Digital Photon Count

Frühjahrsforum 2015
Frankfurt, 7. Mai 2015
Hochempfindliche Lichtdetektoren für den Einsatz
in der diagnostischen Bildgebung und In-vitro
Diagnostik:
Digital Photon Counters (DPC, dSiPM)
LDTEC Consulting Dr. York Haemisch, Sauerlach (Munich), Germany
Detector Technology
Clinical Imaging
Pre-clinical Imaging
Business Development
Market Research
Short CV [email protected]
• 1990-1993: Ph.D. on quantum structures in III-V semiconductors
• 1993-1996: General Electric, Medical Systems (med. imaging)
• 1997-1999: ADAC Laboratories Europe B.V. (med. imaging)
• 1999-2002: ADAC Laboratories Inc., San Jose, USA (med. imaging)
(acquired by Philips in 2000)
• 2002-2006: Philips Healthcare Europe (med. imaging)
• 2006-2010: Bioscan Inc., Washington D.C. (pre-clinical imaging)
• 2010-2014: Philips Corporate Technologies, Aachen (dSiPM)
• recently: freelancing technology and business consultant, Munich
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
2
Outline
• Light detection in industry
• Photomultiplier tubes vs. solid state detectors
• Silicon Photomultipliers (SiPM)
• Digital vs. analog concept
• Impact on applications (PET and IVDX)
• Scalability of technology
• Summary
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
3
Application of light detectors (> 1 B US$/year)
High Energy
Physics (HEP)
Medical
Imaging (MI)
Clinical & preclinical nuclear
imaging (e.g. PET/CT or
Pet/MR), organ specific
devices, operative probes
Radiation and particle
detectors for accelerator and
astrophysics experiments using
conversion via light detection
Safety &
Security (SS)
In-vitro
diagnostics
(IVDX)
(Time-resolved) fluorescence imaging as in
microscopy, cytometry, spectroscopy, DNA
sequencing, polymerase chain reaction…
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
Industrial
Automation
(IA)
LIDAR & distance
measurements, 3D
viewing in robotics,
process & surface
control….
4
Radiation detection,
baggage/cargo screening, nuclear
power plant safeguarding,
nuclear decommissioning…..
Conventional Medical Imaging Modalities
Diagnostic
Imaging
Magnetic
Resonance
Ultrasound
X-Ray, CT
Scintigraphy
SPECT
PET
Transmission, Echo, Reflection
Emission
X-ray absorption
as f(density)
Biological
distribution of
radioisotopes
(γ-emission &
detection)
Radiowaves
(Nuclear Spin
relaxation)
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
5
US wave
reflection as
f(density)
Ionizing Radiation in medical imaging
Transmission
Roentgen (X)-rays
CT
planar (radiography)
~ 100 MHz/cm² (integrating)
< 100 keV
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
Emission
β+ -annihilation (2γ)
γ – single photon
Sczintigraphy & SPECT
~ kHz/cm²
80-360 keV
6
PET
(counting) ~ 1 MHz/cm²
511 keV
128 years of light detection (and PMTs still dominating)
From Photomultiplier Tubes (PMTs) to Photodiodes (PDs), Avalanche PD’s
(APDs) to Arrays of Geiger-Mode APDs (Silicon Photomultipliers (SiPMs))
1960‘
Late 1980‘s - today
1934
1887
1905
Lenard
Hertz
Einstein
PD, APD
PMT
• Vacuum tube
• High voltage
• 1-10 channels/cm²
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
• Multi-Anode PMT
• Micro-PMT
• MEMS
7
G-APD
SPAD-arrays
• Si- or III-V based
• CMOS, low voltage
• 10’s-1000’s channels/cm²
Radiation conversion detectors (γ to light) in MI
PMT based
Si based
Indirect conversion
(via scintillation light)
Light Detectors!
