Title C^∞ Null-Solutions for Some Non-Fuchsian Operators with C^∞ Coefficients Author(s) MANDAI, Takeshi Citation [岐阜大学教養部研究報告] vol.[22] p.[95]-[100] Issue Date 1986 Rights Version 岐阜大学教養部 (Dept. Math., Fac. Gen. Educ., Gifu Univ.) URL http://repository.lib.gifu-u.ac.jp/handle/123456789/47595 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 95 C(゛) N ull- Solutions for Some N on- Fuchsian Operators with C゛ Coefficients Dedicated to Professor K .0 hta on his 60th birthday T akeshi M A N DA I Dept. M ath., Fac. Gen. Educ., Gifu Univ. (Received Oct、13, 1986) §0 . 1ntroduetion Let t be an 田- th order partial differential operator near (0,0)∈ 瓦 ×召 5j. T he operator t is called 原 F 麗 隔 ㈲ e 戒 出 麗 i前 川 (0 7) can bewritten asP= w旅 Σ 餓 加 d to ぼ the followi昭 two conditions hold. aj,a(ぴ) tj DtDl with ら ,o≡1. j 十¦ α¦ ≦尻 (亀αhavesuitablesmoothness.) , ( ii) aj,a(0,x) ≡Oif α≠0. ln this artid e, we use the following notations. (ぴ卜 ( 柵 ,‥・み ) are thevariables on R゛1+1. G・,ぞ) = ( r,ぞI,…ふ ) are thedual variables. ∂ ,= ∂ /∂/, 貼 = ∂ /≒ , ∂ χ= (∂ χ. …,∂ 4 ), 五= ∂ ぶ 几 = ∂が etc・, μ= 一 泊h Dχj= 召貼 ぴ= 1,…ぷ). μl= £)釦 ‥刀穴 for multi-index α= (α1,…, 恥). し ¦ ゛ α1+ ‥・+ α n, G= {xE R″ ; し ¦< ε } (ε> O). M.S.Baouendi-C.Goulaouic(田 ,[2]) considered the Cauchy problem for operators of F uchs type w ith real- analytic coefficients and show ed a Cauchy- K ovalevsky type the- orem and a Holmgren type theorem. ln the ひ ) category, H .T ahara([51,[6]) considered Fuchsian hyperbolic (jperators and studied the ひ w e11-posedness of the Cauchy problem and so on. R oughly speaking, the strud ure of the Cauchy problem for operators of Fuchs type is sim ilar to that of the non- charad eristic C auchy problem . T he condition ( i ) is quite natural but the meaning of the condition ( ii ) is not clear. H ence, it seems natural to ask w hat happens when the condition ( ii ) is violated. 0 ne possibility is the existence oI C゛ null- solutions. A C∽ function zx near (0, 0) is called a (グ U㎡ 1- SO臨ti皿 10r t at (0,0) if 乃7= Onear (0,0) and (0,0) E suppzx⊂ { ( ぴ ) け ≧O} . Let the condition ( i ) issatisfied for theprincipal part of 沢 ln real-analytic case, there exists a Cy nuII-solution if there eχists (ノ, α) such that プ十 ¦ 訓 = 肌 y< 肴 1, aj,a(0,0) ≠Oand ak,β(0. - x匝 Ofor 力十 ¦ β卜 肌 力く yl (S.0 uchi [4;T heorem 1.8]). ln this article, wewant to get a similar result in (グ case. T his reseai ch was partly supported by Grant-in- A id for Scientific Research (N 0. 