Muroran-IT Academic Resources Archive Title Author(s) Citation Issue Date URL Totally Ordered Linear Space Structures and Hahn-Banach Type Extension Theorem Iwata, Kazuo 室蘭工業大学研究報告.理工編 Vol.8 No.2, pp.429-434, 1974 1974-10-15 http://hdl.handle.net/10258/3600 Rights Type Journal Article See also Muroran-IT Academic Resources Archive Copyright Policy Muroran Institute of Technology TotaUy Ordered L i near Space Structures and Hahn-Banach Type Extension Theorem KazuoIwata A b s t r a c t ear e a ll i n e a r( r e s p .r e a ll i n e a rt o p o l o g i c a l )s p a c e . Bya p p l y i n g1 8 ) *( r e s p .[ 1 9 ) , L e tE b T h .3 J ) ,f r o mt h ev i e w p o i n to ft h etotallyordered linear砂 ace structures料。ft h ep r o d u c t l i n e a rs p a c eE x R,t h ea u t h o rd e a l sw i t ht h er e a lH a h n B a n a c he x t e n s i o nt h e o r e mi ns o m e . w h a tg e n e r al Introduction. By means o f[ 1 8 ) ,Th. 4 ]( r e s p .[ 1 9 ),Th. 3 ] ) ,i nt h e r e a lc a s e ,we have beenconcernedwith the Krein's ( r e s p . KreinRutman) e x t e n s i o n theorem i n somewhat d e t a i l *料 from our new ( f o rt h ea u t h o r ) l s oi n the l i g h to ft h el i t e r a t u r e s ,t v i e w s . Under t h e circumstances,buta wea r ei na p o s i t i o nt oformulatet h eHahn-Banache x t e n s i o ntheorem 什 l n somewhatg e n e r a l( a s one e x p e c t e d ) . Int h i sa r t i c l et h e s er e s u l t sa r egiven h eformerf o rr e a ll i n e a rs p a c e s,t h el a t t e rf o rr e a l a sTheorems 1and 2,t i f " and l i n e a rt o p o l o g i c a ls p a c e s . E s p e c i a l l yboth a r ea l s oprovided with “ “ onlyi f "p a r t s . B e s i d e swe s u p p l e m e n t a r i l yr e f e rt o[ 1 8 ) ,Lemma 3( 2 ) ] . The author wishes t oe x p r e s sh i sg r a t i t u d et oP r o f .S .Koshi (Hok kaidoU n i v . )f o rh i sv a l u a b l ea d v i c e and i n s p e c t i o n . 圃 闘 e a ll i n e a r( l a t e r ,r e a ll i n e a rt o p o l o g i c a l ) Preliminaries. Let E bea r s p a c e(*{ O } ) ,andl e tR be t h er e a l五e l d . W e五r s tput somede 五n i t i o n s . DEFINITION 1 . a )A s u b s e tK o fE i sc a l l e d ap o i n t e dconvexc o n e i fK+KcKandαK c Kf o ra l lα):0. b )Letus agreeupon t h ef o l l o w i n g . Byag augef u n c t i o n q( o rp )on nE i smeant a s u b a d d i t i v ep o s i t i v e l y homogea pointedconvexeoneK i neous f u n c t i o nonK. DEFINITION2 . Thep r o d u c tl i n e a r学 a c eExR o fl i n e a rs p a c e sE and *T h a tw a sw r i t t e nu n d e rt h ed i r e c t i o no ft h eE d i t o r so fH o k k i d oM a t h .J o u r * *F o rt h i st h o u g h t,t h ea u t h o rr e c e i v e ds u g g e s t i o n se s p .f r o m[ 1 0 ) .p .4 8( p .i x ) ] .S u b s e 五t e db y[ 7 ) , V .1 2 ]a n d[ 1 4 ,g1 6 ] . q u e n t l yh ew a sb e n巴 料ネ F o rt h i sm a t t e r,t h ea u t h o rw a sb e n e 五t e db y[ 8 ) ,S8 . 