Totally Ordered Linear Space Structures and Hahn

Muroran-IT Academic Resources Archive
Title
Author(s)
Citation
Issue Date
URL
Totally Ordered Linear Space Structures and Hahn-Banach
Type Extension Theorem
Iwata, Kazuo
室蘭工業大学研究報告.理工編 Vol.8 No.2, pp.429-434, 1974
1974-10-15
http://hdl.handle.net/10258/3600
Rights
Type
Journal Article
See also Muroran-IT Academic Resources Archive Copyright Policy
Muroran Institute of Technology
TotaUy Ordered L
i
near Space Structures and
Hahn-Banach Type Extension Theorem
KazuoIwata
A
b
s
t
r
a
c
t
ear
e
a
ll
i
n
e
a
r(
r
e
s
p
.r
e
a
ll
i
n
e
a
rt
o
p
o
l
o
g
i
c
a
l
)s
p
a
c
e
. Bya
p
p
l
y
i
n
g1
8
)
*(
r
e
s
p
.[
1
9
)
,
L
e
tE b
T
h
.3
J
)
,f
r
o
mt
h
ev
i
e
w
p
o
i
n
to
ft
h
etotallyordered linear砂 ace structures料。ft
h
ep
r
o
d
u
c
t
l
i
n
e
a
rs
p
a
c
eE x R,t
h
ea
u
t
h
o
rd
e
a
l
sw
i
t
ht
h
er
e
a
lH
a
h
n
B
a
n
a
c
he
x
t
e
n
s
i
o
nt
h
e
o
r
e
mi
ns
o
m
e
.
w
h
a
tg
e
n
e
r
al
Introduction. By means o
f[
1
8
)
,Th. 4
](
r
e
s
p
.[
1
9
),Th. 3
]
)
,i
nt
h
e
r
e
a
lc
a
s
e
,we have beenconcernedwith the Krein's (
r
e
s
p
. KreinRutman)
e
x
t
e
n
s
i
o
n theorem i
n somewhat d
e
t
a
i
l
*料 from our new (
f
o
rt
h
ea
u
t
h
o
r
)
l
s
oi
n the l
i
g
h
to
ft
h
el
i
t
e
r
a
t
u
r
e
s
,t
v
i
e
w
s
. Under t
h
e circumstances,buta
wea
r
ei
na p
o
s
i
t
i
o
nt
oformulatet
h
eHahn-Banache
x
t
e
n
s
i
o
ntheorem
什 l
n
somewhatg
e
n
e
r
a
l(
a
s one e
x
p
e
c
t
e
d
)
. Int
h
i
sa
r
t
i
c
l
et
h
e
s
er
e
s
u
l
t
sa
r
egiven
h
eformerf
o
rr
e
a
ll
i
n
e
a
rs
p
a
c
e
s,t
h
el
a
t
t
e
rf
o
rr
e
a
l
a
sTheorems 1and 2,t
i
f
" and
l
i
n
e
a
rt
o
p
o
l
o
g
i
c
a
ls
p
a
c
e
s
. E
s
p
e
c
i
a
l
l
yboth a
r
ea
l
s
oprovided with “
“
onlyi
f
"p
a
r
t
s
.
B
e
s
i
d
e
swe s
u
p
p
l
e
m
e
n
t
a
r
i
l
yr
e
f
e
rt
o[
1
8
)
,Lemma 3(
2
)
]
.
The author wishes t
oe
x
p
r
e
s
sh
i
sg
r
a
t
i
t
u
d
et
oP
r
o
f
.S
.Koshi (Hok
kaidoU
n
i
v
.
)f
o
rh
i
sv
a
l
u
a
b
l
ea
d
v
i
c
e and i
n
s
p
e
c
t
i
o
n
.
圃
闘
e
a
ll
i
n
e
a
r(
l
a
t
e
r
,r
e
a
ll
i
n
e
a
rt
o
p
o
l
o
g
i
c
a
l
)
Preliminaries. Let E bea r
s
p
a
c
e(*{
O
}
)
,andl
e
tR be t
h
er
e
a
l五e
l
d
. W e五r
s
tput somede
五n
i
t
i
o
n
s
.
DEFINITION 1
. a
)A s
u
b
s
e
tK o
fE i
sc
a
l
l
e
d ap
o
i
n
t
e
dconvexc
o
n
e
i
fK+KcKandαK c Kf
o
ra
l
lα):0.
b
)Letus agreeupon t
h
ef
o
l
l
o
w
i
n
g
. Byag
augef
u
n
c
t
i
o
n q(
o
rp
)on
nE i
smeant a s
u
b
a
d
d
i
t
i
v
ep
o
s
i
t
i
v
e
l
y homogea pointedconvexeoneK i
neous f
u
n
c
t
i
o
nonK.