61540094) , M inistry of Education, Science and Culture. T akeshi M A N DA I 96 ln§1, westatethemaintheoremバn〕 provethisthQorem, thbbehavior of bicharacteristic curves plays an important role, which is studied in §2. we prove the theorem in §3. 1n §4, therearestudiedverysimplecasestowhichour theorem doesnotapply. §L. Statement of Theorem W e consider the follow ing operator t in a neighborhood び of (0,0) ∈ 瓦 × 召 ;j : 7) = _ Σ j 十 ¦ α ¦ aj,a( ぴ ) tj D 4D 1 十 = 斑 _ _ . _ _ ノ Σ 川 α ¦ 臨 a( ぴ ) D4D 1 , < 斑 _ where ら,α, ゐ j,αE C゛( 印 and a・ ,o≡L `NVe assume the f0110wing tw o assumptions. (A-1) Theprincipal symbol 偏 of 7) isfactored asfollows. 八 ( び ; r,ぞ) = j H (な= 1 ん(ぴ ;ぞ)), where{ん;j = 1府 , 田} arereal anddistind on び×(R ¥ ㈲ ). (A-2) Thereexist qE 狂 …, 副 and ぐoE R71¥ { O} such that λ. (O↓ O;ぞo)≠0. T he following theorem is the aim of this article. Theorem. Assttme (y1- 7) 凹 ぱ(/1-2). Thm けhe托 aistsa (グ 11㎡1-solMtio71和yP at (0,0). Remarks. (1) The assumption (A-2) isequivalent tothat there exists (J,a) such that y十 ㈲ = 肌 j く m andα j,a(0,0)≠0. Notethatweneednotassumethat のよ 0,x) ≡0 for ん刊 β卜 肌 ん< ノ. (2) Notethat wemakeno assumption on lower order termsexceptthatthecoj ダ e f f i c i e n t s a r e C 胞 T h e e s s e n t i a l s a r e t h e b e h a v i o r o f b i c h a r a d e r i s t i c c u r v e s s t a - ed below and the we11-posedness of the Cauchy problem in { ( ぴ ) E U ; t > 0} . E xample. A typical example is 7:) = 陥 一 心 on 召 2. A C∽ function xx near (0,0) satisfies 乃7= O if and only if z7( ぴ ) = 貳 tび ) for some ひ ) fund ion g(s) near s= 0. H ence, if we take g such that OE suppg ⊂ { s≧O} , 瞰 en z7( ぴ ) = g( 友戸) is a Cや nuH-solution for P at (0,0) . §2 . Behavior of Bicharacteristic Curves ln this section, we prove a key lemma which shows that some bicharacteristic curves goawayfromズニOwhenZ→+ 0. F ix ・7 and ぞoin the assumption (A - 2) and put λ≡ 几 . Consider the follow ing system of ordinary differential equations. 嗇=一 几(な;ぞ )/け(X o )=0 (B )¦ ¥ 首 二/し( tぶ ミ)μ ぞ( yo) 二O・ .・ T he solution of this system is the bicharad eristic curve of P p21ssi贈 Z ( 4)) E ( 4),0;λ(0,0; ξo) /4),ぐo). L em ma l . There eχist 如 si面 c 11Mm be拓 y< ダ such th H he加 ao抑泌 g hoはs. j 加 α砂 びΞ(Oy )μheyeeχ isH 1,t2 sRch that (α) O< ちく 4< 4), C N ul】-So】utjons for Some N on- Fuchsian Operators wjth C゛ Coefficients (ろ) 仇e so㈲ ion oチ (j ) eχists αud satiφ es lx( 1) ¦ ≦ y 知r れ≡[ ち, 4]] , (C) レ巾) ¦ > yかy屹≡ [リ 11. 