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
8
• Light sharing
(non-linearity)
• Few channels
• Susceptive to
magnetic fields
• 1:1 coupling
(linearity)
• Many channels
• Compatible with
magnetic fields
ToF as fundamental trigger for SiPM development
No TOF
TOF
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
9
Fast scintillators require fast photodetectors
e.g. LSO, LYSO, LSF, LaBr
e.g. PMT, APD, SiPM
Graph courtesy of Spanoudaki & Levin, Stanford, in: Sensors, 10, 2010
YORK HAEMISCH – IVAM/COMPAMED
10
Frühjahrsforum 2015
Analog SiPM is in fact a solid state PMT
(Analog) PMT
• Linear mode
• Large Anodes, multi-anode
PMT’s with max 256
channels, expensive
• Very low noise
• Timing resolution limited by
e-multiplication
• HV needed
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
Analog SiPM (aSiPM)
100’s-1000’s SPADs
=
SiPM
(SPADs = “cells”)
11
• Geiger
mode
• µm cells
• Single
Photon
• 102 pstiming
resolution
• Linear mode
• mm cells
• No Single
Photon
• No Timing
resolution
• HV needed
aSiPM delivers summed pulses only
Analog SiPM
• Optimal signal in simulation/on single channel/ with discrete
electronics
• For higher integrated systems ASICS are needed
• ASICS need to be adapted to SiPMs very carefully (impedance,
capacitance,…
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
12
Problematic signal readout from aSiPMs
Individual threshold (requires calibration)
Introduces pedestal! (requires calibration)
Desired
information
is number of
photons, not
amplitude
3
2
5
1
4
amplitude
amplitude
This is a low-pass filter! (smears out impulse response)
• Temperature
time
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
• Sum current gives
analog signal
• Caution with
connections!
• peak-shape analysis
needed for
• Area (energy)
• Slope (time)
• Pulse shape analysis
influenced by external
parameters:
• Magnetic field
• Noise
time
13
• …
G-APD or SPAD intrinsically is a digital device
Digital Photon Counter
(DPC)
G-APD
SPAD APD PD
“Therefore, while the APD is a linear amplifier for the input optical signal with
limited gain, the SPAD is a trigger device so the gain concept is meaningless.”
(source: http://en.wikipedia.org/w/index.php?title=Single-photon-avalanche-diode&oldid=603577212)
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
14
Digital Photon Counter (DPC) operation principle
• First photon hits sensor cell (there are several 100’/cm²)
• Integrated photon counter switches from 0 to 1
• Trigger pulse is sent to TDC (arrival time of first photon)
• Third photon hits another sensor cell
• Integrated photon counter switches from 0 to 1
• Second photon hits another sensor cell
• Integrated photon counter switches from 0 to 1
•
•
•
•
Internal clock reaches Integration time limit
Device readout is started
Jtag register sums all the “1”s
Digital word with photon number and time stamp sent out
Degenhardt et al. Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE. IEEE, 2009
Frach et al. Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE. IEEE, 2009.
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
15
SiPM topography and terminology (example DPC)
Die = 4 pixel
Array = 4x4 dies = 8x8 pixel
2 line TDC‘s 180° offset
Pixel = 3200 SPADs
•
•
•
•
•
8x8 pixels per array
Configurable event validation (on sub-pixel and pixel level)
Data correction on array level
Calibration data stored in flash memory
Upgradeable firmware/firmware library
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
16
DPC: electronics are laterally integrated
Reverse Excess Voltage
Quench Resistor
Comparator
SPAD
1 bit Ram
Cell electronics
• Area: 120 μm2
• 25 transistors including
6T SRAM
•  6% of total cell area
• Modified 0.18μm
5 metal layer CMOS
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
17
Die electronics:
•
•
•
4 pixels per sensor,
6396/3200 cells per pixel
Two delay line TDCs (180
degree offset) and pixel
controller
LVDS and LV CMOS clock
and sync inputs, JTAG
interface
GAPD/SPAD readout: digital vs. analog
Trigger
Network
Reverse Excess Voltage
Quench Transistor
Comparator
SPAD
TDCs + QDCs
Shaper
1 bit
Ram
• Photon detection signal is digital by nature (photon or no photon)
• Further processing fully digital by counting number of triggered cells with on-chip digital electronics
• Chip output is (digital) number of photons with timestamp
↪ Fully digital processing chain ensures minimal impact of external parameter changes
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
18
DPC: configurable sensor with 4-layer interface
FPGA
•
•
•
•
•
Power & Bias
Clock distribution
Data collection/
concentration
TDC linearization
Saturation correction
Skew correction
FPGA
200 MHz ref. clock
Serial
configuration
interface
Serial Data
output (x2)
Flash
Memory
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
Detector array
Flash
8 x 8 dSiPMs
•
•
•
•
Temp.