DEFINITION2
. Thep
r
o
d
u
c
tl
i
n
e
a
r学 a
c
eExR o
fl
i
n
e
a
rs
p
a
c
e
sE and
*T
h
a
tw
a
sw
r
i
t
t
e
nu
n
d
e
rt
h
ed
i
r
e
c
t
i
o
no
ft
h
eE
d
i
t
o
r
so
fH
o
k
k
i
d
oM
a
t
h
.J
o
u
r
*
*F
o
rt
h
i
st
h
o
u
g
h
t,t
h
ea
u
t
h
o
rr
e
c
e
i
v
e
ds
u
g
g
e
s
t
i
o
n
se
s
p
.f
r
o
m[
1
0
)
.p
.4
8(
p
.i
x
)
]
.S
u
b
s
e
五t
e
db
y[
7
)
,
V
.1
2
]a
n
d[
1
4
,g1
6
]
.
q
u
e
n
t
l
yh
ew
a
sb
e
n巴
料ネ
F
o
rt
h
i
sm
a
t
t
e
r,t
h
ea
u
t
h
o
rw
a
sb
e
n
e
五t
e
db
y[
8
)
,S8
.
3
],[
1
1
)
,S
e
c
.2
.
6
]a
n
do
t
h
e
r
s
. As
。
附.resultsarereψ.equiv. totherealcase01[
1
5
)
,C
o
r
.1o
f(
V
,
f
o
rt
h
ei
m
p
l
i
c
a
t
i
o
n
s,
5
.
4
)
]andt
h
er
e
a
lc
a
s
e01[
1
5
),(
V,5
め (
B
a
u巴r
N
a
m
i
o
k
a
)
]exc. thetrivialcase(
w
i
t
ha
p
t
h
ea
u
t
h
o
ra
d
d
s“
t
h
er
e
a
l回 目 o
f
"
)
.(
C
f
.[
1
5
)
,p
.2
2
7
]a
n
d[
1
9
)
,Suppl
.t
oT
h
.3
]
.
)
o
l
o
g
i
e
s,
,
T
h
.1
2
.
3
,
][
1
3
)
,
c
h
a
p
.I
I,S3
,t
h
.1
],[
9
)
,T
h
.3
.
4
]a
n
do
t
h
e
r
s
.
t Byt
h
e
s
et
h
ea
u
t
h
o
rm
e
a
n
s[
6
)
t
t Byt
h
i
sweh
e
r
eq
u
o
t
e[
1
4
),S1
7,3
.(
1
)(
S
a
t
zv
o
nH
A
H
N
B
A
N
A
C
H
)
J
.
(
2
1
3
)
K
.
l
w
a
t
a
430
Ri
st
h
e
i
rC
a
r
t
e
s
i
a
nproductwherev
e
c
t
o
ra
d
d
i
t
i
o
nands
c
a
l
a
rm
u
l
t
i
p
l
i
c
a
t
i
o
n
o
p
o
l
o
g
i
c
a
lproduct E1xE2 o
fl
i
n
e
a
r
a
r
e performed c
o
o
r
d
i
n
a
t
e
w
i
s
e
. The t
t
o
p
o
l
o
g
i
c
a
ls
p
a
c
e
sE
i
(
i
=1,
2
)i
st
h
e
i
rproductl
i
n
e
a
rs
p
a
c
ewitht
h
eproduct
t
o
p
o
l
o
g
y
.
Ina
d
d
i
t
i
o
n,f
o
r convenience,n
o
t
a
t
i
o
n
s and terminology employed i
n
1
8
)and 1
9
)a
r
ea
v
a
i
l
a
b
l
eu
n
l
e
s
sotherwises
p
e
c
I
五e
d
. E
s
p
e
c
i
a
l
l
y
,e
.g
.,(E
,3
e
)
s
i
g
n
i
f
i
e
sat
o
t
a
l
l
yo
r
d
e
r
e
dl
i
n
e
a
r学 a
c
es
t
r
u
c
t
u
r
e(above-mentioned)o
funder
l
y
i
n
gl
i
n
e
a
rs
p
a
c
e E with r
e
s
p
e
c
tt
o a binary r
e
l
a
t
i
o
nS
e
. S
t
r
u
c
t
u
r
e
so
f
l The following
t
h
i
s kind have been d
i
s
c
u
s
s
e
dt
h
e
r
ei
n somewhat d
e
t
a
i.
theorems a
r
ed
e
s
c
r
i
b
e
di
n terms o
ft
h
e
s
es
t
r
u
c
t
u
r
e
s
.
四
Statement ofthe r
e
s
u
l
t
s
. Letus五r
s
ti
n
t
r
o
d
u
c
e
* our s
h
o
r
tapproach
1
8
)t
ot
h
eargumento
ft
h
el
i
t
e
r
a
t
u
r
e
s
*
*
. Indebted t
ot
h
e
s
el
i
t
e
r
a
t
u
r
e
sf
o
r
t
h
emanner
,we now reach thefollowing.
