Co-annihilation regions in high

Co-annihilation regions in high-scale SUSY
金田 邦雄 (Kavli IPMU)
in collaboration with Shigeki Matsumoto, Keisuke Harigaya
松江現象論研究会2014 @ 松江
Outline
!
!
1, Introduction
!
2, DM abundance and coannihilations
!
3, Gaugino coannihilations
!
4, Summary
1, Introduction
1, Introduction
mh
126 GeV
in SUSY SM
大きな stop correction が必要
SUSYはもしかしたら重い?
軽い領域も次々と削られている…
→ high-scale SUSYを考えたくなる
1, Introduction
一方で dark matter も忘れてはいけない → gaugino は軽い
・gaugino << sfermionとなるシナリオ
!
PGM, spread SUSY, split SUSY, …
!
・extraな(colored) particlesがいると gluino, wino, bino が縮退することがある
e.g.) PGM + vector-like matters
6000
5000
M2
M1
4000
6000
bino/wino → dark matter
2000
2000
1000
0
0
0
2
4
6
Neff
L
5000
M3
M2
M
M1
3000
1000
-2
M2
gluino → LHC4000
で accessible
3000
-4
M3
5000
»Mi » HGeVL
»Mi » HGeVL
m3ê2 = 100 TeV
g=0
M3
-4
-2
0
Neff
m3ê2
= 100 TeV
Harigaya,
Ibe,Yanagida, 1310.0643
g = pê4
6000
5000
M3
M2
M
1, Introduction
・gauginoの中でも、gluinoについはLHCでaccessible
!
例) gluino pair production
g
q
q
˜
q
g˜
q˜
g
q
0
g˜
q˜
˜
0
1, Introduction
・gauginoの中でも、gluinoについはLHCでaccessible
!
例) gluino pair production
g
q
q
˜
q
gluinoとneutralinoが縮退している場合は?
g˜
q˜
g
q
0
g˜
q˜
˜
0
1, Introduction
・gauginoの中でも、gluinoについはLHCでaccessible
!
例) gluino pair production
g
q
gluinoとneutralinoが縮退している場合は?
g˜
q˜
g
q
q
˜
q
0
g˜
q˜
˜
0
jet (produced by gluino decay) が見えない…
1, Introduction
・gauginoの中でも、gluinoについはLHCでaccessible
!
・縮退領域はISRを使って見る
例) gluino pair production
q
q
gluinoとneutralinoが縮退している場合は?
g˜
g
q˜
q
˜
q
0
jet (produced by gluino decay) が見えない…
q/g (ISR)
g˜
g
q˜
˜
0
p
p
jets
q (g)
tend to be hard
jets
q (g)
missing E
1, Introduction
・gauginoの中でも、gluinoについはLHCでaccessible
!
・縮退領域はISRを使って見る
例) gluino pair production
1200
ATLAS Preliminary
Observed limit (± 1 σtheory)
∫
Expected limit (± 1 σexp )
-1
L dt = 20.3 fb ,
SUSY
s=8 TeV
Observed limit (4.7 fb -1, 7 TeV)
0-lepton combined
Expected limit (4.7 fb -1, 7 TeV)
1800
ATLAS
1600
1
1400
m0χ∼ [GeV]
~~
qg production
1
1
m0χ∼ [GeV]
~~
~
∼0
gg production; g→ q q χ
1400
1000
1200
800
1000
∫ L dt = 20
0-lepton co
800
600
600
400
400
200
200
200
400
600
800
1000
1200
1400
m~g [GeV]
~ 430GeVくらいまでは縮退している領域もほぼexcluded
~~
~
∼0
qq production; q→ q χ
200
400
1, Introduction
ところで、dark matter と gluino がほとんど縮退していると …
・coannihilation process を通じて dark matter abundance に影響する
・gaugino mass によっては Sommerfeld effect も効いてくる
dark matter search から gluino search @ LHC への (またはその逆) 重要な手がかりに
2, Dark matter abundance and coannihilations
2, Dark matter abundance and coannihilations
・dark matter abundance;多くの場合は次のBoltzmann eq.を解いて求める
dn
+ 3Hn =
dt
v (n2
expansion
n2eq )
collision
Jungman, Kamionkowski, Griest
0.01
0.001
freeze out
0.0001
1
10
100
1000
supersymmetric
particle and see how they can be simplified. Assume t
i
N Boltzmann
equations,[4],
[16]χand
weofhave
N supersymmetric
particles
= 1, 2, . . . , N ) with num
2, Dark matter abundance and coannihilations set
i (i [12]:
densities ni . The evolution of the densities is then described by a coup
N
!
dni
set of N Boltzmann
equations,[4], [16] and [12]:
・Coannihilations (例外)
= −3Hn −
⟨σ v ⟩(n n − neq neq )
XY dt
i j
dni
+ 3Hni =
dt
ij vij
(ni nj
j
i
ij ij
jY
i j
i
j
j=1
!
dni
eq eq
! i−
⟨σ
v
⟩(n
n
−
n
eq eq = −3Hn
ij
ij
i
j
eq
′
i neq
j )
ni dtnj ) −
[⟨σ(iX→jY
v⟩(ni nX − ni nX )
j=1 )
j̸!
