都市の集積ɾ分散モデルの対称性破壊分岐: 群論的分岐理論 - J

࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
౎ࢢͷूੵɾ෼ࢄϞσϧͷରশੑഁյ෼‫ذ‬ɿ
‫܈‬࿦త෼‫ذ‬ཧ࿦ʹΑΔΞϓϩʔν
஑ా ਗ਼޺1 ɾՏ໺ ୡਔ2 ɾ੺দ ོ3 ɾ༄ຊ জਔ4 ɾീ‫ ר‬ढ़ೋ5
1 ਖ਼ձһ
౦๺େֶେֶӃ‫ڭ‬त ޻ֶ‫ڀݚ‬Պ౔໦޻ֶઐ߈ʢ˟980-8579 ઋ୆ࢢ੨༿۠ߥ‫ࣈר‬੨༿ 6-6-06ʣ
E-mail: [email protected]
2 ਖ਼ձһ ౦๺େֶେֶӃ।‫ڭ‬त ޻ֶ‫ڀݚ‬Պ౔໦޻ֶઐ߈ʢಉ্ʣ
3 ਖ਼ձһ ౦๺େֶେֶӃ‫ڭ‬त ৘ใՊֶ‫ڀݚ‬Պʢಉ্ʣ
4 ֶੜձһ ౦๺େֶେֶӃ ޻ֶ‫ڀݚ‬Պ౔໦޻ֶઐ߈ʢಉ্ʣ
5 ֶੜձһ ౦๺େֶେֶӃ ޻ֶ‫ڀݚ‬Պ౔໦޻ֶઐ߈ʢಉ্ʣ
ۙ೥ɼ‫ن‬໛ͷ‫ͱࡁܦ‬༌ૹඅ͓ΑͼཁૉҠಈͷ૬‫ʹ༻࡞ޓ‬ΑΔ౎ࢢͷूੵɾ෼ࢄΛ಺ੜతʹղ໌͢Δ෼ੳ͕੝
ΜʹߦΘΕ͍ͯΔɽ͜ͷ෼ੳϞσϧͷ୅දྫͰ͋Δ Krugman ͷ Core–Periphery Ϟσϧ͸ෳ਺‫ߧۉ‬ղΛ࣋ͪɼ
ͦͷ౎ࢢूੵɾ෼ࢄաఔ͸༌ૹඅมԽʹΑΔ෼‫ذ‬Λ൐͏͜ͱ͕஌ΒΕ͍ͯΔɽ͔͠͠ͳ͕Βɼͦͷूੵɾ෼ࢄ
աఔ͸ओʹɼ౎ࢢ਺͕ 2 ͷ৔߹͔͠໌Β͔ʹ͞Ε͍ͯͳ͍ɽຊ࿦จͰ͸ɼCore–Periphery ϞσϧΛଟ౎ࢢϞσ
ϧɼ۩ମతʹ͸ԁप্ʹ‫ۉ‬౳ʹҐஔ͢Δ౎ࢢ਺ 22 , 23 , 24 Ϟσϧ΁ͱ֦ு͠ɼରশੑΛ࣋ͭ‫ܥ‬ͷҰൠ࿦Ͱ͋Δ‫܈‬
࿦త෼‫ذ‬ཧ࿦Λ༻͍Δ͜ͱʹΑΓɼ‫ߧۉ‬ղͷ෼‫ذ‬աఔͷϝΧχζϜΛղ໌͢Δɽͦͷ݁Ռɼ༌ૹඅͷมԽʹΑ
Δप‫ظ‬ഒ෼‫ʹذ‬୅ද͞ΕΔଟஈ֊ͷରশੑഁյ෼‫ذ‬Λ൐͏౎ࢢͷूੵɾ෼ࢄͷۭؒత෼෍ͷมԽΛࣔ͢ɽ
Key Words : bifurcation analysis, group-theoretic bifurcation theory, population analysis, Core–
Periphery model, city accumulation
1.
͸͡Ίʹ
ಛ௃͸ɼෆ‫׬‬શ‫ڝ‬૪ͱੜ࢈ʹ͓͚Δ‫ن‬໛ͷ‫ࡁܦ‬ੑ͔Β
౎ࢢ͕ूੵͷ‫ࡁܦ‬Λ࣋ͪɼҰํͰ༌ૹඅ͕ਓ‫ޱ‬෼ࢄྗ
ͱͯ͠ಇ͘͜ͱͰ͋Δɽͦͷ‫ޙ‬ɼCP Ϟσϧʹରͯ͠ɼ
େ‫ن‬໛ͳަ௨ࢪઃ੔උ͸౎ࢢؒͷਓ‫ޱ‬෼෍Λେ͖͘
มԽͤ͞Δɽྫ͑͹ɼେ‫ن‬໛ަ௨ࢪઃ͕ྡ઀ͨ͠౎ࢢ
࿑ಇऀ΍ࢿຊͱ͍ͬͨੜ࢈ཁૉͷҠಈՄೳੑ΍ޮ༻ؔ
ؒʹ੔උ͞ΕΔͱɼยํͷ౎ࢢ͕੒௕ͯ͠΋͏Ұํ͕
਺΍ੜ࢈ؔ਺Λมߋͨ͠όϥΤςΟʹ෋ΉϞσϧ͕ଟ
ਰୀ͢ΔʮετϩʔޮՌʯ͕ੜ͡Δ͜ͱ͕͋Δɽ·ͨɼ
͘։ൃ͞Ε͍ͯΔɽ͜ΕΒͷϞσϧ͸ New Economic
ϦχΞϞʔλʔΧʔ౳ͷߴ଎ަ௨ࢪઃ੔උ͸ਓ‫ޱ‬ͷҰ
‫ूۃ‬தΛՃ଎ͤ͞ΔՄೳੑ͕͋ΔɽͦͷͨΊɼਓ‫ूޱ‬
Geography (NEG) Ϟσϧͱ‫ݺ‬͹Εɼ౎ࢢͷूੵɾ෼ࢄ
ϝΧχζϜʹؔ͢Δ஌‫ ͕ݟ‬NEG ϞσϧΛ༻͍ͯଟ͘஝
ੵͷ͋Δ౎ࢢ͓Αͼͦͷूੵͷఔ౓Λ༧ଌ͢Δ͜ͱ͕ɼ
ੵ͞Ε͍ͯΔʢྫ͑͹ɼจ‫ݙ‬4),5),6),7) ʣɽ
ަ௨ࢪઃ੔උͷ‫ޮࡁܦ‬ՌΛଊ͑Δ͏͑ͰඞཁͱͳΔɽͦ
͔͠͠ɼ౎ࢢͷूੵɾ෼ࢄաఔϝΧχζϜΛ NEG Ϟ
͜Ͱ౎ࢢूੵ‫ݱ‬৅Λ༧ଌ͢ΔͨΊʹɼ౎ࢢूੵϝΧχ
σϧʹΑΓཧ࿦෼ੳ͍ͯ͠Δैདྷ‫ڀݚ‬ͷଟ͘͸ɼ౎ࢢ਺
ζϜΛղ໌͢Δཧ࿦ߏங͕ॏཁͱͳͬͯ͘Δɽ
Λ 2 ౎ࢢʹ‫͍ͯͬݶ‬Δɽ2 ౎ࢢϞσϧͷ෼ੳͰ͸ɼΑΓ
ަ௨ࢪઃ੔උʹ൐͏౎ࢢूੵϝΧχζϜΛઆ໌͢Δ୅
Ұൠతͳଟ౎ࢢϞσϧʹ͓͚Δ༌ૹඅมԽʹ൐͏౎ࢢ
දత‫ͯ͠ͱڀݚ‬ɼKrugman1),2) ͕͋͛ΒΕΔɽKrugman
ूੵɾ෼ࢄͷਐߦաఔಛੑʢi.e. ༌ૹඅΛύϥϝʔλͱ
3)
͸ Dixit and Stiglitz ͷಠ઎త‫ڝ‬૪ϞσϧΛ 2 ౎ࢢϞ
͢Δ෼‫ܦذ‬࿏ͷ‫ن‬ଇੑͱϝΧχζϜʣ͸ղ໌Ͱ͖ͳ͍ɽ
σϧʹԾఆ͠ɼ౎ࢢؒͷ༌ૹඅมԽʹ൐͏޻‫ۀ‬ͷूੵɾ
2 ౎ࢢΑΓ΋ଟ͘ͷ౎ࢢΛѻ͏‫ͯ͠ͱڀݚ‬͸ɼFujita et
෼ࢄͷਐߦաఔΛ෼ੳͨ͠ɽ͜ͷ Krugman ͷϞσϧ͸
Core–Periphery ϞσϧʢҎԼɼCP Ϟσϧͱུʣͱ‫ݺ‬
͹Εɼ౎ࢢूੵʹ͍ͭͯࣔࠦʹ෋Ή෼ੳ݁ՌΛ΋ͨΒ
al.4) ͷ 6 ষʹ͓͍ͯ 3 ౎ࢢ͓Αͼ 12 ౎ࢢͷ෼ੳ͕ͳ͞
Ε͍ͯΔɽͨͩ͠ɼ༌ૹඅ༩݅ͷ౎ࢢؒਓ‫ޱ‬෼෍ͷ‫ۉ‬
ߧղ͸ࣔ͞Ε͍ͯΔ΋ͷͷɼ༌ૹඅมԽʹ൐͏෼‫ܦذ‬
͍ͯ͠Δɽͦͷ୅ද͕ɼ༌ૹඅΛύϥϝʔλͱ͢Δ෼
࿏͸෼ੳ͞Ε͍ͯͳ͍ɽ·ͨɼKrugman8),9) Ͱ͸ɼ࿈
‫ݱذ‬৅Ͱ͋Δɽ۩ମతʹ͸ɼରশͳۭؒ৚݅Λ࣋ͭ 2 ౎
ଓۭؒΛର৅ͱͨ͠෼ੳ΋ߦΘΕ͍ͯΔɽͨͩ͠ɼू
ࢢʹ͓͍ͯ༌ૹඅ௿‫͕͋ݮ‬Δͱɼ౎ࢢूੵྗ͕‫ͳ͘ڧ‬
ੵɾ෼ࢄϝΧχζϜΛଊ͑Δཧ࿦෼ੳͱͯ͠͸ɼਓ‫͕ޱ‬
Γରশ‫͕ߧۉ‬ෆ҆ఆͱͳΔɽͦͷ݁Ռɼ෼‫ʹذ‬Αͬͯ
Ұ༷෼෍Ͱ͋Δ‫͍͓ͯʹ఺ߧۉ‬ઢ‫ॴہͨ͠ࣅۙܗ‬త෼
͍ͣΕ͔ͷ౎ࢢʹਓ‫ू͕ޱ‬த͢Δʢi.e.ɼยํͷ౎ࢢਓ
ੳ͕ͳ͞Ε͍ͯΔͷΈͰɼਓ‫͕ޱ‬Ұ༷෼෍Ͱͳ͍έʔ
‫ޱ‬͸θϩʹͳΔʣ͜ͱ͕ࣔ͞Ε͍ͯΔɽ CP Ϟσϧͷ
εΛ‫ؚ‬ΉେҬత෼ੳʹͳ͍ͬͯͳ͍ɽ·ͨɼFujita et
553
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
al.10) ʹ͓͍ͯ͸ɼෳ਺౎ࢢͷ֊૚ߏ଄‫ܗ‬੒ϝΧχζϜ
͕ਓ‫ޱ‬Λύϥϝʔλͱͨ͠෼‫ذ‬ղੳΛ༻͍ͯࣔ͞Εͯ
લऀͷ‫ࢉܭ‬෼‫ذ‬ཧ࿦ͱ͸ɼඇઢ‫ํܗ‬ఔࣜͷ‫ॴہ‬త෼‫ذ‬
‫ܦ‬࿏௥੻๏ʹ‫਺ͮ͘ج‬஋‫ࢉܭ‬ख๏Ͱ͋ΔɽஶऀΒ͸‫ط‬
͍Δɽ͔͠͠ɼ‫ܥ‬౷తͳ෼‫ܦذ‬࿏௥੻͸ߦΘΕ͓ͯΒ
ʹ͜ͷํ๏Λ 4 ౎ࢢͷ CP Ϟσϧʹద༻ͯ͠෼‫ܦذ‬࿏
ͣɼಛఆͷ෼‫ܦذ‬࿏͕਺஋‫͍ࣔͯͮ͞جʹࢉܭ‬Ε͍ͯ
Λ‫ٻ‬Ί͍ͯΔ15) ɽ‫ऀޙ‬ͷ‫܈‬࿦త෼‫ذ‬ཧ࿦͸ɼߏ଄ྗֶ
Δ͚ͩͰ͋Δɽ݁‫ہ‬ɼ͍ͣΕͷ෼ੳ΋෼‫ܦذ‬࿏Λ‫ܥ‬౷
‫ܥ‬෼໺ͰɼରশੑΛ࣋ͭ‫ܥ‬ͷ෼‫ذ‬ϝΧχζϜͷղੳʹ
త͔ͭ໢ཏతʹ‫ٻ‬Ί͍ͯͳ͍ɽͦͷͨΊɼैདྷ‫Ͱڀݚ‬
ར༻͞Ε͍ͯΔ12),14) ɽ۩ମతʹ͸ɼରশੑ௿ԼΛ൐͍
͸ଟ౎ࢢϞσϧʹ͓͚Δ༌ૹඅมԽʹ൐͏౎ࢢूੵɾ෼
ͳ͕Βਐߦ͢Δ෼‫ذ‬ʢରশੑഁյ෼‫ذ‬ʣʹΑΓɼύλʔ
ࢄͷਐߦաఔͷҰൠత‫ن‬ଇ͸໌Β͔ʹͳ͍ͬͯͳ͍ɽ
ϯྲྀͷൃੜ΍ߏ଄΍ࡐྉͷ෼‫࠲ذ‬۶͕Ҿ͖‫͜͞ى‬ΕΔ
͜ͱ͕ղ໌͞Ε͍ͯΔɽ
Ҏ্ͷഎ‫ܠ‬ͷ΋ͱɼຊ࿦จ͸ɼଟ౎ࢢϞσϧʹ͓͚Δ
༌ૹඅมԽʹ൐͏౎ࢢूੵɾ෼ࢄͷਐߦաఔͷੑ࣭ʢi.e.
