Title On the Euclidean Modules Author(s) AMANO, Kazuo Citation [岐阜大学教養部研究報告] vol.[27] p.[63]-[66] Issue Date 1991 Rights Version 岐阜大学教養部 (Department of Mathematics, Faculty of General Education, Gifu University) URL http://repository.lib.gifu-u.ac.jp/handle/123456789/47688 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 Bulletin of the F aculty of General E ducation, Gifu U niv. vol. 27 ( 1991) 63 On the E uclidean M odules K azuo A M A N O D申 出 ma t of Matkemd cs ( Received October 16,1991) 1. 1ntroduction. L et R be a ring, M a left R, module and W a wen ordered set. ln [21, H.W .Lenstra,Jr constructedthefollowingideaofeuclideanmodules. Letf : M- { O} →IV be a map. lf for all a, bE M , b≠0, there exist qE R and c E M such that a = qb十 c, c= Oor f( c) < f( b) , M iscalled left euclideanmodule. Thisisageneralizationof usual euclidean ring, because a ring R is left euclidean if it is euclidean as a left module over itself. H e proved the followings; 1. L et M be an euclidean left R-m odule and N ⊂ M be a subm odule. T hen N = Rχ for some x E N . [ 2. T h.1.61 2. L et R be a commutative ring and M a left R -M odule. lf χE M satisfies M = Rχ, then M is oud dean if and only if the ring R /A nn( x) is euclidean. [ 2. Prop.3.1] On the other hand, G.E .CQoke introduced the concept of ω-stage euclidean domain in [11. 1n [11, heprovedthefollowings; 3. L et R be a ring of algebraic integers. lf R is ω-stage euclidean, then it is k-stage euclidean for some k. [ 1. Prop. 131 4. L et R be an integral dom ain. T hen R is ω-stage euclidean if and only if R is GE 2 and Bezout. [ 1. Prop.141 5. A number ring which is GE2 and has class number l is k-stage euclidean for some k. [1. Th.1] ln the present paper, we shall constract the concept of ω, stage euclidean module and we shall obtain some analogous results to the above properties. 2. ω-stage euclidean. L et R be a ring. M a left R -module and W a w ell ordered set. Definition 1. L et a,b be elements of M . A k-stage division chain starting from the pair ( a,b) is a sequence of equations 64 K azuo A M A N O a (D) b = q2r1 + r2 r1 二 q3r2 + r3 ● ● ● ● ● ● ● rk- 2= qkrk- 1 + rk where qlE R and rlE M . Such a division chain is called terminating if the last rem ainder rh is 0 . D efinition 2. L et f : M - { O} → W bea map. M is an ω-stageeuclidean modulewith resped to the m ap f if for every pair ( a,b) w ith b ≠ 0, there eχists a k-stage division chain ( D) for somek such that thelast remainder rhsatisfies八= Oor f( rj ) く f( b) . Proposition1. 訂 is a ω-s収 e a d泌 皿 mo加 le if 皿 d o械y が evey:y j)峨 ( a, b) 犯池 b≠ O k s αteym油d 昭 恥st昭e d屈si回 ck 油 加y somek. PyOOf . lt issimilar tothg proof of Prop.1 1n [21. D efinition 3. lf for a,bE M there exists qE R such that a= qb, b is caned a divisor of a, F or thepair ( a,b) , if there eχist c E M and q, rE such that a = qc, b= rc, c iscalled a common divisor of a and b. lf cis a common divisor and any common divisor of a and b divides c, c is called a g.c.d. for the pair ( a,b) . P ropositioU 2 . jlf tk 卸 iy ( a, b) k s α teym緬 αt泌 g d加磁 ou c辿 泌 , 仇四 tk m xt-to・ ㎞ t 粍琲α 泌dey 几_ 11s a g.c、d. 知y ( α 湊) . PyOOjl Seetheproof of Prop. 3 1n [21 . N ow , we consider a N eatherian R-module M ( i.e. every ascending chain of its submodules has only a finite number of distinct terms) . T hen, we have Proposition 3. L d M be a11 (a-stαge eMdide皿 , χeαlheyia?1 , R一 mod㎡e α11d let N ⊂ が be α sMbmod㎡e、T k ll N こ Rχ加 y some χモ N 。 