=i
eq eq
′
−
[⟨σ(iX→jY
v⟩(n
n
−
n
i
X
′
)
i neq
X )eq
−⟨σ(jX→iY ) v⟩(nj nX − nj nX )]
!
eq
eq
eq eq
′
−
[Γ
(n
−
n
)
−
Γ
(n
−
n
−⟨σ
v⟩(n
n
−
n
n
ij (jX→iY
i
ji j j Xj )])]
j X
)i
Jungman, Kamionkowski, Griest
j̸=i
0.01
0.001
freeze out
0.0001
iNX
−
j̸!
=i
j̸=i
eq
[Γij (ni − neq
)
−
Γ
(n
−
n
ji j
i
j )]
i
j XY
Griest, Seckel, PRD.43.3191
1
10
100
1000
(2
2, Dark matter abundance and coannihilations
・Coannihilations (例外)
netのdark matter density
n=
ni
i
dn
+ 3Hn =
dt
2
v
(n
eff
n2eq )
Jungman, Kamionkowski, Griest
0.01
0.001
eff
freeze out
0.0001
=
ij
gi gj
ij 2 (1 +
geff
exp[ x(
i
+
3/2
(1
i)
10
100
1000
3/2
j)
j )]
i
1
+
= (mi
m1 )/m1
2, Dark matter abundance and coannihilations
・Coannihilations (例外)
netのdark matter density
n=
ni
i
dn
+ 3Hn =
dt
2
v
(n
eff
n2eq )
Jungman, Kamionkowski, Griest
0.01
0.001
eff
freeze out
0.0001
=
ij
gi gj
ij 2 (1 +
geff
exp[ x(
i
+
3/2
(1
i)
+
3/2
j)
j )]
i
= (mi
m1 )/m1
mass splittingが小さいほどsignificant
freeze out が遅くなる
= abundanceを減らす向き
1
10
100
1000
2, Dark matter abundance and coannihilations
・LSP
NLSP Letters
の組み合わせ
J. Hisano
et al.&/ Physics
B 646 (2007) 34–38
37
NLSP
LSP
bino
wino
bino
④
wino
③
-
gluino
①
②
・Sommerfeld effect
point
long range forceの影響でwave functionがplane waveからズレる
on, ⟨σeff ⟩, normalized by the perturbative one, ⟨σeff ⟩Tree , for m/T = 20, 200, 2000 (left figure), and temperature
→ cross
sectionがenhanceしうる
e perturbative result is also shown as a dotted line for comparison. Here, mass difference
between
χ˜ 0 and χ˜ ± is
winoの場合
・tree level calculation
m ~ 2 TeV
・Sommerfeld enhancement
m ~ 3 TeV
Hisano, Matsumoto, Nagai, Saito, Senami
3, Gaugino coannihilations
3, Gaugino coannihilations
・LSP & NLSP の組み合わせ
NLSP
LSP
bino
wino
bino
④
wino
③
-
gluino
①
②
3, Gaugino coannihilations
・Bino LSP & Gluino NLSP
0.20
Preliminary
WBino h2 >0.1253
HM3 -M1 LêM1
0.15
tree: gluino annihilation w/o Sommerfeld effect
0.10
0.05
coannihilation & Sommerfeld effect
考慮してもover close
tree
0.00
2000
4000
M1 êGeV
6000
8000
3, Gaugino coannihilations
ATLAS Preliminary
Observed limit (± 1 σtheory)
∫ L dt = 20.3 fb ,
Expected limit (± 1 σexp )
-1
1200
SUSY
s=8 TeV
Observed limit (4.7 fb -1, 7 TeV)
0-lepton combined
1800
AT
1600
1
1400
1
・Bino LSP & Gluino NLSP
~~
qg pro
1
m0χ∼ [GeV]
m0χ∼ [GeV]
~~
~
∼0
gg production; g→ q q χ
1400
Expected limit (4.7 fb -1, 7 TeV)
1000
1200
800
1000
∫L
0-l
800
600
600
current LHC
400
400
200
200
1400 Preliminary
200
400
600
800
1000
200
700
ATLAS Preliminary
600
∫ L dt = 20.3 fb ,
1
m0χ∼ [GeV]
1
tree
800
s=8 TeV
500
3
5
2
1
.
2 >0
h
o
n
Bi
M
1=
M
3
W
-1
0-lepton combined
1000
M1 êGeV
1400
m~g [GeV]
~~
~
∼0
qq production; q→ q χ
1200
600
1200
400
200
0
200 400 600 800 1000 1200 1400
M3 êGeV
400
300
200
100
200
300
400
500
600
700
80
Figure 7: Exclusion limits for direct production of (case a – to
(case b – top right) light-flavour squarks and gluinos and (cas
decoupled gluinos. Gluinos (light-flavour squarks) are requir
tralino LSP. Exclusion limits are obtained by using the sign
at each point. The blue dashed lines show the expected limit
indicating the 1 excursions due to experimental and backgr
are indicated by medium (maroon) curves, where the solid co
dotted lines are obtained by varying the signal cross-section
ties. Previous results from ATLAS [17] are represented by
dotted lines. The black stars indicate the benchmark models
properties to R-parity conserving SUSY is also presented in
extension of the SM with one additional spatial dimension. T
mined by three parameters: the compactification radius of the
the Higgs boson mass mh . In this analysis the Higgs boson m
treated as free parameters. 1/R sets the mass scale of the new
the model while ⇤ · R is related to the degree of compressio
・Bino LSP & Gluino NLSP
prospect
LHC limit: Biplob, et. al.,1308.1526
1100
1080
W
3
5
2
1
2 >0.