. LetM b
ea l
i
n
e
a
rs
u
b
学a
c
eofE,f a l
i
n
e
a
rformon
THEOREM 1
M.LetK b
eap
o
i
n
t
e
di;onvexc
o
n
ei
nE,andqagaugef
u
n
c
t
i
o
nonK. A
i
n
e
a
rform F OJl E
n
e
c
e
s
s
a
r
yands
u
f
f
i
c
i
e
n
tc
o
n
d
i
t
i
o
nt
h
a
tt
h
e
r
ee
x
i
s
t
sα l
e
x
t
e
n
d
i
n
gf ands
a
t
i
s
f
y
i
n
gF
(
γ)
<
_
q
(
γ
)for a
l
l yEK i
st
h
a
tt
h
e
r
ee
x
i
s
t
sa
,必)ofL witht
h
efollowingpr
ψe
r
t
i
白:
t
.
o
.
l
.
s
. (L
(
i
) BfUCqc(L,
必)+;
(
i
i
) (
L,
~)+ i
sa
b
s
o
r
b
i
n
ga
t(
0,
1
)forL;
whereL i
st
h
eproductl
i
n
e
a
r学 αceExR,仰 dBf=
Cq {
(
y,
可
)
:q
(γ
)く守,yεK
}i
J
l L
.
{(x,~):
f(
劫<己 xEM},
口
PROOF. Under t
h
eh
y
p
o
t
h
e
s
i
s,i
n L,Cq proves t
o bea convexcone
withoutv
e
r
t
e
xz
e
r
o
. And t
ot
h
i
s end,L canbeendowedwithap
a
r
t
i
a
l
l
y
,
0
3
'
'
)withp
o
s
i
t
i
v
econeCq • (
N
e
c
e
s
s
i
t
y
)By
orderedl
i
n
e
a
rs
p
a
c
es
t
r
u
c
t
u
r
e(L
h
y
p
o
t
h
e
s
i
s,de
五nmgφ (
x
,
~)= F(x)+
己 φisap
o
s
i
t
i
v
el
i
n
e
a
rformon(
L
,
0
3
"
)
with φ(0
,1)=1
. Hence (
t
o be p
r
e
c
i
s
e
),t
a
k
eat
.
o.
1
ふ (L,見 1
) such t
h
a
t
BfUC
c
(
L
,
3
e
)
+
b
y
[
1
8
)
T
h
.
4
(
1
)
a
n
d
L
e
m
m
a
1
]
,
t
h
e
n
b
y
[
1
8
)
,
L
e
m
m
a
s
2
,
q
1
3(
1
) and 4
],(L, φ(~1)) must become a t
.
o
..
1s
.a
sr
e
q
u
i
r
e
d
. (
S
u
白c
i
e
n
c
y
)
五ning~(x,~) =-f(x)+~, ~ i
sa n
o
n
i
d
e
n
t
i
c
a
l
l
y
z
e
r
ol
i
n
e
a
rformonM x
De
R'
3(
0,
1
)
. Thereforebyh
y
p
o
t
h
e
s
i
s,nowwitht
h
ea
i
do
f[
1
8
)
,Th.4(
2
)
](
c
f
.
[
1
9
),p
. 46,f
o
o
t
n
o
t
e
]
)
,weget ap
o
s
i
t
i
v
el
i
n
e
a
rformφon(L
,
0
3
"
)extending
~. Hence t
h
e
r
ee
x
i
s
t
sal
i
n
e
a
r form F onE extendingfand s
a
t
i
s
f
y
i
n
g
x
,
~) = - F
(
x
)+~. Andhenceq
(ν
)<ザ impliesF(y)<_ηfora
l
lε
ν K,which
φ(
e
n
s
u
r
e
st
h
ea
s
s
e
r
t
i
o
n
.
Asf
o
rsome s
i
m
p
l
eexamples
ヲ
. Let E beR 2• Take a pointed convex cone K ={
(
α,
s
)
:
EXAMPLE 1
ホ
料
S
u
c
hb
e
i
n
gt
h
ec
a
s
e
,s
p
e
c
i
f
i
c
a
l
l
y
,o
u
rグ b
e
l
o
ww
i
l
lb
eo
fasymmetry.
Theya
r
ea
sq
u
o
t
e
db
e
f
o
r
e
;s
e
ef
o
o
t
n
o
t
e'
t
'
.
(
2
1
4
)
H
a
h
n
B
a
n
a
c
hT
y
p
eE
x
t
e
n
s
i
o
nTheorem
4
3
1
α>0
,orα=0 and s
;
?
O
}i
nE
. De
五neqonK t
o mean q
(
α,
s)=αifα>0
and q
(
O
,s)=si
fs
;?O,andqi
s agaugef
u
n
c
t
i
o
nonK
.With t
h
i
s
(
1
) l
e
tM be t
h
e砕 a
x
i
sandd
e
f
i
n
ef onM byf(a
,
0)=α;
(
2
) l
e
tM be {
(
O
,
O
)
} andd
e
f
i
n
ef(O
,
0)=0;
(
3
) l
e
tM be t
h
es
a
x
i
s andd
e
f
i
n
ef onM byf
(O
,
s)=s.