ຊ࿦จ͸ɼ͜ͷ‫܈‬࿦త෼‫ذ‬ཧ࿦Λԁप্ʹ౳ִؒʹ
౎ࢢूੵɾ෼ࢄύλʔϯมભͷ‫ن‬ଇੑͱϝΧχζϜʣΛ
Ґஔ͢Δ n(= 22 , 23 , . . .) ౎ࢢͷ CP Ϟσϧ΁ద༻͢Δɽ
໌Β͔ʹ͢Δ͜ͱΛ໨తͱ͢ΔɽͦͷͨΊʹɼ CP Ϟ
ͦͷ݁Ռɼରশੑഁյ෼‫ͱذ‬प‫ظ‬ഒ෼‫͕ذ‬ಉ༷ʹൃੜ
σϧΛରশͳۭؒ৚݅Λ࣋ͭ n(= 22 , 23 , . . .) ౎ࢢϞσ
͢Δ͜ͱΛࣔ͠ɼͦΕΒͷ෼‫͕ذ‬ଟஈ֊ʹੜ͡Δ͜ͱ
ϧ΁ͱ֦ு͠ɼ༌ૹඅΛύϥϝʔλͱͨ͠෼‫ذ‬ղੳΛ
Ͱ‫ݱ‬ΕΔ౎ࢢूੵɾ෼ࢄͷਐߦաఔΛ໌Β͔ʹ͢Δɽ
ߦ͏ɽຊ‫಺Ͱڀݚ‬ੜతʹܾఆ͞ΕΔ౎ࢢूੵɾ෼ࢄύ
ຊ࿦จͷߏ੒͸ҎԼͷͱ͓ΓͰ͋Δɽୈ 2 ষ͸ɼCP
λʔϯ͸ɼਖ਼ͷਓ‫ޱ‬Λ࣋ͭ౎ࢢͷҐஔɼͦͷ౎ࢢ਺͓
ϞσϧΛ؆୯ʹઆ໌͢Δɽୈ 3 ষ͸ɼඇઢ‫ܗ‬࿈ཱํఔ
Αͼ‫ن‬໛Ͱ͋Γɼͦͷ౎ࢢूੵɾ෼ࢄύλʔϯͷ༌ૹඅ
ࣜͷύϥϝʔλมԽʹ൐͏‫ߧۉ‬ղͷมભΛ਺஋తʹ௥
มԽʹ൐͏มભ͕෼ੳର৅Ͱ͋Δɽ
੻͢ΔҰൠతํ๏Λड़΂Δɽୈ 4 ষ͸ɼҎ߱ͷٞ࿦ͷ
11)
ͳ͓ɼຊ‫΅΄ͱڀݚ‬ฒߦͯ͠ɼTabuchi and Thisse
ͨΊʹ‫ߧۉ‬ղͷ෼ྨΛࣔ͢ͱͱ΋ʹɼղͷ҆ఆੑͷఆ
͸ຊ‫ͱڀݚ‬ಉ༷ͷ‫ڀݚ‬໨తͰɼԁप্ͷରশͳ n(=
ٛΛߦ͏ɽୈ 5 ষ͸ɼ‫܈‬࿦త෼‫ذ‬ཧ࿦Λ༻͍ͯରশੑ
2
3
2 , 2 , . . .) ౎ࢢΛ‫ؚ‬Ή NEG Ϟσϧʹؔͯ͠༌ૹඅΛ
ഁյ෼‫ذ‬Λઆ໌͢Δɽୈ 6 ষ͸ɼୈ 5 ষͷҰൠཧ࿦Λ
ύϥϝʔλͱͨ͠෼‫ذ‬ղੳΛߦ͍ͬͯΔɽ͔͠͠ͳ͕
Θ͔Γ΍ࣔ͘͢͢ྫͱͯ͠ 4 ౎ࢢϞσϧΛର৅ͱͨ͠
Βɼຊ‫ ͱڀݚ‬Tabuchi and Thisse Λൺֱ͢Δͱɼ1) ෼
෼ੳΛࣔ͢ɽୈ 7 ষ͸ɼୈ 5 ষͷ‫܈‬࿦త෼‫ذ‬ཧ࿦ͱ‫ܭ‬
‫ذ‬ղੳ๏ɼ2) ෼‫ܦذ‬࿏ͷ໢ཏੑɼ3) ෼ੳର৅Ϟσϧͷ
ࢉ෼‫ذ‬ཧ࿦Λ૊Έ߹Θͤͯɼଟ౎ࢢͷ CP Ϟσϧͷ෼
3 ఺ʹҧ͍͕͋Δɽ·ͣ 1) ෼‫ذ‬ղੳ๏ʹ͍ͭͯ͸ɼຊ
‫ڀݚ‬͸‫ޙ‬ड़͢ΔΑ͏ʹ‫ࢉܭ‬෼‫ذ‬ཧ࿦ͱ‫܈‬࿦త෼‫ذ‬ཧ࿦
Λ૊Έ߹Θͤͨ਺஋ղੳΛ༻͍ΔɽҰํɼTabuchi and
‫ذ‬ղੳΛߦ͏ɽୈ 8 ষ͸ɼ෼‫ذ‬ղੳͰಘΒΕͨ CP Ϟ
Thisse ͸ղੳతʹ෼‫ܦذ‬࿏Λ‫ٻ‬Ί͍ͯΔɽຊ‫ڀݚ‬ͷ਺
஋ղੳ๏͸ղੳతʹ‫ٻ‬ղ͢ΔΑΓ΋‫͋Ͱྗڧ‬ΓɼKrug-
͍ͯ‫ֶࡁܦ‬త‫ؚ‬ҙΛซͤͯٞ࿦͢Δɽୈ 9 ষ͸݁࿦Ͱ
σϧͷ෼‫ܦذ‬࿏ͷ͏ͪ҆ఆͳ΋ͷͷΈΛ੔ཧ͠ɼ༌ૹ
අ௿Լʹ൐͏౎ࢢͷूੵɾ෼ࢄͷਐߦաఔͷಛ௃ʹͭ
͋Δɽ
man ͷ CP Ϟσϧʹ‫ݶ‬Βͣɼ͋ΒΏΔ NEG Ϟσϧͷ෼
‫ܦذ‬࿏Λ௥੻ՄೳͳҰൠతํ๏Ͱ͋Δɽ࣍ʹ 2) ෼‫ܦذ‬
࿏ͷ໢ཏੑʹ͍ͭͯ͸ɼຊ‫ڀݚ‬͸ CP Ϟσϧ͕࣋ͭ͢΂
2.
Core–Periphery Ϟσϧ
ԁप্ʹ‫ۉ‬౳ʹҐஔ͢Δ‫ʹ͍ޓ‬ର౳ͳ n ‫ݸ‬ͷ౎ࢢͷ
ͯͷ෼‫ܦذ‬࿏Λ‫ܥ‬౷త͔ͭ໢ཏతʹ‫ٻ‬Ί͍ͯΔɽ͔͠
͠ɼTabuchi and Thisse ͸Ұ෦ͷ෼‫ܦذ‬࿏ʢ۩ମతʹ
ਓ‫ੵूޱ‬ͷࢧ഑ํఔࣜΛ Core–Periphery ϞσϧʢCP
͸प‫ظ‬ഒ෼‫ذ‬Λࣔ͢‫ܦ‬࿏ʣʹ෼ੳΛ‫͍ͯͬݶ‬Δɽ ࠷‫ʹޙ‬
Ϟσϧʣʹ‫͍ͯͮج‬༠ಋ͢Δɽ
3) ෼ੳର৅Ϟσϧʹ͍ͭͯ͸ɼຊ‫͍༻Ͱڀݚ‬Δ CP Ϟ
σϧͷফඅऀʹ͸ɼॴಘ૿ՃʹΑΓࡒফඅ͕૿Ճ͢Δޮ
(1)
Ұൠ‫ߧۉ‬ͷ࿮૊Έ
CP Ϟσϧ͸ҎԼʹࣔ͢Ұൠ‫ߧۉ‬ͷ࿮૊ΈΛ࣋ͭɽৄ
Ռʢࡒফඅʹ͓͚ΔॴಘޮՌʣ͕͋ΔɽҰํɼTabuchi
ࡉ͸ Krugman1) ·ͨ͸ Fujita et al.4) ͷ 5 ষʹৡΔɽ
and Thisse ͸ղੳతʹ෼‫ܦذ‬࿏Λ‫ٻ‬ΊΔ໨త͔Β४ઢ
• ‫ࡁܦ‬͸ɼಠ઎త‫ڝ‬૪͕ߦΘΕΔ޻‫ۀ‬෦໳ͱ‫׬‬શ‫ڝ‬
‫਺ؔ༻ޮܗ‬ΛԾఆ͓ͯ͠Γɼࡒফඅʹ͓͚ΔॴಘޮՌ
૪తͳ೶‫ۀ‬෦໳ͷ 2 ͭͷ෦໳͔ΒͳΔɽ
͕ͳ͍ɽͦͷͨΊ CP Ϟσϧ͸ɼॴಘ૿Ճ͕ࡒফඅΛ
૿Ճͤͯ͞౎ࢢʹ‫ۀا‬Λूੵͤ͞ΔҰൠ‫ߧۉ‬త೾‫ٴ‬ϝ
• ‫ࡁܦ‬શମͰ͸ɼ޻‫ۀ‬࿑ಇऀ͸ μɼ೶‫ۀ‬࿑ಇऀ͸ 1−μ
ΧχζϜΛ࣋ͭ෼ɼTabuchi and Thisse ΑΓ๛෋ͳ‫ܦ‬
ଘࡏ͢Δɽ
• ޻‫ۀ‬࿑ಇऀ͸ࣗ਎ͷޮ༻Λ࠷େԽ͢ΔΑ͏ʹࣗ༝
ʹ౎ࢢؒΛҠಈ͢Δ͜ͱ͕Ͱ͖Δ͕ɼ೶‫ۀ‬࿑ಇऀ
ࡁֶతߏ଄Λ࣋ͭɽͦͷ݁Ռ CP Ϟσϧ͸ɼΑΓෳࡶ
ͳ෼‫ܦذ‬࿏͕ಘΒΕΔ͜ͱ͕༧૝͞ΕΔɽ
ຊ࿦จͰ༻͍Δ෼‫ذ‬ղੳ๏͸ɼ‫ࢉܭ‬෼‫ذ‬ཧ࿦12) ͱ‫܈‬
13),14)
࿦త෼‫ذ‬ཧ࿦
1
͸ҠಈෆՄೳͰɼ͢΂ͯͷ౎ࢢʹ‫ۉ‬౳ʹ෼෍ͯ͠
1
Λద੾ʹ૊Έ߹Θͤͨํ๏Ͱ͋Δ ɽ
͓Γɼ௞ۚ 1 Ͱ͋Δɽ
ా16) ͕‫͛ڍ‬ΒΕΔɽ
෼‫ͱذ‬ෳ਺ͷ‫ߧۉ‬ղͷଘࡏʹؔ͢Δೖ໳ॻͱͯ͠͸ɼ஑ాɾࣨ
554
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
• ޻‫ۀ‬඼ͷ༌ૹʹ͸༌ૹඅ͕͔͔Γɼ೶‫ۀ‬඼ͷ༌ૹ
ʹ͸༌ૹඅ͸͔͔Βͳ͍͜ͱͱ͢Δɽ
• ඇઢ‫ࢧܗ‬഑ํఔࣜ
• ૿෼ࢧ഑ํఔࣜͷ༠ಋ
ຊ‫Ͱڀݚ‬͸ɼn ‫ݸ‬ͷ౎ࢢ͕ԁपʹԊͬͯ౳ִؒʹଘࡏ
• ‫׈‬Β͔ͳղ‫ۂ‬ઢͷ௥੻
• ಛҟ఺ͷ൑ఆ
• ෼‫ܦذ‬࿏ͷ୳ࠪ
͢Δɼ͍ΘΏΔɼ‫ٕڝ‬৔‫ࡁܦ‬Λߟ͑Δɽ͢ͳΘͪɼ౎
ࢢ r ͱ౎ࢢ s ͷؒͷ༌ૹඅ Trs Λ
Trs = eτ |r−s| , (r, s = 1, . . . , n)
ͱ͍͏߲໨ʹ͍ͭͯ·ͱΊΔ͜ͱͱ͢Δɽ
(1)
ͱ͢Δɽ͜͜Ͱɼτ ͸༌ૹඅύϥϝʔλͰ͋Γɼ|r − s|
(1)
͸౎ࢢ r ͔Β౎ࢢ s ʹࢸΔ࠷୹‫͋Ͱ཭ڑ‬Δɽ
(2)
ඇઢ‫ࢧܗ‬഑ํఔࣜ
ࣜ (7) ʹࣔͨ͠૬ิੑ৚݅͸ɼ౳ࣜ৚݅
ࢧ഑ํఔࣜͷఆࣜԽ
ফඅऀͷޮ༻࠷େԽߦಈɼੜ࢈ऀͷར५࠷େԽߦಈɼ
(ω̄ − ωr )λr = 0, (r = 1, . . . , n)
(8)
ණմ༌ૹΛߟྀͨ͜͠ͷ CP Ϟσϧʹ͓͍ͯɼ౎ࢢ r ͷ
޻‫ۀ‬࿑ಇऀͷ௞ۚ wr ͸ҎԼʹࣔ͢࿈ཱํఔࣜʹΑͬͯ
ͱɼෆ౳ࣜ৚݅ࣜ
ܾఆ͞ΕΔɽ
Yr = μλr wr + (1 − μ)/n
n
λs (ws Tsr )1−σ ]1/(1−σ)
Gr = [
s=1
n
wr = [
1−σ σ−1 1/σ
Ys Trs
Gs ]
ω̄ − ωr ≥ 0,
(2)
(9)
(3)
ͱʹॻ͖௚͢͜ͱ͕Ͱ͖Δɽ
(4)
ઢ‫ࢧܗ‬഑ํఔࣜ (8) ͱਓ‫ޱ‬Ұఆͷ৚݅ࣜ (5) ͔ΒͳΔ
2.(1) અͰಋೖͨ͠Ұൠ‫ߧۉ‬ͷ࿮૊Έ͸ɼn ࣍‫ݩ‬ͷඇ
s=1
n + 1 ࣍‫ݩ‬ͷඇઢ‫ܗ‬࿈ཱํఔࣜ2 ʹ‫ؼ‬ணͰ͖Δɽ
͜͜ͰɼYr ͸౎ࢢ r ͷॴಘɼGr ͸౎ࢢ r ͷ޻‫ۀ‬඼Ձ֨
⎧
⎪
F(λ, ω̄, f )
⎪
⎪
⎛
⎞
⎪
⎪
⎪
(ω̄ − ω1 (λ1 , . . . , λn , f ))λ1
⎪
⎨
⎜
⎟
..
⎟=0
=⎜
.
⎝
⎠
⎪
⎪
⎪
⎪
(λ
,
.
.
.
,
λ
,
f
))λ
(ω̄
−
ω
⎪
n 1
n
n
⎪
⎪
⎩
F (λ) = λ1 + · · · + λn = 1T λ = 1
ࢦ਺ɼTsr ͸޻‫ۀ‬඼Λ౎ࢢ s ͔Β౎ࢢ r ·Ͱ༌ૹͨ͠ͱ
͖ͷ༌ૹඅɼσ ͸೚ҙͷࠩผԽ͞Εͨ 2 ࡒؒͷ୅ସ஄
ྗੑͰ͋Δɽλr ͸౎ࢢ r ʹ͓͚Δ޻‫ۀ‬ਓ‫ޱ‬શମʹର͢
Δׂ߹Ͱ͋Γɼ͢ͳΘͪ࣍ࣜΛຬ଍͢Δɽ
λ1 + · · · + λn = 1
λr ≥ 0, (r = 1, . . . , n)
(5)
(10)
౎ࢢ r ͷ࣮࣭௞ۚ͸ɼ࣍ࣜʹΑΓද͞ΕΔɽ
ωr = wr G−μ
r
͜͜Ͱ λ = (λ1 , . . . , λn )T , 1 = (1, . . . , 1)T Ͱ͋Δɽ·
(6)
ͨɼf ͸͋ΔύϥϝʔλͰ͋Γɼ͜ͷ࿦จͰ͸༌ૹඅύ
ফඅऀ͸ɼ౎ࢢ r Ͱܾఆ͞ΕΔ࣮࣭௞ۚ ωr Λൺֱ͠
ϥϝʔλ τ Λ༻͍Δɽ͢ͳΘͪɼf = τ Ͱ͋Δɽ
ͯɼ࣮࣭௞ۚͷߴ͍౎ࢢʹҠॅ͢Δɽ͕ͨͬͯ͠ɼ‫ۉ‬
ߧ఺ʹ͓͍ͯ͸࣍ͷ૬ิੑ৚͕݅ࣜ੒ཱ͢Δɽ
(λr > 0)
ω̄ − ωr = 0,
ω̄ − ωr ≥ 0,
(λr = 0)
ඇઢ‫ܗ‬࿈ཱํఔࣜ (10) ͷղͷதͰɼෆ౳ࣜ৚݅ࣜ (9)
Λຬͨ͞ͳ͍ղ͸෺ཧతʹ‫͜ى‬Γಘͳ͍‫ڐ‬༰͞Εͳ͍
(7)
ղͱͯ͠ഉআ͢Δɽ۩ମతʹ͸ɼਓ‫͕ޱ‬ෛʹͳΔղΛ
ഉআ͍ͯ͠Δɽ‫ࢉܭ‬෼‫ذ‬ཧ࿦Ͱ͸౳ࣜ৚݅ͷΈΛऔΓ
͜͜Ͱɼω̄ ͸‫࣭࣮ߧۉ‬௞ۚͰ͋Δɽ͢ͳΘͪɼ౎ࢢ r ʹ
ѻ͏ͷʹର͠ɼCP ϞσϧͷఆࣜԽʹ͓͍ͯ͸ෆ౳ࣜ৚
ਖ਼ͷਓ‫͕͋ޱ‬Δ৔߹ʹ͸ɼωr ͸‫࣭࣮ߧۉ‬௞ۚ ω̄ ͱ౳͠
݅ࣜ (9) ΋༻͍Δ͜ͱ͕ಛ௃తͰ͋Δɽ
͘ɼ౎ࢢ r ͷਓ‫͕ޱ‬θϩͰ͋Δ৔߹ʹ͸ɼωr ͸‫࣮ߧۉ‬
࣭௞ۚ ω̄ ҎԼͱͳΔɽ
(2)
ࣜ (2)ʙ(7) ͷ‫ֶࡁܦ‬తҙຯ౳ʹ͍ͭͯ͸ Fujita et
al.4) ·ͨ͸ಉஶͷ೔ຊ༁ͷ 5 ষΛࢀরͷ͜ͱɽ
3.