3 ],[ 1 1 ) ,S e c .2 . 6 ]a n do t h e r s . As 。 附.resultsarereψ.equiv. totherealcase01[ 1 5 ) ,C o r .1o f( V , f o rt h ei m p l i c a t i o n s, 5 . 4 ) ]andt h er e a lc a s e01[ 1 5 ),( V,5 め ( B a u巴r N a m i o k a ) ]exc. thetrivialcase( w i t ha p t h ea u t h o ra d d s“ t h er e a l回 目 o f " ) .( C f .[ 1 5 ) ,p .2 2 7 ]a n d[ 1 9 ) ,Suppl .t oT h .3 ] . ) o l o g i e s, , T h .1 2 . 3 , ][ 1 3 ) , c h a p .I I,S3 ,t h .1 ],[ 9 ) ,T h .3 . 4 ]a n do t h e r s . t Byt h e s et h ea u t h o rm e a n s[ 6 ) t t Byt h i sweh e r eq u o t e[ 1 4 ),S1 7,3 .( 1 )( S a t zv o nH A H N B A N A C H ) J . ( 2 1 3 ) K . l w a t a 430 Ri st h e i rC a r t e s i a nproductwherev e c t o ra d d i t i o nands c a l a rm u l t i p l i c a t i o n o p o l o g i c a lproduct E1xE2 o fl i n e a r a r e performed c o o r d i n a t e w i s e . The t t o p o l o g i c a ls p a c e sE i ( i =1, 2 )i st h e i rproductl i n e a rs p a c ewitht h eproduct t o p o l o g y . Ina d d i t i o n,f o r convenience,n o t a t i o n s and terminology employed i n 1 8 )and 1 9 )a r ea v a i l a b l eu n l e s sotherwises p e c I 五e d . E s p e c i a l l y ,e .g .,(E ,3 e ) s i g n i f i e sat o t a l l yo r d e r e dl i n e a r学 a c es t r u c t u r e(above-mentioned)o funder l y i n gl i n e a rs p a c e E with r e s p e c tt o a binary r e l a t i o nS e . S t r u c t u r e so f l The following t h i s kind have been d i s c u s s e dt h e r ei n somewhat d e t a i. theorems a r ed e s c r i b e di n terms o ft h e s es t r u c t u r e s . 四 Statement ofthe r e s u l t s . Letus五r s ti n t r o d u c e * our s h o r tapproach 1 8 )t ot h eargumento ft h el i t e r a t u r e s * * . Indebted t ot h e s el i t e r a t u r e sf o r t h emanner ,we now reach thefollowing. . LetM b ea l i n e a rs u b 学a c eofE,f a l i n e a rformon THEOREM 1 M.LetK b eap o i n t e di;onvexc o n ei nE,andqagaugef u n c t i o nonK. A i n e a rform F OJl E n e c e s s a r yands u f f i c i e n tc o n d i t i o nt h a tt h e r ee x i s t sα l e x t e n d i n gf ands a t i s f y i n gF ( γ) < _ q ( γ )for a l l yEK i st h a tt h e r ee x i s t sa ,必)ofL witht h efollowingpr ψe r t i 白: t . o . l . s . (L ( i ) BfUCqc(L, 必)+; ( i i ) ( L, ~)+ i sa b s o r b i n ga t( 0, 1 )forL; whereL i st h eproductl i n e a r学 αceExR,仰 dBf= Cq { ( y, 可 ) :q (γ )く守,yεK }i J l L . {(x,~): f( 劫<己 xEM}, 口 PROOF. Under t h eh y p o t h e s i s,i n L,Cq proves t o bea convexcone withoutv e r t e xz e r o . And t ot h i s end,L canbeendowedwithap a r t i a l l y , 0 3 ' ' )withp o s i t i v econeCq • ( N e c e s s i t y )By orderedl i n e a rs p a c es t r u c t u r e(L h y p o t h e s i s,de 五nmgφ ( x , ~)= F(x)+ 己 φisap o s i t i v el i n e a rformon( L , 0 3 " ) with φ(0 ,1)=1 . Hence ( t o be p r e c i s e ),t a k eat . o. 1 ふ (L,見 1 ) such t h a t BfUC c ( L , 3 e ) + b y [ 1 8 ) T h . 