sensor
19
FPGA firmware
TDC calibration data
Configuration
Inhibit memory maps
DPC: intrinsic timing f(jitter & avalanche formation)
Contribution of:
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
TDC network
20
TDC network + diodes
(avalanche formation time)
DPC: better intrinsic timing proven in experiments
„Time resolution below 100 ps for the SciTil detector of PANDA employing SiPM“
S. E. Brunner, L. Gruber , J. Marton , H. Orth and K. Suzuki, Preprint from JINST, Jan. 2014
analog
SPTR:
digital
45 ps σ
85 ps σ
“… several types of SiPM have been investigated using a proton test beam. In the
experiment, a time resolution of about 85 ps has been achieved using SiPM from
**** and **** with a sensitive area of 3 x 3 mm². Employing the Digital Photon
Counter from Philips, a time resolution of about 45 ps could be measured.”
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
21
Detector timing depends on crystal aspect ratio
3x3x5 mm³ LYSO
(AR: 0.55)
4x4x22 mm³ LYSO
(AR: 1.375)
250 ps FWHM
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
22
DPC enables use of monolithic crystals (3D detector)
20 mm LSO
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
23
Digitization: control of detector parameters (DCR)
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
24
Advantages of digital vs. analog SiPM
• Significantly reduced
temperature sensitivity (~10-1)
• Active quenching reduces
afterpulsing & crosstalk
• Individually addressable
cells enable DC control
• Better linearity (&correction)
• Better intrinsic timing
resolution due to integrated
TDCs (~ factor 2)
• No analog electronics, no
ADCs, no ASICs
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
25
Solid state: dramatic increase in sampling density
PMT (analog)
4 channels
No. (LOR) = n²/2 x n x N
n ~ 600 (no. of crystals/ring) (~76
cm diameter)
N ~ 60 (no. of rings) (24 cm AFOV)
~ 6.5 Billion LOR! @ ~ 100 kHz/LOR
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
26
Solid State
256 channels
Sampling and timing are 2 key factors in PET
Increased sampling density
Factors 50 -200
PMT sampling (analog)
non-TOF
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
Solid State sampling (digital)
500 ps
250 ps
Improved timing (currently factor 2)
27
100 ps
ToF @ 250 ps and 1:1 improve S/N and spatial res.
With TOF
4.8 mm
rods
200 mm
70 mm
DPC
based
4.7 mm
3.2 mm
Deluxe Jaszczak Phantom
Without TOF
PMT
based
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
4.7 mm
28
3.2 mm
Impact on Applications (here: PET imaging)
DPC based PET
PMT based PET
1:1 coupling, 2 mm voxels
(light sharing, 4 mm voxels)
Images courtesy of University Hospitals, Cleveland, USA
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
29
Impact on Applications (here: PET imaging)
PMT based PET
DPC based PET
Images courtesy of University Hospitals Cleveland
YORK HAEMISCH – 25 years TEP, Würzburg 2015
30
Impact on Applications (here: PET imaging)
PMT based PET
DPC based PET
Images courtesy of University Hospitals Cleveland
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
31
Apps in IVDX: FCM, MPR, Microscopy, Sequencers…
Microplate readers (MPR)
Flow Cytometers (FCM)
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
32
VCI 2013
32
IVDX: FCM principle (up to 18 channels)
Flow cytometers use separate
fluorescence (FL-) channels to
detect light emitted. The number
of detectors will vary according to
the machine and its manufacturer.
Detectors are either silicon
photodiodes, CCD arrays or
photomultiplier
tubes (PMTs). Silicon
photodiodes are usually used to
measure forward
scatter when the signal is strong.
PMTs are more sensitive
instruments and are ideal for
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
33
scatter and fluorescence readings.