૿෼ࢧ഑ํఔࣜ
CP Ϟσϧͷղ‫ۂ‬ઢͷ௥੻ʹઌཱͪɼͦͷ૿෼දࣔΛ
‫ٻ‬Ί͓ͯ͘ɽ
ඇઢ‫ࢧܗ‬഑ํఔࣜͱղ‫ۂ‬ઢͷ௥੻
ඇઢ‫ࢧܗ‬഑ํఔࣜ (10) Λ૿෼දࣔ͢Δͱɼ
CP Ϟσϧͷඇઢ‫ܗ‬࿈ཱํఔࣜͱͦͷ૿෼දࣔΛࣔ
∂F
∂F
δ ω̄ +
δf = 0(11)
∂ ω̄
∂f
δF (δλ) = δλ1 + · · · + δλn = 1T δλ = 0
(12)
δF(δλ, δ ω̄, δf ) = Jδλ +
͠ɼ‫ߧۉ‬ղ‫ۂ‬ઢͷ௥੻๏ʹ͍ͭͯ·ͱΊΔɽ෼‫ڍذ‬ಈ
Λ‫ٻ‬ΊΔ‫ࢉܭ‬෼‫ذ‬ཧ࿦12) ͷ CP Ϟσϧ΁ͷద༻ͷৄࡉ
ʹ͍ͭͯ͸ɼஶऀ౳ͷ࿦จ15) ʹৡΔɽҎԼɼඇઢ‫ํܗ‬
2
ఔࣜͷղ‫ۂ‬ઢͷ௥੻ʹؔ࿈ͨ͠
555
ඇઢ‫ํܗ‬ఔࣜͷॖ໿ʹ‫۩ͮ͘ج‬ମతͳࣜͷ༠ಋ͸15) ʹৡΔɽ
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
ͱͳΔɽ͜͜ͰɼJ ͸ϠίϏߦྻͰ͋Γɼ
⎛
ω̄ − ω1
0
···
0
⎜
..
..
⎜ 0
.
ω̄ − ω2
.
⎜
J =⎜ .
.
.
⎜ .
..
..
0
⎝ .
ಛҟ఺ʹ͓͍ͯɼϠίϏߦྻ J ͷ‫ݻ‬༗஋Λ ei ͱ͠ɼ
⎞
‫ݻ‬༗ϕΫτϧΛ ψ i (i = 1, . . . , n) ͱ͢Δͱɼඪ४‫ݻ‬༗
⎟
⎟
⎟
⎟
⎟
⎠
஋໰୊͸
Jψ i = ei ψ i ,
(20)
ͱͳΔɽ͜ͷͱ͖ɼಛҟ఺ͷ৚݅͸ɼগͳ͘ͱ΋ 1 ‫ݸ‬
0
···
0 ω̄ − ωn
⎛
⎞
ω1,1 λ1 ω1,2 λ1 · · · ω1,n λ1
⎜
.. ⎟
..
⎜ω λ
.
. ⎟
⎜ 2,1 2 ω2,2 λ2
⎟
−⎜ .
.. ⎟
..
..
⎜ .
⎟
.
.
. ⎠
⎝ .
ωn,1 λn
···
· · · ωn,n λn
Ҏ্ͷ‫ݻ‬༗஋͕θϩͱͳΔ͜ͱɼ͢ͳΘͪɼ
ei = 0,
(i = 1, . . . , M )
(21)
͕੒Γཱͭ͜ͱͰ͋Δɽ͜͜Ͱ M ͸ಛҟ఺ͷଟॏ౓Ͱ
͋Δɽ
= diag(ω̄ − ω1 , . . . , ω̄ − ωn )
− diag(λ1 , . . . , λn )Ω
⎛
⎞
(∂ω1 /∂f )λ1
⎜
⎟
∂F
∂F
..
⎟
= λ,
= −⎜
.
⎝
⎠
∂ ω̄
∂f
(∂ωn /∂f )λn
(i = 1, . . . , n)
(5)
෼‫ܦذ‬࿏ͷ୳ࠪ
෼‫ࢬ͍͓ͯʹ఺ذ‬෼͔Ε͢Δ෼‫ܦذ‬࿏Λ௥੻͢Δ͜
(13)
ͱΛߟ͑Δɽ
୯७෼‫఺ذ‬ͷ৔߹͸ɼθϩ‫ݻ‬༗஋ʹରԠ͢Δ‫ݻ‬༗ϕ
(14)
Ϋτϧ ψ 1 ͷํ޲ʹ෼‫ذ‬ղΛ୳ࠪ͢Ε͹Α͍ɽ
2 ॏ෼‫Ͱ఺ذ‬͸ɼθϩ‫ݻ‬༗஋ʹରԠ͢Δ 2 ‫ݸ‬ͷ‫ݻ‬༗ϕ
Ϋτϧ ψ 1 ɼψ 2 ͕ଘࡏ͢ΔͷͰɼͦͷઢ‫߹݁ܗ‬ͷํ޲
ʹ୳ࠪ͢Δɽશͯͷઢ‫߹݁ܗ‬ͷํ޲ʹղ͕ଘࡏ͢ΔΘ
Ͱ͋Δɽ͜͜Ͱɼωi,j = ∂ωi /∂λj (i, j = 1, . . . , n)ɼΩ =
(ωi,j | i, j = 1, . . . , n) Ͱ͋Γɼdiag(· · · ) ͸‫಺ހׅ‬ͷ੒
෼͔ΒͳΔର֯ߦྻΛද͢ɽ
͚Ͱ͸ͳ͍ɽ‫ޙ‬ड़ͷ‫܈‬࿦త෼‫ذ‬ཧ࿦͸ղͷํ޲Λ͜ͷ
໰୊ͷ౴͑Λ༩͑Δͱ͍͏ҙຯͰ༗༻Ͱ͋Δɽ
(3)
‫׈‬Β͔ͳղ‫ۂ‬ઢͷ௥੻
4.
ඇઢ‫ܗ‬࿈ཱํఔࣜ (10) Λຬͨ͢ղΛɼ૿෼ํఔࣜ (11)
ղͷ෼ྨͱղͷ҆ఆੑ
ͱ (12) Λ༻͍ͯ Newton–Raphson ๏ͳͲͷ൓෮ղ๏ʹ
΋ͷΛऔΓग़͢͜ͱʹΑΓɼ෺ཧతʹ‫ڐ‬༰͞ΕΔղΛ
CP Ϟσϧͷ෼‫ذ‬ղੳʹ͓͍ͯɼ৭ʑͳछྨͷղʹૺ
۰͢Δɽ͜ͷষͰ͸ɼཧ࿦త‫ ͯ͠ͱૅج‬CP Ϟσϧͷ
‫ٻ‬ΊΔɽ
ղΛ෼ྨ͠ɼղͷ҆ఆੑʹ͍ͭͯٞ࿦͓ͯ͘͠ɽղͷ
ΑΓ‫ٻ‬ΊɼͦͷղͷதͰෆ౳ࣜ৚݅ࣜ (9) Λຬ଍͢Δ
෼ྨ͸ɼਓ‫͕ޱ‬θϩͷ౎ࢢͷ༗ແͱࢧ഑ํఔࣜͷಛҟ
ϠίϏߦྻ J ͕ਖ਼ଇͰ͋Δ৔߹ʹ͸ɼࣜ (11) Λ δλ
ੑʹண໨ͯ͠ߦ͏ɽ
ʹ͍ͭͯղ͍ͨࣜ
∂F
∂F
δ ω̄ − J −1
δf
∂ ω̄
∂f
Λɼࣜ (12) ʹ୅ೖ͢Δͱɼ
δλ = −J −1
Aδ ω̄ + Bδf = 0
(15)
(1)
͋Δ͔ɼਓ‫͕ޱ‬θϩͷ౎ࢢ͕͋Δ͔ʹΑΓɼԼ‫ه‬ͷΑ
(16)
͏ʹ෼ྨ͞ΕΔɽ
಺఺ղɿ શͯͷ౎ࢢͷਓ‫͕ޱ‬ਖ਼Ͱ͋Δղ
ͱͳΔɽ͜͜Ͱɼ
∂F
∂F
, B = 1T J −1
(17)
∂ ω̄
∂f
Ͱ͋Δɽࣜ (16) Λ༻͍ͯɼඇઢ‫ํܗ‬ఔࣜ (11) ͔Β δ ω̄
A = 1T J −1
Λফ‫͢ڈ‬Δ͜ͱʹΑΓಘͨɼ
∂F B ∂F
−
δf = 0
Jδλ +
∂f
A ∂ ω̄
ਓ‫͕ޱ‬θϩͷ౎ࢢͷ༗ແʹΑΔ෼ྨ
ඇઢ‫ํܗ‬ఔࣜ (10) ͷղ͸ɼશͯͷ౎ࢢͷਓ‫͕ޱ‬ਖ਼Ͱ
୺఺ղɿ ਓ‫͕ޱ‬θϩͷ౎ࢢ͕͋Δղ
a)
(22)
಺఺ղͷੑ࣭
શͯͷ౎ࢢʹਓ‫͕ޱ‬ଘࡏ͢Δ಺఺ղʹରͯ͠͸ɼ
λr > 0,
(18)
(r = 1, . . . , n)
(23)
Ͱ͋ΔͷͰɼࣜ (10) ΑΓɼ
ͱ͍͏ δλ, δf ʹؔ͢Δ૿෼ํఔࣜͷղͱͯ͠ղ‫ۂ‬ઢΛ
ω̄ − ωr = 0, (r = 1, . . . , n)
‫ٻ‬ΊΕ͹Α͍ɽ
(24)
͕੒Γཱͪɼෆ౳ࣜ৚݅ࣜ (9) ΋ࣗಈతʹຬ଍͞ΕΔɽ
(4)
಺఺ղʹରͯ͠͸ɼϠίϏߦྻ (13) ͸Լ‫ه‬ͷ‫ͳʹܗ‬Δɽ
ಛҟ఺ͷ൑ఆ
J = −diag(λ1 , . . . , λn )Ω
ඇઢ‫ࢧܗ‬഑ํఔࣜ (10) ͷղ͸ɼϠίϏߦྻ J =
J(λ, ω̄, f ) ͕ಛҟͰ͋Δ఺ʹ͓͍ͯɼಛҟੑ৚݅ࣜ
det J(λ, ω̄, f ) = 0
(25)
ಛʹɼશͯͷ౎ࢢ͕ಉҰͷਓ‫ޱ‬Λ࣋ͭਓ‫ޱ‬Ұ༷෼෍
ղ (λ1 = · · · = λn = 1/n) ্Ͱ͸ɼϠίϏߦྻ͸ɼ
1
(26)
J =− Ω
n
(19)
Λຬ଍͢Δɽ
556
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
ͱ͍͏ରশߦྻͱͳΔɽ
b)
୺఺ղͷੑ࣭
m ౎ࢢҎ߱ͷਓ‫͕ޱ‬ফࣦͨ͠୺఺ղ
λr > 0, (r = 1, . . . , m)
λr = 0, (r = m + 1, . . . , n)
(a) ਓ‫ޱ‬Ұ༷෼෍ղ
(27)
(b) Ұ‫ूۃ‬தղ
(c) ඇࣗ໌ղ
ਤ–1 ୅දతͳࣗ໌ղ (a),(b) ͱඇࣗ໌ղ (c)ʢ6 ౎ࢢʣ
Λߟ͑ΔɽҰൠతʹ͸ɼ࠷ॳͷ m ౎ࢢ͚ͩਓ‫͕ޱ‬ଘࡏ
͢Δͱ͍͏ঢ়‫Ͱگ‬͸ͳ͍͕ɼదٓม਺ͷॱ൪ΛೖΕସ͑
Δͱ͢Δͱɼ͜ͷΑ͏ʹԾఆͯ͠΋ҰൠੑΛࣦΘͳ͍ɽ
͜ͷͱ͖ɼ૬ิੑ৚݅ࣜ (7) ΑΓɼ
ω̄ − ωr = 0, (r = 1, . . . , m)
ω̄ − ωr ≥ 0,
⎜
⎜
⎜
⎜
⎜
J =⎜
⎜
⎜
⎜
⎝
ω̄ − ωm+1
0
..
O
0
.
⎟
⎟
⎟
⎟
⎟
⎟ (29)
⎟
⎟
⎟
⎠
ຊϞσϧͷಛҟ఺͸ҎԼͷΑ͏ʹ෼ྨͰ͖Δɽ
⎧
⎪
ύϥϝʔλ f ͷ‫ۃ‬େ఺·ͨ͸‫ۃ‬খ఺ (M = 1)
⎪
⎪
⎪
⎪
⎪
ਓ‫ޱ‬ͷফࣦ఺ (M = 1)
⎪
⎨
⎧
⎪
୯७෼‫( ఺ذ‬M = 1)
(36)
⎪
⎨
⎪
⎪
⎪
2
ॏ෼‫఺ذ‬
(M
=
2)
⎪ ෼‫఺ذ‬
⎪
⎪
⎪
⎪
⎪
..
⎩
⎩
.
ω̄ − ωn
ͱ͍͏‫ͳʹܗ‬Δɽ͜͜Ͱɼ
Φ = −diag(λ1 , . . . , λm )Ω̃
⎞
⎛
ω1,1 · · · ω1,n
⎜ .
.. ⎟
..
⎟
.
Ω̃ = − ⎜
.
. ⎠
⎝ .