4 ( 1 ) a n d L e m m a 1 ] , t h e n b y [ 1 8 ) , L e m m a s 2 , q 1 3( 1 ) and 4 ],(L, φ(~1)) must become a t . o .. 1s .a sr e q u i r e d . ( S u 白c i e n c y ) 五ning~(x,~) =-f(x)+~, ~ i sa n o n i d e n t i c a l l y z e r ol i n e a rformonM x De R' 3( 0, 1 ) . Thereforebyh y p o t h e s i s,nowwitht h ea i do f[ 1 8 ) ,Th.4( 2 ) ]( c f . [ 1 9 ),p . 46,f o o t n o t e ] ) ,weget ap o s i t i v el i n e a rformφon(L , 0 3 " )extending ~. Hence t h e r ee x i s t sal i n e a r form F onE extendingfand s a t i s f y i n g x , ~) = - F ( x )+~. Andhenceq (ν )<ザ impliesF(y)<_ηfora l lε ν K,which φ( e n s u r e st h ea s s e r t i o n . Asf o rsome s i m p l eexamples ヲ . Let E beR 2• Take a pointed convex cone K ={ ( α, s ) : EXAMPLE 1 ホ 料 S u c hb e i n gt h ec a s e ,s p e c i f i c a l l y ,o u rグ b e l o ww i l lb eo fasymmetry. Theya r ea sq u o t e db e f o r e ;s e ef o o t n o t e' t ' . ( 2 1 4 ) H a h n B a n a c hT y p eE x t e n s i o nTheorem 4 3 1 α>0 ,orα=0 and s ; ? O }i nE . De 五neqonK t o mean q ( α, s)=αifα>0 and q ( O ,s)=si fs ;?O,andqi s agaugef u n c t i o nonK .With t h i s ( 1 ) l e tM be t h e砕 a x i sandd e f i n ef onM byf(a , 0)=α; ( 2 ) l e tM be { ( O , O ) } andd e f i n ef(O , 0)=0; ( 3 ) l e tM be t h es a x i s andd e f i n ef onM byf (O , s)=s. Then i nc a s eo f( 1 )( r e s p .( 2 ) ),notwithstanding BPCq i s not absorbing a tb= ( ( 0, 0 ), 1 )( r e s p .a tanyp o i n to fM xR)f o rL,t h esu 自c i e n tc o n d i t i o n smetenough. Whilei nc a s eo f( 3 ),althoughfi smajorized o fTheorem1i a i l st o haved e s i r e de x t e n s i o n . That i s why ,choosing byqonM nK,ff t h ef o l l o w i n gf o u rv e c t o r sb , c = ( ( 1 , 0 ) , 2 ) ,の= ( ( 1 , ρ+ 1 ) , 2 ) i n C nda= 1 q a ( 一( 0, ρ+1 ),-p) i nB, j w herep being a r b i t r a r y ,there holds the equality ρ (b-c )+α十 c 0. Namelyuponappealingt o Theorem1 ,noneof(L,必)+ 1 2= with B fUC L ラ見)十 c anbeabsorbinga tbf o rL . qC ( REMARK 1 . InTheorem1,l e ti np a r t i c u l a rK =E ( w i t hgaugep )and f ( x ) < _ p ( x )f o ra l lxEM. Theni tf o l l o w s( r e s p . )t h a tCp i s,byi t s e l f ,absorb,1 )f o rLandt h a tBpC s,a sabove ,p o s i t i v e l yindependenti nL . inga t( 0 p i Henceby [ 1 8 ) ,Lemma 1 ],t h e su 伍c i e n tc o n d i t i o nt h e r e