3
M
1000
LHC 1
1000
1050
1000
1050
1400
1100
1150
M3 êGeV
1400
1200
tree
53
600
400
400
200
200
0
200 400 600 800 1000 1200 1400
M3 êGeV
in
WB
3
3
800
M
in
WB
3
25
1
.
2 >0
h
o
1000
1=
800
.12
2 >0
h
o
M1 êGeV
1000
tree
M
1200
600
12
53
960
950
M3 êGeV
900
-1 L
b
f
0
10
4TeV H
1020
980
h
o
Bin
1040
W
LHC 14TeV H30fb-1 L
tree
1=
M1 êGeV
tree
M
800
3
1=
850
M
M
1=
M
900
1060
h2
>0
.
950
Preliminary
Bi
no
Preliminary
M
1000
M1 êGeV
M1 êGeV
3, Gaugino coannihilations
0
200 400 600 800 1000 1200 1400
M3 êGeV
1200
1250
3, Gaugino coannihilations
・LSP & NLSP の組み合わせ
NLSP
LSP
bino
wino
bino
④
wino
③
-
gluino
①
②
3, Gaugino coannihilations
・Wino LSP & Gluino NLSP
300
Preliminary
250
M2 -M3 êGeV
200
Wwino h2 >0.1253
150
100
50
0
3000
4000
5000
M2 êGeV
6000
3, Gaugino coannihilations
・Wino LSP & Gluino NLSP
300
Preliminary
250
0.30
0.25
M2 -M3 êGeV
200
Wwino h 2
0.20
0.15
PLANCK
0.10
150
100
0.05
0.00
500
Wwino h2 >0.1253
1000
1500
2000 2500
M2 êGeV
3000
3500
50
0
3000
winoだけでabundanceを説明可能な領域
4000
5000
M2 êGeV
6000
3, Gaugino coannihilations
・Wino LSP & Gluino NLSP
300
Preliminary
250
0.30
0.25
M2 -M3 êGeV
200
Wwino h 2
0.20
0.15
PLANCK
0.10
150
100
0.05
0.00
500
Wwino h2 >0.1253
1000
1500
2000 2500
M2 êGeV
3000
3500
50
0
3000
4000
5000
M2 êGeV
6000
winoだけでabundanceを説明可能な領域
winoが3TeVを超えるとover close → coannihilationが効いてくる
3 TeV以上のdark matterシグナルがあればgluino massを予言!
3, Gaugino coannihilations
7000
Preliminary
2=
M
3
・Wino LSP & Gluino NLSP
M
53
oh 2
>0
.
12
5000
W
W
in
M2 êGeV
6000
4000
tree
cf. bino LSP
3000
1400
1200
3000
tree
53
.12
2 >0
h
o
800
5000
M3 êGeV
in
1=
600
M
3
WB
M
M1 êGeV
1000
4000
400
200
0
200 400 600 800 1000 1200 1400
M3 êGeV
→ HE-LHC ?
6000
7000
3, Gaugino coannihilations
・LSP & NLSP の組み合わせ
NLSP
LSP
bino
wino
bino
④
wino
③
-
gluino
①
②
3, Gaugino coannihilations
・Wino LSP & Bino NLSP
0.30
Preliminary
0.25
0.30
0.25
0.20
0.15
HM1 -M2 LêM2
Wwino h 2
0.20
PLANCK
0.10
0.05
0.00
500
Wwino h2 >0.1253
0.15
0.10
1000
1500
2000 2500
M2 êGeV
3000
3500
0.05
0.00
2000
2500
3000
M2 êGeV
3500
3, Gaugino coannihilations
・LSP & NLSP の組み合わせ
NLSP
LSP
bino
wino
bino
④
wino
③
-
gluino
①
②
3, Gaugino coannihilations
・Bino LSP & Wino NLSP
0.30
Preliminary
HM2 -M1 LêM1
0.25
0.20
Wbino h2 >0.1253
0.15
0.10
0.05
0.00
0
500
1000
1500
M1 êGeV
2000
2500
4, Summary
Summary
・Higgs mass ~ 126GeV → high-scale SUSYの可能性
・dark matter candidateを考えるとgaugino << sfermion
・bino/winoはdark matterの有力候補
・gluinoは LHCでaccessible
!
・gluinoがbino/winoとほとんど縮退している場合、coannihilationで
dark matter abundanceに寄与
・dark matter search から gluino search @ LHC への (またはその逆) 重要な手がかりに