Title Author(s) Citation Issue Date ON THE COMPLETE CONTINUITY OF OPERATORS IN AN INTERPOLATION THEOREM Tetsuya, SHIMOGAKI Journal of the Faculty of Science, Hokkaido University. Ser. 1, Mathematics = 北海道大学理学部紀要, 20(3): 109-114 1968 DOI Doc URL http://hdl.handle.net/2115/58087 Right Type bulletin (article) Additional Information File Information JFS_HU_v20n3-109.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP O NTHECOMPLETECONTINUITYOFOPERATORS INANINTERPOLATIONTHEOREM By TetsuyaSHIMOGAKI 1 . I nt h i spaper , a Banachs p a c e (工 1: .11) , whoseelementsa r ecomplex v a l u ec 1 . Lebesεue m easurable f u n c t i o n s over t h ei n t e r v a l (0 , 1), w i l l be c a l l e d a 品川μch jìmctioll やμcc, i fi ts a t i s fe st h ef o l l o w i n gc o n d i t i o n s ( l .1 ) IglζIfI 1 ) , fEX illψlics 9 モ Xωzd 11σ11ζIlfll; (1.~) ()~fn ↑ 2) , I l f "1 1~三 Al ( 7 1= 1, 2 , .一) i m p l i c s UFz=fcxmdllfil 二 TilIfnilFrom (l.~) i tf o l l o w st h a tt h e norm 1 1 . 11 on a Banach fu 町tion s p a c ei s semicontinuous , i .e 円。 ζ fn ↑f , f-fdX i m p l i e si l f i i = y p 1 i j p til.The space 1 (工 11 .1 ¥ )i sc a l l e d Jでarrangcment ùrua バωzt, i f 0ζfε X i m p l i e s9 ε . r -and I\f\\ 二\\ 9¥ f o r each fu町tion g , equimeasurable withf ・ Let V , L∞ be t h e Lebes只ue s p a c e sover (0 , 1) , andl e t R(V;L∞) bet h es e to fa l lb o u n d e c ll i n e a r o p e r a t o r sfromeacho ft h es p a c e s.L 1, I~∞ into i t s e l f . By ¥ ¥ T l l i(i=l , or ニ∞) wedenotet h enormo fano p e r a t o rT ε R(V 、 L∞) ont h ecorrespondings p a c e s . For each a>O , J "i st h e functionεiven by j; , (刈 =f(([.r) , i f ([.r<l , f , (.r)=O , i f a.r>l . W ew r i t ea l s o σaf=fa; ( l .: l ) i ti se a s yt os e e that 叫 is ab o u n c l e c ll i n e a ro p e r a t o ronX、 if . Y "i sr e a r r a n g e ュ a n a n t . ment lIlv The f o l l o w i n g theorem was p r o v e c li n[ 4 ]3) : Theorem A. L ct ~\' b e a rcarrangcmc J lt illvan山zt B a n a c l zfllJl Ctiοn s p a c c . Thc Jl, for c v e r yTER(V; J~=) 、 T i sa b o zlIldcdl i l l c a r()ρcrat川- frolJl 1 ) 1 / 1 clenote日 t h ef unctio日 cle五 ned b y1 . 11 I.r) 二 . 1 : 1 1 ' ) ' ; : ;g ( . r )h o l c l sa l m o s te v e r y w h e r e . 2) s i m p l y Wew r i t e0ζ f;, ↑. i f0 ' ; : ;j i' ; : ; } 2,;:; . 1/ し川 1. .r モ (0. 