o fi s met enough. Thiscorrespondst ot h eu s u a le x t e n s i o ntheoremf o rl i n e a rs p a c e s . Moreover , t h e“ i f "p a r to fTheorem1e s s e n t i a l l y( a n daf o r t i o r i )c o v e r s[ 9 ),P r o b .3E ] . Meanwhile ,l e t P =(E ,必)十 bea maximal positive cone i n E,which o E E . Letus t a k et h i so p p o r t u n i t yt o make mention [ 1 8 ), i s absorbinga tu Lemma3( 2 ) ]( t h i sp l a y sr a t h e rw e l li nc o n j u n c t i o nwithLemma1i b i d . )i n ,xεP-αu o }o f connection with t h e Minkowski gaugep(x)=inf{α:α >0 P-uo・ SUPPLEMENT TO [ 1 8 ),LEMMA 3( 2 ) ] . At五r s t ,needless t os a y ( 1 ) Asu s u a l ,usingp ( x )( r e s p .i nview o ft h eorderedl i n e a rs p a c e (E , . 3 e ) ) , one candeduce t h i s lemmaa l s ov i at h e Hahn-Banach ( r e s p . Krein 、 ) e x t e n s i o ntheorem. Buta sf o rt h i slemma ,i t sproofgiveni n1 8 )i snotonly s e l f c o n t a i n e dbuta l s os i m p l e r thant h ea b o v e . Secondly t h i s proof i n terms o ft h en e g a t i v epartf- o ffEE* i . e ., f-( x )=max{ -f ( x )O }( x εE),nowanewv e r i f i e s ( 2 ) AnfEE* r e q u i r e dt h e r ewithf(u )=l i sg i v e nbyρi nt h es e n s e o i c ev e r s a . Thati s ,f ( x )mustb ee q u a lt op( -x)ρ( x )with off-=p,andv f一 ( 幼 =p( 劫 fora l lxEE . This i s knownbyp ( x )= 0 (XEP),p(O)=O andρ(x)=inf{α: -x<αU o ( 必)}=sup{戸:。 宅 三 suo<-x(先 ) } 口 -f(x)( x ε-P). Concerning( 2 ),i nf a c tt h ef o l l o w i n gw i l lbev e r i 五e d . ( 3 ) LetK b eaconvexc o n ei nE whichi sn o ti d e n t i c a l日 i t hE andi s a b s o r b i n ga tbEE . Then g ofgEE* i st h e Minko 切 s k igauge ofK -b ε E:σ (X)>O}CKC{XEE:σ ( x ) ; ? O } . i f fg ( b ) =1and{x Returningt ot h es u b j e c t ,nextthereholds thefollowing,at o p o l o g i c a l ラ ラ ( 2 1 5 ) K.Iwata 4 3 2 v e r s i o no fTheorem1 . Int h i stheorem we l e t R be e q u i p p e d with t h e u s u a lt o p o l o g y . THEOREM 2 . L etE b ea l i n e a rt o p o l o g i c a l学a c e ,andl e tM, , f K,q b ea si nt h es t a t e m e n tofTheorem 1 . An e c e s s a r yands u f f i c i e n tc o n d i t i o n x t e n d i n gfands a t i . めI Z n g t h a tt h e r ee x i s t sac o n t i n u o u sl i n e a rformF onE e F( ν )< , _q (ν )forαI IYEK i st h a tt h e r ee x i s t sa t . o . lふ (L , 3 e )with t h ef o l lowingp r o p e r t i e s : ( i ) BfUCqc(L, 必)+; ( i i ) ( ム3 e ) +i sa convexn eighbourhooda t( 0 ,1 )forL; st h et o p o l o g i c a l l うr o d u c tExR andBf>Cqa r esamea si nTheorem1 . whereL i PROOF. Proceeda si nt h ep r o o fo fTheorem1 ,andcheckt h a tφ( x , ~) i sc o n t i n u o u sonL i fando n l yi fs oi sF ( x )onE . And L now being a l i n e a rt o p o l o g i c a ls p