スライド 0 - 畠瀬 和志

エネルギー部門のR&Dを考慮した日本経済の
ヴィンテージ資本モデル
-2050年の国内CO2排出量を1990年比50%に削減するシナリオの分析-
畠瀬 和志
神戸大学 経済学研究科 研究員
研究の背景と方針
研究の背景

エネルギー部門における生産要素の代替には強い制約があると考えられ,
それはCO2削減経路に影響する(Grubb, 1997)


エネルギー資本の耐用年数は長く,一度エネルギー設備(e.g. 発電プラント)が
建設されると簡単には新規のエネルギー設備(e.g. CO2排出が少ない発電プラ
ント)に変更出来ない
製油所や港湾などのエネルギーインフラと個々のエネルギー設備には複雑な相
互依存関係があり,化石エネルギーを前提としたエネルギーインフラの下で新エ
ネルギー用の設備を建設するのは容易ではない
研究の方針

Putty-Clay仮説(ヴィンテージ資本仮説のひとつ)を用い,上記の要素を考
慮したエネルギー経済モデルを開発する

日本国内のCO2排出量を1990年比50%に削減するシナリオのシミュレー
ションを行い,エネルギー部門における代替の制約がCO2削減経路にどの
ような影響を及ぼすか分析する
2009/10/15
神戸大学 六甲フォーラム
1
Putty-Clay仮説(ヴィンテージ資本仮説のひとつ)

(参考) Dixit and Stiglitz (1977) で用いられたヴィンテージ資本仮説



  1
K t     A ,t K ,t   1 d 
 t T

t

Putty-Clay仮説(Johansen, 1959 を起源とする)
Kt  Kt  1    Kt 1
Kt : 資本の新ヴ ィ ン テージ
 : 資本減耗率
※ 生産関数を新ヴィンテージの関数とすることにより,「既存の生産要素は部門間を
動かず, 新規の生産要素投入によってのみ部門間の調整が行われる」と仮定

Putty-Clay仮説を適用したエネルギー経済モデルには,代表的なものとして
MERGEモデル(Manne et al., 1995)とDEMETERモデル(Gerlagh et al.,
2004)があるが,「エネルギー部門における代替の制約」の問題を明示的に
扱ったシミュレーションは存在しない
2009/10/15
神戸大学 六甲フォーラム
2
モデル方程式:世界経済

目的関数
t
 1 
max  
 Ut ,
t 0  1   
 : 純粋時間選好率
T

C 
U t  Lt log  t 
 Lt 
Lt : 労働投入
Ct : 消費
新ヴィンテージの計算 (Putty-Clay仮説)
Yt  Yt  1    Yt 1
It 1  Kt  Kt  1    Kt 1
Lt  Lt  1    Lt 1
E j ,t  E j ,t  1    E j ,t 1
O Ej ,t  O Ej ,t  1    O Ej ,t 1
 j  F, N 
 j  F, N 
 : 資本減耗率
Yt : 総生産 Kt : 資本
EF ,t : 化石エネルギー投入 EN ,t : 新エネルギー投入 O j ,t : エネルギーのO&Mコ ス ト
2009/10/15
神戸大学 六甲フォーラム
3
モデル方程式:世界経済 (続き)

生産関数 (全て新ヴィンテージの関数とする)
Q
 Q 1
 Q 1
 Q 1


K
1 K
Q
KL
KL
HE
Q

Q
Yt   
Kt Lt
 1
Qt



Q
KL
KL
 : ス ケールパラ メ ータ  : シェ アパラ メ ータ  : 代替弾力性

HE
t
Q

 H
  H t

 
QtHE : 合成財
 HE 1
 HE
 
 Et
H t : 知識ス ト ッ ク


 HE 1
 HE




 HE
 HE 1
 H : シェ アパラ メ ータ
E
 E 1
 HE : 代替弾力性
 E 1
 E 1


Et   EF ,t  E  EN ,t  E 


Et : 総エネルギー投入  E : 化石エネルギー・ 新エネルギー間の代替弾力性





マクロ経済恒等式
At  Ct  It  ItR  I FE,t  I NE,t  OFE,t  ONE,t
At : Ar mi ngt on財
2009/10/15
It : 投資
ItR : エネルギーR&D投資
神戸大学 六甲フォーラム
I jE,t : エネルギーjへの投資
4
モデル方程式:R&Dによるエネルギー効率改善 (Popp, 2004より)