1 ) . ./ζ 9 m c a n st h a t l f()ζ/;ι ↑ itnd p z Ul/rι=./ ‘ we w r i t e O,;:;.t;,• f : 1 ) T heorem A was 五 rst p r o v e c lb y V,ず Orlicz f o rO r l i c zs p a c e s[ 7 ] . ^ .P. Calclern o rqua日一 linear o p e r a t o r si n[ 1 ] . l n[ 4 ]T heorem^i s g a v et h et h e o r e mi nfull 日 enerarity f s t a t e df o rL i p s c h i t zo p e r a t o r s 1 1 0 T . Shilllogα わ X i n t o itsclf, and ( 1 .4 ) IITllx~IITII ∞・ IIσ"llx 4) lzolds , WhClで α=IITll ∞・ IITll l l I nt h i s paper we d e a l with t h e complete c o n t i n u i t yo f T on _.Y, when Ti sc o m p l e t e l yc o n t i n u o u sone i t h e rV o r Lへ and weg i v e an e c e s s a r yand su伍 cient c o n d i t i o ni no r d e rt h a te v e r y T ぞ R(V; LW) which i sc o m p l e t e l y c o n t i n u o u s on Ll ( o r 1ア) i sa l s oc o m p l e t e l yc o n t i n u o u s on X (Theorems 1 and 2 ) . h a tX i s a Banach f u n c t i o ns p a c e which 2 . I nt h e sequel , we assume t i sa l s o rearrangement i n v a r i a n t . S i n c eX i s rearrangement invariant , X i s c o n t a i n e di n I) [5]. 明T e need t h e followinεlemma: Lemma 1. σ0<α<1 , 1~11σ"llx~μ1 h o l d s . p1ηof. The i n e q u a l i t y : 1~ IIσ"llx i se v i d e n t . L e t 0~f ε X , and l e t α = n. m 1 wherem and n a r en a t u r a l numbers with 11<m. S i n c e σαf= σα (jX(い))ベ we may assume w ithout l o s so fg e n e r a r i t yt h a tfニfχ(O , (t) ・ Now we de五 ne σ1 byぁ =Tbισll~f , 1 宅三 iζ m , where bi=(i-1).m..l andT勺 i sat r a n s ュ : I > / Z )( . 1 : )=h(x-bん if O<x-b包 <1; ( T t ) I ) ( X ) = O l a t i o no p e r a t o rd e f i n e dby ん: ( o t h e r w i s e . Then gi'-""'g}) , l ,} 二 1 , 2 , "', rn , and σめ =0 , i fi キj. Put hj 二 乙仇, 1~j ~rn , where we p ut g} c = gk "" i f k>m. Obviously i tf o l l o w s t h a tf,-...., hi~hj f o ra l l i , j , and I ;h j smce ση ・ l!l 二 n I; σl~nσ" 川 ,f二 σ川, (σ,,1 )= σ川 1σ1'-"'" I: σι ・ ,f , This i m p l i e s 刀 IIσ… 'fll=111 戸Ihj|ωllh l 1 = rnIlflい b e c a u s eX i srearrangementi n v a r i a n t . Therefore 1Iσ… ,fll~m ・ 71 l l l f l lh o l d s . Forana r b i t r a r yr e a lα>0 , t a k en a t u r a lnumbersn , m sucht h a t11 .m 1<α< 1. W ehavethen IIσJ*117) ~ Ila,,',n 1*11 , her悶 IIσJ*II~m' l1 11If*ll=m.n l l l f l l . b t a i n IIσJII"三 IlaJ刊《 αlllfll , whichp r o v e sLemma1 . L e t t i n g11'm 1 ↑ α , weo Nowwe c o n s i d e rt h ef o l l o w i n gc o n d i t i o n s on X: ( 2 . 1 ) IIσ"llx< 1 forsomc a>1; 4) I I T l l xd e n o t e st h enormo fT o nX. 5) Xed e n o t e st h ec h a r a c t e r i s t i cf u n c t i o no ft h es e te ( i ) Wew r i t eJ~g , i ffi se q u i m e a s u r a b l ew i t hg 7) I *d e n o t e st h eclecreasin只 rearrangement o f1 f1 (}Jl Ihe ('0 川ρ/1'1 1' (可OlltiJl llity O{( ) j >er ators i l l< 11 1 J I I Il'r j ) o / < ll i o l l Thc()/γ川 ( 2 . 2 ) 1\ 川 1 , <υ 1 fο r 111 S O J J l l '0<υ く1. h o l c l sf o r everyμ>0 , a n c l Ilall\\\"~ \\a ,,\\\ ifμ>b>O 、 ( 2 . 