Co-annihilation regions in high-scale SUSY 金田 邦雄 (Kavli IPMU) in collaboration with Shigeki Matsumoto, Keisuke Harigaya 松江現象論研究会2014 @ 松江 Outline ! ! 1, Introduction ! 2, DM abundance and coannihilations ! 3, Gaugino coannihilations ! 4, Summary 1, Introduction 1, Introduction mh 126 GeV in SUSY SM 大きな stop correction が必要 SUSYはもしかしたら重い? 軽い領域も次々と削られている… → high-scale SUSYを考えたくなる 1, Introduction 一方で dark matter も忘れてはいけない → gaugino は軽い ・gaugino << sfermionとなるシナリオ ! PGM, spread SUSY, split SUSY, … ! ・extraな(colored) particlesがいると gluino, wino, bino が縮退することがある e.g.) PGM + vector-like matters 6000 5000 M2 M1 4000 6000 bino/wino → dark matter 2000 2000 1000 0 0 0 2 4 6 Neff L 5000 M3 M2 M M1 3000 1000 -2 M2 gluino → LHC4000 で accessible 3000 -4 M3 5000 »Mi » HGeVL »Mi » HGeVL m3ê2 = 100 TeV g=0 M3 -4 -2 0 Neff m3ê2 = 100 TeV Harigaya, Ibe,Yanagida, 1310.0643 g = pê4 6000 5000 M3 M2 M 1, Introduction ・gauginoの中でも、gluinoについはLHCでaccessible ! 例) gluino pair production g q q ˜ q g˜ q˜ g q 0 g˜ q˜ ˜ 0 1, Introduction ・gauginoの中でも、gluinoについはLHCでaccessible ! 例) gluino pair production g q q ˜ q gluinoとneutralinoが縮退している場合は? g˜ q˜ g q 0 g˜ q˜ ˜ 0 1, Introduction ・gauginoの中でも、gluinoについはLHCでaccessible ! 例) gluino pair production g q gluinoとneutralinoが縮退している場合は? g˜ q˜ g q q ˜ q 0 g˜ q˜ ˜ 0 jet (produced by gluino decay) が見えない… 1, Introduction ・gauginoの中でも、gluinoについはLHCでaccessible ! ・縮退領域はISRを使って見る 例) gluino pair production q q gluinoとneutralinoが縮退している場合は? g˜ g q˜ q ˜ q 0 jet (produced by gluino decay) が見えない… q/g (ISR) g˜ g q˜ ˜ 0 p p jets q (g) tend to be hard jets q (g) missing E 1, Introduction ・gauginoの中でも、gluinoについはLHCでaccessible ! ・縮退領域はISRを使って見る 例) gluino pair production 1200 ATLAS Preliminary Observed limit (± 1 σtheory) ∫ Expected limit (± 1 σexp ) -1 L dt = 20.3 fb , SUSY s=8 TeV Observed limit (4.7 fb -1, 7 TeV) 0-lepton combined Expected limit (4.7 fb -1, 7 TeV) 1800 ATLAS 1600 1 1400 m0χ∼ [GeV] ~~ qg production 1 1 m0χ∼ [GeV] ~~ ~ ∼0 gg production; g→ q q χ 1400 1000 1200 800 1000 ∫ L dt = 20 0-lepton co 800 600 600 400 400 200 200 200 400 600 800 1000 1200 1400 m~g [GeV] ~ 430GeVくらいまでは縮退している領域もほぼexcluded ~~ ~ ∼0 qq production; q→ q χ 200 400 1, Introduction ところで、dark matter と gluino がほとんど縮退していると … ・coannihilation process を通じて dark matter abundance に影響する ・gaugino mass によっては Sommerfeld effect も効いてくる dark matter search から gluino search @ LHC への (またはその逆) 重要な手がかりに 2, Dark matter abundance and coannihilations 2, Dark matter abundance and coannihilations ・dark matter abundance;多くの場合は次のBoltzmann eq.を解いて求める dn + 3Hn = dt v (n2 expansion n2eq ) collision Jungman, Kamionkowski, Griest 0.01 0.001 freeze out 0.0001 1 10 100 1000 supersymmetric particle and see how they can be simplified. Assume t i N Boltzmann equations,[4], [16]χand weofhave N supersymmetric particles = 1, 2, . . . , N ) with num 2, Dark matter abundance and coannihilations set i (i [12]: densities ni . The evolution of the densities is then described by a coup N ! dni set of N Boltzmann equations,[4], [16] and [12]: ・Coannihilations (例外) = −3Hn − ⟨σ v ⟩(n n − neq neq ) XY dt i j dni + 3Hni = dt ij vij (ni nj j i ij ij jY i j i j j=1 ! dni eq eq ! i− ⟨σ v ⟩(n n − n eq eq = −3Hn ij ij i j eq ′ i neq j ) ni dtnj ) − [⟨σ(iX→jY v⟩(ni nX − ni nX ) j=1 ) j̸! =i eq eq ′ − [⟨σ(iX→jY v⟩(n n − n i X ′ ) i neq X )eq −⟨σ(jX→iY ) v⟩(nj nX − nj nX )] ! eq eq eq eq ′ − [Γ (n − n ) − Γ (n − n −⟨σ v⟩(n n − n n ij (jX→iY i ji j j Xj )])] j X )i Jungman, Kamionkowski, Griest j̸=i 0.01 0.001 freeze out 0.0001 iNX − j̸! =i j̸=i eq [Γij (ni − neq ) − Γ (n − n ji j i j )] i j XY Griest, Seckel, PRD.43.3191 1 10 100 1000 (2 2, Dark matter abundance and coannihilations ・Coannihilations (例外) netのdark matter density n= ni i dn + 3Hn = dt 2 v (n eff n2eq ) Jungman, Kamionkowski, Griest 0.01 0.001 eff freeze out 0.0001 = ij gi gj ij 2 (1 + geff exp[ x( i + 3/2 (1 i) 10 100 1000 3/2 j) j )] i 1 + = (mi m1 )/m1 2, Dark matter abundance and coannihilations ・Coannihilations (例外) netのdark matter density n= ni i dn + 3Hn = dt 2 v (n eff n2eq ) Jungman, Kamionkowski, Griest 0.01 0.001 eff freeze out 0.0001 = ij gi gj ij 2 (1 + geff exp[ x( i + 3/2 (1 i) + 3/2 j) j )] i = (mi m1 )/m1 mass splittingが小さいほどsignificant freeze out が遅くなる = abundanceを減らす向き 1 10 100 1000 2, Dark matter abundance and coannihilations ・LSP NLSP Letters の組み合わせ J. Hisano et al.&/ Physics B 646 (2007) 34–38 37 NLSP LSP bino wino bino ④ wino ③ - gluino ① ② ・Sommerfeld effect point long range forceの影響でwave functionがplane waveからズレる on, ⟨σeff ⟩, normalized by the perturbative one, ⟨σeff ⟩Tree , for m/T = 20, 200, 2000 (left figure), and temperature → cross sectionがenhanceしうる e perturbative result is also shown as a dotted line for comparison. Here, mass difference between χ˜ 0 and χ˜ ± is winoの場合 ・tree level calculation m ~ 2 TeV ・Sommerfeld enhancement m ~ 3 TeV Hisano, Matsumoto, Nagai, Saito, Senami 3, Gaugino coannihilations 3, Gaugino coannihilations ・LSP & NLSP の組み合わせ NLSP LSP bino wino bino ④ wino ③ - gluino ① ② 3, Gaugino coannihilations ・Bino LSP & Gluino NLSP 0.20 Preliminary WBino h2 >0.1253 HM3 -M1 LêM1 0.15 tree: gluino annihilation w/o Sommerfeld effect 0.10 0.05 coannihilation & Sommerfeld effect 考慮してもover close tree 0.00 2000 4000 M1 êGeV 6000 8000 3, Gaugino coannihilations ATLAS Preliminary Observed limit (± 1 σtheory) ∫ L dt = 20.3 fb , Expected limit (± 1 σexp ) -1 1200 SUSY s=8 TeV Observed limit (4.7 fb -1, 7 TeV) 0-lepton combined 1800 AT 1600 1 1400 1 ・Bino LSP & Gluino NLSP ~~ qg pro 1 m0χ∼ [GeV] m0χ∼ [GeV] ~~ ~ ∼0 gg production; g→ q q χ 1400 Expected limit (4.7 fb -1, 7 TeV) 1000 1200 800 1000 ∫L 0-l 800 600 600 current LHC 400 400 200 200 1400 Preliminary 200 400 600 800 1000 200 700 ATLAS Preliminary 600 ∫ L dt = 20.3 fb , 1 m0χ∼ [GeV] 1 tree 800 s=8 TeV 500 3 5 2 1 . 2 >0 h o n Bi M 1= M 3 W -1 0-lepton combined 1000 M1 êGeV 1400 m~g [GeV] ~~ ~ ∼0 qq production; q→ q χ 1200 600 1200 400 200 0 200 400 600 800 1000 1200 1400 M3 êGeV 400 300 200 100 200 300 400 500 600 700 80 Figure 7: Exclusion limits for direct production of (case a – to (case b – top right) light-flavour squarks and gluinos and (cas decoupled gluinos. Gluinos (light-flavour squarks) are requir tralino LSP. Exclusion limits are obtained by using the sign at each point. The blue dashed lines show the expected limit indicating the 1 excursions due to experimental and backgr are indicated by medium (maroon) curves, where the solid co dotted lines are obtained by varying the signal cross-section ties. Previous results from ATLAS [17] are represented by dotted lines. The black stars indicate the benchmark models properties to R-parity conserving SUSY is also presented in extension of the SM with one additional spatial dimension. T mined by three parameters: the compactification radius of the the Higgs boson mass mh . In this analysis the Higgs boson m treated as free parameters. 