知識ストック Ht は,1期前の知識ストックと新規R&D活動の水準より,以下の
ように計算
H t  f  I tR1   1   H  H t 1
 
f I tR1 : イ ノ ベーショ ン 可能性フ ロ ン ティ ア

イノベーション可能性フロンティアは,以下の生産関数により計算
 
Ht  f I
R
t

 RH : ス ケールパラ メ ータ

I tR : R&D投資  H : 知識ス ト ッ ク 減耗率
RH
 
I
R
t
R
 Ht 
H
 R : R&D投資の分配率
 H : 知識ス ト ッ ク の分配率
エネルギーR&D投資によるクラウディングアウト効果の考慮
Kt  Kt  1    Kt 1  It 1  4* crowdout * ItR1
※エネルギーR&D のリターンは,R&D 投資の4 倍に設定するが,これはR&D 投資1 ド
ル分がエネルギー以外への投資を4ドル分クラウドアウトすることにつながる
※パラメータcrowdout(≦1)によってクラウディングアウトの度合いを調節(現実のクラウ
ディングアウト効果は理論上のそれよりも小さいとする)
2009/10/15
神戸大学 六甲フォーラム
5
モデル方程式:エネルギー技術のLearning by Doing (Gerlagh et al., 2004より)

エネルギーjの新ヴィンテージは1期前の投資と当該時点のO&Mコストに比例
すると仮定
E j ,t  a j ,t I Ej ,t 1  b j ,t O jE,t
I Ej,t : エネルギーjへの投資

 j  F, N 
Oj ,t : エネルギーjのO&Mコ ス ト
aj,t,bj,t がLearning by Doingによって最終的に落ち着く値をaj,∞, bj,∞と定義し,
エネルギーコスト低減による生産性上昇を以下のように表現
h j ,t a j ,t  a j , , h j ,t b j ,t  b j ,
 j  F, N 
hj,t :エネルギーコストを表わす変数(例えばhj,t=2は,時点tにおけるコストがLearning
by Doingによって最終的に落ち着くコストの2倍であることを意味する)

hj,t はLearning by Doingによるコスト変化を表わす関数 gj(.) の時点tからt+1
までの平均値として,以下のように計算
W j ,t 1

h j ,t   
g j  x  dx  W j ,t 1  W j ,t 
 W j ,t

t 1
W j ,t   E j , , g j W j   c j 1   W j   1
 0
 j  F, N 
W j ,t : エネルギーjの累積経験量 c j : エネルギーjの初期コ ス ト
2009/10/15
神戸大学 六甲フォーラム
 : 経験指数
6
モデル方程式:国際貿易

国内供給Dt と輸入Mt は,CES関数によってArmington財At に統合されると
仮定
 DM
 DM 1
 DM 1 
 DM 1
DM  D
D


At  t  t  Dt  DM  1   t   M t  DM 


tDM : ス ケ ールパラ メ ータ  tD : シェ アパラ メ ータ  DM : 代替弾力性

総生産Yt は,CET関数(限界変形率一定の関数)によって輸出Xt と国内供
給Dt に分配されると仮定
 XD
 XD 1
 XD 1  1
 XD
XD  X
X
Yt  t  t  X t   XD  1   t  Dt   XD 


tXD : ス ケ ールパラ メ ータ  tX : シェ アパラ メ ータ  XD : 限界変形率



以下の関係式を用いて国際貿易モデルを閉じる
At  Dt  M t
Yt  X t  Dt
※時間に伴っ て日本の貿易黒字幅が減少する よ う tDM , tXD ,  tD ,  tX を カ リ ブレ ート
2009/10/15
神戸大学 六甲フォーラム
7
シミュレーションのシナリオ

2050年以降のCO2 排出量を1990年比50%に維持しつつ,効用の総和が最大になる
CO2 削減経路を計算(CO2は化石エネルギーのみから排出されると仮定)

シナリオ設定は,エネルギー部門における代替の制約を決定づける要素である
-資本の耐用年数(資本減耗率 δ により調整)
-化石エネルギー・新エネルギー間の代替弾力性δE
がCO2 削減経路にどう影響するかを調べることを目的とする