1 )a n c l( 2 . 2 )a r ee q u i v a l e n tt ot h ef o l l o w i n gc o n c l i t i o n sr e s p e c t i v e l y : Sinceσ(l2= σ11 ・ σ" ( 2 . 3 ) l i m¥ l a l\\, = 0 、 ( 2 . 4 ) lima\\σ,, \\x 士 O. Lemma 2 . l fX satiポes t l z ec o n d i t i o r z(2.1) , t h e nlim¥ 1T "1 ¥y=0h o l d sfor u c l zt l z a tl i m1\ 1'''\\1=0ωzd sup1 ¥T "1\ ∞<∞. e v e r ysequ仰 ce {1', J ofR(D;L∞) s ByTheoremA each T"i sab o u n c l e c ll i n e a ro p e r a t o ronX. For \Ia,, \lx<ε ・ K 1 where K=sup\IT"I\oo , since (2.1) i se q u i v a l e n tt o( 2 . 3 ) . For such 寺 >0 , we choose Pnοof anyε>0 we can 五 nd an 可> 1 s uch t h a t a> 可 implies 7 l : 2 :1 an l l os ol a r g et h a tK ¥ I T " I ¥ l l >; rh o l c l sf o r each 1l 2 1l o ・ g e tf o r n 二三 n。 \I 1',,\\\~ \\7~, し, \\σ rtn\\X' Then , by ( l .4 ) we μι" 二 \\T,,\\ S i n c e σ~ 二 σ~σ"" h o l d s with b" 士 \\1',,\\ ∞ K 1 ~1a n c l c" 二 K.\\T"\\l\ i t f o l l o w s from Lemma l thatlhJly < iMfJ o b t a i nf o r 112110 Ill~, I\Y~ K \Ia"nllx~ε ラ which completes t h e proo f . An o p e r a t o r1 1on /}i sc a l l e danavemging(~ρerator, i fA i sc l e fn e dby ( 2 . 5 ) /lf 二九円円卜点 d(ei) l(Lf(.r) ル )χcい where e i ηeJz 件、 i f i キj , Ueic(O 弓 1), and Jl ニ 1 , 2 , ・・・ The averaginξ o p e r ュ 'i L 1 ;L ∞) c l e a r l y . WhenX srearrangementinvariant , both a t o r sbelongt o B( r e always c o n t r a c t i o n s on X , becal脱 f ',> ベr andf'(>f-Af A and 1-A a h o l d . MoreoverA i sw e l lknown , t h e r e sc o m p l e t e l ycontinuouson X. As i h a t. e x i s t sasequenceo c o n v e r g e s stro ly fa\ア eragl 昭 operators {11 ,,} sucht 昭 1 " t o1, t h ei c l e n t i t yoperator , on V. Nowwecanprovet h ef o l l o w i n gtheorem: , zgement i n v a r i a n t . l h a tevelツ n ordert etX b e rearrω Theorem 1 . L 1 TEB(D; /~∞) w l z i c l zi sc o m p l e t c l yc o n t i n u o l l s011 L b ca l s o COlllρ letely C07 ト tinuous ο 11 X , i 2 . 1 ) . tis 町cessωツ and Sl~t声 α・ellt t h a tX satiポes ( H) .1> 。… s t h a t foγall tf *( 川三r:川市 p a c c B a n a c hf u n c t i o ns Xi メ日 rcarrangcment ln\' 江口日 nt . O<t<l t> ロ川 ('s 11/11 三 Ilgll. i f T . Shi/ll oまはわ 1 1 2 L e t V1be a u n i tb a l lo f V. By t h eassumption 1 'V1 i sc o n t a i n e di nacompacts e to f V. Hence , fo> r asequenceo fa v e r a g i n g operat旬 or目s {い 11ηJ 小}, we1 作'Oof S/.