Analysis of Zb decays as heavy meson molecules ( S. O, S. Yasui and A. Hosaka, arXiv:1310.3029 ) S. OhkodaA S. YasuiB and A. HosakaA Research Center for Nuclear Physics (RCNP) B KEK theory center A ヘビークォークハドロンと原子核のスペクトルと構造 at KEK, 2/28/2013 エキゾチックチャンネル QQ QQqq π QQ(Q=c,b)で作れない量子数をもつ : JPC= 0+ ‒ ,1‒ + , 2+ ‒ 荷電状態のQQ ライクな粒子 QQでは説明できない崩壊特性 X(3872), Y(4260), Zc (3900), Zb (10610), Zb (10650), 2 Outline Introduction Zb(10610) and Zb(10650) Spin selection rules for Zb Decays of Zb➜Υ(nS)π as hadronic molecules Summary b) Zb共鳴 jBW1 ðs; M1 ; "1 Þ þ aei# BW1 ðs; M2 ; "2 Þ þ 60 40 Υ(5S) ➜[Υ(2S) π ]π 0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 20 0 0.2 Υ(5S) ➜[hb(1P)π ]π 0.4 0.6 80 100 80 60 60 40 40 20 20 0 10.4 10.45 10.5 10.55 10.6 10.65 10.7 10.75 0 0.2 π ! 120 12000 120 (c) 1.0 1.2 1.4 1.6 π π π 100 0.8 (a) 17500 10000 (d) (b) 15000 Events / 10 MeV/c2 20 Events / 10 MeV/c2 and ecant to ion SÞ! ere with nethe 40 8000 6000 4000 2000 0 -2000 0.3 10.4 0.4 π π 12500 10000 7500 5000 2500 0 0.5 10.5 0.6 0.710.60.8 Mmiss(π), GeV/c 2 0.910.7 10.4 50 10 M FIG. The (a) PC hb ð1PÞ and (b) hb ð2PÞ yields (e) (f) 3. ✴ ‒ ‒ Υ : J =1 40 + ð"Þ (points with error bars) and results M Υ(5S) ➜ Zb π ➜ Υ(nS)π π miss 80 hb : JPC=1+ ‒ ✴ gram). Υ(5S) ➜ Zb π ➜ hb(mP)π30+π 100 60 40 20 20 ✴n=1,2,3 m=1,2 10 4 Belle group, PRL108, 112001 (2012). Zbの質量と崩壊幅 Zb(10610) : Zb M = 10607.4 2.0 Γ = 18.3 2.4 MeV MeV BB* Zb(10650) : Zb M = 10652.2 1.5 Γ = 11.5 2.2 MeV MeV B*B* Belle group, PRL108, 112001 (2012). Zbの特徴 エキゾチック量子数 IG(JP)=1+(1+) A. Bondar, et al, ! PRD84 054010 (2011) S. Ohkoda, Y. Yamaguchi, S. Yasui, ! K. Sudoh, and A. Hosaka, ! Phys. Rev. D86, 014004 (2012) Zbは 真性 なエキゾチック粒子 エキゾチックな質量 Zbは非常に質量差の小さいツイン共鳴 (BB*とB*B*閾値のわずか上にある) エキゾチックな崩壊 Υ(5S)➜Zbπ➜hb(mP)ππがボトムクォークのス ピン反転が必要にも関わらず、抑制されていない ZbはB*B(*)分子状態 ! 6 Spin selection rules for Zb S. Ohkoda, Y. Yamaguchi, S. Yasui and A. Hosaka, ! Phys.Rev. D86, 117502 (2012). 7 ( )の分岐比 Z b Branching fractions (B) of Zb (10610) and Zb (10650) assuming that the observed so far Belle Collaboration, arXiv:1206.6450 heir decays. dence for Channel ϒ(1S)π + ϒ(2S)π + ϒ(3S)π + hb (1P)π + hb (2P)π + B+ B∗0 + B0 B∗+ B∗+ B∗0 B of Zb (10610), % 0.32 ± 0.09 4.38 ± 1.21 2.15 ± 0.56 2.81 ± 1.10 2.15 ± 0.56 86.0 ± 3.6 – B of Zb (10650), % 0.24 ± 