ωm,1 · · · ωm,n
ඇઢ‫ࢧܗ‬഑ํఔࣜ (10) ͷղ͸ɼϠίϏߦྻ J =
(28)
⎞
Φ
ࢧ഑ํఔࣜͷಛҟੑʹΑΔ෼ྨ
J(λ, ω̄, f ) ͕ਖ਼ଇͰ͋Δ͔ಛҟͰ͋Δ͔ʹΑΓɼԼ‫ه‬
ͷΑ͏ʹ෼ྨ͞ΕΔɽ
௨ৗ఺ɿ J ͕ਖ਼ଇ
(35)
ಛҟ఺ɿ J ͕ಛҟ
(r = m + 1, . . . , n)
͕੒ΓཱͭͷͰɼϠίϏߦྻ͸
⎛
(3)
ຊ࿦จͰऔΓѻ͏ n ౎ࢢϞσϧͷΑ͏ʹਖ਼ n ֯‫ܗ‬ঢ়ͷ
ରশੑΛ࣋ͭ‫Ͱܥ‬͸ɼҰൠతʹ͸ଟॏ౓͸ M = 1, 2 Ͱ
(30)
͋Δ͜ͱΛ 6 ষͰ۩ମతʹࣔ͢ɽ·ͨɼਓ‫ޱ‬ͷফࣦ఺
΍ɼ4.(1) અͰಋೖͨ͠಺఺ղͱ୺఺ղͷଘࡏ͕ɼCP
(31)
Ϟσϧ‫ݻ‬༗ͷੑ࣭Ͱ͋Δɽ
a)
Ͱ͋Δɽ
ύϥϝʔλ f ͷ‫ۃ‬େ఺·ͨ͸‫ۃ‬খ఺
ਓ‫ޱ‬෼෍ λr ʹؔ͢Δύϥϝʔλ f ͷ‫ۃ‬େ఺·ͨ͸‫ۃ‬
খ఺Ͱ͸ɼϠίϏߦྻ J ͷ‫ݻ‬༗஋ ei ͷූ߸͕มԽ͢Δ
(2)
ࣗ໌ղͱඇࣗ໌ղ
ͷͰɼ‫҆ࡏݱ‬ఆͳղ͸ඞͣෆ҆ఆͱͳΓɼҰํɼ‫ࡏݱ‬
ඇઢ‫ํܗ‬ఔࣜ (8) ͸ɼҼ਺෼ղ͞Εͨ‫͓ͯͬͳͱܗ‬Γɼ
ෆ҆ఆͳղ͸҆ఆͱͳΔՄೳੑ͕͋Δʢͦͷ··ෆ҆
‫ޙ‬ड़͢ΔΑ͏ʹɼύϥϝʔλ f ΛมԽͤͯ͞΋ͦͷύ
ఆͳ৔߹΋͋Δʣɽ͜ͷΑ͏ʹɼύϥϝʔλ f ͷ‫ۃ‬େ
λʔϯ่͕Εͳ͍ਓ‫ޱ‬ҰఆͷղΛ࣋ͭɽ͜ͷਓ‫ޱ‬Ұఆ
఺·ͨ͸‫ۃ‬খ఺Ͱ͸ɼ҆ఆͳղ్͕ઈ͑ͯ͠·͏ɽύ
ͷղͷଘࡏ͕͜ͷϞσϧʹ͓͍ͯಛ௃తͰ͋Δɽ͜ͷ
ϥϝʔλ f ͷ‫ۃ‬େ఺ͷҰྫΛਤ–2(a) ʹࣔ͢ɽ
छͷղͷଘࡏʹରԠ͠ɼղΛԼ‫ه‬ͷ 2 छྨʹ෼ྨ͢Δɽ
ࣗ໌ղɿ
ਓ‫ޱ‬Ұఆͷղ
(32)
ඇࣗ໌ղɿ ਓ‫͕ޱ‬มԽ͢ΔҰൠͷղ
b)
෼‫఺ذ‬͸ɼ͞ΒʹԼ‫ه‬ͷΑ͏ʹ෼ྨ͞ΕΔɽ
୯७෼‫( ఺ذ‬M = 1)
2 ॏ෼‫( ఺ذ‬M = 2)
ࣗ໌ղͱͯ͠͸ɼԼ‫ه‬ͷ 2 छྨͷղ͕୅දతͰ͋Δɽ
఺ͱͳ͍ͬͯΔɽ෼‫ܦذ‬࿏Ͱ͸ɼ͋Δ‫ڸ‬өରশੑ΍ճ
సରশੑͷҰ෦·ͨ͸શ͕ࣦͯΘΕΔ͜ͱʹΑΓɼ‫ܥ‬
(33)
ͷରশੑ͕ओ‫ܦ‬࿏ͱൺ΂ͯ௿Լ͢Δɽ͜ͷରশੑͷ௿
• Ұ‫ूۃ‬தղɿ1 ͭͷ஍Ҭʹશਓ‫͏·ͯ͠͠ੵू͕ޱ‬
୺఺ղ
λ1 = 1, λ2 = · · · = λn = 0
(37)
ਤ–2(b) ʹࣔ͢Α͏ʹɼ෼‫఺ذ‬͸ෳ਺ͷղ͕ަࠩ͢Δ
• ਓ‫ޱ‬Ұ༷෼෍ղɿશͯͷ౎ࢢ͕ಉҰͷਓ‫ޱ‬Λ࣋ͭ
಺఺ղ
λ1 = · · · = λn = 1/n
෼‫఺ذ‬
Լͷ࢓૊Έ͸ 5 ষͰऔΓ্͛Δɽ
c)
(34)
ਓ‫ޱ‬ͷফࣦ఺
౎ࢢͷਓ‫͕ޱ‬θϩͱͳΔͱ͍͏ਓ‫ޱ‬ͷফࣦ఺ (λr = 0)
6 ౎ࢢͷ৔߹ʹର͠ɼਤ–1(a) ʹਓ‫ޱ‬Ұ༷෼෍ղΛɼ
(b) ʹҰ‫ूۃ‬தղΛɼ(c) ʹඇࣗ໌ղͷҰྫΛͦΕͧΕ
Ͱ͸ɼԼ‫ه‬ͷ 2 छྨͷಛҟ఺͕ൃੜ͢Δɽ
ࣗ໌ղͱඇࣗ໌ղͱͷަ఺
ਓ‫͕ޱ‬ਖ਼͔Βෛ΁ͱมԽ͢Δ఺
ࣔ͢ɽ
557
(38)
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
͍ղͰ͋Δɽ
ਓ‫ޱ‬ͷಈଶํఔࣜͱͯ࣍ࣜ͠ΛԾఆ͢Δɽ
λ̇i = (ωi (λ1 , . . . , λn ) − ω̂)λi , (i = 1, . . . , n)
ͨͩ͠ɼ
(a) ύϥϝʔλ f ͷ
‫ۃ‬େ఺
ω̂ =
(b) ෼‫఺ذ‬
n
λi ω i
(39)
(40)
i=1
͜͜Ͱ‫͍͓ͯʹ఺ߧۉ‬͸ࣜ (7) ͕੒ཱ͢ΔͨΊɼࣜ (7)
Λࣜ (40) ʹ୅ೖ͢Δͱ
ω̂ =
n
λi ω̄ = ω̄
(41)
i=1
͕‫Ͱ఺ߧۉ‬੒ཱ͢Δɽ
ࣜ (39) ͷҙຯ߹͍͸ɼฏ‫ۉ‬ΑΓߴ͍࣮࣭௞ۚͷ஍Ҭ
ͷਓ‫ޱ‬৳ͼ཰͸ͦͷฏ‫͔ۉ‬Βͷဃ཭ʹґଘ͢Δͱ͍͏
ಈతํఔࣜͱͳ͓ͬͯΓɼ͕࣍ࣜ੒ཱ͢Δɽ
n
λ̇i = 0
(c) ਓ‫ޱ‬ͷফࣦ఺ʢࣗ໌ղͱඇࣗ໌ղͱͷަ఺ʣ
ਤ–2 ಛҟ఺ͷ෼ྨ
҆ఆߦྻ͸
⎛
ω1 − ω̄
⎜
⎜ 0
⎜
B=⎜ .
⎜ .
⎝ .
ࣗ໌ղͱඇࣗ໌ղͱͷަ఺ͷ໛ࣜਤΛਤ–2(c) ʹࣔ
͢ɽԣ্࣠ͷࣗ໌ղ (λr = 0) Ͱ͸ɼω̄ − ωr ͷූ߸͕ม
Խ͠ɼ࣮ઢͰࣔࣜ͢ (9)ɼ͢ͳΘͪɼ(ω̄ − ωr > 0) Λຬ
ͨ͢‫ڐ‬༰͞ΕΔղ͔Βɼ఺ઢͰࣔࣜ͢ (9) Λຬͨ͞ͳ͍
0
ω2 − ω̄
..
.
0
···
⎛ ∂(ω1 −ω̄)
λ1
∂λ1
⎜
⎜ ∂(ω2 −ω̄) λ
⎜
2
+ ⎜ ∂λ1.
⎜
.
.
⎝
∂(ωn −ω̄)
λn
∂λ1
‫ڐ‬༰͞Εͳ͍ղ (ω̄ − ωr < 0) ΁ͱҠߦ͢ΔɽҰํɼඇ
ࣗ໌ղͰ͸ɼλr ͷූ߸͕มԽ͠ɼ࣮ઢͰࣔ͢‫ڐ‬༰͞Ε
Δղ (λr > 0) ͔Β఺ઢͰࣔ͢‫ڐ‬༰͞Εͳ͍ղ (λr < 0)
΁ͱҠߦ͢Δɽ͜ͷಛҟ఺ʹ͍ͭͯ͸ɼԼ‫ه‬ͷ 2 छྨ
ͷղऍ͕੒Γཱͭ
• ඇઢ‫ํܗ‬ఔࣜ (8) Λຬ଍͢Δશͯͷղʹண໨͢Δ
⎞
···
..
.
..
.
0
0
ωn − ω̄
0
..
.
∂(ω1 −ω̄)
λ1
∂λ2
⎟
⎟
⎟
⎟
⎟
⎠
∂(ω1 −ω̄)
∂λn λ1
.
···
..
.
..
.
···
···
∂(ωn −ω̄)
λn
∂λn
∂(ω2 −ω̄)
λ2
∂λ2
..
..
.
..
.
⎞
⎟
⎟
⎟
⎟
⎟
⎠
= diag(ω1 − ω̄, . . . , ωn − ω̄) + diag(λ1 , . . . , λn )Ω
ͱɼ͜ͷಛҟ఺͸෼‫͋Ͱ఺ذ‬Δɽ
= −J
• ‫ڐ‬༰͞ΕΔղ͚ͩʹண໨͢Δͱɼ͜ͷಛҟ఺͸‫ڐ‬
(43)
Ͱ͋Δʢࣜ (13) ͱ (41) ࢀরʣɽ҆ఆߦྻ B ͷ‫ݻ‬༗஋͕
༰͞ΕΔղ͕ંΕ‫͕ۂ‬Δ఺ͱͳ͍ͬͯΔɽ
શͯෛͷ࣮෦Λ࣋ͯ͹ɼղ͸‫ॴہ‬తʹ҆ఆͰ͋ΔɽҰ
ຊ࿦จͰ͸ɼ‫ऀޙ‬ͷղऍΛ࠾༻͢Δɽ
(4)
(42)
i=1
ํɼҰͭͰ΋ਖ਼ͷ࣮෦Λ࣋ͯ͹ɼෆ҆ఆͰ͋Δɽߦྻ
B = −J Ͱ͋ΔͷͰɼϠίϏߦྻ J ͷ‫ݻ‬༗஋͕શͯਖ਼
‫҆ॴہ‬ఆੑ
ͷ࣮෦Λ࣋ͯ͹ɼղ͸‫ॴہ‬తʹ҆ఆͰ͋Δɽ
ຊϞσϧ͸ Fujita et.al. ʹ͕͍ͨ͠ɼ࿑ಇऀ͸ฏ‫ۉ‬Ҏ
্ͷ࣮࣭௞ۚΛఏ‫͢ڙ‬Δ஍Ҭʹྲྀೖ͠ɼฏ‫ۉ‬ҎԼͷ࣮
5.
࣭௞ۚΛఏ‫͢ڙ‬Δ஍Ҭ͔Β͸ྲྀग़͢ΔಈֶաఔΛԾఆ
‫܈‬࿦త෼‫ذ‬ཧ࿦ʹΑΔ෼‫ذ‬ͷ‫ه‬ड़
͢ΔɽΑΓ۩ମతʹ͸ɼਐԽήʔϜཧ࿦Ͱ௨ৗ༻͍Β
ରশੑΛ࣋ͭ‫ܥ‬ͷ෼‫ذ‬ͷҰൠཧ࿦Ͱ͋Δ‫܈‬࿦త෼‫ذ‬
ΕΔ Replicator dynamics Ͱ͋Δɽ͜ͷաఔͷ҆ఆੑ৚
ཧ࿦ʹΑΓɼຊϞσϧͷ෼‫ذ‬ͷ࢓૊ΈΛ໌Β͔ʹ͢Δɽ
17),18)
݅͸ɼCP Ϟσϧͷ‫఺ߧۉ‬ͷ‫ॴہ‬త҆ఆੑ৚݅
Λ
ୈ 3 ষͰ঺հͨ͠‫ࢉܭ‬෼‫ذ‬ཧ࿦͕෼‫ݱذ‬৅ͷղ‫ۂ‬ઢΛ
ಋೖ͠ɼͦͷ҆ఆੑ৚݅Λ‫ํߧۉ‬ఔࣜ (8) ͷϠίϏߦྻ
‫ٻ‬ΊΔ͜ͱΛ௨ͯ͠ఆྔతͳଆ໘Λଊ͑Δಓ۩ͱͯ͠
Λ༻͍ͯ൑ఆͰ͖ΔɽCP Ϟσϧͷ‫఺ߧۉ‬ͷ‫҆ॴہ‬ఆੑ
༗༻Ͱ͋Δͷʹର͠ɼ͜ͷষͰ঺հ͢Δ‫܈‬࿦త෼‫ذ‬ཧ
৚݅
17),18)
Λಋೖ͠ɼͦͷ҆ఆੑ৚݅Λ‫ํߧۉ‬ఔࣜ (8)
࿦͸෼‫ʹذ‬൐͏ରশੑ௿Լͷ࢓૊ΈΛఆੑతʹଊ͑Δ
ͷϠίϏߦྻΛ༻͍ͯද͢͜ͱͱ͢Δɽ҆ఆͳղͰ͸
ͷʹ༗༻Ͱ͋Δɽ
ෆ౳ࣜ৚݅ࣜ (9) ͕ࣗಈతʹຬ଍͞Εɼ͞Βʹɼ෼‫ذ‬
(1)
ղੳͱ੔߹͢Δ͜ͱ͕ɼ͜ͷ҆ఆ৚݅ͷ༏Εͨಛ࣭Ͱ
ํఔࣜͷରশੑ
͋Δɽ҆ఆղ͕‫͜ىʹ࣮ݱ‬Γ͑ΔղͰ͋ΓɼҰํɼ҆
Ұ༷ͳ҆ఆঢ়ଶʹ͋Δ‫͕ܥ‬ɼύϥϝʔλ͕͋Δ஋Λ
ఆͰͳ͍ղɼ͢ͳΘͪෆ҆ఆղ͸‫ʹ࣮ݱ‬͸‫͜ى‬Γ͑ͳ
௒͑ΔͱҰ༷ͳঢ়ଶ͕ෆ҆ఆԽ͠ɼ͋ΔύλʔϯΛ࣋
558
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
ͭผͳ҆ఆղ͕ग़‫͢ݱ‬Δ͜ͱ͕஌ΒΕ͍ͯΔɽ͜Ε͸
͜ͷϞσϧͷରশੑ͸ɼਖ਼ n ֯‫ܗ‬ͷରশੑΛද͢ 2 ໘
ύλʔϯ‫ܗ‬੒ͱ‫ݺ‬͹ΕΔ‫ݱ‬৅Ͱ͋Γɼͦͷ࢓૊ΈΛ‫ه‬
ମ‫ʹ܈‬ΑΓ‫ه‬ड़͞ΕΔɽ
2 ໘ମ‫ ܈‬Dn ͸
ड़͢Δཧ࿦ͱͯ͠‫܈‬࿦త෼‫ذ‬ཧ࿦͕ൃలͨ͠ɽ
Dn = {e, rn , . . . , rnn−1 , s, srn , . . . , srnn−1 }
ඇઢ‫ํܗ‬ఔࣜ (10) ͷରশੑ͸ɼ͋Δ‫ؔ͢ʹ܈‬Δಉมੑ
T (g) F(λ, ω̄, f ) = F(T (g)λ, ω̄, f ),
∀
g∈G
(44)
(47)
ͱఆٛ͞ΕΔɽ͜͜Ͱ͜ͷࣜͷӈลͷ֤ཁૉ͸Լ‫ه‬ͷ
‫ز‬ԿֶతରশੑΛද͢࠲ඪม‫͋Ͱ׵‬Δɽ
ʹΑΓද͞ΕΔɽ͜͜ʹ T (g) ͸ରশੑΛද͢࠲ඪม‫׵‬
• e : Կ΋ૢ࡞͠ͳ͍ม‫߃( ׵‬౳ม‫)׵‬