97 T he key pojnt is that y and ダ do not depend on 4). P rりof. Since O≠ λ(0,0; ぞo) ⊇ 公 私 (0,0; ξo) ξo,j, we have 几 (0,0; ぞo) ≠ O. Put 島 判 几 (O,0; ぐo) ¦ > O and £ 1こ max{ 臨 (0,0;ぞo) ¦ , 扁 ブ W e can take x゛ > O such that lん ( 咄 ぞ) 一 几 (0,0; ぐo) 鴎 島 / 4 and l恥 ( ぴ ; ぞ) 一 心 (0,0洽 )) ¦ ≦ 7L1/4 for μ≡[ O/ ] , ¦刈 ≦ ダ, ぽ ーぞol≦ y . By the equations (B) , as long as は( X) ¦ ≦ ど and ぽ ( X) 一 引 ≦ が, we have l羞 収 ( /) 十 ゐ(0,0; ぞ o ) (loが-lo匹)} ¦≦{ 隔(な;ぞ)一几(0,0;ぞ o )¦≦ム)/訂 andぽ (汐 )- ぐo一心(0,0;ぞo ) (loμ-lo匹)} ¦ 1 ≦7し1/4た H ence, we obtain (* ) ¦ボ )十ふ(0,0;ξ O ) (lOμ-lOg4)) ¦ ≦(秘/4) 110μ-lOg乱 ぽ(/)一心)一几(0,0;ぐO ) (lOμ-lOg4)) ¦ ≦(L小 )110昭一 lOg姉 T hese estimates imply lポ ) ¦ ≦ (5ね /4) 110μ -log4)l and lξ( /) 一 首ol≦(51 1/4) 口oμ - log4) ¦ ・ Hence, ズ( り, ぞ(j) exist and し (川 ≦y, ぽ(/) - ぞol≦がfor μ≡[らゐ], wheTe t2= ちexp(-4汐511). U sing the estimates ( * ) again, w e obtain し ( 川 ≧(3八 /4) 110叶 一log峠 H ence, if w e put 4= 4)exp(-2ダ/511), thenwehavelズ(川 ≧3八岬(1011) for μ≡[ら,y i]. Thus, theproof iscompleted by taking yく 3八 丿/(10£ 1) レ §3. Proof of Theorem W e may assume that び= (- T, 口 × 召 ″ ( T > O). (0, 刀 x Ry W etakepositivenumbers らが N ote that P is strictly hyperbolic in asir1Lemma L Theorem isprovedby three stet) s・ T he first step is to construct singular solutions whose singular supports converge to (0,0). Lemma 2. FOy 皿 y 柘旺 (Oy ) , 匝e花 eχist なE (0鳥 ) のld M旺 涯 ((Oy ) × 刄 ) md th H he jOHO面 紹 hO吐 (α) x x= O卵 < t2, (ろ) 釦 = O加 (0, 0 ×防/2, ( c) (ち,0)E singsuppz x. Proof. ■ ■ F ix 4)∈ (Oy ) . T ake 4 and ら in Lemma 1. By T heorem 26. 1.5 1n [31, we can take 叩 (印≡C゛ (召) such that χぷ) = Oif 恣 ち and χ1(/) こ 1 1f j≧4. Putχ= ? (χ1哨). Notethat/1 = Oif /< ら and singsupp/1∩( μ x U2. ・) ⊂[ ら, 4] ×召 . 上 Take χ2(x)∈ひ (R ) such that χ2(x) = 1 1f 岡 ≦y/2 and χ2(x) = Oif 岡 ≧7こ Since 7:) is strictly hyperbolic in 口 > O} , w e can take z ・E y) ((Oy ) x j X ) such that 狸 = χ2yl on (Oy ) × 一 R ゛l and z7= O i臼 < ら. Since singsupp(χ2/1に [ ら測 × 防 , the bicharacteristic curve passing Z(4)) doeSnot intersed W F(χ2/1) by Lemma 1. Hence, W Fひ争Z( 4)). Putting zxこ χlz f1- びΞ 厦) ((Oy ) ×刄 ), we obtain z 7= Ofor Zく な 良 = Oin (Oy ) ×防/2 and W Fg∋Z(位 T he next step is a (グ ーversion of L em ma 2. T akeshi M A N DA I 98 L em ma 3. 