各シナリオにおけるパラメータ設定
δ:資本減耗率
δE:エネルギー間の代替弾力性
(a) SCL + SE
10%
2.5
(b) SCL + LE
10%
4.0
(c) LCL + SE
5%
2.5
(d) LCL + LE
5%
4.0
シナリオ
SCL: Short Capital Lifetime
SE: Small Elasticity
2009/10/15
LCL: Long Capital Lifetime
LE: Large Elasticity
神戸大学 六甲フォーラム
8
共通パラメータ
記号
説明
パラメータ値
ρ
純粋時間選好率
2%/年
Y0
2000年における国内総生産
500.31兆円
Lt
労働投入(生産性上昇を含む)
1%/年ずつ成長
E0
2000年における総エネルギー投入(炭素換算)
0.3702 GtC
γK
資本の分配率
0.31
σQ
付加価値とエネルギー財の間の代替弾力性
0.4
X0
2000年における輸出
57.49兆円
M0
2000年における輸入(税込)
54.16兆円
tm0
2000年における輸入税率
7.62%
σDM
国内財と輸入財の間の代替弾力性
2.3
ηXD
輸出財と国内財の間の限界変形率
4.0
β
Learning by Doingの経験指数
0.3
cF,0
2000年における化石エネルギーのコスト
3.04万円
cN,0
2000年における新エネルギーのコスト
11.00万円
Emis0
2000年におけるCO2排出量
1.255 Gt-CO2
Emis50
2050年以降におけるCO2排出量(固定値)
0.5715 Gt-CO2
2009/10/15
神戸大学 六甲フォーラム
9
生産関数とR&Dモデルのカリブレーション

生産関数におけるφQ ,αKLの値は,モデル方程式を微分・整理した以下の
式を用いてカリブレート(Gerlagh et
al., 2004 の方法に準じる)


HE 
 

Z
Q




0
0
0
0
Q  
1

0  Y0  

1
1
Q
Q
Q




Q
Q
1
 0  Z 0 
1
, 
KL

Q
 0  Z 0   0  Q
1
Q
HE
0

1
Q
0 : Z0  K0 L01 の価格  0 : Q0 HEの価格 0 : Y0の価格
K

R&DによるEnergy Savings(=R&Dのリターン)の正味現在価値が,R&D投
資の正味現在価値の4倍になるようαHを調整(Popp, 2004 の方法に準じる)
T

t 0



K
EnergySavings  t 
1  r 
t
T
 4 
t 0
I tR
1  r 
t
Learning by DoingはOFFにする( R&Dモデル単独で調整するため)
Energy Savingsは,R&Dなしの場合の[エネルギーコスト]×[エネルギー投入量]
とR&Dありの場合のそれとの差として計算
知識ストック減耗率 δH,スケールパラメータφRH,R&D投資の分配率γR,知識
ストックの分配率γH には,Popp (2004) で用いられた値をそのまま適用
2009/10/15
神戸大学 六甲フォーラム
10
輸出入方程式のカリブレーション


ptDを国内価格, ptW を世界価格,tmtを輸入税率として,輸入方程式の制約下
でptD Dt + ptW (1+tm)Mtを最小化する問題を解くと,αtDを求める式が得られる
1
 PW (1  tm )  M 1 DM 
t
t

 tD  1  1  t


D
Pt


 Dt 
輸出方程式の制約下でptW Xt + ptD Dtを最小化する問題を解くと,αtXを求める
式が得られる
 tX
 XD 1
D


Pt  X t 

 1  W 

Pt  Dt 


1

φtDM ,φtXD の値は上で求められたαtD,αtX を用い,輸出入方程式より求める

Armington財At,国内供給Dt,輸入Mt,輸出Xtについては,推定値QtREF ( Q =
A, D, M, X) を以下のように見積もる
L
QtREF  1  grQ  t QtREF
1
Lt 1
grA = grD = 0とするが,輸出入についてはgrM = 0.1%/年, grX = -0.1%/年に
設定し,日本の貿易収支の黒字幅が時間とともに減少するように設定

2009/10/15
神戸大学 六甲フォーラム
11
CO2排出量の時間変化

資本の耐用年数が長いほど(資本減耗率が小さいほど),またエネルギー間の代替弾
力性が小さいほど,より速やかなCO2排出削減が望ましくなる

LCL + SEシナリオでは当初からコンスタントにCO2 排出を減らす経路になるが,SCL
+ LEシナリオでは一旦CO2 排出を増やしてその後に急激な削減を行う経路になる

上記以外のシナリオでは,上記2種類のシナリオの中間的な経路になる
1.6
CO2排出量(Gt-CO2)
1.4
1.2
1
0.8
0.6
0.4
SCL + SE
2009/10/15
SCL + LE
LCL + SE
神戸大学 六甲フォーラム
LCL + LE
12
新エネルギーのシェアの時間変化