Then i
nc
a
s
eo
f(
1
)(
r
e
s
p
.(
2
)
),notwithstanding BPCq i
s not absorbing
a
tb= (
(
0,
0
),
1
)(
r
e
s
p
.a
tanyp
o
i
n
to
fM xR)f
o
rL,t
h
esu
自c
i
e
n
tc
o
n
d
i
t
i
o
n
smetenough. Whilei
nc
a
s
eo
f(
3
),althoughfi
smajorized
o
fTheorem1i
a
i
l
st
o haved
e
s
i
r
e
de
x
t
e
n
s
i
o
n
. That i
s why
,choosing
byqonM nK,ff
t
h
ef
o
l
l
o
w
i
n
gf
o
u
rv
e
c
t
o
r
sb
,
c
=
(
(
1
,
0
)
,
2
)
,の=
(
(
1
,
ρ+
1
)
,
2
)
i
n
C
nda=
1
q a
(
一(
0,
ρ+1
),-p) i
nB,
j w
herep being a
r
b
i
t
r
a
r
y
,there holds the equality
ρ
(b-c
)+α十 c
0. Namelyuponappealingt
o Theorem1
,noneof(L,必)+
1
2=
with B
fUC
L
ラ見)十 c
anbeabsorbinga
tbf
o
rL
.
qC (
REMARK 1
. InTheorem1,l
e
ti
np
a
r
t
i
c
u
l
a
rK =E (
w
i
t
hgaugep
)and
f
(
x
)
<
_
p
(
x
)f
o
ra
l
lxEM. Theni
tf
o
l
l
o
w
s(
r
e
s
p
.
)t
h
a
tCp i
s,byi
t
s
e
l
f
,absorb,1
)f
o
rLandt
h
a
tBpC
s,a
sabove
,p
o
s
i
t
i
v
e
l
yindependenti
nL
.
inga
t(
0
p i
Henceby [
1
8
)
,Lemma 1
],t
h
e su
伍c
i
e
n
tc
o
n
d
i
t
i
o
nt
h
e
r
e
o
fi
s met enough.
Thiscorrespondst
ot
h
eu
s
u
a
le
x
t
e
n
s
i
o
ntheoremf
o
rl
i
n
e
a
rs
p
a
c
e
s
. Moreover
,
t
h
e“
i
f
"p
a
r
to
fTheorem1e
s
s
e
n
t
i
a
l
l
y(
a
n
daf
o
r
t
i
o
r
i
)c
o
v
e
r
s[
9
),P
r
o
b
.3E
]
.
Meanwhile
,l
e
t P =(E
,必)十 bea maximal positive cone i
n E,which
o
E
E
. Letus t
a
k
et
h
i
so
p
p
o
r
t
u
n
i
t
yt
o make mention [
1
8
),
i
s absorbinga
tu
Lemma3(
2
)
](
t
h
i
sp
l
a
y
sr
a
t
h
e
rw
e
l
li
nc
o
n
j
u
n
c
t
i
o
nwithLemma1i
b
i
d
.
)i
n
,xεP-αu
o
}o
f
connection with t
h
e Minkowski gaugep(x)=inf{α:α >0
P-uo・
SUPPLEMENT TO [
1
8
),LEMMA 3(
2
)
]
. At五r
s
t
,needless t
os
a
y
(
1
) Asu
s
u
a
l
,usingp
(
x
)(
r
e
s
p
.i
nview o
ft
h
eorderedl
i
n
e
a
rs
p
a
c
e (E
,
.
3
e
)
)
, one candeduce t
h
i
s lemmaa
l
s
ov
i
at
h
e Hahn-Banach (
r
e
s
p
. Krein
、
)
e
x
t
e
n
s
i
o
ntheorem. Buta
sf
o
rt
h
i
slemma
,i
t
sproofgiveni
n1
8
)i
snotonly
s
e
l
f
c
o
n
t
a
i
n
e
dbuta
l
s
os
i
m
p
l
e
r thant
h
ea
b
o
v
e
.
Secondly t
h
i
s proof i
n terms o
ft
h
en
e
g
a
t
i
v
epartf- o
ffEE* i
.
e
.,
f-(
x
)=max{
-f
(
x
)O
}(
x
εE),nowanewv
e
r
i
f
i
e
s
(
2
) AnfEE* r
e
q
u
i
r
e
dt
h
e
r
ewithf(u
)=l i
sg
i
v
e
nbyρi
nt
h
es
e
n
s
e
o
i
c
ev
e
r
s
a
. Thati
s
,f
(
x
)mustb
ee
q
u
a
lt
op(
-x)ρ(
x
)with
off-=p,andv
f一
(
幼 =p(
劫 fora
l
lxEE
.
This i
s knownbyp
(
x
)= 0 (XEP),p(O)=O andρ(x)=inf{α: -x<αU
o
(
必)}=sup{戸:。
宅
三 suo<-x(先
)
}
口 -f(x)(
x
ε-P).