• rn : ਖ਼ n ֯‫ܗ‬ͷத৺ͷ·ΘΓʹ൓࣌‫ ʹ޲ํܭ‬2π/n
ճస͢Δม‫( ׵‬ฒਐม‫)׵‬
ߦྻͰ͋Γɼg ͸‫ڸ‬өม‫׵‬΍ճసม‫Ͳͳ׵‬Λද͢࠲ඪม
‫׵‬ཁૉͰ͋ΓɼG ͸͜ͷཁૉ͔ΒͳΔ͋Δ‫͋Ͱ܈‬Δɽͨ
ͩ͠ɼω̄ ͱ F (λ) ͸ g ͕Ҿ͖‫࠲͢͜ى‬ඪม‫׵‬ཁૉʹର͠
ม‫͢׵‬Δ͜ͱͱɼࣜ F શମΛ T (g) Ͱม‫ͨ͠׵‬΋ͷͱ
• rni : ม‫׵‬Λ rn Λ i ճߦ͏ɼ2iπ/n ճస͢Δม‫׵‬
• ্࣠ʹ‫ڸ‬Λஔ͍ͯөͨ͠૾΁ͷม‫ڸ( ׵‬өม‫ )׵‬: s
͕ಉҰͰ͋Δ͜ͱΛද͢Ұൠతͳ‫ز‬Կֶతରশ৚݅Ͱ
• srni : 2iπ/n ճస‫ʹޙ‬ɼ‫ڸ‬өΛߦ͏ม‫׵‬
ͯෆมͰ͋Δɽࣜ (44) ͸ɼม਺ λ Λ T (g) ʹΑΓ࠲ඪ
ਤ–3 ʹɼn = 6 ͷ৔߹ͷ࠲ඪม‫׵‬ཁૉΛࣔ͢ɽ
͋Δɽ
ಉม৚݅ࣜ (44) ͕੒Γཱͭͱ͖ɼ૿෼ํఔࣜ (11) ͷ
n ౎ࢢϞσϧʹରԠ͢Δ‫ ܈‬Dn ෆมͳղ͔Β͸ɼରশ
‫܈‬ಉมੑΑΓɼT (g)λ = λ Λຬ଍͢Δ G ෆมͳ͋Δղ
ੑ͕௿͍ղɼ͢ͳΘͪ෼‫ذ‬ղ͕෼‫ʹذ‬ΑΓൃੜ͢Δɽ͜
(λ, f ) ʹରͯ͠ɼϠίϏߦྻ͸ɼରশ৚݅ࣜ
ͷ෼‫ذ‬ղ͸ɼ‫ ܈‬Dn ͷ෦෼ରশੑΛද͢෦෼‫܈‬ɼ͢ͳΘ
T (g)J = JT (g),
∀
g∈G
ͪɼ࣍਺ m ͕ n ͷ໿਺Ͱ͋Δ 2 ໘ମ‫܈‬
(45)
i
i k−1
Dkm = {rm
, srm
rn | i = 0, 1, . . . , m − 1}
Λຬ଍͠ɼ∂F/∂ ω̄ ͱ ∂F/∂f ͸ɼෆม৚݅ࣜ
∂F
∂F
=
,
∂ ω̄
∂ ω̄
Λຬ଍͢Δɽ
T (g)
T (g)
∂F
∂F
=
,
∂f
∂f
∀
g∈G
(k = 1, 2, . . . , n/m)
(46)
΍८ճ‫܈‬
i
Cm = {rm
| i = 0, 1, . . . , m − 1}
ಉม৚݅ࣜ (44) Λຬ଍͢Δ‫ܥ‬ͷ෼‫ʹذ‬ΑΔύλʔϯ
࣠ͷ‫਺ݸ‬Λɼk ͕࣠ͷํ޲Λද͢ɽͪͳΈʹɼn = 4 ʹ
• ‫ܥ‬ͷରশੑ͸෼‫ذ‬Λ‫Ͱ·͢͜ى‬͸อ࣋͞ΕΔɽ
• ‫ܥ‬ͷରশੑ΍ղͷ‫਺ݸ‬͸෼‫Ͱ఺ذ‬มԽ͢Δɽ
ର͢Δ෼‫ذ‬ղͷରশੑΛද͢෦෼‫܈‬Λਤ–4 ʹࣔ͢ɽਤ
தͷ˓ͷେ͖͞ʹΑΓɼਓ‫ޱ‬ͷେ͖͞Λࣔ͢ɽਤதɼ෦
• ‫ܥ‬ͷ҆ఆੑ͸ಛҟ఺ͰมԽ͢Δɽ
• ௨ৗ఺Ͱ͸ɼ‫ܥ‬ͷରশੑɾ҆ఆੑ΍ղͷ‫਺ݸ‬͸ม
෼‫ ܈‬D12 ͸ࣼΊํ޲ͷ 2 ຊͷ‫ڸ‬ө࣠ʹؔͯ͠ରশͳɼ‫ݪ‬
఺Λ‫ڬ‬ΜͰରቂ͢Δ౎ࢢ͕ಉҰͷਓ‫ޱ‬Λ࣋ͭ෼෍ͷର
Խ͠ͳ͍ɽ
শੑΛද͢‫͋Ͱ܈‬Δɽ෦෼‫ ܈‬D11 ͸ࣼΊํ޲ͷ 1 ຊͷ‫ڸ‬
۩ମతͳ෼‫ذ‬ͷ࢓૊Έ͸ɼର৅ͱ͢Δ‫Ͳ͕ܥ‬ͷΑ͏
ө࣠ʹؔͯ͠ରশͳਓ‫ޱ‬෼෍ͷରশੑΛද͢‫͋Ͱ܈‬Δɽ
ͳରশੑΛ͔࣋ͭʹΑΓҟͳΔ‫ݸ‬ผ࿦Ͱ͋Γɼ‫ܥ‬ຖʹ
෦෼‫ ܈‬D31 ͸‫ࣼٯ‬Ίํ޲ͷ 1 ຊͷ‫ڸ‬ө࣠ʹؔͯ͠ରশͳ
ௐ΂ΒΕ͍ͯΔɽͦͷ۩ମྫ͸ɼຊ࿦จͰऔΓѻ͏ԁ
ਓ‫ޱ‬෼෍ͷରশੑΛද͢‫͋Ͱ܈‬Δɽ෦෼‫ ܈‬D21 ͸ॎํ޲
प্ʹ౳ִؒʹҐஔ͢Δ౎ࢢͷରশੑΛද͢ 2 ໘ମ‫܈‬
ͷ 1 ຊͷ‫ڸ‬ө࣠ʹؔͯ͠ࠨӈରশͳਓ‫ޱ‬෼෍ͷରশੑ
ʹରͯ͠঺հ͢ΔɽͪͳΈʹɼଞͷରশੑΛ࣋ͭ౎ࢢ
Λද͢‫͋Ͱ܈‬Δɽ෦෼‫ ܈‬D41 ͸ԣํ޲ͷ 1 ຊͷ‫ڸ‬ө࣠ʹ
ͷ෼‫ذ‬ղੳʹରͯ͠΋‫܈‬࿦త෼‫ذ‬ཧ࿦͸ద༻ՄೳͰ͋
্ؔͯ͠Լରশͳਓ‫ޱ‬෼෍ͷରশੑΛද͢‫͋Ͱ܈‬Δɽ
Δ͕ɼਖ਼ n ֯‫ܗ‬ঢ়ͷରশੑΛද͢ 2 ໘ମ‫܈‬Ҏ֎ͷ‫ʹ܈‬
ؔ͢Δղੳ͕ඞཁͱͳΔɽ
(3)
ຊ‫Ͱڀݚ‬ѻ͏Ϟσϧ͸ɼਤ–3 ʹࣔ͢Α͏ͳ n ‫ݸ‬ͷ౎
ࢢ͕ԁपʹԊͬͯ౳ִؒʹଘࡏ͢Δঢ়‫گ‬Λߟ͍͑ͯΔɽ
༷ʹɼ෼‫ܦذ‬࿏͔Β͞Βʹ෼‫͢ذ‬Δ‫ܦ‬࿏ͷରশੑΛ‫ٻ‬
Ί͍ͯ͘͜ͱʹΑΓɼ֊૚త෼‫ذ‬ͷ‫ن‬ଇΛ‫ٻ‬ΊΔ͜ͱ
͕Ͱ͖Δ14) ɽ
UT UT UT
˳T
ଟஈ֊ͷରশੑഁյ෼‫ذ‬
Dn ෆมͳ‫ܦ‬࿏ͷ෼‫͔఺ذ‬Β෼‫ޙͨ͠ذ‬ͷରশੑ͸௿
Լ͠ɼͦͷରশੑ͸ Dn ͷ෦෼‫ʹ܈‬ΑΓද͞ΕΔ3 ɽಉ
2 ໘ମ‫܈‬
UT
(49)
ʹؔͯ͠ෆมͰ͋Δɽ‫ ܈‬Dkm ʹ͓͍ͯɼm ͕‫ڸ‬өม‫׵‬ͷ
‫ܗ‬੒͸Լ‫ه‬ͷੑ࣭Λຬͨ͢14) ɽ
(2)
(48)
౎ࢢ਺ n = 4 ʹର͢Δɼ஍Ҭ͕શͯಉ͡ਓ‫ޱ‬Λ࣋ͭ
UT
ࣗ໌ղ (λ1 = · · · = λ4 = 1/4) ͔Βͷ෼‫ذ‬ͷ໛ࣜਤΛ
U
ਤ–5 ʹࣔ͢ɽਤதҰ൪ࠨଆͷ D4 ෆมͳ 4 ౎ࢢ͕౳Ձ
ͳղ͔Βɼ୯७෼‫ ͱذ‬2 ॏ෼‫ ͏͍ͱذ‬2 छྨͷ෼‫͕ذ‬
3
ਤ–3 ਖ਼ 6 ֯‫ܗ‬ঢ়ʹҐஔ͢Δ౎ࢢͱͦͷ‫ز‬Կֶతม‫׵‬
559
͜ͷରশੑഁյ෼‫ذ‬͸ɼ౎ࢢͷ෼‫ذ‬໰୊Ͱ͸ɼಉҰͷਓ‫ޱ‬Λ࣋
ͭ౎ࢢͷ‫ݮ‬গΛ௨ͯ͡ɼਓ‫ޱ‬ͷूੵΛ༠ൃ͢Δɽ
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
UT UT U
UT
㧰
㧰
㧰
㧰
㧰
㧰
ਤ–6 ౎ࢢ਺ n = 8 ͷ৔߹ͷप‫ظ‬ഒ෼‫ذ‬ͷ໛ࣜਤ
㧰
㧰
㧰
㧰
ͱ͔Βप‫ظ‬ഒ෼‫ݺͱذ‬͹Ε͍ͯΔɽਤ–6 ʹ౎ࢢ਺ n =
8 = 23 ͷ৔߹ͷप‫ظ‬ഒ෼‫ذ‬ͷ໛ࣜਤΛࣔ͢ɽ
(a) ෼‫ذ‬ղͷରশ‫܈‬
㧰
㧰
㧰
6.
㧰
㧰
4 ౎ࢢϞσϧͰͷ෼‫ذ‬ͷ‫ه‬ड़ྫ
ࣜ (45) ͷϠίϏߦྻͷରশ৚݅ΛຊϞσϧʹରͯ͠
(b) ࣗ໌ղͷରশ‫܈‬
ద༻͢Δ͜ͱʹΑΓɼຊϞσϧͷ෼‫ذ‬ͷ࢓૊ΈΛௐ΂
ਤ–4 n = 4 ͷ৔߹ͷ෼‫ذ‬ղͱࣗ໌ղͷରশ‫܈‬
ͯΈΔɽ͜͜Ͱ͸ɼ؆୯ͳྫͱͯ͠౎ࢢ਺ n = 4 ͷ৔
⥄᣿⸃ߣߩ੤ὐ
߹Λߟ͑Δ͜ͱͱ͢ΔɽͪͳΈʹɼ͜ͷٞ࿦͸೚ҙͷ
㧰
㧰
න⚐ಽጘὐ
n(≥ 3) ʹରͯ͠΋༰қʹ֦ுՄೳͰ͋Δɽ
⥄᣿⸃ߣߩ੤ὐ
න⚐ಽጘὐ
㧰
㧰
㧰
㊀ಽጘὐ
㧰
㧰
(1)
૿෼ࢧ഑ํఔࣜͷରশੑͱରশ࠲ඪ‫΁ܥ‬ͷม‫׵‬
㧰
㧰
n = 4 ͷ৔߹ʹɼະ஌ม਺ϕΫτϧΛ
λ = (λ1 , λ2 , λ3 , λ4 )T
⥄᣿⸃ߣߩ੤ὐ
㧰
න⚐ಽጘὐ
ͱͱΔͱɼࣜ (44) ͷද‫ྻߦݱ‬͸࣍ࣜͱͳΔɽ
⎞
⎛
⎛
0 0 0 1
0 1 0
⎟
⎜
⎜
⎜0 0 1 0 ⎟
⎜0 0 1
⎟
⎜
T (s) = ⎜
⎜0 1 0 0⎟ , T (r4 ) = ⎜0 0 0
⎠
⎝
⎝
1 0 0 0
1 0 0
㧯
ਤ–5 4 ౎ࢢ (n = 4) ͷଟஈ֊ͷରশੑഁյ෼‫ذ‬ͷ໛ࣜਤ
‫͜ى‬Γ͑Δ͜ͱΛ͜ͷਤ͸͍ࣔͯ͠Δʢ͜ͷ 2 छྨͷ
෼‫ذ‬ͷৄࡉ͸ɼ࣍ষͰ༩͑Δʣɽ୯७෼‫Ͱذ‬͸ɼ෦෼
‫ ܈‬D12 ͸ࣼΊํ޲ͷ 2 ຊͷ‫ڸ‬ө࣠ʹؔͯ͠ରশͳɼ‫ݪ‬
(51)
⎞
0
⎟
0⎟
⎟
1⎟
⎠
0
(52)
Ұ༷ͳࣗ໌ղ (λ1 , λ2 , λ3 , λ4 ) = (1/4, 1/4, 1/4, 1/4)
఺Λ‫ڬ‬ΜͰରቂ͢Δ౎ࢢ͕ಉҰͷਓ‫ޱ‬Λ࣋ͭ෼෍͕೿
j = 1, . . . , 4) ͸ࣼΊ
্ʹ͓͍ͯɼϠίϏߦྻ J = (Jij | i, j = 1, . . . , 4) Λ
ํ޲ͷ 1 ຊͷ‫ڸ‬ө࣠ʹؔͯ͠ରশͳ 4 छྨͷਓ‫ޱ‬෼෍
༠ಋ͠ɼରশ৚݅ (45) Λ༻͍ΔͱɼϠίϏߦྻͷ۩ମ
ੜ͢Δɽ2 ॏ෼‫Ͱذ‬͸ɼ෦෼‫܈‬
Dj1
‫͕ܗ‬
ʢਤ–4 (a)ʣͷ಺ɼ͍ͣΕ͔Ұ͕ͭൃ‫͢ݱ‬Δɽͦͷ‫ޙ‬ɼ࣮
⎛
a
ઢͷ໼ҹͰࣔ͢Α͏ͳଟஈ֊ͷ෼‫ذ‬Λ‫ʹͱ͜͢͜ى‬Α
⎜
⎜b
J =⎜
⎜c
⎝
Γɼ৭ʑͳूੵύλʔϯ͕ੜΈग़͞Ε͍ͯΔɽ͜ͷछ
ͷਤΑΓɼਓ‫ ͕ޱ‬n ౎ࢢʹ෼෍͍ͯ͠Δঢ়ଶ͔ΒҰ‫ۃ‬
b
ूத͢Δ·Ͱͷ෼‫ذ‬աఔͷ࢓૊ΈΛ஌Δ͜ͱ͕Ͱ͖Δɽ
౎ࢢ਺ n = 4 ͷࣗ໌ղ͸ɼਤ–4 (b) ʹࣔ͢ 5 ͭͰ͋
b
c
b
⎞
a b
b a
⎟
c⎟
⎟
b⎟
⎠
c
a
b
(53)
ͱ͍͏‫ͳʹܗ‬Δɽ͜͜Ͱɼa = −ω1,1 /4 = · · · Ͱ͋Δɽ
Δʢ౎ࢢ 1(ӈ্) ͕ਓ‫࠷ޱ‬େͱͨ͠ͱ͖ʣɽ͜ͷϞσϧ
·ͨɼରশ৚݅ࣜ (46) ΑΓɼ
͸ɼ͋Δ஍Ҭͷਓ‫͕ޱ‬θϩͱͳΔ৔߹ʹࣗ໌ղͱަΘ
∂F
∂F
= (d, d, d, d)T ,
= (e, e, e, e)T
∂ ω̄
∂f
Δ৔߹͕͋Δͱ͍͏ಛ௃Λ΋͍ͬͯΔɽਤதʹ఺ઢͷ
໼ҹʹΑΓɼ͜ͷछͷަ఺Λࣔ͢ɽ
(54)
ͱͳΔɽ͜͜Ͱɼ
(4)
प‫ظ‬ഒ෼‫ذ‬
d=−
ଟஈ֊ͷରশੑഁյ෼‫ذ‬ͷ୅දྫͱͯ͠͸ɼप‫ظ‬ഒ෼
‫͛ڍ͕ذ‬ΒΕΔɽ͜ͷ෼‫ذ‬͸ɼn = 2k ͷ৔߹ʹൃੜ͠ɼ
D2k −→ D2k−1 −→ D2k−2 −→ · · ·