PyOOyl SinceM isNeaterian R-module, a submoduleN isfinitelygenerated. Let al, a 2, ‥ ゛, a n b e a set o f g en er a t o r s o f N . A cco r d in g t o P r o p . 1 a n d P r o p . 2 , P a ir ( a 1, a 2) h as a terminating division chain. H encethereexists a g.c.d. cl for ( al,a2) . N ow work cl and a3, and so on. T hen we have a g.c.d。χ for a1,a2, ‥・,an in N . Clearly we have N = Rχ。 Corollary. Le日 E N sud tk け (y) = g 加 { / ( z) ; Zモ N べ O} } . 毀 a , 五y⊂ N 、 CoroUary. 仔 M・iS l -s恒gea4dideau, Ry= N. PyOOy l SinceM is 1-stageeuclidean, thereexist qE R and rE M suchthat x = qy十 On the euclidean modules 65 r, r= Oor f( r) < f( y) . Thenr= x- qyE N sof( r) < f( y) isexcludedbyminimality of f(y) . H ence r = O and χ= qyE R y. 3. l nequality condition. A ssume that for any a E M - { O} the m ap f has inequality f( a) ≦f ( qa) for all qe Rづ O} . Proposition4. が qモ R iS観 itご ( ,2) = / ( 卯) . PyOO jl Put b= qa. Sincea = q-1b, f(b) ≦f(q-1b) ≦f( aj D efinition4. yE N su(ホ that f ( y) = min { f( z) ; zE N 一 { 0} } is called a minim al element of N w ith respect to the map f. Proposition 5. £ d 訂 加 加 ω一 s旨ge 四 d i& α肴, N eαtk γ紬R R -mod㎡e αRd ld N ⊂ μ be α s油 mod㎡e, N is ga em td by α m細 加 沢 山 me戒 y, if 皿 d ol雨 が y is αg, cj 加 y α set of gem m toys of N . PyOOjl Let x ag.c.d. for aset of generatorsof N. Since N = Rχ= Ry, ydividesχand x divides y. H ence y is a g.c.d. for a set of generators of N . Converse is trivia1. ln the rest of this section we assunie that M is ω-stage euclidean, N eatherian R-module with respect to a map f and a minim al element of a submodule N is a g.c.d. for a set of generators of N . Proposition 6. F Oy χE M 一 { θ} バ d g ( x) = 必 7z { / ( 2) 7 zE 拓 ; 一 { O} } . Thm M is a筒 。 一 s短ge 四 d de四 面 伍 yesj)ed to tk 琲司) g。 PyOOyl For all a, bE M , b≠ 0 , wechooseq E R such that g(d) = f( qb) . SinceM is ω-stage euclidean. for thd pair ( a, qb) there exist k -stage division chain ( D ) for som e k such that the last remainder rl satisfies r1, = O or f( rj ) < f( qb) T hen g( rh) ≦ f( rj ) < f( qb) = g( b) as required. Proposition 7. The m的 g sd sjies 緬 du l雨 condiH回 . PyOO jl Obvious. Proposition 8. Ld bE M be a 面 戒 md 山 ma t of M 屈 th y叫 ecH o the m呻 g n d ld A 11筧( ろ) bd hd φ ided リ E R :ybこ 叫 of R . T ha R ZA u11( ろ) is all (・) -stage eMdideα11 j?一 mod14鼠 PyOO jl For all qE R- { O} wehaveg( qb) ≧g(b) , sowecanwriteg( qb) = g(b) 十t( q) for some map t : R 一 { O} → W . lf q- q E A nn( b) , t( q) = t( q ) . So t induces a map u : R / Ann(b) →W . For thepair ( pb, qb) withqb≠O thereexistsak-stagedivisionchain ( D) for some k such that the last rem ainder rl satisifies r1, = O or g凪 ) < g( qb) . 0 n the oher 66 K azuo A M A N O hand, ΓμΞRb for all i, so w e can write rl= sib for some slE R . H ence we have a following k- stage division chain as required in R -module R /A nn( b) ; - - - p - qlq + - - S1 - q = q2Sl + S2 ● ● ● ● ● ● sk- 2 = qksk- 1 + sk, 乱= 百〇 ru(λ) < u(亙), because, u(瓦) = t(sj) = g(sふ) - g(b) < g(qb) - g(b) = t(q) = u滝) CoroUary. L d R be α commM短t加e yillg. Tk 11 M is 。 -stage eMd ideα箆 汀 α肴d o戒 y 汀 版 画 g RyAm1( ろ) 台 ω-s恒涙 eMdideα歓 references [1] G.E.Cooke, A weakening of thetheeuclideanproperty for integral domainsandapplicaiionsto algebraic number theory.I , J. reine angew . M ath 282 ( 1976) , 133-156 [2] L.K.Hua, lntroduction toNumber Theory, Springer-Verlag, 1982 [3] H.W .Lenstra,Jr, LeduresonEuclideanRings, Bielefeld, 1974 [4] W.Narkiewicz, Elementary andAnalyticTheory of AlgebraicNumbers, Springer-Verlag. 1989 [5] P.Samue1, About euclideanrings, J. Algebra 19( 1971) , 282・301
© Copyright 2025 ExpyDoc