エネルギー間の代替弾力性については,小さいほどより速やかに新エネルギーに転
換することが望ましくなる

資本の耐用年数については,長い方が2030年以降は新エネルギーのシェアが大きく
なるが,21世紀初頭においては新エネルギー普及経路にさほど影響を及ぼさない
90%
新エネルギーのシェア
80%
70%
60%
50%
40%
30%
20%
10%
0%
SCL + SE
2009/10/15
SCL + LE
LCL + SE
神戸大学 六甲フォーラム
LCL + LE
13
総エネルギー投入の時間変化

資本の耐用年数が長いほど,総エネルギー投入が小さくなる

エネルギー間の代替弾力性は,総エネルギー投入には影響しない

資本の耐用年数が長くなれば,CO2排出量は減少するが,新エネルギー普及経路は
さほど変わらない(前スライド)。これは,資本の耐用年数が長くなれば,エネルギー投
入を減らしてCO2排出削減を行うことを意味する(特に,2030年以前において)。
総 エネル ギー投入(GtC)
0.8
0.7
0.6
0.5
0.4
0.3
SCL + SE
2009/10/15
SCL + LE
LCL + SE
神戸大学 六甲フォーラム
LCL + LE
14
R&DとLearning by Doingの影響:CO2排出量の時間変化

R&Dなし・あり,Learning by Doingなし・ありを組み合わせた4種類のシナリオ(No
R&D + No LbD,No R&D + LbD,R&D + No LbD,R&D + LbD)を設定して計算

資本減耗率とエネルギー間の代替弾力性は,δ = 7%,σE = 3.0に固定

CO2排出経路は,Learning by Doingのあり・なしに大きく影響され,R&Dのあり・なし
には殆ど影響されない
1.6
CO2排出量(Gt-CO2)
1.4
1.2
1
0.8
0.6
0.4
No R&D+No LbD
2009/10/15
No R&D+LbD
R&D+No LbD
神戸大学 六甲フォーラム
R&D+LbD
15
R&DとLearning by Doingの影響:新エネルギーのシェアの時間変化

新エネルギー普及経路は,Learning by Doingのあり・なしに大きく影響され,R&Dのあ
り・なしには殆ど影響されない

Learning by Doingがあれば,新エネルギーコストの内生的な低減によって新エネル
ギーのシェアが増える

新エネルギーが増えてより大きなCO2削減が可能になり, CO2排出が減る(前スライド)
90%
新エネルギーのシェア
80%
70%
60%
50%
40%
30%
20%
10%
0%
No R&D+No LbD
2009/10/15
No R&D+LbD
R&D+No LbD
神戸大学 六甲フォーラム
R&D+LbD
16
R&DとLearning by Doingの影響:総エネルギー投入の時間変化

R&Dありでは,なしの場合に比べ総エネルギー投入が小さくなる。これは,R&D投資
がエネルギー効率改善を引き起こすようにモデル化されているためである。

Learning by Doingありでは,なしの場合に比べ総エネルギー投入が大きくなる。これ
は,Learning by Doingがエネルギーの生産性を向上させると仮定しているためである。
総 エネル ギー投入(GtC)
0.8
0.7
0.6
0.5
0.4
0.3
No R&D+No LbD
2009/10/15
No R&D+LbD
神戸大学 六甲フォーラム
R&D+No LbD
R&D+LbD
17
結論
1. 本研究では,モデルの 「資本の耐用年数」と「エネルギー間の代替弾力
性」を変化させ,エネルギー部門における代替の制約がCO2削減経路
に及ぼす影響を分析した。
2. 結果として,資本の耐用年数が長いほど,またエネルギー間の代替弾
力性が小さいほど,より速やかなCO2排出削減が望ましくなることが分
かった。
3. しかし,資本の耐用年数の長短とエネルギー間の代替弾力性の大小は,
望ましいCO2排出削減の方法に異なった影響を及ぼす。


資本の耐用年数の増加によるCO2排出の低減は,新エネルギーへの転換
よりも,エネルギー投入そのものを減らして達成することが望ましい
エネルギー間の代替弾力性の減少によるCO2排出の低減は,エネルギー
投入を減らさずに新エネルギーへの転換によって達成することが望ましい
4. エネルギーR&Dは総エネルギー投入を小さくするが,Learning by
Doingは逆に総エネルギー投入を大きくする。
2009/10/15
神戸大学 六甲フォーラム
18