励 り = 1,2, … け here eχist ら = ( ら,舅) ∈ (Oy ) × 防 /3, ぢ ∈ (Oゐ ) and zらE C刎[Oy ] ×7X″ ) SJ げ ぼ 服 到 IO面昭 hO吐 (α) ろ→(0,0) (プ→ (x)), (り 回 O川 ( じ) 吻(ろ) ≠0, 原∧ (j ) 月白= O加 (Oy ) ×防/3・ Proof. T ake a sequence of positive numbers ゐ ∈ (Oy ) such that め→ O(ブ→ ∽) . A pply- ing L em m a 2 for 4) = め , we can take ら ∈ の ((Oy ) × 刄 ) which satisfies (α) り = Oif 区 め for some め ∈(0, ゐ), (ゐ) P馬= Oin (Oy ) x G /2, (0 (め,0)E singsuppvゴ・ W e may assume that suppvj ⊂ £ ×尺 for some compact set 瓦 ⊂ R y Put 凪 = ふ I Ve can take応,4∈ ひ ((Oy ) ×召 ) which satisfy (a) gj.に j丿n が ((Oy ) ×召″) (ん→ (x)) for each y, (b) gj.瓦= Oif /≦心/2 0r lズ¦≦り3 and(c) gj,瓦havecompact supports with resped tox. Since 7) is strictly hyperbolic in 口 > O} , w e can take 吻 , z , E C゛ ((Oy ) ×召 ) such that ? 吻 ,4 = 焉,ヵin(Oy ) ×£ ″and 的4 = Oif /≦め/2. Sincegj,k→万(ん→(x)), wehave扨j、k→ z なinの ((Oy ) ×召 ) (ん→ ∽) for each プ. Sincesingsupp馬ヨ (め,0), thereexist 万 ㈹ ) such that 妨,肖 )(ろ) ≠OaUd lろー(め,0) ¦ ≦1/y Thus, thelemmaisprovedby putting 吻 = 的,z 心) and が= ゐソ2, T he final step is to construct a C゛ nu11- solution zf by means of 陶 in L emm a 3. P roof of T heorem. T ake 吻 as in L emm a 3 and extend them to (- 八丿) X R x zas 吻 = 0 1f /< 0. χ Vithout loss of generality, we may assume that & < が if ん> ブ. ln other w ords, we assume 吻(み) = Oif j < たχ Ve shall construct the desired Min thefrom a= Σ ら 馬 where ら are positive constants. T ak e ら > O ( ソ= 1, 2 , … ) satisfying the follow ing tw o inequalities. (1) ら≦2-川 釧 汁 1)-1(プ≧1). (2) ら≦2-j4-o 1司 仇(み) ¦ ( 臨 (み) 卜 1)-1(1≦ん< y). - Herej ・1 レistheCj-norm on[一丿/2/ /2] x G. By the first inequality, the sum Σ ¦臨 吻 ¦に converges for any ん, since llら ㈲ に ≦ ¦¦ ら ㈲ し ≦ 2- j for プ≧ だ H enceバ ・= Σ ら 匈 converges in ひ )( (づ ソ2y /2) × 防 ) . T his zx satisfies that 乙 x= O if /≦ O and 月 7= O in (ゴ ソ2/ /2) × 防 /3. By the second inequality and the assum ption that zら ( み ) = O if j く ん, w e have 固 み ) 卜 ∽ ∽ ¦仇心(み)十 Σ ら侑(み) 副 司 仇(み) ¦ - Σ GD秘(み) 12-j4 -1= 良¦ 心(み) ¦/2> Oforany左 Hence, (0,0)E supp犯 §4 . Simple Cases to which Theorem Does Not Apply ln this section, w e shall consider very simple cases to which our theorem does not apply. L et 77= 1 and Pこ 陥 t十 α( ぴ ) ∂χ十 ろ( ぴ ) , w here a, bE Cべ U ) for a neighborhood び of (0,0) ∈召2 and α(ぴ ) isreal-valued. lf α(0,x) ≡0, then t is of Fuchs type and there exist no C゛ null- solutions. lf とz(0,0) ≠ 0, then w e can apply our theorem to 沢 H ence, w e (? N u11-Solutions for Some N on- Fuchsian