Title On 2-STEGE EUCLIDEAN RING and LAURENT SERIES Author(s) AMANO, Kazuo Citation [岐阜大学教養部研究報告] vol.[22] p.[83]-[86] Issue Date 1986 Rights Version 岐阜大学教養部 (Dep. of Math., Fac. of Gen. Educ., Gifu Univ.) URL http://repository.lib.gifu-u.ac.jp/handle/123456789/47593 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 83 On 2-STA GE E U CLI D E A N R I N G and L A U R E N T SE R I E S Dedicated to Professor K . 0 hta on his 60th birthday K azuo A M A N O Dep. of M ath. , Fac. of Gen. E duc. , Gifu U niv ( Received Oct. 13, 1986) 1. 1ntrOduction L et 7? be an integral dom ain. L et yV : 7? → Z be a norm m ap satisfying N ( O) = 0, y ( α) > O for ど z≠ O, and yV( 油 ) = yV( α) 夙 b) . T he dom ain 7? is called euclidean if for any α, みin 7? with ゐ≠ 0, there exist ・7, y in 尺 such that α= φ 十y atld 八町 ) < X ( ろ) . G.E .Cooke in [1] considered the foHowing possibility : for any ど z, ゐin7? with ろ≠0, there exist p, qげ , S in 7? such that α= 油 十y, b゛ qy十s, and yV(s) く yV( ゐ). A nd he caHed the domain 7? 2- stage euclidean・ ln[11, heprovedthattherearemany 2-stageeuclideandomainsthatarenoteuclidean in the usual sense. N ow let R χこ R [ [ χ ] ] [ χ - I ] be the ring of forma1 L aurent serieswith coefficient in R 、 T hen P. Samuel in [ 4] proved that if ム?χ is euclidean, 尺 is so. A lso F. Dress proved the converse・in[21. ln this paper, w e prove analogous results in 2- stage euclidean rings・ 2. L aurent series. Let R be an integral dom ain w ith a norm m ap yV : R → Z. L et titx = 人? [ [X ] ] [ X ¯1] be the ring of form al L aurent series with coefficients in 尺 . For ブ=ΣらyE刄 χ , 吋三 R,h EZ,ah ≠ 0 f≧ yz we put j(ブ) = α。, and /( O) = 0. So n s a map from R χto 7? レ L emma 1. P roof. Foy auy f , g 鏑 R 加ith g ≠ 0, チこ gn or, f = 即 十 z ノバ ( φ 幸 0 mod t( 征 L et yz( resp. ん) be the lowest degree of / ( resp・ g ) . Se口 (y) = が (g ) 十 乙 where q, yE R o T hen w e can w rite 84 K azuo A M A N O △ zノ = / 一 qX 一 憎 = り ひ 十higher degree terms. lf γま O mod Z(g) , we stop since /0 ) 二 r幸 O mod /( g) , lf y≡ O mod /(g) , we similarly construct り= z ノーqlXh1-kg, (柘= order of め and so on. lf the process stops after a finite number of steps, we obtain f = 卯 十 t・, 卵 ) 牢 O m od /(が) . Otherwise the infinite sum zx= qχ 4 十 qIχhX- 十 … … 十 qnX ` ¯ノ ゛十 … … makes sence, and w e obtain 仁 即 ・ 3. 2-stage euclidean. ぺ Ve define a map N χI R → Z by 凡 ・(/ ) = X( べ/ )). T hen w e obtain the following, P roposition 2. び R is 2 -stage 鰍 d ide皿 面 th yes加 d to N , R x is 2 -stage eMdidea11 With 粍S加d tO N χ= N ・ t、 Proof. F or any ソ≒g in R χ with g≠ 0, by lemma l we have the following : (1) 戸 即 , o「 (2) / = 即 十馬 ㈲ ) ま Omod /(g). lt is obvious that the case ( 1) is good. A s for the case ( 2) , if X ( 府 ) ) < 餓 心 ) ) , then we have N χ( r) く N χ(g) by definition, and this isgood. lf 入分 0 ) ) ≧X ( /(g)) , we have 心ノト が(g) + 7づ (g) = 肝十s, andⅣ(s) く M /(g)), because 7? is 2-stage euclidean. N ow if we set z /一1)X - 刄= が, (y z= order of め, then w e have / = 0 十 pX ゛ - ) g 十 が and /( が) = y、 lf w e set g 一 qX ¯ T = z/″, we have べど ) = s、 lf s≠0, we obtain / = 0 + 1)Xh ゛-k)g十が,イ = ・7X ゛ り 丿十び≒ and y v(g) = N (/(g)) > y (s卜 y x( の 。 