1 ∂ω
1 ∂ω
, e=−
4 ∂ ω̄
4 ∂f
(55)
Ͱ͋Δɽ
ରশ࠲ඪ‫΁ܥ‬ͷ࠲ඪม‫׵‬
(50)
λ = HQ
ͱ͍͏‫Ͱܗ‬ରশੑΛ઴࣍૕ࣦ͢Δ‫Ͱܗ‬ਐߦ͢Δɽ෼‫ذ‬
(56)
Λߟ͑Δɽ͜͜ͰɼQ = (Q1 , . . . , Q4 )T ͸ରশ࠲ඪ‫ܥ‬
ʹΑΓɼಉҰͷύλʔϯ͕‫ݱ‬ΕΔप‫͕ظ‬ഒʑʹͳΔ͜
560
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
Ͱ͋Γɼ࠲ඪม‫ ྻߦ׵‬H ͸࣍ࣜͱͳΔɽ
⎞
⎛
1/2
1/2
1/2 1/2
⎟
⎜
⎜−1/2 1/2 −1/2 1/2⎟
⎟
⎜
H=⎜
⎟
1/2
−1/2
−1/2
1/2
⎠
⎝
−1/2 −1/2 1/2 1/2
㧰
㧰
(a) ୯७෼‫఺ذ‬
(57)
㧰
㧰
㧰
㧰
㧰
͜ͷ࠲ඪม‫͕ྻߦ׵‬ରশੑΛ࣋ͭྻϕΫτϧͱͳͬͯ
͍Δ͜ͱ͔ΒɼQ Λରশ࠲ඪ‫Ϳݺͱܥ‬ɽ
(b) 2 ॏ෼‫఺ذ‬
૿෼ࢧ഑ํఔࣜ (11) Λ͜ͷ࠲ඪ‫ʹܥ‬ม‫͠׵‬ɼϠίϏ
ਤ–7 4 ౎ࢢ‫ۉ‬౳ͳঢ়‫͔گ‬Βͷରশੑഁյ෼‫ذ‬ͷ໛ࣜਤ
ߦྻ J ͷ۩ମ‫( ܗ‬53) Λ༻͍ΔͱɼԼ‫ه‬ͷΑ͏ʹม‫Ͱܗ‬
͖Δɽ
(2)
T
H δF(δλ, δf )
∂F
∂F
δ ω̄ + H T
δf
= H T JHδQ + H T
∂ ω̄
∂f
⎛
⎞
e1 0 0 0
⎜
⎟
⎜ 0 e2 0 0 ⎟
⎜
⎟ δQ
=⎜
⎟
⎝ 0 0 e3 0 ⎠
0 0 0 e4
⎛ ⎞
⎛ ⎞
0
0
⎜ ⎟
⎜ ⎟
⎜0⎟
⎜0⎟
⎜ ⎟
⎟
+⎜
⎜ 0 ⎟ δ ω̄ + ⎜ 0 ⎟ δf = 0
⎝ ⎠
⎝ ⎠
2e
2d
ࣜ (61)∼(64) ΑΓɼҰ༷ղ λ1 = · · · λ4 = 1/4 ্ͷ
ղ͸
a)
௨ৗղ
୯७෼‫఺ذ‬
(65)
2 ॏ෼‫఺ذ‬
௨ৗղ
௨ৗղ͸Ұ༷ղ λ1 = · · · λ4 = 1/4 ͔Β෼‫఺ذ‬Λআ֎
ͨ͠΋ͷͰ͋Γɼδ ω̄ ͱ δf ͷؔ܎͸ɼࣜ (64) ʹΑΓ༩
(58)
͑ΒΕΔɽ
b)
⎞
1/2
⎟
⎜
⎟ ⎜
⎜δλ2 ⎟ ⎜−1/2⎟
⎟
⎜
⎜
⎟
δλ = ⎜
⎟
⎟=⎜
⎝δλ3 ⎠ ⎝ 1/2 ⎠
−1/2
δλ4
δλ1
(60)
ͱͳΔɽ͜ͷ৚݅ࣜ δQ4 = 0 Λ༻͍Δͱɼ૿෼ํఔࣜ
(58) ͸ɼԼ‫ه‬ͷ 4 ͭͷࣜʹ෼ղ͢Δ (e2 = e3 )ɽ
(62)
e3 δQ3 = 0
(63)
2d δ ω̄ + 2e δf = 0
(64)
(66)
2 ॏ෼‫఺ذ‬
c)
ਓ‫ޱ‬Ұఆͷ৚݅ࣜ (5) ͸ɼࣜ (56) ͷରশ࠲ඪ‫Ͱܥ‬͸ɼ
e2 δQ2 = 0
⎛
७෼‫ذ‬ͷ໛ࣜਤΛࣔ͢.
఺ͱͳΔɽ
(61)
⎞
ͷํ޲ʹ 1 ຊͷ෼‫ذ‬ղ͕ଘࡏ͢Δɽਤ–7(a) ʹ͜ͷ୯
஋Ͱ͋Γɼ͜ͷ‫ݻ‬༗஋͕θϩͱͳΔ‫ ͕఺ߧۉ‬2 ॏ෼‫ذ‬
e1 δQ1 = 0
୯७෼‫఺ذ‬
୯७෼‫Ͱ఺ذ‬͸ɼ
⎛
Ͱ͋Δɽ‫ݻ‬༗஋ e2 , e3 ͸ඞͣಉҰͷ஋ΛऔΔ 2 ॏ‫ݻ‬༗
2 ॏ෼‫Ͱ఺ذ‬͸ɼ
⎞
⎛ √ ⎞ ⎛
1/2
1/ 2
⎟
⎟ ⎜
⎜
⎜ 0 ⎟ ⎜−1/2⎟
⎟,
⎜
⎟
⎜
√ ⎟, ⎜
δλ = ⎜
⎟
⎝−1/ 2⎠ ⎝−1/2⎠
1/2
0
⎛
⎞
0
⎜ √ ⎟
⎜ 1/ 2 ⎟
⎜
⎟
⎜ 0 ⎟,
⎝
√ ⎠
−1/ 2
⎞
⎛
−1/2
⎟
⎜
⎜−1/2⎟
⎟
⎜
⎜ 1/2 ⎟
⎠
⎝
1/2
(67)
ͷ 4 ͭͷํ޲ʹ 4 ຊͷ෼‫ذ‬ղ͕ଘࡏ͢Δɽਤ–7(b) ʹ
͜ͷ 2 ॏ෼‫ذ‬ͷ໛ࣜਤΛࣔ͢.
d)
ଟஈ֊ͷ෼‫ذ‬
ਤ–7 ͷΑ͏ͳ෼‫ذ‬ͷ࢓૊ΈΛ෼‫ذ‬ղʹରͯ͠΋‫ٻ‬Ί
ͯߦ͘͜ͱʹΑΓɼਤ–5 ʹࣔ͢Α͏ͳଟஈ֊ͷ෼‫ذ‬ͷ
ࣜ (61)∼(64) ͸ϒϩοΫର֯‫ݺͱܗ‬͹ΕΔඪ४‫Ͱܗ‬
࢓૊ΈΛ‫ٻ‬ΊΔ͜ͱ͕Ͱ͖Δɽ
͋ΓɼҟͳΔରশੑΛ࣋ͭϒϩοΫຖ4 ʹ͕ࣜ෼ղ͢Δ
࿮૊ΈΛ͓ࣔͯ͠ΓɼରশੑΛ࣋ͭ‫ܥ‬ͷ෼‫ذ‬ͷٞ࿦ʹ
7.
͓͍ͯॏཁͰ͋Δ19) ɽ
4
⎧
⎪
0, e2 = e3 = 0
⎨ e1 =
e1 = 0
⎪
⎩
e2 = e3 = 0
ͱ෼ྨͰ͖Δɽ
͜͜ͰɼϠίϏߦྻ J ͷର֯੒෼ɼ͢ͳΘͪɼ‫ݻ‬༗஋͸
⎧
⎪
⎨ e1 = a + c − 2b : (୯७ࠜ)
(59)
e2 = e3 = a − c : (2 ॏࠜ)
⎪
⎩
e4 = a + c + 2b : (୯७ࠜ)
δλ1 + δλ2 + δλ3 + δλ4 = 2δQ4 = 0
෼‫ذ‬ղͷ෼ྨ
෼‫ذ‬ղੳ݁Ռ
ຊষͰ͸ɼ༌ૹඅͷมԽʹ൐͏ɼຊϞσϧͷ‫఺ߧۉ‬ͷ
͜ͷ৔߹ʹ͸ɼ੒෼͝ͱʹ͕ࣜ෼ղ͍ͯ͠Δ͕ɼҰൠతʹ͸ϒ
ϩοΫຖʹ෼ղ͢Δੑ࣭͕͋Δɽ
มԽΛ‫ࢉܭ‬෼‫ذ‬ཧ࿦ʹैͬͯ௥੻͢ΔɽҎԼʹࣔ͢ղੳ
561
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
݁Ռ͸ɼύϥϝʔλͷҧ͍ʹΑΔӨ‫ڹ‬Λ‫ݟ‬Δਤ–10 Λ
㧰
আ͍ͯɼμ = 0.4ɼσ = 10.0 ͱ‫ݻ‬ఆͯ͠ղੳΛߦͬͨɽ
͜͜Ͱɼμ ͱ σ ͸೚ҙʹܾΊΒΕΔύϥϝʔλͰ͋Γɼ
㧰
㧯
㧯
㧰
1
㧰
μ ͸޻‫ۀ‬඼΁ͷࢧग़ׂ߹Λࣔ͢ͱಉ࣌ʹ‫ࡁܦ‬શମͰͷ
޻‫ۀ‬ਓ‫ޱ‬ͷ઎ΊΔׂ߹Λࣔ͠ɼσ ͸޻‫ۀ‬඼ͷଟ༷ੑΛ
ੱญᲧ₸
બ޷͢Δ౓߹͍Λࣔ͢ύϥϝʔλͰ͋Δɽ
(1)
0.5
㧰
㧰
4 ౎ࢢϞσϧ
㧰
4 ౎ࢢϞσϧͷ෼‫ذ‬ղੳ݁Ռʹ͍ͭͯ·ͱΊΔɽ
a)
㧰
㧰
ෳ਺‫ߧۉ‬ղͷൃ‫ݱ‬
0
0
4 ౎ࢢϞσϧͷ෼‫ذ‬ղੳʹΑΓ‫ٻ‬Ίͨղ‫ۂ‬ઢΛਤ–
0.5
ャㅍ⾌
8(a) ʹࣔ͢ɽਤͷॎ࣠͸͋Δ౎ࢢͷਓ‫ޱ‬ʢྫ͑͹ λ1 ʣ
Λࣔ͠ɼԣ࣠ʹ༌ૹඅΛࣔ͢ɽ͜͜Ͱɼԣ࣠ͷ༌ૹඅ͸
(a) ‫ߧۉ‬ղ‫ۂ‬ઢ
༌ૹඅύϥϝʔλ τ ͷؔ਺ 1 − 1/eτ π ͷ஋Λ͓ࣔͯ͠
㧰
Γɼ༌ૹඅ 0 Ͱ͸౎ࢢؒʹશ͘༌ૹඅ͕͔͔Βͳ͍ঢ়
න⚐ಽጘ
ଶΛɼ༌ૹඅ 1 Ͱ͸༌ૹඅ͕େ͖͘౎ࢢؒͷަྲྀ͕গ
㊀ಽጘ
ͳ͍ঢ়ଶΛ͍ࣔͯ͠Δɽ·ͨɼ࣮ઢ͸҆ఆͳ‫ܦ‬࿏ɼഁઢ
㧰
͸ෆ҆ఆͳ‫ܦ‬࿏Λ͍ࣔͯ͠Δɽ֤‫ܦ‬࿏ʹ͓͚Δਓ‫ޱ‬෼
㧰
෍Λ໛ࣜਤʹΑΓࣔ͢ɽ໛ࣜਤʹ͓͍ͯɼࠇ৭Ͱࣔ͢
ूੵύλʔϯ͸҆ఆղͰ͋Γɼփ৭Ͱࣔ͢ूੵύλʔ
㧰
ϯ͸ෆ҆ఆղͰ͋Δɽ෼‫ذ‬΍ࣗ໌ղͱͷަࠩʹ൐͏ର
න⚐ಽጘ
শੑͷ௿Լͷ໛ࣜਤΛਤ–8(b) ʹࣔ͢ɽ
㧰
㧰
ਤ–8 ͔Β໌Β͔ͳΑ͏ʹɼ෼‫ذ‬Λ‫܁‬Γฦ͠‫ͯ͜͠ى‬
න⚐ಽጘ
㧰
㧯
න⚐ಽጘ
㧰
ରশੑഁյ෼‫ذ‬
ਤ–9(a) ͸ɼਤ–8 ͷ‫ܦ‬࿏ͷத͔Β୅දతͳ҆ఆղΛ
(b) ෼‫ʹذ‬ΑΔରশੑͷ௿Լͷ໛ࣜਤ
औΓग़͠ɼਤதӈ্ͷ 2 ॏͷ࢛֯ͷ࿮಺ʹࣔ͢ର֯ઢ
ਤ–8 ༌ૹඅύϥϝʔλ τ ͷมԽʹ൐͏‫ߧۉ‬ղͷมԽ (4 ౎ࢢ)
্ͷ 2 ౎ࢢͷਓ‫ ޱ‬λ1 ɼλ3 ͷ༌ૹඅมԽʹΑΔूੵͷ
༷ࢠΛࣔ͢ 3 ࣍‫ݩ‬ϓϩοτͰ͋Δɽ‫ܦ‬࿏্ʹࣔͨ͠ ◦
޻‫ۀ‬඼ͷଟ༷ੑΛࣔ͢ύϥϝʔλ σ ͷӨ‫ڹ‬
c)
͸෼‫͋Ͱ఺ذ‬Γɼ• ͸ࣗ໌ղͱͷަ఺Λࣔ͢ɽ෼‫ذ‬͸
ਤ–9(a) ʹࣔͨ͠‫ܦ‬࿏ͷΈͰ΋ 7 ͭͷ఺Ͱ‫͓͖ͯى‬Γɼ
ͦΕͧΕͷ෼‫Ͱ఺ذ‬ରশੑΛॱ࣍૕ࣦ͠ɼूੵύλʔ
ຊઅͰ͸ɼ޻‫ۀ‬඼ͷଟ༷ੑΛબ޷͢Δ౓߹͍Λࣔ͢ύ
ϥϝʔλ σ ͕‫ߧۉ‬ղʹ‫͢΅ٴ‬ͷӨ‫ͱ·͍ͯͭʹڹ‬ΊΔɽ
ͦ͜Ͱɼਤ–9 ʹࣔ͢ղੳ݁Ռʢσ = 10.0ʣͱਤ–10 ʹ
ϯʹมԽ͕‫͍ͯͬ͜ى‬Δ͜ͱ͕Θ͔Δɽ
༌ૹඅ͕ߴ͍ঢ়ଶʢԖ௚࣠ͷ༌ૹඅ͕ 1 ʹ͍ۙ৔߹ʣ
Ͱ͸ɼ4 ͭͷ౎ࢢʹਓ‫ۉ͕ޱ‬౳෼෍͢Δ D4 ෆมͳ 4 ࣠
ରশύλʔϯ͕҆ఆͰ͋Γɼଞͷෆ҆ఆղͷଘࡏ΋֬
ೝ͞Εͳ͍ɽ͔͠͠ɼ༌ૹඅͷ௿ԼʹΑΓ୯७෼‫ ఺ذ‬I
ࣔ͢ղੳ݁Ռʢσ = 5.0ʣͱΛൺֱ͢Δɽ
σ = 5.0ɼ10.0 ͱ΋ʹ 4 ౎ࢢʹ‫ۉ‬౳ʹ෼෍͢Δঢ়ଶͰ
͋Δ D4 ͔ΒରশੑΛॱ࣍૕ࣦ͠ɼ1 ౎ࢢ΁ͷूੵΛ‫ى‬
͓ͯ͜͠Γɼશͯͷ෼‫͕ذ‬ਤ–5 ʹࣔͨ͠‫ن‬ଇʹैͬͯ
͍Δɽ͔͠͠ɼσ = 5.0ʢਤ–10 ʣͷ৔߹ɼD12 ʹ͓͚Δ
ʹ౸ୡ͢Δͱɼ෼‫ذ‬Λ‫͜͠ى‬ɼ4 ࣠ରশύλʔϯ͕ෆ҆
2 ౎ࢢ‫ߧۉ‬ͷࣗ໌ղ͕ଘࡏͤͣɼࣗ໌ղ΁Ҡߦ͢ΔҎલ
ఆͱͳΓɼ2 ࣠ରশͷର֯ 2 ౎ࢢʹ‫ۉ‬౳ʹ෼෍͢Δ D12
ʹ D11 ΁ͱ෼‫͍ͯ͠ذ‬Δɽ͔͠͠ɼ͜ͷ৔߹΋ (68) ͷ
ෆมͳύλʔϯ͕҆ఆͳղͱͳΔɽ͞Βʹ༌ૹඅ͕௿
ଟஈ֊ͷ෼‫ذ‬ͷ‫ن‬ଇʹै͍ͬͯΔɽ
Լ͢Δͱɼ୯७෼‫ ఺ذ‬III ʹ͓͍ͯɼରশੑഁյ෼‫͕ذ‬
‫͜ى‬Γɼ҆ఆঢ়ଶ͕ 1 ͭͷ౎ࢢʹूੵ͢Δ D11 ෆมͳύ
(2)