Operators with C゛ Coefficients 99 are concerned with the case where ど 7(0,0) = Obut α(0,x) ま0. F oI゛ simplicity, w e assume that a( t, χ) ≡ α( x) does not depend on j and that χ= O is an isolated zero of ど z( x). For such operators, we have the following results. Proposition. ( I ) がα(x) > OかyX> OaMd a(ズ) く O力yxく 0j 加刀tk 犯 aist肴oC 勺1戒1 -SOlHtiOUSかyP d (0,0)ご (H) がα(ズ) < OかyX> O匹 α(ズ) > O粕7X< 0けhen theyeaistsa C゛ れM匹solHtioR升)yP が (0,0). Examples. (I ) Let ? = 隔 十ズみ. A C∽function z xnear (0,0) satisfieSRt= Ofor 乙> 0 1f and only if 副 ぴ ) = g(xμ) for some C∽function g(5) on R . lf zx( な )→ O when ( ぴ ) ap- prC )aches(0,0), then g≡Ohence g≡0. ( n) Let ? = 陥 - x覗. For a C∽function g(s) near s= O which satisfies OE suppg⊂ {s≧O}, thefunctiondefinedby x x(ぴ)= g(な) when j≧Oand x x(ぴ)= Owhen j≦Ois a C゛ nu11- solution for t at (0,0). N ote that suppz7⊂ μ ≧ 0,x ≧ O} . T here also exist C゛ nu11- so- lutions whose supports are ind uded in { Z≧ 0,x≦ O} . R emark. E ven in ( I ) , there can exist ひ nu11- solutions. A typical eχample is ? = 陥 十α(x) ∂ x- (か+ 1). Thisoperator hasa ひ nu11-solution z x defined by xx(ぴ ) = yo l for 丿≧O and x巾 ,ズ) = O for Z≦ 0. T he essential difference betw een ( I ) and ( n ) is the behavior of charad eristic curves. T he charad eristic curve of 7:) passing ( 4)ゐ ) is the solution of (C ) 宗一于 α (x),x(y o )=xo . From now on, let α(x) be defined on [- ら d ( じ> O) . L emma 4. ( I ) Uれdeバ he assMm囲 oM 紬 ( I ) 可 Pyo知 s消 皿 , 粕 y a砂 ( 4)両 ) ∈ { ( ぴ )∈ び ; /> 0, 1刈≦d, がzに ぷz 厨凹 丿 (C) t四dStOOwhe筧t→十〇 . ( n) AssMmethd a(x) < O力に > O叫 ホ a(x) > O力に < O) Foyally (ら濁)∈{ (ぴ ) ∈ び; /> 0,0< ズ< d ( 几却バ(ぴ)E Uj > 0,-c< xく 叫)けhe粍 eχ isH 1志 SHd thd (α) 0< 石く 4 く 4), (ろ) 服 SO㈲i皿 絢 ) イ (C) a鐙s粕γtE [ 赳, to] , (○ し け) ¦ > 図 力バ ∈[リ 11. Proof. proved. ( I ) lf 陥= 0, then thesolution of (C) isx( /) ≡O and there is nothing to be L et xo> O. lf x( 4) = O for some 4 ∈ (0, 4)), then x( り ≡ 0. H ence x( /) exists and x( り > O for μ there exists j ) ≧ O. such that x( /)→ 茜 ( 卜→十 〇) . N ote that ズ( 0 ≧油 for に [0高 ] . A ssume that 油 > O. T hen w e have α(x) ≧ 訂 on (j ), じ] for a positive constant 訂 , hence there holds ダ ( /) ≧MyL Thisimpliesthatj巾)≦訂 (loμ-log4))十而 fo心 ≦4), hencex(り→-(x) け→ 十〇 ). This is a contradid ion. T hus, w e obtain λ 7( 0 → O when /→ 十 〇. W hen λ i) く 0, a similar argument goesweII. ( H) Assumethat α(x) < Ofor x> 0. 