lf s= 0, w(? have /( が卜 弘 On the other hand, since 躍 り ≧y ( j( g) ) , we get y ( ○ 二 1 On 2-ST A GE E UCLI DEA N RI N G and LA URE N T SERI ES 85 T herefore we have 丿= /(g)F l and 心・) = μ(g) 十C リ(g) = 0 十C 1丿(れ T his is contradiction for XO ) ま O mod /(g) . Proposition 3. 坏 R バ S 2- stage eudideαれ 面 th γes加 d to N χこ N ・t, 仇心 R iS蚕 SO 2-s叫le四di面四 面 th 粍s加d toN. P roof. L et α and ゐ be elements in R with ゐ≠ 0. Since 7も , is 2- stage euclidean, there eχist 1) , q,y,S m 7? x such that α= 夕ろ十 y, b= 肛 十s, and N λS) < N 勁 ) , where ♪= j) kX 十 higher degree terms q二 qlχ l + 1! igher degree terms y二 y77xX ″十 higher degree terms s二 恥 X 十 higher degree terms T hen the following can happen : (1) Let Nχ ( y) く y¥へ・( ろ). lf んく 0, wehave ん= 附 and 夕丿 十y,7z= 0, and hence N式y) = X( ら) = yV(リ φ) ≧X( ろ) べ ¥y ろ). T his is contradiction. T herefore we get ん≧ 0 . A nd we obtain α= 瓦ろ十y0, N ( り卜 凡 脂 ) く Λ≒( ろ) = 躍 分 (2) Let yVじ ,y ( y) ≧N式b). lf /十刑く 0, weget /十m¯ ll and り ら 十亀= 0. H ence 二 Nχ (s) = 躍 如) = X (一々几 ) ≧躍 ら) ≧Λ≒( ゐ). Since N χ( s) く y¥≒( ろ) , this is contradiction and hence we get /十 附 ≧0. T hen we can consider now possibility : Case i) s。≠ 0 . / lf んく 0, we get み み十 戸 = 0. 0 n the other hand, since ろ= x 7げ m十 S0, w e have 躍 禎 = yV( み -g几 ) こN(( 7十夕J ) ろ) ≧yV( ろ). T his is contradiction, because yV( 貼) = N χ( s) く N χ( ろ) = yV( ろ) . H ence we have ん≧0. T hen we obtain と z= 九 ろ十 γ O, b= ㈲ り 十知, and yV( 知) く y O ) . Case ii)・ s。= 0. ln this case, w e distinguish now tw o subcases : 86 K azuo A M A N O ノ l n 乙 ダ jj lf ん≧Oj t is obviousthat α= 1)O b十y0, b= ㈲秘十〇, and yV(O) < yV( ろ) . lf ん< 0, we have ん= 辨 < O and 似 b十 ら = 0. On the other hand, sincと ゐ= qlym, we have qd) h+ 1= O and hence (h, 1) kaTe units. T hen w e can obtain : 卜 ( (hχl十……) ( 几万 十……) 十(稲X″ 十……) し = のら 十(qlキlyk十のらu)X 十(ql午 2yk十眼Uyk+丿 十のり +2)X2十……十(亀X″十……) T herefore we get the following equations : qt+ j4 + qげ瓦+ j = 0 ql+ 2瓦 十 ・7, 十j 4 + 7十 qげ瓦や2= 0 ● ● ● φ ● ● ● ● ● ● ● ● qa n瓦 十 ㈲ ゆ - j 4 + 7+ … … + qげ瓦十n+ 陥 = 0 Since qj s unit, we have 4 +7= φ¯lqGI瓦二ql¯lql± 1(一 九) 友 H ence we get yk十I ≡ O m od ゐ. し Similarly, we have 4 十2, ‥‥ , 4 十,2- j 三O mod & T hen if ん十 万< 0, w e have 1) k nb十 八 十,7= O and hence yk+ 1≡ O m od ろ. By above equations ( E ) , w e have 亀 ≡ O m od ゐ and hence y ( 如 ) ≧ y ( ゐ) . T his 沁 contradiction to N ( 如) < X ( 分 T herefore w e get ん十 刀≧ 0・ N ow, if ん十 刀> 0, there eχist an integer /xsuch that ん十 刀= 0. T hen since 弘 .14 十 … … + 9几 n = 0, we have 勾 = a n ≡ O m od & . H ence w e obtain a = 九φ 十 勾 = q b. lf ん+ 77= 0, the equation (E ) we have q卜n几十 …・ 十哨ら+,2= qanyk十 …・ 十の○ 一九ろ) 十亀= 0. 1 T hen w e obtain aこ 1)ob十の-j(-みゅ4 - ‥‥一 亀) = がろ十び/ (一亀), and yV(g/ (一亀)) = yV(如) < X( ろ). R eferenCes [1] G.E.Cooke, A weakening of theeuclideanpropertyforintegral domainsandapplicationstoalgebraic number theory.I , J.Reine A ngew. M ath.282 (1976), 133- 156 [2] F.Dress, Stathmeseudidiensetseriesformelles, ActaArith.,χIχ (1971), 261-265 [3] H.W.Lenstra,紅 , Lectures onEuclideanrings, Bielefeld 1974 閻 P.Samue1, AboutEuclideanRings, J.Algebra 19 (1971)√282-301
© Copyright 2024 ExpyDoc