Concerning(
2
),i
nf
a
c
tt
h
ef
o
l
l
o
w
i
n
gw
i
l
lbev
e
r
i
五e
d
.
(
3
) LetK b
eaconvexc
o
n
ei
nE whichi
sn
o
ti
d
e
n
t
i
c
a
l日 i
t
hE andi
s
a
b
s
o
r
b
i
n
ga
tbEE
. Then g ofgEE* i
st
h
e Minko
切 s
k
igauge ofK -b
ε
E:σ
(X)>O}CKC{XEE:σ
(
x
)
;
?
O
}
.
i
f
fg
(
b
)
=1and{x
Returningt
ot
h
es
u
b
j
e
c
t
,nextthereholds thefollowing,at
o
p
o
l
o
g
i
c
a
l
ラ
ラ
(
2
1
5
)
K.Iwata
4
3
2
v
e
r
s
i
o
no
fTheorem1
. Int
h
i
stheorem we l
e
t R be e
q
u
i
p
p
e
d with t
h
e
u
s
u
a
lt
o
p
o
l
o
g
y
.
THEOREM 2
. L
etE b
ea l
i
n
e
a
rt
o
p
o
l
o
g
i
c
a
l学a
c
e
,andl
e
tM,
,
f K,q
b
ea
si
nt
h
es
t
a
t
e
m
e
n
tofTheorem 1
. An
e
c
e
s
s
a
r
yands
u
f
f
i
c
i
e
n
tc
o
n
d
i
t
i
o
n
x
t
e
n
d
i
n
gfands
a
t
i
.
めI
Z
n
g
t
h
a
tt
h
e
r
ee
x
i
s
t
sac
o
n
t
i
n
u
o
u
sl
i
n
e
a
rformF onE e
F(
ν
)<
,
_q
(ν
)forαI
IYEK i
st
h
a
tt
h
e
r
ee
x
i
s
t
sa t
.
o
.
lふ (L
,
3
e
)with t
h
ef
o
l
lowingp
r
o
p
e
r
t
i
e
s
:
(
i
) BfUCqc(L,
必)+;
(
i
i
) (
ム3
e
)
+i
sa convexn
eighbourhooda
t(
0
,1
)forL;
st
h
et
o
p
o
l
o
g
i
c
a
l
l
うr
o
d
u
c
tExR andBf>Cqa
r
esamea
si
nTheorem1
.
whereL i
PROOF. Proceeda
si
nt
h
ep
r
o
o
fo
fTheorem1
,andcheckt
h
a
tφ(
x
,
~)
i
sc
o
n
t
i
n
u
o
u
sonL i
fando
n
l
yi
fs
oi
sF
(
x
)onE
. And L now being a
l
i
n
e
a
rt
o
p
o
l
o
g
i
c
a
ls
p
a
c
e
,t
ot
h
i
send
,wemayconsulttheproofof[
1
9
)
,Th.
3
]
. Thiscompletest
h
ep
r
o
o
fo
ft
h
et
h
e
o
r
e
m
.
N
o
t
i
c
et
h
a
t,s
i
m
i
l
a
r
l
ya
sp
o
i
n
t
e
do
u
ti
n1
9
)
,ourconditiono
f(
i
)p
l
u
s(
i
i
)
abovei
se
q
u
i
v
a
l
e
n
tt
ot
h
a
tt
h
e
r
ee
x
i
s
t
s a convexopen s
u
b
s
e
t Q:
3(
0,1
)i
n
L sucht
h
a
tBfUCqUQi
sp
o
s
i
t
i
v
e
l
yi
n
d
e
p
e
n
d
e
n
t
. Moreover
,t
h
i
st
i
m
es
i
m
p
l
e
computationg
i
v
e
st
h
ef
o
l
l
o
w
i
n
g
. Theses
i
m
p
l
i
f
yourc
o
n
d
i
t
i
o
no
fTheorem2
.
REMARK2
. Let U beaconvexO-neighbourhoodi
nE andp
u
t(
h
e
n
c
e
forth)D=Ux{
1
},
B=(1/2U)x1where1={ρER:Iρ-11<1/2}. I
fBfUCqUD
i
sp
o
s
i
t
i
v
e
l
yindependentt
h
esamei
st
r
u
ef
o
rBfUCquB.
Let u
s nowo
b
s
e
r
v
esomec
o
r
o
l
l
a
r
i
e
sa
b
o
u
tTheorem2
. C
o
r
o
l
l
a
r
i
e
s2
and3mentionedbelowa
r
et
h
eu
s
u
a
le
x
t
e
n
s
i
o
ntheoremsi
nt
h
ec
o
n
t
e
x
to
f
l
i
n
e
a
rt
o
p
o
l
o
g
i
c
a
ls
p
a
c
e
s
.