a c e ,t ot h i send ,wemayconsulttheproofof[ 1 9 ) ,Th. 3 ] . Thiscompletest h ep r o o fo ft h et h e o r e m . N o t i c et h a t,s i m i l a r l ya sp o i n t e do u ti n1 9 ) ,ourconditiono f( i )p l u s( i i ) abovei se q u i v a l e n tt ot h a tt h e r ee x i s t s a convexopen s u b s e t Q: 3( 0,1 )i n L sucht h a tBfUCqUQi sp o s i t i v e l yi n d e p e n d e n t . Moreover ,t h i st i m es i m p l e computationg i v e st h ef o l l o w i n g . Theses i m p l i f yourc o n d i t i o no fTheorem2 . REMARK2 . Let U beaconvexO-neighbourhoodi nE andp u t( h e n c e forth)D=Ux{ 1 }, B=(1/2U)x1where1={ρER:Iρ-11<1/2}. I fBfUCqUD i sp o s i t i v e l yindependentt h esamei st r u ef o rBfUCquB. Let u s nowo b s e r v esomec o r o l l a r i e sa b o u tTheorem2 . C o r o l l a r i e s2 and3mentionedbelowa r et h eu s u a le x t e n s i o ntheoremsi nt h ec o n t e x to f l i n e a rt o p o l o g i c a ls p a c e s . COROLLARY 1 . Let E,M andf b e as i n Theorem2 . L et K b ea l i n e a rs u b 学a c eofE withM cK,qagaugef u n c t i o nonK ωi t hf( ェ)<q(x) fora l lxEM. 1ft h ec o n d i t i o n ) ( P t h e r e i s a c o n v e x 0 ・n eighbourhoodU i nE n o tm e e t i n g{ yEK: 1 q ( ν ) =1 } i se n j o y e d ,t h es u f f i c i e n tc o n d i t i o nofT h e o r e n t2 i ss a t i s f i e d . PROOF. LetL,BfandCq bea si nq u e s t i o n . Takingt h es u b s e tD =Ux { 1 }o fL,supposet h a tBfUCqUDwerenowp o s i t i v e l ydependenti nL . Then r e f e r r i n gt oRem. 1,t h e r ewoulde x i s tboth五n i t emanyr e s p e c t i v ev e c t o r s, s a y ,( x , ~r) ε Bf> (ゐ払 ε ) C , ( u " 1 ) E D a n d c o r r e s p o n d i n g s c a l a r s仏 > 0 , ß8~ 0 , r q 7 o rι = 0, ん >0,7t>0)sucht h a t t> 0 ( ( * ) q(~ 7tut)~ q (-~ arxr)-q(~ み -f(~ αrXr)-q(~ s 8 Y 8 ) s s Y s ) >-~α,'~r- ~ s s r ; .= ~ 7 , t= 1 ( 2 1 6 ) H a h n B a n a c hT y p eE x t e n s i o nT h e o r e m 433 whichc o n t r a d i c t st h eh y p o t h e s i ss i n c eL :ItutEKnU. HencebyRem.2and by [ 1 8 ) ,Lemma 1 ],t h ep r o o fi scomplet 疋d . REMARK3 . Thec o n v e r s eo ft h i sr e s u l ti sn o talwaysv a l i d . Thati s, ( P s, undert h eremainingh y p o t h e s e s,notalwaysn e c e s s a r yf o rc o n c l u s i o n . 1) i Counterexamplesa r ee a s i l yo b s e r v e d( c f .e .g .,E玄. 2 b e l o w ) . Ont h eo t h e r h ec o n d i t i o n hand,t ( F ) t h e r ei sa convexO n e i g h b o u r h o o dU i nE n o tm e e t i n g {XEM: f(x)=l} i sr a t h e rn e c e s s a r yf o rt h i si m p l i c a t i o n( f o rt h ep r o o f ,c f . Cor .3 b e l o w ), butt h i snowf a i l st obes u 伍c i e n tf o ri t . Thesef a c t sseemt oi l l u s t r a t et h e s i g n i f i c a n c eo fourc