Decompositions of symmetry using models based on f -divergence for square contingency tables Yusuke Saigusa (Tokyo University of Science) Kouji Tahata (Tokyo University of Science) Sadao Tomizawa (Tokyo University of Science) 1. ͡Ίʹ ɹߦͱྻ͕ॱংͷ͋Δಉ͡ྨ͔ΒͳΔ r ʷ r ਖ਼ํׂදΛߟ͑ɼ(i, j) ηϧ֬Λ pij ͱ͢Δ (i = 1, . . . , r; j = 1, . . . , r)ɽ͜ͷͱ͖ɼରশ (S) Ϟσϧ࣍ͷΑ͏ʹఆٛ͞ΕΔ (Bowker [3])ɿ pij = ψij (i = 1, . . . , r; j = 1, . . . , r), ψij = ψji . ͨͩ͠ S Ϟσϧओର֯ઢʹؔ͢Δηϧ֬ͷରশߏΛࣔ͢ɽS Ϟσϧ͕Γཱͨͳ͍ͱ͖ɼ ͍͔ͭ͘ͷ֦ுͨ͠Ϟσϧ͕ఏҊ͞Ε͍ͯΔɽͨͱ͑ɼ४ରশ (QS) Ϟσϧ࣍ͷ Α͏ʹఆٛ͞ΕΔ (Caussinus [4])ɿ pij = αi βj ψij (i = 1, . . . , r; j = 1, . . . , r), ͨͩ͠ ψij = ψji . QS ϞσϧΦοζൺ θ(i<j;s<t) = (pis pjt )/(pjs pit ) Λ༻͍ͯ࣍ͷΑ͏ʹදͤΔɿ θ(i<j;s<t) = θ(s<t;i<j) (1 ≤ i < j ≤ r; 1 ≤ s < t ≤ r). QS Ϟσϧओର֯ઢʹؔ͢ΔΦοζൺͷରশߏΛࣔ͢ɽ·ͨɼपลಉ (MH) Ϟσ ϧ࣍ͷΑ͏ʹఆٛ͞ΕΔ (Stuart [7])ɿ pi· = p·i (i = 1, . . . , r), ͨͩ͠ pi· = r X pit , p·i = t=1 r X psi . s=1 MH Ϟσϧɼߦมͱྻมͷपล͕ಉͰ͋Δ͜ͱΛ͍ࣔͯ͠Δɽ Caussinus [4] ࣍ͷఆཧΛ༩͑ͨɿ ఆཧ 1ɽS Ϟσϧ͕ΓཱͭͨΊͷඞཁे݅ɼQS Ϟσϧͱ MH Ϟσϧͷ྆ํ ͕Γཱͭ͜ͱͰ͋Δɽ {us } Λॱংͷ͋ΔطͷείΞͱ͢Δ (s = 1, . . . , r; u1 ≤ u2 ≤ · · · ≤ ur ; u1 < ur )ɽ ͜ͷͱ͖ɼॱং४ରশ (OQS) Ϟσϧ࣍ͷΑ͏ʹఆٛ͞ΕΔ (Agresti [1], p.429)ɿ pij = αui β uj ψij (i = 1, . . . , r; j = 1, . . . , r), ͨͩ͠ ψij = ψji . OQS Ϟσϧ QS Ϟσϧͷಛผͳ߹Ͱ͋Δɽ f Λ 2 ֊ඍՄೳͳڱٛತؔɼF Λ f ͷ 1 ࣍ಋؔͱ͢Δɽf -μΠόʔδΣϯεʹ ͮ͘ج४ରশ (QS[f ]) Ϟσϧ࣍ͷΑ͏ʹఆٛ͞ΕΔ (Kateri and Papaioannou [6])ɿ pij = pSij F −1 (αi + γij ) (i = 1, . . . , r; j = 1, . . . , r), ͨͩ͠ɼ pSij = pij + pji , 2 γij = γji . ಛʹɼf (x) = xlogxɼx > 0ɼͱͨ͠ QS[f ] Ϟσϧ QS ϞσϧͰ͋Δɽ·ͨɼf (x) = (1− x)2 ͱͨ͠ QS[f ] Ϟσϧ Pearsonian QS ϞσϧͱݺΕΔ (Kateri and Papaioannou [6])ɽ Kateri and Papaioannou [6] ࣍ͷఆཧΛࣔͨ͠ɿ ఆཧ 2ɽS Ϟσϧ͕ΓཱͭͨΊͷඞཁे݅ɼQS[f ] Ϟσϧͱ MH Ϟσϧͷ྆ ํ͕Γཱͭ͜ͱͰ͋Δɽ f -μΠόʔδΣϯεʹॱͮ͘جং४ରশ (OQS[f ]) Ϟσϧ࣍ͷΑ͏ʹఆٛ͞ΕΔ (Kateri and Agresti [5])ɿ pij = pSij F −1 (αui + γij ) (i = 1, . . . , r; j = 1, . . . , r), ͨͩ͠ɼ pij + pji , γij = γji . 