dr = C F· C1 ∫ 1 dr dt + dt ∫ F· C2 (b) dr dt dt C1 : r = (t, 0) (0 ≤ t ≤ 1) C2 : r = (1, t) (0 ≤ t ≤ 1) (3t2 , 0) · (1, 0)dt = ∫ ∫ dr dr dt + F· dt F · dr = F· dt dt C2 C C1 ∫ 1 = (0, t2 ) · (1, 0)dt ∫ 0 1 (3 + 2t, −5t) · (0, 1)dt + 0 =1− 5 2 ∫ 0 1 ∫ 3 =− 2 (2t, 1) · (0, 1)dt + 0 =1 (c) C : r = (t, t) (0 ≤ t ≤ 1) ∫ (c) ∫ C : r = (t, t) (0 ≤ t ≤ 1) dr dt F · dr = F· dt C C ∫ 1 = (3t2 + 2t, −5t2 ) · (1, 1)dt ∫ ∫ F · dr = C 0 2 =− +1 3 1 = 3 F· C 1 ∫ (2t2 , t2 ) · (1, 1)dt = 0 =1 1 dr dt dt 以下、書き込み禁止 (2) ∂Fx ∂Fy − = 2x − 2x ∂y ∂x =0 (3) ∂f (r) = −2xy ∂x ∂f (r) = −x2 ∂y (1) (2) (1) 式を x で積分する。 f (r) = −x2 y + C(y) (C(y) : 積分定数) 上式を y で微分する。 dC(y) ∂f (r) = −x2 + ∂y dy = −x2 (∵ (2) 式) これより dC(y) =0 dy C(y) = const. ∴ f (r) = −x2 y + const. (4) −[f (1, 1) − f (0, 0)] = −[−1 + C − (0 + C)] =1 2
© Copyright 2024 ExpyDoc