COROLLARY 1
. Let E,M andf b
e as i
n Theorem2
. L
et K b
ea
l
i
n
e
a
rs
u
b
学a
c
eofE withM cK,qagaugef
u
n
c
t
i
o
nonK ωi
t
hf(
ェ)<q(x)
fora
l
lxEM. 1ft
h
ec
o
n
d
i
t
i
o
n
)
(
P
t
h
e
r
e
i
s
a
c
o
n
v
e
x
0
・n
eighbourhoodU i
nE n
o
tm
e
e
t
i
n
g{
yEK:
1
q
(
ν
)
=1
}
i
se
n
j
o
y
e
d
,t
h
es
u
f
f
i
c
i
e
n
tc
o
n
d
i
t
i
o
nofT
h
e
o
r
e
n
t2 i
ss
a
t
i
s
f
i
e
d
.
PROOF. LetL,BfandCq bea
si
nq
u
e
s
t
i
o
n
. Takingt
h
es
u
b
s
e
tD =Ux
{
1
}o
fL,supposet
h
a
tBfUCqUDwerenowp
o
s
i
t
i
v
e
l
ydependenti
nL
. Then
r
e
f
e
r
r
i
n
gt
oRem. 1,t
h
e
r
ewoulde
x
i
s
tboth五n
i
t
emanyr
e
s
p
e
c
t
i
v
ev
e
c
t
o
r
s,
s
a
y
,(
x
,
~r)
ε
Bf>
(ゐ払
ε
)
C
,
(
u
"
1
)
E
D
a
n
d
c
o
r
r
e
s
p
o
n
d
i
n
g
s
c
a
l
a
r
s仏
>
0
,
ß8~
0
,
r
q
7
o
rι = 0,
ん >0,7t>0)sucht
h
a
t
t> 0 (
(
*
)
q(~
7tut)~ q
(-~
arxr)-q(~
み -f(~ αrXr)-q(~
s
8
Y
8
)
s
s
Y
s
)
>-~α,'~r- ~ s
s
r
;
.= ~ 7
,
t= 1
(
2
1
6
)
H
a
h
n
B
a
n
a
c
hT
y
p
eE
x
t
e
n
s
i
o
nT
h
e
o
r
e
m
433
whichc
o
n
t
r
a
d
i
c
t
st
h
eh
y
p
o
t
h
e
s
i
ss
i
n
c
eL
:ItutEKnU. HencebyRem.2and
by [
1
8
)
,Lemma 1
],t
h
ep
r
o
o
fi
scomplet
疋d
.
REMARK3
. Thec
o
n
v
e
r
s
eo
ft
h
i
sr
e
s
u
l
ti
sn
o
talwaysv
a
l
i
d
. Thati
s,
(
P
s,
undert
h
eremainingh
y
p
o
t
h
e
s
e
s,notalwaysn
e
c
e
s
s
a
r
yf
o
rc
o
n
c
l
u
s
i
o
n
.
1) i
Counterexamplesa
r
ee
a
s
i
l
yo
b
s
e
r
v
e
d(
c
f
.e
.g
.,E玄. 2 b
e
l
o
w
)
. Ont
h
eo
t
h
e
r
h
ec
o
n
d
i
t
i
o
n
hand,t
(
F
) t
h
e
r
ei
sa convexO
n
e
i
g
h
b
o
u
r
h
o
o
dU i
nE n
o
tm
e
e
t
i
n
g {XEM:
f(x)=l}
i
sr
a
t
h
e
rn
e
c
e
s
s
a
r
yf
o
rt
h
i
si
m
p
l
i
c
a
t
i
o
n(
f
o
rt
h
ep
r
o
o
f
,c
f
. Cor
.3 b
e
l
o
w
),
butt
h
i
snowf
a
i
l
st
obes
u
伍c
i
e
n
tf
o
ri
t
. Thesef
a
c
t
sseemt
oi
l
l
u
s
t
r
a
t
et
h
e
s
i
g
n
i
f
i
c
a
n
c
eo
fourc
r
i
t
e
r
i
o
n
.
E
a
s
i
l
y(
r
e
s
p
. As a matter o
fc
o
u
r
s
e
)C
o
r
o
l
l
a
r
y 1y
i
e
l
d
st
h
ef
o
l
l
o
w
i
n
g
伍c
i
e
n
c
yp
a
r
to
fC
o
r
o
l
l
a
r
y3
)
.
C
o
r
o
l
l
a
r
y2 (
r
e
s
p
.t
h
es
u
Buto
fc
o
u
r
s
e,t
obes
h
o
r
t
,thesecorollariesaref
u
l
l
ydonebyTheorem
2i
t
s
e
l
f
. Forr
e
f
e
r
e
n
c
e
,d
e
t
a
i
l
sa
r
eg
i
v
e
na
su
n
d
e
r
.
COROLLARY2
*
. L
etE,
1
¥
4
.andfb
ea
si
nTheorem2
. L
etpb
eag
.
αuge
onE withf(x)~p(劫 for a
l
lxEM. 1ft
h
ec
o
n
d
i
t
i
o
n
(
P
pi
sc
o
n
t
i
n
u
o
u
sa
tt
h
eo
r
i
.