~fficiency. η →∞ fEV κηι →白 t o g e t h e r with 1 1 (1-A ,,) 1' 11 ∞:Ç 11 1' 11= , n 二三l. 1 tf o l l o w s from Lemma 2 t h a t limll(I-A ,JTllx=O. S i n c e each An 1', 112 :1i sc o m p l e t e l ycontinuous onX , l 'i sa l s oc o m p l e t e l yc o n t i n u o u s on X. Nccessiか Suppose t h a t 11σ"llx= 1 f o ra l l a>l . Then for 正l" =2 2η we canf nd anσn EX, gn 二三 o 、 andI l g " l l = lsucht h a tI l a " . . g " I I > ! .P u t t i n g g;, = σバ" , we have n=1 , 2 , 11σ2叩;, 11> き and 11σ:, II :Ç 1, ・ S i n c eX i srearrangementinvariant , wemayassumewithoutl o s so fg e n e r a r i t y t h a t g:, =g;,X" , where χ" i st h ec h a r a c t e r i s t i cf u n c t i o no ft h ei n t e r v a l : rη 二 ( 2' ¥:2 η1). Moreover , by t h es e m i c o n t i n u i t yo ft h e norm 1 1 .1 1 we may assume t h a t g;, i sas i m p l ef u n c t i o nf o r every 71 2 :1. Now l e t σn 昨日人."】 ('n , 山 where 正t川三 o a n c l2 "ω <C" , I<"'<C川:Ç 2 ,, 1 A"d e ュ h ei n t e r v a l s1 " " = (c川 l' Cn , よ ν= n o t e st h ea v e r a g i n go p e r a t o r cle五町cl by t 1, 2 , "', m 川 that is , A,,1オ (Cn ← C"". ) 1l(t ル) d x ) X(c"" ,,",, jε/) . P u t t i n g T" 二 σ2η A" , we have f o r every n 二三 1 a l i n e a ro p e r a t o r1 ' " belonεmg t o R(V;L∞) with I I1 ' 1 =2 n and 11 1',, 11 ∞= 1 . S i n c e 1',,1= 1',,(fXn ) an n1 1 1',,1=(1',,1) χ J n , ,Jll =(2- 2 ヘ 22 "1 ) hold f o ra l l n 二三 l , t h eo p e r a t o r T =211L I i sdefì配d onL∞ also and1 1TII ∞=l. On t h eo t h e r hand , a sI I T I 1 1:ヌ.6 111~, 111 =1 , l 'a c t sa l s o from ]} i n t oi t s e lf . Furthermore as an operator 011 J) , l' i sc o m p l e t e l y continuous , a si se a s i l ys e e n . The o p e r a t o rT t h u s defìned , however , i sn o tc o m p l e t e l y continuous a s an o p e r a t o r on . Y. 1 n fact , f o r 1Tg;,1 1>きIf t h e sequence each Jl 三 1 , 1'g;, = 7~, g;, 二 σ2 n !l llg;L = σ2 ,.g;" hence 1 {T ι} c o n t a i n sasubseq配即e whichconvergesi nt h enorm1 1. 1 1t oanelement h el i m i t mustbe 0 , s i n c e l' 叫 converges t o 0 almost everywhere by o fX , t v i r t u eo f( l .2 ) . This i s ac o n t r a c l i c t i o n . Thus t h en e c e s s i t yo ft h ec o n d i t i o n ( 2 .1 )i sp r o v e d . I f l'ε B(V; L∞) i sc o m p l e t e l y continuous on L= , t h es e t 1' V,∞ IS c o n ュ ti sseparable , where V∞ is au n i tb a l l t a i n e di n acompacts e to f Lぺ hence i o f I~∞ Then , a si sw e l lknown , t h e r ee x i s t sasequenceo fa v e r a g i n go p e r a t o r s { ! 