λʔϯΛ‫ͯܦ‬Ұ‫ूۃ‬த΁ͱҠߦ͢Δɽ͜ͷঢ়‫گ‬ͷ໛ࣜਤ
प‫ظ‬ഒ෼‫ذ‬
ਤ–9(b) ɼਤ–10(b) ͕ࣔ͢Ұ࿈ͷूੵաఔͰ͸ɼ
Λਤ–9(b) ʹࣔ͢ɽ͜ͷҰ࿈ͷूੵύλʔϯͷมԽ͸
D4 −→ D12 −→ D11
㧰
㧯
͓Γɼ਺ଟ͘ͷ‫ߧۉ‬ղ͔ΒͳΔෳࡶͳ‫ڍ‬ಈΛ͍ࣔͯ͠Δɽ
b)
1
4 ౎ࢢ‫ۉ‬౳෼෍˰ 2 ౎ࢢ΁ͷूੵ˰Ұ‫ूۃ‬த
(68)
(69)
ͱ͍͏ɼ͍ΘΏΔɼप‫ظ‬ഒ෼‫ݺͱذ‬͹ΕΔɼෳࡶ‫ܥ‬ͷ
ͱ͍͏ଟஈ֊ͷ෼‫ʹذ‬ΑΓҾ͖‫͜͞ى‬Ε͍ͯΔɽ
య‫ܕ‬తͳ෼‫ڍذ‬ಈ͕ൃੜ͍ͯ͠Δɽ
562
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
㧰
ャㅍ⾌
㧰
1
dz1
㧯
1
dz3
㧰
㧰
㧰
+
0
+8
dz3
1
dz1
1
㧰
㧰
ੱญᲧ₸
++
+++
㧰
0.5
㧯
(a) 3 ࣍‫ݩ‬ਤʢҰ෦ൈਮʣ
㧰
න⚐ಽጘὐ
+
㧰
⥄᣿⸃ߣߩ
੤ὐ ++
㧰
න⚐ಽጘὐ
+++
㧰
0
㧰
⥄᣿⸃ߣߩ
੤ὐ +8
0
0.5
ャㅍ⾌
(b) ෼‫ʹذ‬ΑΔूੵύλʔϯͷมԽ
(a) શ‫ܦ‬࿏
ਤ–9 4 ౎ࢢϞσϧͷ‫ߧۉ‬ղͷ 3 ࣍‫ݩ‬ϓϩοτʢσ = 10.0ʣ
㧰
1
㧰
ャㅍ⾌
dz1
㧰
1
1
㧰
dz3
㧰
K
ੱญᲧ₸
㧰
㧰
㧰
KKK KK
㧰
KX
㧰
0.5
㧰
0
1
dz1 1
㧰
㧰
㧰
dz3
㧰
㧰
0
0
0.5
ャㅍ⾌
(a) 3 ࣍‫ݩ‬ਤʢҰ෦ൈਮʣ
1
(b) प‫ظ‬ഒ෼‫ܦذ‬࿏
㧰
න⚐ಽጘὐ
K
㧰
න⚐ಽጘὐ
KK
㧰
⥄᣿⸃ߣߩ
੤ὐ KKK
㧰
⥄᣿⸃ߣߩ
੤ὐ KX
㧰
න⚐ಽጘ
(b) ෼‫ʹذ‬ΑΔूੵύλʔϯͷมԽ
න⚐ಽጘ
㧰
ਤ–10 4 ౎ࢢϞσϧͷ‫ߧۉ‬ղͷ 3 ࣍‫ݩ‬ϓϩοτʢσ = 5.0ʣ
㧰
㧰
౎ࢢ਺Λ 8 ౎ࢢʹ૿Ճͤͯ͞ղੳͨ݁͠ՌΛਤ–
11(a) ʹࣔ͢ɽ౎ࢢ਺ͷ૿ՃʹΑΓɼ͞Βʹෳࡶͳ෼
΋ඈ༂తʹ૿Ճ͍ͯ͠Δɽ͔͠͠ɼਤ–11(b) ʹࣔ͢Α
͏ʹɼ
㧰
㧰
න⚐ಽጘ
㊀ಽጘ
න⚐ಽጘ
㊀ಽጘ
㧰
㧯
න⚐ಽጘ
න⚐ಽጘ
㧰
‫ߏذ‬଄Λ΋ͭΑ͏ʹͳΓɼ͋Δ༌ૹඅʹ͓͚Δ‫ߧۉ‬ղ
㧰
න⚐ಽጘ
න⚐ಽጘ
8 ౎ࢢ‫ۉ‬౳෼෍˰ 4 ౎ࢢ΁ͷूੵ
˰ 2 ౎ࢢ΁ͷूੵ˰Ұ‫ूۃ‬த
㧰
㧯
㧰
㧰
㧰
㧰
㧯
㧰
න⚐ಽጘ
(70)
㧰
㧰
ͱ͍͏प‫ظ‬ഒ෼‫ൃ͕ذ‬ੜ͍ͯ͠Δɽ·ͨɼਤ–12 ʹࣔ
න⚐ಽጘ
͢ 16 ౎ࢢϞσϧʹରͯ͠΋प‫ظ‬ഒ෼‫ൃ͕ذ‬ੜ͍ͯ͠Δɽ
͜ͷΑ͏ʹɼTabuchi and Thisse11) ͕ຊ‫ͱڀݚ‬ҟͳΔ
㧯
න⚐ಽጘ
㧰
㧰
㧰
න⚐ಽጘ
㧯
㧰
ϞσϧͰͦͷൃੜΛࣔͨ͠प‫ظ‬ഒ෼‫͕͜ذ‬ͷϞσϧͰ
㧰
΋ൃੜ͓ͯ͠Γɼ౎ࢢͷूੵɾ෼ࢄ‫ݱ‬৅ͷ NEG Ϟσϧ
(c) ෼‫ʹذ‬ΑΔରশੑͷ௿Լͷ໛ࣜਤ
ʹ͓͍ͯप‫ظ‬ഒ෼‫͕ذ‬Ұൠతͳੑ࣭Ͱ͋ΔՄೳੑΛࣔ
͍ࠦͯ͠Δ.
ਤ–11 8 ౎ࢢϞσϧͷղੳ݁Ռ
563
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
㧰
1
㧭
㧭
㧮
㧮
㧯
ੱญᲧ₸
㧰
㧯
㧰
0.5
㧰
㧰
㧰
㧰
㧰
㧰
0
0
0.5
ャㅍ⾌
㧰
㧰
㧱
㧱
㧲
0
1
ャㅍ⾌
㧲
㧳
㧳
1
ਤ–13 ઢ‫ࢢ౎ܗ‬ͷ҆ఆύλʔϯͷมભʢ5 ౎ࢢʣ(μ = 0.4ɼ
σ = 5.0)
ਤ–12 प‫ظ‬ഒ෼‫ܦذ‬࿏ʢ16 ౎ࢢϞσϧʣ
൐͍ɼύλʔϯ G ͔Βύλʔϯ F ͋Δ͍͸ E ʹ౎ࢢ
ύλʔϯ͕มભ͢Δɽ࣍ʹɼύλʔϯ F ͔Β͸ύλʔ
8.
༌ૹඅ௿Լʹ൐͏౎ࢢͷूੵɾ෼ࢄաఔɿ
౎ࢢͷҐஔɼ౎ࢢ਺͓Αͼͦͷ‫ن‬໛
ϯ EɼC ͷ͍ͣΕ͔ʹɼύλʔϯ E ͔Β͸ύλʔϯ Dɼ
CɼB ͷ͍ͣΕ͔ʹมભ͢Δɽ͞Βʹɼύλʔϯ D ͔
Β͸ύλʔϯ CɼBɼA ͷ͍ͣΕ͔ʹมભ͢ΔɽͲͷύ
7 ষͰ͸ɼଟ౎ࢢ͕ԁप্ʹ౳ִؒʹଘࡏ͢ΔϞσϧ
ʹ͓͍ͯɼ౎ࢢͷूੵɾ෼ࢄաఔʹରশੑഁյ΍प‫ظ‬
λʔϯؒͷมભʹ͓͍ͯ΋ɼ੒௕͢Δ౎ࢢʹྡ઀ͷ౎
ഒ෼‫͏͍ͱذ‬ಛ௃͕͋Δ͜ͱΛ໌Β͔ʹͨ͠ɽຊষͰ
ʮετ
͕ͬͯɼઢ‫ ʹ্ܗ‬5 ౎ࢢ͕Ґஔ͢ΔϞσϧͰ΋ɼ
͸ɼଟ౎ࢢϞσϧʹ‫ݱ‬Εͨ౎ࢢͷूੵɾ෼ࢄաఔʢଘ
ϩʔޮՌʯ͕ɼԁप্ʹ౎ࢢ͕Ґஔ͢ΔϞσϧͱಉ༷
ଓ͢Δ౎ࢢͷҐஔɼ౎ࢢ਺͓Αͼ‫ن‬໛ʣʹ͍ͭͯɼಛ
ʹੜ͍ͯ͡Δɽ
ࢢ͸ਰୀɼ͋Δ͍͸‫ݩ‬ʑਓ‫ޱ‬θϩͰมԽ͕ͳ͍ɽͨ͠
ʹ 2 ౎ࢢϞσϧͰ͋Δ CP ϞσϧͰ͸‫ݟ‬ΒΕͳ͔ͬͨ
աఔʹ͍ͭͯ‫ֶࡁܦ‬త‫͔఺؍‬Βࢦఠ͢Δɽ౎ࢢͷҐஔ
(2)
͓Αͼ౎ࢢ਺͸ 2 ౎ࢢϞσϧͰ͸෼ੳෆՄೳͳ߲໨Ͱ
ෳ਺ଘࡏ͢Δ౎ࢢूੵաఔʢ‫ߧۉ‬ύλʔϯͷมભ
ύεʣͱ࣮‫ߧۉ͍ͳ͠ݱ‬ύλʔϯ
͋Δɽͳ͓ɼ༌ૹඅ༻ͷߴ͍ঢ়‫͔گ‬Β௿͍ঢ়‫΁گ‬ͷม
༌ૹඅ௿Լʹ൐͏౎ࢢूੵաఔΛ‫ݟ‬ΔͨΊʹɼ4 ౎ࢢ
Խʹ൐͏ूੵɾ෼ࢄաఔΛΈΔɽಛ௃͸ɼେ͖͘෼͚
Ϟσϧɼ8 ౎ࢢϞσϧʹ͍ͭͯɼͦΕͧΕਤ–14 ɼਤ–
ͯԼ‫ه‬ͷ 2 ఺͋Δɽ
15 ʹ҆ఆͳ‫ߧۉ‬ύλʔϯͷΈΛࣔͨ͠ɽ༌ૹඅ௿Լʹ
൐͏҆ఆͳ‫ߧۉ‬ύλʔϯͷมભ͕౎ࢢूੵաఔͰ͋Δɽ
(1) ੒௕͢Δ౎ࢢʹྡ઀͢Δ౎ࢢͷਰୀ
(2) ෳ਺ଘࡏ͢Δ౎ࢢूੵաఔʢ‫ߧۉ‬ύλʔϯͷมભ
ύεʣͱ࣮‫ߧۉ͍ͳ͠ݱ‬ύλʔϯ
ਤ–14 ʹࣔͨ͠ 4 ౎ࢢϞσϧΛ‫ͯݟ‬ΈΔͱɼ༌ૹඅ
ͷߴ͍ঢ়‫Ͱگ‬͸ɼύλʔϯ E ͷਓ‫ޱ‬෼ࢄঢ়ଶ͕࣮‫͠ݱ‬ɼ
֤఺ʹ͍ͭͯͦΕͧΕҎԼͰઆ໌͢Δɽ
ͦͷ‫ޙ‬ɼύλʔϯ D ʹมભ͢Δɽ࣍͸ɼύλʔϯ CɼB
ͷ͍ͣΕ͔ʹมભ͠ɼ࠷‫ޙ‬͸ύλʔϯ A ͷҰ‫ूۃ‬தঢ়
(1)
੒௕͢Δ౎ࢢʹྡ઀͢Δ౎ࢢͷਰୀ
ଶͱͳΔ͜ͱ͕Θ͔Δɽ͕ͨͬͯ͠ɼ෼ࢄ͔Βूத΁
ͷύλʔϯͷมભύε͕ෳ਺ଘࡏ͍ͯ͠Δɽ
ਤ–12 ͸ɼཱ஍Մೳͳ౎ࢢ਺͕ 16 ͷ৔߹ͷ෼‫ܦذ‬࿏
ͷҰ෦Λ͍ࣔͯ͠Δɽ͜ͷਤʹࣔ͢Α͏ʹɼ༌ૹඅ௿
࣍ʹɼਤ–15 ʹࣔͨ͠ 8 ౎ࢢϞσϧΛ‫ͯݟ‬ΈΔɽ༌
Լʹ൐ͬͯɼྡ઀ͨ͠౎ࢢͷยํ͕੒௕ͯ͠΋͏Ұํ
ૹඅ͕ߴ͍ঢ়‫Ͱگ‬͸ɼύλʔϯ J ͷਓ‫ޱ‬෼ࢄঢ়ଶͰ͋
͕ਰୀ͢Δύλʔϯ͕ൃੜ͢Δ͜ͱ͕Θ͔Δɽ͜Ε͸ 5
Δɽͦͷঢ়ଶ͔Β༌ૹඅ͕௿Լ͢Δͱɼύλʔϯ J ͷ
ষ (4) અ͓Αͼ 7 ষͰࢦఠͨ͠प‫ظ‬ഒ෼‫͋Ͱذ‬Δɽ‫ࡁܦ‬
ࠨ୺ͷ༌ૹඅͰ҆ఆͰ͋Δύλʔϯ IɼGɼE ͷ 3 ͭͷ
ֶతʹΈΔͱɼଘଓ͢Δ౎ࢢͷ੒௕ͱͱ΋ʹྡ઀౎ࢢ
ύλʔϯ͕࣍ͷύλʔϯʹͳΓಘΔ͜ͱ͕Θ͔Δɽͦ
͕ਰୀ͢ΔʮετϩʔޮՌʯ͕ੜ͍ͯ͡Δͱ͍͑Δɽ͜
ΕҎ߱΋༌ૹඅ௿ԼʹΑΔ౎ࢢύλʔϯͷมભύε͸
Ε͸ɼਓ‫ޱ‬ͷ෼ࢄྗͱͯ͠ಇ͘༌ૹඅ͕௿‫ͨͨ͠ݮ‬Ί
༷ʑ͋Δ͜ͱ͕Θ͔Δɽྫ͑͹ɼύλʔϯ G ͔Β͸ɼύ
ʹɼूੵͷ‫͕ࡁܦ‬૬ରతʹ‫ͳ͘ڧ‬Γੜ͡Δ‫ݱ‬৅Ͱ͋Δɽ
λʔϯ HɼFɼE ͕͋ΓಘΔɽ͕ͨͬͯ͠ɼ4 ౎ࢢͱಉ
͜͏͍ͬͨ‫ݱ‬৅ͷൃੜʹɼԁप্ͷଟ౎ࢢϞσϧͱ
༷ʹɼ8 ౎ࢢϞσϧʹ͸෼ࢄ͔Βूத΁ͷύλʔϯͷม
͍ۭͬͨؒతߏ଄͕Ө‫͍ͯ͠ڹ‬Δ͔Ͳ͏͔Λ֬ೝ͢Δ
ભύεͱͯ͠ෳ਺ଘࡏ͓ͯ͠Γɼ͞ΒʹΑΓଟ͘ͷύ
ͨΊʹɼઢ‫ ʹ্ܗ‬5 ౎ࢢ͕Ґஔ͢ΔϞσϧͷ҆ఆղΛ
ε͕͋Δ͜ͱ͕Θ͔Δɽ
͜͜Ͱɼύλʔϯ D ʹண໨ͯ͠ΈΔͱɼύλʔϯ J
‫ٻ‬Ίͨɽͦͷ෼ੳ݁ՌΛਤ–13 ʹࣔ͢ɽަ௨අ‫ݮ‬গʹ
564
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
͔Β͸ɼύλʔϯ E ΁ͷมભ͸มભ͸ඇ‫࣮ݱ‬తͰ͋Γɼ
㧭
㧭
ύλʔϯ B ΁ͷมભ͸‫࣮ݱ‬తͱ͍͑Δɽ
ਤ–13 ʹࣔͨ͠ઢ‫ࢢ౎ܗ‬ͷ 5 ౎ࢢϞσϧʹ͓͍ͯ΋ɼ
㧮
㧮
༌ૹඅ௿ԼʹΑΔ౎ࢢͷूੵաఔʢ҆ఆ‫ߧۉ‬ύλʔϯ
ͷมભʣ͸༷ʑͳύε͕͋Γ͏Δ͜ͱ͕Θ͔Δɽͨͩ
㧯
㧯
͠ɼͦͷύλʔϯͷมભʹ͸ෆࣗવͳ΋ͷ͕ 8 ౎ࢢԁ
‫ܗ‬ϞσϧΑΓ΋໌֬ʹଘࡏ͢Δɽྫ͑͹ɼύλʔϯ E
㧰
㧰
͔Β͸ύλʔϯ DɼCɼB ͕͋ΓಘΔɽ͔͠͠ɼύλʔ
ϯ D ΍ C Ͱଘࡏ͍ͯ͠Δ౎ࢢʢਖ਼ͷਓ‫ޱ‬Λ࣋ͭ౎ࢢʣ
㧱
0
0.3
ャㅍ⾌
͸ɼύλʔϯ E Ͱ͸ଘࡏ͍ͯ͠ͳ͍ɽ͜ͷΑ͏ʹɼશ
㧱
1
0.4
͘౎ࢢ͕ແ͍ͱ͜Ζʹɼ༌ૹඅ௿ԼͰಥવ౎ࢢ͕ൃੜ
͢Δͱ͍͏͜ͱ͸‫࣮ݱ‬తͰ͸ͳ͍ɽҎ্ʹࣔͨ͜͠ͱ
ਤ–14 ༌ૹඅʹΑΔ҆ఆύλʔϯͷมભʢ4 ౎ࢢʣ
͔Βɼ҆ఆղύλʔϯؒͷมભʹ͓͍ͯɼͳΜΒ͔ͷ
๏ଇ͕‫࣮ݱ‬తʹ͸ଘࡏ͢Δ͜ͱ͕ߟ͑ΒΕΔɽ͜ͷม
㧭
㧭
ભʹؔ͢Δ๏ଇͷϞσϧԽ͸͜Ε·Ͱͷ NEG ϞσϧͰ
㧲
͸ߦΘΕ͓ͯΒͣɼࠓ‫ޙ‬ͷ՝୊Ͱ͋Δɽɹɹ
㧮
㧯
㧮
㧳
㧯
㧴
9.