五
;
t
n
2)
t
ゐ
se
可
n
1
)0)
fm叫~on
PROOF. With t
}
)
e ∞nvex O-neighbourhood U= {
γ
ε E: ρ
(
γ
)<1
},a
p
r
i
o
r
i,D =Ux{
1
}cCp f
o
l
l
o
w
s
. (
A
l
t
e
r
n
a
t
i
v
e
l
y
,Cp3
(
O
,1
)i
sr
e
a
d
i
l
yopeni
n
L
.
) Hence,af
o
r
t
i
o
r
i,t
h
ea
s
s
e
r
t
i
o
nf
o
l
l
o
w
sfromTheorem2
.
COROI
.LARY 3
Let E,
M andf b
ea
si
n Th
ω rem2
. A n紅 白s
a
r
y
ands
u
f
f
i
c
i
e
n
tc
o
n
d
i
t
i
o
nt
h
a
tf canb
ee
x
t
e
n
d
e
dt
oac
o
n
t
i
n
u
o
u
sl
i
n
e
a
rfoれm
F onE i
st
h
a
t(
F
)ofRem. 3 i
ss
a
t
i
s
f
i
e
d
. 1ft
h
es
u
f
f
i
c
i
e
n
りI oft
h
ec
o
作
品i
t
i
o
ni
sme
ムt
h
e
r
eαu
t
sa
tl
e
a
s
to
n
eF s
u
c
ht
h
a
tF
(
x
)=
1
=1fora
l
lxEU
.
料
.
PROOF. This i
s viewed a
sas
p
e
c
i
a
lc
a
s
eo
f Theorem2(
f
(
エ)=q(x)
(
x
εMnK)p
l
u
sM =K
)
. (N
田 e
s
s
i
t
y
) By Theorem 2,t
h
e
r
ea
r
e both t
.
o
..
1s
.
(L
,
3
e
)andconvexO-neighbourhoodU sucht
h
a
tB,
j Ux{
1/2}C(L
,3
e
)
+h
o
l
d
.
I
ff
(
u
o
)= 1f
o
rsome Uo
EMnU,t
h
e
r
e would f
o
l
l
o
w (-uo
,-1/2) (
u
o
,1
/
2
)
ε(L
,
3
e
)
七 anobvious contradiction. (Su伍 ciency)Takingtheconvexsubset
D = U x{
1
}o
fL,supposet
h
a
tBfUDwerenowp
o
s
i
t
i
v
e
l
yd
e
p
e
n
d
e
n
t
. Then
i
twouldf
o
l
l
o
wmoresimplythan(
*
)t
h
a
tf(L
:ItUt) -f(L
:γ
αヰ )
>-L:αrCr
= L
:I
t= 1
,whichi
si
m
p
o
s
s
i
b
l
e
. Su
伍c
i
e
n
c
yf
o
l
l
o
w
sfromt
h
i
sbyTheorem
2
. Fort
h
er
e
s
t,i
fF i
si
d
e
n
t
i
c
a
l
l
y
z
e
r
o,t
h
e
r
ei
snothingωprove. Other
wise
,indeedourextensionFbehavesa
sF
(
x
)<1f
o
ra
l
lxEU s
i
n
c
e(
1
/
2U)x
Ic(L
,
ι
9
e
)
+ands
i
n
c
eU i
s openi
nE
. ThusC
o
r
o
l
l
a
r
y3 i
sp
r
o
v
e
d
.
ラ
口
圃
*Cf
.[
1
4
),~ 17
,3
.(
1
)
]
.
料
Cf
.[
1
η,
p
.5
9
8
]
.
(
2
1
7
)
K.lwata
4
3
4
Incidenta
l
1y,an examination of this proof directly gives
. LetE,M ,
/andL,Bf bea
si
nTheorem2
. Thec
o
n
d
i
COROLLARY4
/Rem. 3is mutuallyequivalenttothatthereexistsa 印 仰 は か
t
i
o
n(
F
)0
neighbourhoodU i
nE s
u
c
ht
h
a
tBfU(Ux{
1
}
)isp
o
s
i
t
i
v
e
l
yi
n
d
e
p
e
n
d
e
n
ti
nL
.
As a t
r
i
v
i
a
l
i
t
y,needless to say
. T o extend an identically-zero linear form on M in the
EXAMPLE 2
sense of Corollary 3
,w e have at least U= E
. And to do this in view of
,we have at least D=Ex{
1
}
.
Theorem 2
(
R
e
c
e
i
v
e
d May1
8,1
9
7
4
)
References
1
) E
. STIEMKE: むberp
o
s
i
t
i
v
eLusungenhomogenerl
i
n
e
a
r
e
rGleichungen. Math.Ann.
4
0
3
4
2
.
7
6(
1
9
1
5
),3
2
) W.B
.CARVER: Systemo
fl
i
n
e
a
ri
n
e
q
u
a
l
i
t
i
e
s
. Annalso
fMath. (
2
)2
3(
1
9
2
2
),
2
1
2
2
2
0
.