1 n } sucht h a tAnconvergest o1s t r o n g l yon 1' Voo ・ As s i m i l a r l ya sLemma ( ) I I/ 1 11' ('olllj, ll'/1' 仁川ltilllli/y oj οj'l'ra/ors i l l( / I I 111ftソアola/ iOI l Th l ' orclIl 1 1 3 2wecanprovet h a tboth l i mV I1 ' "II~ 二 o a n c lsup11 1',, 11\ <∞ imply l i m\1 '1',-1 1, =0 l-'= n 二と I η 》∞ p r o v i c l e dt h a t X satisfìe自 (2.2). On t h eo t h e r hand , i fX v i o l a t e s (2.2) 、 we canc o n s t r u c tano p e r a t o rl 'o f R (V; IJ∞) which i scompletelycontinuouson Lぺ but n o t on ,Y. Such an o p e r a t o r can be c o n s t r u c t e c li n as i m i l a r way 9) a si n Theorem 1 . Thus we g e t Theorem 2 . LetX b e 7でarrangement i n v a r i a n t . I I I 0パler t h a teue7ツ Tε B(V;L∞) wh i c l zi s comρletely c O l l t i n u o u sO!l L∞ be ( [ l s ocotr.ψletely C OJlュ t i n u o u son X , i ti s ne印刷1ツ and s u f f i c i e n tt h a t X sati巴~fies ( 2 . 2 ) . 3 . I nt h i ss e c t i o n we g i v e as i m p l ec o n c l i t i o ne q u i v a l e n t with ( 2 . 1 )o r (2.2) , when _yi s one o fsomec o n c r e t es p a c e s : O r l i c z spaces , Lorentzs p a c e s A(cp) , and A1(判 [2]. In [ 6 ]i ti s shown t h a tt h ec o n c l i t i o n( 2 . 2 )i se q u i v a l e n t t ot h ep r o p e r t yt h a t XEHLP , i .e. ,大 X implies 句fE X , where( ) fi st h e品川ly Littlewoodmajoranto ff . A necessaryanclsu伍 cient conditionfor the conュ d i t i o n( 2 . 2 )i sa l s o given i n [3 , 6 ]f o rO r l i c z spaces , o rs p a c e s/ 1(判 For a Banach f u n c t i o ns p a c e .X we denote by X t h e COfυiugate s,ρμCC of"""", t h e s e to fa l l 凶明ue al叩 X. measur枇 The 叫 Ilfll侭l同 吋《乳寸 ρ 阿刈 1} 俳孟) 孟 iおS f u n c t i o n sσ 吋 t h a t) : 〉川|げ 1ν 刊 If(t j点列州州{は同 t討)引 州州 W t約州川)川| … p a i rX an 町 n吋 d X, s i n c e正αz- 礼 1σ 仇叫" ' i st h econ司 o ft h e operatorσα ・ As L N=IJx , where N i st h e complementary b t a i n by [ 3 ; Theorem 4 , o r6 ; Theorem : l ] f u n c t i o no f ]\,;1, we o (υ2.1)川 an 凶 1叶 d (υ2.2 勾) ar配e mu 叫 1此旬 tl山 ua 氾 all 勘1)匂 ycl 山 uaι1 白 f or日th 恥 e JU伊te Theorem 3 . i ) LM s a t i s f i e s( 2 . 1 ) if ω1([ only ザ A1 sμ tiポes t h e. : 12e. , tJZC7で c.rist u o :2: 0 ωzd 7>0 s u c ht h a t 1\釘 2u)~7M(u) fora l l conditio刀、 i. zl 二三 U o i i ) L ,!f Sμtiポω(2.2) ザ ωzd only ザ 1"1 satiゆies t h e.:1 2 ・ condition. Fo rt h es p a c e s/ 1(cp 判外), Put φ釦釦叫 川 (υ I刈)=)>(帆 0<ぷパ ω<1 non 町decreas幻Il1宗 C ∞ O町ave f u n c t i o n on (川0 , 町1). φ釦(什 μT吋噌 おi s ) a 似p卯附問阿 削叫】洛削削 oω S臼1此叫t竹 I n [3 , 6 ]i ti s shown t h a t( 2 . 2 )i s e q u i v a l e n tt o ( 3 .1 ) l i msupφ (2u) φ (u) 1<2. 品→ O On t h eo t h e r hand , we can prove t h a t( 2 . 1 )i se q u i v a l e n tt o ( 3 . 2 ) l i miぱ φ (2u) φ(u) 1>1. fU 3 . 2 )i s true , then φ (2u) φ (u) 1 : : : : ;1 十 å , u~uo<l f o rsome I nfact , i 9) M a k i n gu s eo ft h e faιt t h a t rJ a n da lrJ([ p r o v eThcorcm2 f l 1 Oand a r en l u t u a l l yconju 日 ate. we c a na l s o 1 1 4 '1 、 >O. 1 I0 Shilllogol" Put α= :2 . 