1/R sets the mass scale of the new the model while ⇤ · R is related to the degree of compressio ・Bino LSP & Gluino NLSP prospect LHC limit: Biplob, et. al.,1308.1526 1100 1080 W 3 5 2 1 2 >0. 3 M 1000 LHC 1 1000 1050 1000 1050 1400 1100 1150 M3 êGeV 1400 1200 tree 53 600 400 400 200 200 0 200 400 600 800 1000 1200 1400 M3 êGeV in WB 3 3 800 M in WB 3 25 1 . 2 >0 h o 1000 1= 800 .12 2 >0 h o M1 êGeV 1000 tree M 1200 600 12 53 960 950 M3 êGeV 900 -1 L b f 0 10 4TeV H 1020 980 h o Bin 1040 W LHC 14TeV H30fb-1 L tree 1= M1 êGeV tree M 800 3 1= 850 M M 1= M 900 1060 h2 >0 . 950 Preliminary Bi no Preliminary M 1000 M1 êGeV M1 êGeV 3, Gaugino coannihilations 0 200 400 600 800 1000 1200 1400 M3 êGeV 1200 1250 3, Gaugino coannihilations ・LSP & NLSP の組み合わせ NLSP LSP bino wino bino ④ wino ③ - gluino ① ② 3, Gaugino coannihilations ・Wino LSP & Gluino NLSP 300 Preliminary 250 M2 -M3 êGeV 200 Wwino h2 >0.1253 150 100 50 0 3000 4000 5000 M2 êGeV 6000 3, Gaugino coannihilations ・Wino LSP & Gluino NLSP 300 Preliminary 250 0.30 0.25 M2 -M3 êGeV 200 Wwino h 2 0.20 0.15 PLANCK 0.10 150 100 0.05 0.00 500 Wwino h2 >0.1253 1000 1500 2000 2500 M2 êGeV 3000 3500 50 0 3000 winoだけでabundanceを説明可能な領域 4000 5000 M2 êGeV 6000 3, Gaugino coannihilations ・Wino LSP & Gluino NLSP 300 Preliminary 250 0.30 0.25 M2 -M3 êGeV 200 Wwino h 2 0.20 0.15 PLANCK 0.10 150 100 0.05 0.00 500 Wwino h2 >0.1253 1000 1500 2000 2500 M2 êGeV 3000 3500 50 0 3000 4000 5000 M2 êGeV 6000 winoだけでabundanceを説明可能な領域 winoが3TeVを超えるとover close → coannihilationが効いてくる 3 TeV以上のdark matterシグナルがあればgluino massを予言! 3, Gaugino coannihilations 7000 Preliminary 2= M 3 ・Wino LSP & Gluino NLSP M 53 oh 2 >0 . 12 5000 W W in M2 êGeV 6000 4000 tree cf. bino LSP 3000 1400 1200 3000 tree 53 .12 2 >0 h o 800 5000 M3 êGeV in 1= 600 M 3 WB M M1 êGeV 1000 4000 400 200 0 200 400 600 800 1000 1200 1400 M3 êGeV → HE-LHC ? 6000 7000 3, Gaugino coannihilations ・LSP & NLSP の組み合わせ NLSP LSP bino wino bino ④ wino ③ - gluino ① ② 3, Gaugino coannihilations ・Wino LSP & Bino NLSP 0.30 Preliminary 0.25 0.30 0.25 0.20 0.15 HM1 -M2 LêM2 Wwino h 2 0.20 PLANCK 0.10 0.05 0.00 500 Wwino h2 >0.1253 0.15 0.10 1000 1500 2000 2500 M2 êGeV 3000 3500 0.05 0.00 2000 2500 3000 M2 êGeV 3500 3, Gaugino coannihilations ・LSP & NLSP の組み合わせ NLSP LSP bino wino bino ④ wino ③ - gluino ① ② 3, Gaugino coannihilations ・Bino LSP & Wino NLSP 0.30 Preliminary HM2 -M1 LêM1 0.25 0.20 Wbino h2 >0.1253 0.15 0.10 0.05 0.00 0 500 1000 1500 M1 êGeV 2000 2500 4, Summary Summary ・Higgs mass ~ 126GeV → high-scale SUSYの可能性 ・dark matter candidateを考えるとgaugino << sfermion ・bino/winoはdark matterの有力候補 ・gluinoは LHCでaccessible ! ・gluinoがbino/winoとほとんど縮退している場合、coannihilationで dark matter abundanceに寄与 ・dark matter search から gluino search @ LHC への (またはその逆) 重要な手がかりに
© Copyright 2024 ExpyDoc