r i t e r i o n . E a s i l y( r e s p . As a matter o fc o u r s e )C o r o l l a r y 1y i e l d st h ef o l l o w i n g 伍c i e n c yp a r to fC o r o l l a r y3 ) . C o r o l l a r y2 ( r e s p .t h es u Buto fc o u r s e,t obes h o r t ,thesecorollariesaref u l l ydonebyTheorem 2i t s e l f . Forr e f e r e n c e ,d e t a i l sa r eg i v e na su n d e r . COROLLARY2 * . L etE, 1 ¥ 4 .andfb ea si nTheorem2 . L etpb eag . αuge onE withf(x)~p(劫 for a l lxEM. 1ft h ec o n d i t i o n ( P pi sc o n t i n u o u sa tt h eo r i . 五 ; t n 2) t ゐ se 可 n 1 )0) fm叫~on PROOF. With t } ) e ∞nvex O-neighbourhood U= { γ ε E: ρ ( γ )<1 },a p r i o r i,D =Ux{ 1 }cCp f o l l o w s . ( A l t e r n a t i v e l y ,Cp3 ( O ,1 )i sr e a d i l yopeni n L . ) Hence,af o r t i o r i,t h ea s s e r t i o nf o l l o w sfromTheorem2 . COROI .LARY 3 Let E, M andf b ea si n Th ω rem2 . A n紅 白s a r y ands u f f i c i e n tc o n d i t i o nt h a tf canb ee x t e n d e dt oac o n t i n u o u sl i n e a rfoれm F onE i st h a t( F )ofRem. 3 i ss a t i s f i e d . 1ft h es u f f i c i e n りI oft h ec o 作 品i t i o ni sme ムt h e r eαu t sa tl e a s to n eF s u c ht h a tF ( x )= 1 =1fora l lxEU . 料 . PROOF. This i s viewed a sas p e c i a lc a s eo f Theorem2( f ( エ)=q(x) ( x εMnK)p l u sM =K ) . (N 田 e s s i t y ) By Theorem 2,t h e r ea r e both t . o .. 1s . (L , 3 e )andconvexO-neighbourhoodU sucht h a tB, j Ux{ 1/2}C(L ,3 e ) +h o l d . I ff ( u o )= 1f o rsome Uo EMnU,t h e r e would f o l l o w (-uo ,-1/2) ( u o ,1 / 2 ) ε(L , 3 e ) 七 anobvious contradiction. (Su伍 ciency)Takingtheconvexsubset D = U x{ 1 }o fL,supposet h a tBfUDwerenowp o s i t i v e l yd e p e n d e n t . Then i twouldf o l l o wmoresimplythan( * )t h a tf(L :ItUt) -f(L :γ αヰ ) >-L:αrCr = L :I t= 1 ,whichi si m p o s s i b l e . Su 伍c i e n c yf o l l o w sfromt h i sbyTheorem 2 . Fort h er e s t,i fF i si d e n t i c a l l y z e r o,t h e r ei snothingωprove. Other wise ,indeedourextensionFbehavesa sF ( x )<1f o ra l lxEU s i n c e( 1 / 2U)x Ic(L , ι 9 e ) +ands i n c eU i s openi nE . ThusC o r o l l a r y3 i sp r o v e d . ラ 口 圃 *Cf .[ 1 4 ),~ 17 ,3 .( 1 ) ] . 料 Cf .[ 1 η, p .5 9 8 ] . ( 2 1 7 ) K.lwata 4 3 4 Incidenta l 1y,an examination of this proof directly gives . LetE,M , /andL,Bf bea si nTheorem2 . Thec o n d i COROLLARY4 /Rem. 3is mutuallyequivalenttothatthereexistsa 印 仰 は か t i o n( F )0 neighbourhoodU i nE s u c ht h a tBfU(Ux{ 1 } )isp o s i t i v e l yi n d e p e n d e n ti nL . As a t r i v i a l i t y,needless to say . T o extend an identically-zero linear form on M in the EXAMPLE 2 sense of Corollary 3 ,w e have at least U= E . And to do this in view of ,we have at least D=Ex{ 1 } . Theorem 2 ( R e c e i v e d May1 8,1 9 7 4 ) References 1 ) E . STIEMKE: むberp o s i t i v eLusungenhomogenerl i n e a r e rGleichungen. Math.Ann. 4 0 3 4 2 . 