IVDX technology trend: multichannel  solid state
Spectral imaging
In general, CCD camera speed is
a major limitation for spectral
imaging with the collection of a
single lambda stack requiring
several minutes or more. Digital
cameras also require repetitive
scans to capture a lambda stack,
which can lead to increased
photobleaching and
phototoxicity. The speed
situation is far more critical in
live-cell imaging where labeled
structures can change spatial
location during the acquisition of
a lambda stack that consumes
several minutes.
34
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
Single channel
Multichannel
Dual channel
FARICH prototype detector @ CERN
Die neue LSM 8 Familie:
Schnelle Konfokalmikroskope mit GaAsP Detektoren (III-V) und Airyscan
Das Airyscan-Prinzip
Ein klassisches Konfokalmikroskop beleuchtet
eine Stelle Ihrer Probe, um das emittierte
Fluoroszenzsignal zu detektieren. Außerhalb
des Fokus auftreffendes Emissionslicht wird bei
einem Pinhole, dessen Größe bestimmt,
welcher Teil der Airy Disk den Detektor
erreicht, zurückgewiesen. Sie können die
Auflösung erhöhen, indem Sie das Pinhole
verkleinern. Das führt jedoch dazu, dass das
Signal-Rausch-Verhältnis stark absinkt, da
weniger wertvolles Emissionslicht
durchgelassen wird. Mit Airyscan führt ZEISS
ein neues Konzept ein. Anstatt das an einem
Pinhole auftreffende Licht auszusondern,
sammelt ein 32-Kanal-Flächendetektor
das gesamte Licht einer Airy Disk gleichzeitig.
Dabei funktioniert jedes Detektorelement als
einzelnes, winziges Pinhole. Die Kenntnis des
Strahlenganges und der räumlichen Verteilung
jeder Airy- Disk ermöglicht eine äußerst
lichteffiziente Bildgebung: Sie können nun alle
von Ihrem Objektiv gesammelten Photonen
verwenden.
http://www.zeiss.de/microscopy/de_de/produkte/confocal-microscopes/lsm-880.html#airysca
35
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
Scalability means maintaining Intrinsic Performance
*Using 4x4x22 mm³ LYSO crystals
CRT ~ 250 ps*
Increasing no. of channels
CRT ~ 250 ps*
CRT ~ 250 ps*
CRT ~ 250 ps*
20 x 20 cm²
Cherenkov detector
with 48 ps σ !
CRT ~ 250 ps*
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
36
Digitization, Miniaturization, Integration…
Photography
Television
Transistor
Telephony
+ SOFTWARE !
Next?: Light Detection
X-Ray imaging
DPC is in sync with current technology trends
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
37
Summary
• The digital implementation of SiPM overcomes the drawbacks of the
analog version and makes it a truly scalable technology.
• The scalability of technology is essentially enabled by early digitization
and has been demonstrated by e.g.:
- PET test ring, Philips PET product
- FARICH detector prototype (not shown here)
• In medical application (PET) DPC demonstrated impact in terms of
sampling (spatial resolution) and timing (ToF) leading to significantly
improved image quality.
• By opening the road to software and firmware programmable detectors
DPC is likely to be implemented in IVDX too, supporting the trend to
multichannel/parallelization.
• The digital technology (like any other CMOS) needs volume to succeed.
38
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
Thank you for your attention!
Thanks also to:
Special thanks to:
Philips DPC:
Thomas Frach
Mezbah Shaber
Carsten Degenhardt
Louis Meesen
Ben Zwaans
Oliver Muelhens
Ralf Schulze
Sebastian Reinartz
Ralf Dorscheid
Rik de Gruyter
Shu Xu
Anja Schmitz
Kathrin Budde
YORK HAEMISCH – IVAM/COMPAMED
Frühjahrsforum 2015
Philips Research:
Andreia Trinidade
Pedro Rodrigues
Andreas Thon
Volkmar Schulz
Torsten Solf
Andre Salomon
39
FZ Juelich:
Siegfried Jahnke
Gerhard Roeb
Simone Beer
Matthias Streun
Günther Kemmerling
Holger Nöldgen
Marco Dautzenberg