3
) L
.L
.DIENES: De五n
i
t
el
i
n
e
a
rdependence. Annals o
fMath.2
7(
1
9
2
5
),
5
7
6
4
1
. S
t
u
d
i
aMath. 1(
1
9
2
9
)
,223-239.
4
) S
. BANACH: Surl
e
sf
o
n
c
t
i
o
n
n
e
l
l
e
sl
i
n
e
a
i
r
e
s1
5
) S
. MAZUR: uberkonvexeMengeni
nl
i
n
e
a
r
e
nnormiertenRaumen. S
t
u
d
i
aMath.4
(
1
9
3
3
)
,70-84.
6
) V
.L
.KLEE,
J
r
.
: Convexs
e
t
si
nl
i
n
e
a
rs
p
a
c
e
s
. DukeMath.]
.
, 1
8(
1
9
5
1
),
4
4
3
4
6
6
.
a
r
t1
,chaps. I
IandV
.Wiley
7
) N.DUNFORDandJ
.T
.SCHWARTZ: Linearo
p
e
r
a
t
o
r
s,P
s
)
,1nc,NewYork,1
9
5
8
.
(
1
n
t
e
r
s
c
i
e
n
c
eP
u
b
l
i
s
h巴r
h
a
p
.1
1
. Moscow
,1
9
6
2
.(
R
u
s
s
i
a
n
)
.(
J
a
p
a
n
e
s
et
r
a
n
sl
.by
8
) D.A.RAIKOV: Vectors
p
a
c
e
s,c
Y
.YOSHIZAKI: TokyoToshoCo.,1
9
6
6
.
)
.KELLEY,1
.NAMIOKAandCOAUTHORS: L
ineart
o
p
o
l
o
g
i
c
a
ls
p
a
c
e
s,c
h
a
p
s
.1and
9
) ]
.L
9
6
3
.
4
.D.VanNostrandCo. I
n
c
.,Princeton,1
1
0
) A.WILANSKY: Functionala
n
a
l
y
s
i
s,c
h
a
p
s
.3and 1
2
.B
l
a
i
s
d
el
!publishingCo.,New
9
6
4
.
York,1
噂
.E
. EDWARDS: Functional a
n
a
l
y
s
i
s,c
h
a
p
.2
. Holt,Rinehart and Winston,1
n
c
.,
1
1
) R
NewYork,1
9
6
5
.
1
2
) D. M. TOPPING: Some homological pathologyi
nv
e
c
t
o
rl
a
t
t
i
c
e
s
. Can.J
.Math.1
7
1
1
4
2
8
.
(
1
9
6
5
),4
e
c
t
o
r
i
e
l
st
o
p
o
l
o
g
i
q
u
e
s,c
h
a
p
. 1e
tI
I
. Elements de math
1
3
) BOURBAKI,N.: Espacesv
品
目l
a
t
i
q
u
e,l
i
v
r
eV.Hermann,P
a
r
i
s,1
9
6
6
.
,
i
!16,i
!1
7
. Springer-Verlag,B
e
r
l
i
n,1
9
6
6
.
1
4
) G
.KoTHE: Topologischel
i
n
e
a
r
eRaume,1
IandV. TheMacmillanCo.,
1
5
) H. H.SCHAEFER: Topological v
e
c
t
o
rs
p
a
c
e
s,chapsI
NewYork,1
9
6
6
.
1
6
) B
.Z
.VULIKH: I
n
t
r
o
d
u
c
t
i
o
nt
ot
h
e theory o
fp
a
r
t
i
a
l
l
y ord巴red s
p
a
c
e
s,c
h
a
p
. XII1
.
Wolters-Noordho
,
妊 Ltd.,Groningen,TheNetherlands,1
9
6
7
.
1
7
) MATH.SOC.OFJAPAN: Sugaku-Jiten (
D
i
c
t
i
o
n
a
r
yo
f Mathematics),2nd e
d
.,p
.5
9
8
.
u
b
l
i
s
h
e
r
s,Tokyo,1
9
6
8
.
1wanamiShoten,P
!
yorderedl
i
n
e
a
rspaces
t
r
u
c
t
u
r
e
sands
e
p
a
r
a
t
i
o
ntheorem. Hokkaido
1
8
) K.1wATA: Total
.1
,No.2(
1
9
7
2
),2
1
1
2
1
7
.
Math.J
o
u
r
.(
S
a
p
p
o
r
o
),Vol
o
t
a
l
l
y ordered l
i
n
e
a
r space s
t
r
u
c
t
u
r
e
s and s
e
p
a
r
a
t
i
o
ntheoremi
nr
e
a
l
1
9
) 一一一一一一: T
l
i
n
e
a
rt
o
p
o
l
o
g
i
c
a
ls
p
a
c
e
s
. Mem.Muroran1
n
s
t,Tech.(
l
¥
1uroran,
J
a
p
a
n
),
Vol
.8,No
4
3
4
8
.
1(
1
9
7
3
),
圃
(
2
1
8
)