1f O< 痛< G thenthesolution x(j) of (C) satisfies that x( /) ≧痛 for ぼ 4) as long as ズ( /) exists. Since w e have ,7(x) ≦ 一肛 on (輿), d for a pos- T akeshi M A N DA I 100 itive constant M μ here lholds x ( X) ≦ 一M tL T his implies that x( j) ≧一訂 (loμ - Io仙 ) 十 両) for j≦ 4) as long as x( O exists. N oting that x( O is monotone decreasing, we obtain the desired result. ln the case that ど z(x) > Ofor ズ< 0, we can prove similarly. P roof of P roposition. ( I ) L et zx be a (グ null- solution for t at (0,0) . Fix ( 4)み ) ar- bitrarily and considerlthe solution x( /) of (C) . Since zx( ぴ ( X)) = 哨( な り )) 十x ( /) z4 ( μ ( X)) = -ゐ(ぴ(Z加 (ぴ(X))μ wehavez x(ぴ( X)) = ylexp(恰 (s,ズ(s))7SdS) for someconstant え Let lろ (ぴ)匯訂n e a r(0,0). Th e 川イ1ろ (s ,ズ (j))/辿に j訂110μに h e h c e匯(ぴ(顔≧レ川代O nth e other hand, for any yV there exists a constant G such that 匯 ( ぴ ) ¦ ≦ ら 川 H ence, wehave ノ1= O w hich im plies zj ( 4),ぷ)) = 0. Since ( ち,4 ,) is arbitrary, the proof is completed・ ( H) lf x(Z) isthesolution of (C), then thebicharacteristiccurveof t passing (い b;-α (而)/4),1) is(ぴ(/);-α(ズ(X))ぞ(X)/G け)) whereぐ(4))= 1 andざ(り= -ど(x(/))ぞ(/)μ Hence, by a similar argument to that in §3, w e obtain a desired C゛ nuU- solution. 十 R eferenCeS 田 Baouendi,M.S.-Goulaouic,C., C4uchy problemswithcharaderisticinitial hypersurface, Comm. PI{粍 A卸 1,. A励 /・., 26 (1973), ¥455-475. [2] …---, Cauchy problemswith multiplecharaderisticsinspacesof regular distributions, R臨S. Ay ldh. SMnJeys, 29 (1974), 72-78. [3] H6rmander,L・, Tk Audysisof L泌cαyPa眉d D坦旨e戒這I OpemloysI V, Springer-Verlag, Berlin-Heidelberg- N ew Y ork- T oky0, 1985. 一 国 Ouchi,S。 Existenceof singular solutionsandnuUsolutionsfor linear partial differential operatorsぶ 尺 じ. 心 . 咄 畝 で 乃切 , & 友 /1, 皿 7肋., 32 (1985), 457-498. [5] Tahara,H., FuchsiantypeequationsandFuchsianhyperbolicequations, μ沁n. J. M出 。 N{?加 Seγ ,. , 5 (1979), 245-347. [6] ---…, Singular hyperbolicsystems. I , Eχistence, uniquenessanddifferentiability. H, Pseudo-differentiaI operators w ith a param eter and their applications to singular hyperbolic system s. Ⅲ , 0 n the Cauchy problem for Fuchsian hyperbolic partial differential equations. Ⅳ , Remarks on the Cauchy problem for singular hyperbolic partial differential equations. J F ac. & f. U戒 仇 To胎 o, Sed . I A ,M d h. , 2 6(1979), 213 -238, 391-412, 27 (1980), 465-507, μ帥 n. J. Md 1., 8 (1982), 297-308.
© Copyright 2025 ExpyDoc