1 I0 1 . Then f o r any a with ( )<μ く 1 we havヒ 101 \1σαx 1o ,'l) I\'1 = 11χ10 ・ 2 11Vt)I11 ミミ (1 十ぷ) 111χ( い,'1 )\\1<(1 十 ò) 1\\ χ(04)11 ・ Thisi m p l i e s l\aJ\11'"ミ (1 十 ò) l l l f ¥ ¥1f o ra l lfε イ (\D), whichshows 1\σ "\\1<(1 + ) 1 . Hence ( 2 . 1 )h o l d s . <1 Conversely , i f( 3 . 2 ) does not hold , we can 五 nd sequences o fp o s i t i v e numbers {ι} and {e ,J such t h a t μ,, <2 ヘ叫ι ↓, φ (2a ,,) φ (a ,,) 1 : : ; ;1 十 ε n' and Let b" 二 2 Jl a n and χ n = X(O ,fJ n ) ・ SinceφIS a conュ εη = ( n 2 " ) 1for every 1 1~三1. cave function , φ(2勺,,) <(1 +2"e ,,) φ(ι) , \\χ"\\.111σ24Jl f1 二 φ(2勺μ)φ(μ,,) 1<(1 十 11~1 , andlimsupIlanl\.l~ l. 2 11 s n n 二三 1 h o l d s . 1 tfollowsfrom t h i st h a t )二 1 斗 n 1 He即e \\σ2" \ll~三 (1 十 n 1 )1 Thisis , however , i n c o n s i s t e n twith( 2 . : 1 ) . There司 fore we have Theorem 4 . i ) . 1 (¥ D )s a t i s f i c s (:2 .1) グ ωzd o1l1 y if φ satisfics U l . 2 ) . i i ) 1 1( ¥ D )s a t i s f i c s(2.2) if ωzd οnly if φ satls斤:cs ( 3 . 1 ) Since the spaces 1 1(判 ancl M(判 are mutually conjugate [2 ], we obtain immecliately from Theorem 4 Theorem 5 . i ) A l(¥ D ) satisfù吋 (2.1) ~f ωzd οnly if φ satisfil's ( 3 . 1 ) . i i ) M( ¥ D )satis戸内 (2.2) {/ωld only if φ s a t i . . 買がれ ( 3 . 2 )1 1 ) . References l / l ' th{'ort'lIl [1 ] A .P .Cl\LDERδN: Sj>(l lγ ,1>1'1< "('('11 Llolld /,白 alld t S t u d i aMath. ,立(i (19(治), 2 7 : 1 2 9 9 [ 2 ] C;. C;. LOREN'I Z: ο11 Ihe theo/~y nj 'sρ山川 1 , Paci五 c J . Math 司 ‘ .f [3 :] 1'10jO J'(l1lぉ 1 /1 ゆa Clザ of i l l ll'grabl l ' imclio /l s , υj' Jlarcillki l'7c;c::: , 1 (1951) 、 411 4 2 9 Amer .J . Math. , 7 7 (1955) , 4 8 4 4 9 2 [ ! ¥J ( ; .C;. LORENTZa n dT. SHIMOGAKI: J1ajo/'al l l sf . 疵 illtcrj川 laliο11 tl",o/γIIIS, t h e ) r .A nandaRaur( i np r i n t i n g ) M e m o r i a lVolume1 0] [ 5 ] E .M .SEMENOV: 1111;'ιldillg thcorl'l/l:、 .fòr Ball 山 h .filllctiο11 .\þ山川 υ 1111 山口 IIra !>l1' fÚllctiοIIS, Do k l .A k a d .NaukSSS R, 1 5 ( (19f洲、 1292-1295 (Russian) ー [( フ ] T . SHIMOGAKI ・ ]1ardy-Littlnc'ood 川匂川-{[II t si / l .f川ICtlOll ,'Ìρ 山山, . 1M a t h .S o c. . ] a p a n1 7(1965) , 3 (5 3 : 7 : i . [ 7] W. ORLICZ: ο/[ a dasバザィ小川,(It川川口 'Z'(T thc 、/川 Cl' o / ' illt l'gndル jú / [ ( ' /i OI l.1', S t u d i aMath. , 1 4(1951) , : l O2 3 0 9 D e p a r t m e n lo fM a t h e m a t i c s HokkaidoU n i v c r s i t v ( R e c e i v c d Apri l, 20 , 1叩 0) The … nor口1 t 1 1.11/川 lof 山 f χ (刊0 ,〆川川 F“t川川川 )山;1,1= φ ( υ) 1 1 ) 1 n[:い問 i河] acωm … 叩n 0 町 川出 dliti 凶川 耐州仙 川凶 It山]( ti somcfx c dcon 日 tant "1>0 企" 1φ (a 刈), ()く μ<1 、 for 19(治)
© Copyright 2024 ExpyDoc