㧰
㧱
㧲
ຊ‫ڀݚ‬͸ɼ෼‫ذ‬ղΛ໢ཏతʹௐ΂Δ͜ͱ͕Ͱ͖Δ‫܈‬
㧳˳
㧴
㧵
㧶
0
0.4
ャㅍ⾌
0.6
͓ΘΓʹ
㧰
㧵
㧱
㧶
࿦త෼‫ذ‬ཧ࿦Λଟ౎ࢢΛ‫ؚ‬Ή NEG Ϟσϧͷ෼‫ذ‬ղੳʹ
ద༻ͨ͠ɽͦͷ݁Ռɼ౎ࢢ਺͕ଟ͍৔߹ͷ༌ૹඅ௿‫ݮ‬
ʹ൐͏౎ࢢͷूੵɾ෼ࢄͷਐߦաఔɼ͢ͳΘͪ౎ࢢू
ੵɾ෼ࢄύλʔϯͷมભΛ໌Β͔ʹ͢Δ͜ͱ͕Ͱ͖ͨɽ
1
͜ͷมભ͸ɼTabuchi and Thisse11) Ͱ෼ੳର৅ͱ͞Ε
ͨप‫ظ‬ഒ෼‫ذ‬Λࣔ͢෼‫ܦذ‬࿏Ҏ֎ʹ΋ɼଟ͘ͷෳࡶͳ
ਤ–15 ༌ૹඅʹΑΔ҆ఆύλʔϯͷมભʢ8 ౎ࢢʣ
෼‫ܦذ‬࿏Λ‫ؚ‬ΜͰ͍Δ͜ͱ͕Θ͔ͬͨɽ
ͷਓ‫ޱ‬෼ࢄঢ়ଶ͔Β༌ૹඅ௿Լʹ൐ͬͯύλʔϯ A ͷ
ຊ‫ڀݚ‬͸ɼCP Ϟσϧͷ‫ߧۉ‬ղͷಛੑΛ໌Β͔ʹ͢Δ
ਓ‫ूޱ‬தঢ়ଶʹมભ͢ΔͲͷύεʹ͓͍ͯ΋ɼύλʔϯ
͜ͱʹয఺Λߜͬͨɽࠓ‫ޙ‬͸ɼCP Ϟσϧͷ࠷ળղͷ෼
D ͸࣮‫͍ͳ͠ݱ‬ɽ͢ͳΘͪɼ͋Δ༌ૹඅͷ‫Ͱݩ‬͸ɼύ
λʔϯ D ͸҆ఆ‫ߧۉ‬ղͱͯ͠ଘࡏ͢Δ΋ͷͷɼਓ‫ޱ‬෼
ੳΛ͸͡Ίɼ‫ن‬ൣ෼ੳʹ͍ͭͯ΋ߦ͏ඞཁ͕͋Δɽ·
ࢄ͔Βूதʹมભ͢Δ‫࣮ݱ‬ͷ‫͍͓ͯʹࡁܦ‬͸࣮‫ݱ‬Մೳ
ߟ͑ͨɽ‫ٕڝ‬৔‫ࡁܦ‬͸ɼ‫ڥ‬ք৚݅ͷӨ‫ڹ‬Λड͚ͳ͍Ұ
ੑ͕ͳ͍ɽ͜ͷ͜ͱ͔Βɼ͋Δ༌ૹඅΛԾఆͨ͠੩ֶ
࣍‫ߏݩ‬଄Λ࣋ͭɽͦͷͨΊɼ෼ੳ͕ൺֱత༰қͰ͋Δɽ
Ϟσϧͷ‫ͯͬ͋ͰߧۉͰݩ‬΋࣮‫͢ݱ‬Δ‫ͱߧۉ‬͸‫ݶ‬Βͣɼ
͔͠͠ɼ‫࣮ݱ‬ͷ౎ࢢߏ଄͸ 2 ࣍‫ݩ‬తߏ଄Λ͍࣋ͬͯΔͨ
ͨɼຊ‫ڀݚ‬͸ɼ౎ࢢͷۭؒతߏ଄ͱͯ͠‫ٕڝ‬৔‫ࡁܦ‬Λ
ͦͷ‫͕ߧۉ‬ʮਓ‫ޱ‬෼ࢄ͔Βूத΁ͱมભ͢Δ‫ࡁܦ‬ʯͰ
Ίɼࠓ‫ޙ‬͸෼ੳΛ 2 ࣍‫ݩ‬తߏ଄·Ͱ֦ு͍ͯ͘͠ඞཁ
࣮‫͢ݱ‬Δ‫͔͏Ͳ͔ߧۉ‬Λผ్‫ݕ‬౼͢Δඞཁੑ͕͋Δ͜
͕͋Δɽ͞Βʹ CP Ϟσϧ͚ͩͰͳ͘ɼଞͷ NEG Ϟσ
ͱΛࢦఠͰ͖Δɽͳ͓ɼ͜ͷΑ͏ͳ࣮‫͍ͳ͠ݱ‬ύλʔ
ϧͷଟ౎ࢢέʔεͷಛੑ෼ੳ΋ࠓ‫ޙ‬ͷ՝୊Ͱ͋ΔɽҎ
ϯͷൃ‫ݟ‬ͷͨΊʹ͸ຊ‫܈ͨ͠༻࠾Ͱڀݚ‬࿦త෼‫ذ‬ཧ࿦
্ͷࠓ‫ޙ‬ͷ‫ڀݚ‬՝୊Λߦ͏৔߹΋ຊ‫ͨࣔ͠Ͱڀݚ‬෼‫ذ‬
ʹΑΔ໢ཏతͳ෼‫ذ‬ղੳ͕༗༻Ͱ͋Δɽ
ղੳ๏͸༗༻Ͱ͋Δɽ
࣍ʹɼਤ–15 Λ༻͍ͯɼ͍͔ͭ͘ͷύλʔϯมભͷ
ࢀߟจ‫ݙ‬
‫࣮ݱ‬ੑΛ‫ݕ‬౼͢Δɽύλʔϯ E ͔Β༌ૹඅ௿Լͨ͠ͱ
͖ɼ࣍ʹ࣮‫͏͠ݱ‬Δύλʔϯ͸ύλʔϯ B ͱ C Ͱ͋Δɽ
͔͠͠ɼύλʔϯ B Ͱ 2 ‫ͳͱۃ‬Δ౎ࢢͷҰํ͸ύλʔ
ϯ E Ͱ͸΋ͱ΋ͱਓ‫͕ޱ‬θϩͰ͋ͬͨ౎ࢢͰ͋Δɽਓ
‫ޱ‬θϩͰ͋ͬͨ৔ॴʹɼ༌ૹඅ௿ԼʹΑΓಥવɼେ͖
ͳਓ‫ޱ‬Λ࣋ͭ౎ࢢ͕ൃੜ͢Δ͜ͱ͸‫࣮ݱ‬తʹ͸ߟ͑ʹ
͍͘ɽ͕ͨͬͯ͠ɼύλʔϯ E ͔Βมભ͢Δύλʔϯ
ͱͯ͠͸ύλʔϯ C ͷํ͕‫࣮ݱ‬తͰ͋Δɽύλʔϯ F
565
1) Krugman, P.: Increasing returns and economic geography, J.of Political Economy, Vol.99, pp.483–499,
1991.
2) Krugman, P.: History versus expectations, Quarterly
Journal of Economics, Vol.106, pp.651–667, 1991.
3) Dixit, A.K. and Stiglitz, J.E.: Monopolistic competition and optimum product diversity, American Economic Review, Vol.67, No.3, pp.297–308, 1977.
4) Fujita, M., Krugman, P. and Venables, A.J.: The
Spatial Economy: Cities, Regions, and International
࿯ᧁቇળ⺰ᢥ㓸㧰 Vol.63 No.4, 553-566, 2007. 12
5)
6)
7)
8)
9)
10)
11)
12)
Trade, MIT Press, 1999. (೔ຊ༁ɿ౻ాɾΫϧʔάϚϯɾ
ϕφϒϧζɿۭؒ‫ֶࡁܦ‬ɼ౦༸‫৽ࡁܦ‬ใࣾɼ2000ʣ
Baldwin, R., Forslid, R., Martin, P., Ottaviano, G.,
and Robert-Nicoud, F.: Economic Geography and
Public Policy, Princeton University Press, 2003.
Fujita, M. and Thisse, J.F.: Economics of Agglomeration, Cambridge University Press, 2002.
Henderson, J. V. and Thisse, J.F. eds.: Handbook of
Regional and Urban Economics vol. 4, Cities and Geography, Elsevier, 2004.
Krugman, P.: On the number and location of
cities, European Economic Review, Vol.37, No.293298, 1993.
Krugman, P.: The Self-Organizing Economy, Blackwell, 1996. ʢ·ͨ͸ Fujita et al.4) ͷୈ 6 ষʣ
Fujita, M., Krugman, P., and Mori, T: On the Evolution of Hierarchical Urban Systems, European Economic Review, Vol.43, pp.209-251, 1999.ʢ·ͨ͸ Fujita et al. ͷ4) ୈ 11 ষʣ
Tabuchi, T. and Thisse, J.F.: Self-organizing urban
hierarchy, Preprint, 2006.
౻Ҫจ෉ɼେ࡚७ɼ஑ాਗ਼޺ɿߏ଄ͱࡐྉͷ෼‫ֶྗذ‬, ‫ܭ‬
ࢉ޻ֶγϦʔζ 3, ίϩφࣾ, 2005.
13) Golubitsky, M., Stewart, I. and Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, Vol. 2,
Springer-Verlag, New York, 1988.
14) Ikeda, K. and Murota, K.: Imperfect Bifurcation in
Structures and Materials, Springer-Verlag, New York,
2002.
15) ༄ຊজਔɼ஑ాਗ਼޺ɼ੺দོɼՏ໺ୡਔɿ‫ࢉܭ‬෼‫ذ‬ཧ࿦
ʹΑΔ౎ࢢͷूੵ෼ࢄϞσϧͷ෼‫ܦذ‬࿏௥੻๏ͷఏҊɼ
౔໦‫ܭ‬ըֶ‫ڀݚ‬ɾ࿦จू, No.24, pp.191–196, 2007.
16) ஑ాਗ਼޺, ࣨాҰ༤ɿߏ଄‫ܥ‬ͷ࠲۶ͱ෼‫ذ‬ɼίϩφࣾɼ
2001ɽ
17) Tabuchi, T. and Zeng, D.-Z.: Stability of spatial equilibrium, J. Regional Sci., Vol.44, No.4, pp.641–660,
2004.
18) Zeng, D.-Z.: Equilibrium stability for a migration
model, Regional Sci. & Urban Economics, Vol.32,
pp.123–138, 2002.
19) Murota, K. and Ikeda, K.: Computational use of
group theory in bifurcation analysis of symmetric
structures, SIAM J. Sci. Statist. Comput., Vol.12,
No.2, pp.273–297, 1991.
(2007. 5. 28 ड෇)
SYMMETRY-BREAKING BIFURCATION OF A CORE–PERIPHERY MODEL
OF MANY CITIES: GROUP-THEORETIC APPROACH
Kiyohiro IKEDA, Tatsuhito KONO, Takashi AKAMATSU, Akito YANAGIMOTO
and Shunji YAMAKI
The core-periphery model that expresses the city accumulation phenomenon in association with the change
of transportation cost has multiple equilibriums for two or three cities. However, there is scarce knowledge
on the pattern of spatial accumulation and decentralization of the population when the number of cities is
increased further. In this research, the numerical analysis based on computational bifurcation theory and
group-theoretic bifurcation theory is carried out on the Core–Periphery model for many cities with the
same population that are located symmetrically along a circle. As a result, complex bifurcation behavior
of the model has successfully been traced and the accumulation phenomenon of the city has been shown
to be engendered via a phased loss of symmetry and spatial period-doubling bifurcation.
566