7 6( 1 9 1 5 ),3 2 ) W.B .CARVER: Systemo fl i n e a ri n e q u a l i t i e s . Annalso fMath. ( 2 )2 3( 1 9 2 2 ), 2 1 2 2 2 0 . 3 ) L .L .DIENES: De五n i t el i n e a rdependence. Annals o fMath.2 7( 1 9 2 5 ), 5 7 6 4 1 . S t u d i aMath. 1( 1 9 2 9 ) ,223-239. 4 ) S . BANACH: Surl e sf o n c t i o n n e l l e sl i n e a i r e s1 5 ) S . MAZUR: uberkonvexeMengeni nl i n e a r e nnormiertenRaumen. S t u d i aMath.4 ( 1 9 3 3 ) ,70-84. 6 ) V .L .KLEE, J r . : Convexs e t si nl i n e a rs p a c e s . DukeMath.] . , 1 8( 1 9 5 1 ), 4 4 3 4 6 6 . a r t1 ,chaps. I IandV .Wiley 7 ) N.DUNFORDandJ .T .SCHWARTZ: Linearo p e r a t o r s,P s ) ,1nc,NewYork,1 9 5 8 . ( 1 n t e r s c i e n c eP u b l i s h巴r h a p .1 1 . Moscow ,1 9 6 2 .( R u s s i a n ) .( J a p a n e s et r a n sl .by 8 ) D.A.RAIKOV: Vectors p a c e s,c Y .YOSHIZAKI: TokyoToshoCo.,1 9 6 6 . ) .KELLEY,1 .NAMIOKAandCOAUTHORS: L ineart o p o l o g i c a ls p a c e s,c h a p s .1and 9 ) ] .L 9 6 3 . 4 .D.VanNostrandCo. I n c .,Princeton,1 1 0 ) A.WILANSKY: Functionala n a l y s i s,c h a p s .3and 1 2 .B l a i s d el !publishingCo.,New 9 6 4 . York,1 噂 .E . EDWARDS: Functional a n a l y s i s,c h a p .2 . Holt,Rinehart and Winston,1 n c ., 1 1 ) R NewYork,1 9 6 5 . 1 2 ) D. M. TOPPING: Some homological pathologyi nv e c t o rl a t t i c e s . Can.J .Math.1 7 1 1 4 2 8 . ( 1 9 6 5 ),4 e c t o r i e l st o p o l o g i q u e s,c h a p . 1e tI I . Elements de math 1 3 ) BOURBAKI,N.: Espacesv 品 目l a t i q u e,l i v r eV.Hermann,P a r i s,1 9 6 6 . , i !16,i !1 7 . Springer-Verlag,B e r l i n,1 9 6 6 . 1 4 ) G .KoTHE: Topologischel i n e a r eRaume,1 IandV. TheMacmillanCo., 1 5 ) H. H.SCHAEFER: Topological v e c t o rs p a c e s,chapsI NewYork,1 9 6 6 . 1 6 ) B .Z .VULIKH: I n t r o d u c t i o nt ot h e theory o fp a r t i a l l y ord巴red s p a c e s,c h a p . XII1 . Wolters-Noordho , 妊 Ltd.,Groningen,TheNetherlands,1 9 6 7 . 1 7 ) MATH.SOC.OFJAPAN: Sugaku-Jiten ( D i c t i o n a r yo f Mathematics),2nd e d .,p .5 9 8 . u b l i s h e r s,Tokyo,1 9 6 8 . 1wanamiShoten,P ! yorderedl i n e a rspaces t r u c t u r e sands e p a r a t i o ntheorem. Hokkaido 1 8 ) K.1wATA: Total .1 ,No.2( 1 9 7 2 ),2 1 1 2 1 7 . Math.J o u r .( S a p p o r o ),Vol o t a l l y ordered l i n e a r space s t r u c t u r e s and s e p a r a t i o ntheoremi nr e a l 1 9 ) 一一一一一一: T l i n e a rt o p o l o g i c a ls p a c e s . Mem.Muroran1 n s t,Tech.( l ¥ 1uroran, J a p a n ), Vol .8,No 4 3 4 8 . 1( 1 9 7 3 ), 圃 ( 2 1 8 )
© Copyright 2024 ExpyDoc