2 OQS[f ] Ϟσϧ QS[f ] Ϟσϧͷಛผͳ߹Ͱ͋Δɽಛʹɼf (x) = xlogxɼx > 0ɼͱ͠ ͨ OQS[f ] Ϟσϧ OQS ϞσϧͰ͋Δɽ·ͨɼf (x) = (1 − x)2 ͱͨ͠ OQS[f ] Ϟσϧ Pearsonian OQS ϞσϧͱݺΕΔ (Kateri and Agresti [5])ɽ Kateri and Agresti [5] ࣍ͷఆཧΛࣔͨ͠ɿ pSij = ఆཧ 3ɽS Ϟσϧ͕ΓཱͭͨΊͷඞཁे݅ɼOQS[f ] Ϟσϧͱ MH Ϟσϧͷ ྆ํ͕Γཱͭ͜ͱͰ͋Δɽ S Ϟσϧ੍ͷ͍ڧϞσϧͰ͋ΔͨΊɼ࣮ࡍͷσʔλղੳʹ͓͍ͯద߹͕ѱ ͍͜ͱ͕ଟ͍ɽຊͰڀݚɼS ϞσϧΛɼΑΓऑ੍͍Λ͍͔ͭͭ͘ͷϞσϧʹ͚ ΔɽͦͷΑ͏ͳ S ϞσϧͷղɼS Ϟσϧͷσʔλʹର͢Δͯ·Γ͕ѱ͍ͱ͖ɼ ͦͷݪҼΛߟ͑Δ্Ͱ༗༻Ͱ͋Δɽ ද 1 ʹ r ʷ r දʹద༻֤ͨ͠Ϟσϧͷద߹ݕఆͷͨΊͷൺΧΠೋݕఆ౷ྔܭ ͷࣗ༝Λ͢هɽද 1 ΑΓɼOQS[f ] Ϟσϧͱ MH Ϟσϧͷࣗ༝ͷ S Ϟσϧͷࣗ ༝ΑΓେ͖͍ɽ͜͜ʹɼࣗ༝ r ʷ r දʹ͓͚Δ֤Ϟσϧͷ੍ʹ͍͜͠ͱ ʹҙ͢ΔɽΑͬͯɼOQS[f ] Ϟσϧͱ MH Ϟσϧ͕ಉ࣌ʹΓཱͭߏ S Ϟσϧͷ ࣔ͢ߏΑΓ੍͕͍͑ͱ͍ڧΔɽ ຊઅͰɼϞσϧͷ੍Λߟྀͨ͠ S ϞσϧͷղΛ༩͑Δɽ ද 1. r ʷ r දʹద༻֤ͨ͠Ϟσϧͷద߹ݕఆͷͨΊͷൺΧΠೋ౷ྔܭͷࣗ ༝ Ϟσϧ S OQS[f ] MH ࣗ༝ r(r − 1)/2 r(r − 1)/2 − 1 r−1 2. Ϟσϧͷղ 2.1. ରশੑͷղ ɹߦͱྻͷείΞͷฏۉҰக (ME) ߏΛߟ͑Δɿ µ1 = µ2 ͨͩ͠ µ1 = r X ui pi· , µ2 = i=1 r X ui p·i . i=1 ͜ͷͱ͖ɼ࣍ͷఆཧΛಘΔɽ ఆཧ 4ɽS Ϟσϧ͕ΓཱͭͨΊͷඞཁे݅ɼOQS[f ] Ϟσϧͱ ME Ϟσϧͷ ྆ํ͕Γཱͭ͜ͱͰ͋Δɽ ಛʹ f (x) = xlogxɼx > 0ɼͱͨ͠ʢ͢ͳΘͪ OQS[f ] Ϟσϧ͕ OQS ϞσϧͱͳΔͱ ͖ͷʣఆཧ 4 Tahata, Yamamoto and Tomizawa [8] ʹΑͬͯ༩͑ΒΕ͍ͯΔɽ 2.2. Ԡ༻ྫ ɹද 2 ࿈ଓ͢Δ 2 ͷ༽ͷग़ੜʹؔ͢ΔσʔλͰɼॱংΧςΰϦ 4 ʷ 4 ׂදͰ͋ Δ (Tallis [9])ɽ ද 3 ɼද 2 ͷσʔλʹద༻֤ͨ͠Ϟσϧʹର͢Δద߹ΧΠೋ౷ྔܭͷΛࣔ͢ɽ ද 2. ࿈ଓ͢Δ 2 ͷ༽ͷग़ੜʹͮ͘جσʔλ (Tallis [9]) 1952 1953 0 1 2 ܭ 0 58 52 1 111 1 26 58 3 87 2 8 12 9 29 ܭ 92 122 13 227 ද 3. ද 2 ͷσʔλʹରͯ͠ద༻֤ͨ͠Ϟσϧʹର͢ΔൺΧΠೋ౷ ྔܭG2 Ϟσϧ S OQS Pearsonian OQS ME QS Pearsonian QS MH ࣗ༝ 3 2 2 1 1 1 2 G2 20.81* 20.74* 20.75* 0.07 1.35 2.16 18.65* *ҹ 5% ༗ҙΛࣔ͢ ද 3 ΑΓɼද 2 ͷσʔλʹରͯ͠ S Ϟσϧͷద߹ѱ͘ɼOQS Ϟσϧʢ͋Δ͍ Pearsonian OQS Ϟσϧʣͷద߹ѱ͍ɽ͔͠͠ɼME Ϟσϧͷద߹ඇৗʹྑ͍ɽ ఆཧ 4 ΑΓɼME ϞσϧΑΓ OQS Ϟσϧʢ͋Δ͍ Pearsonian OQS Ϟσϧʣͷࣔ͢ ֬ߏ่͕Ε͍ͯΔ͜ͱ͕ɼS Ϟσϧͷద߹ͷѱ͍ݪҼͰ͋ΔͱਪଌͰ͖Δɽ 3. Ϟσϧͷަੑ ɹϞσϧ M ͷద߹Λݕఆ͢ΔͨΊͷൺΧΠೋ౷ྔܭΛ G2 (M ) ͱ͢Δɽఆཧ 1 ʹରͯ͠ɼTomizawa and Tahata [10] ݕఆ౷ؔ͢ʹྔܭΔ࣍ͷఆཧΛ༩͑ͨɿ ఆཧ 5ɽG2 (S) ɼG2 (QS) ͱ G2 (M H) ͷʹۙతʹಉͰ͋Δɽ Ұൠʹɼ ʮϞσϧ M3 ͕ΓཱͭͨΊͷඞཁे݅ɼϞσϧ M1 ͱϞσϧ M2 ͷ྆ ํ͕Γཱͭ͜ͱͰ͋Δʯͱ͢ΔɽG2 (M3 ) ͕ G2 (M1 ) ͱ G2 (M2 ) ͷʹۙతʹಉ ͷͱ͖ɼ༗ҙਫ४ α ͰɼϞσϧ M1 ͱϞσϧ M2 ͕ͦΕͧΕߴ͍֬Ͱ࠾͞ΕΔͳΒ ɼϞσϧ M3 ࠾͞ΕΔʹ͋ΔɽҰํͰɼG2 (M3 ) ͕ G2 (M1 ) ͱ G2 (M2 ) ͷʹ ۙతʹಉͰͳ͍ͱ͖ɼϞσϧ M1 ͱϞσϧ M2 ͕ͦΕͧΕߴ͍֬Ͱ࠾͞ΕΔʹ ؔΘΒͣɼϞσϧ M3 ͕غ٫͞ΕΔͱ͍͏ໃ६ͨ͠ঢ়͜ى͕گΓ͏Δ (Aitchison [2])ɽ ຊͰڀݚɼ࣍ͷఆཧΛಘΔɽ ఆཧ 6ɽS ϞσϧͷԼͰɼG2 (S) ɼG2 (QS[f ]) ͱ G2 (M H) ͷʹۙతʹಉͰ ͋Δɽ ఆཧ 7ɽS ϞσϧͷԼͰɼG2 (S) ɼG2 (OQS[f ]) ͱ G2 (M E) ͷʹۙతʹಉͰ ͋Δɽ ఆཧ 6 ͱఆཧ 7 ͔Βɼఆཧ 2 ͱఆཧ 4 Ͱ༩͑ΒΕΔϞσϧͷղʹ͓͍ͯɼ্هͷ Α͏ͳໃ६ͨ͠ঢ়گ͜ىΓʹ͍͘ͱ͍͑Δɽ ࢀߟจݙ [1] Agresti, A. (2002). Categorical Data Analysis, 2nd edition. Wiley, New York. [2] Aitchison, J. (1962). Large-sample restricted parametric tests. Journal of the Royal Statistical Society, Series B, 24, 234-250. [3] Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association, 43, 572-574. [4] Caussinus, H. (1965). Contribution `a l’analyse statistique des tableaux de corr´elation. Annales de la Facult´e des Sciences de l’Universit´e de Toulouse, 29, 77-182. [5] Kateri, M. and Agresti, A. (2007). A class of ordinal quasi-symmetry models for square contingency tables. Statistics and Probability Letters, 77, 598-603. [6] Kateri, M. and Papaioannou, T. (1997). Asymmetry models for contingency tables. Journal of the American Statistical Association, 92, 1124-1131. [7] Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42, 412-416. [8] Tahata, K., Yamamoto, H. and Tomizawa, S. (2008). Orthogonality of decompositions of symmetry into extended symmetry and marginal equimoment for multi-way tables with ordered categories. Austrian Journal of Statistics, 37, 185-194. [9] Tallis, G. M. (1962). The maximum likelihood estimation of correlation from contingency tables. Biometrics, 18, 342-353. [10] Tomizawa, S. and Tahata, K. (2007). The analysis of symmetry and asymmetry: Orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables. Journal de la Soci´et´e Fran¸caise de Statistique, 148, 3-36.
© Copyright 2025 ExpyDoc