0.07 2.40 ± 0.63 1.64 ± 0.40 7.43 ± 2.70 14.8 ± 6.22 – 73.4 ± 7.0 オープンフレーバーチャンネルへの崩壊が占有的 neutral isotriplet member Zb (10610)0 hbπ抑制されていない ➜ Zbのスピン構造と関係している h Zb (10610) and Zb (10650) are isotriplets with only charged components observ 8 0 0 ヘビークォークスピン対称性 decay properties of themLagragian in Section with 4.5. the velocity-dependent fields Qv (x), is useful the to formulate the effective quark symmetry Using Qv (x), we in canQCD decompose the original heavy quark field into the positive energy sider that the heavy quark mass mQ is much larger than a typical the negative energy heavy quark fields Qvtheory (x) as with v (x) eQof lowand energy QCD. In this case, an effective field 4.2 Heavy quark spin symmetry expansion isヘビークォーク極限ではスピン-スピン相互作用が抑制さ useful to study the hadrons containing a single heavy Q v·x = e−imfirst [Q + Qheavy (2.4) this end, let us start ourQ(x) discussion with v (x)the v (x)], quark れる ̶̶ Heavy quark spin symmetry n; 4.2.1 Heavy quark spin symmetry where ¯ / − mQ )Q, LHQ = Q(iD (1) In the heavy effective theory, the effective Lagrangian for heavy quark field Qv is given the heavy quark field, the by1D−µ v/= 1 + v/ derivative is defined imcovariant imQ v·x Q v·x as Q (x) = e Q(x), Q(x) = e (2.5) a a Q(x). ta with the gluonv field Aaµ , the gauge coupling g , and t = λ /2 s 2 2 a ell-Mann matrices λ (a = 1, · · · , 8). The term from light quark µν 2 σ G (iD ) µν ⊥ 2 ¯ v v current ¯m ¯ v fourLHQET = ·subtracts iDQv +discussion. Q QDenoting c(µ)g Q Q v Q v µ from v −the sthe v + O(1/mQ ), The exponential prefactor heavy quark momentum. At the(4.1) sectors is not relevant in Q the 2m 4m Q Q 2 the heavyorder, quarkThe as v Q (vv field = 1),only we decompose quark field leading appears inthe theheavy effective Lagrangian, whereas the Qv µ µQ µ v ·and µν negative µ D ν ]/ig sitive energy component the energy component where D −vv(x) and σ µν substituting = i[γ µ , γ ν ]/2.Eq Here, covariant s,Q ヘビークォーク極限では新たな保存量が定義できる ⊥ = field is suppressed byDpowers ofD,G 1/mQ=. [D Neglecting and .2.4the into the v derivative is defined as Dµ = ∂µ + igs Aaµ tq with the gluon field Aaµ , the gauge coupling ¯ part of QCD Lagrangian involving the heavy of quarkfreedom field, Q(iD/ − mQ )Q, we obtain the ̶̶ light spin degree −imQ v·x +Q v (x) v (x)] , gsQ(x) , and =tae= λa /2 [Q with the Gell-Mann matrices λa (a =(2) 1, · · · , 8). c(µ) is the Wilson effective Lagrangian at lowest order as Sl : Light spin jections S J S l= H Jv (iv : Total momentum ¯im 1 + v / − v/ vangular L=Q , im v·x v·x ·1D)Q Qv (x) = e Q(x), Qv (x) = e Q(x). (3) S : Heavy quark spin 2 2 sq + L Q Q (2.6) H 5 9 スピン選択則 ヘビーハドロンの波動関数はスピンの自由度を用いて SH Sl として記述できる bb(2S+1LJ) JPC SH Sl ηb : 0-+ : 1S ➜ 0H 0l Υ : 1- - : 3S 1 ➜ 1H 0l hb : 1+- : 1P 1 ➜ 0H 1l χbJ : 1++ : 3P ➜ (1H 0 J 1l)J スピン選択則 ✗ hbππ Υ➜ ✗ ηbγ Υ➜ 10 Zbのスピン構造 Zbの崩壊特性を調べる Zbをメソン分子状態と仮定する Component Zb : Zb : 1 ¯ (B B 2 ¯ 3 S1 ) B B)( ¯ ( S1 ) B B 3 Zbのスピン構造? 11 SH ➜ ➜ Sl ❓ ˆ Sˆ jˆ1 jˆ2 L [[l1 , s1 ] 1 , [l2 , s2 ] 2 ] = l2 s2 j2 [[l1 , l2 ] , [s1 , s2 ] ] , ⎪ ⎪ ⎪ ⎩L S J ⎪ ⎭ ヘビーメソンペアのスピン構造 L,S (5.34) Chapter 5. Spin selection rules for decays and productions of Zb resonances and other ¯ molecules where [j1 , j2 ]J means that the angular momenta j1 and j2 are coupled to the total angular BB 69 √ ヘビーメソンペアのスピン構造はスピン組み替え公式を用 ˆ ¯ ∗ (3 S ) momentum J, and J = 2J + 1. By using this, the heavy and light spins of B B 1 ∗ ¯¯3 S ¯bq]0 ]1 いて求められる and B are re-coupled 1 )1 )⟩ |B ∗B( B(3 S = [[b¯ q ]1 , [as 1 − 1 − 1 − − − − √ = − (0 ⊗ 1 ) + (1 ⊗ 0 ) + (1 ⊗ 1 (5.36) ∗ 3 0 1 1 H H H l l l ), ¯bq] ] 2 ¯ ( S1 )⟩ = 2 [[b¯ |B B q ] , [ Chapter 5. Spin selection rules for decays⎧and productions ⎫ of Z2b resonances and other ¯ molecules ⎪ 1/2 1/2 0⎪ BB 69 ⎪ ⎪ ⎨ ⎬ ) * 1 ∗ ∗ 3 ∗ ∗ 3 ! 1 ¯ ¯ ¯ which give the spin structure of √2 (B ˆˆBˆ ˆ− B B)( S1 ). For ¯BH B ( l S1 ), we have = 01H l [bb] , [¯ q q] 1/2 1/2 1 ⎪ ⎪ ⎪ H,l ⎩ ⎭ ∗¯ 3 1 ¯ 0 1⎪ H l 1 |B B( S )⟩ = [[b¯ q ] , [ bq] ] ! " 1 1 ¯ 1 1 ¯ ∗ (3 S1 )⟩ = [b¯ |B ∗ B q ] 1 1 +− ,0[bq] , − ⎧1 ,11 1 − + ¯ 1−⎫ 0 ,11 −1 + − 1, 1 1 (5.36) ¯ √ = = − (0H[b¯b] ⊗ 1, [¯ ) + (1 ⊗ 0 ) + (1 ⊗ 1 ) − H [bb] l , [¯ q q] +√ [blb] , [¯ q q] H lq q] ⎪ ⎪ 22 2 2 2 2 1/2 1/2 1 ⎪ ⎪ ⎨ ⎬+ ,1 # 1 −ˆˆ ˆ ˆ− 1 − 1 H l ¯b](1,−[¯ − − = H ll ) − [b q q] 1/2 1/2 1 √ = 1 (0H11⊗ 1 (1 ⊗ 0 ) + ⊗ 1 , (5.35) ∗ ∗ 3 ∗ ∗ 3 H H l For l )we ¯ −⎪ ¯ ¯ ⎪ which give the spin structure of √2H,l (B B B B)( S ). B B ( S ), have 2 2 1 1 ⎪ ⎪ ⎩ ⎭ 2 1 ! 1 !1 0 1 "1 1 "1 " 1 ! ¯1 ∗ ¯∗ 3 0 1 ¯bq], [¯ |B B ( S1 )⟩ = √ [b¯ q ] [b , [¯b] √ q q] + [bb] , [¯ q q] ⎧ ⎫ 2 2 ⎪ 1/2 1/2 1⎪ ⎪ ⎪ 1 1 ⎨ ⎬ − − − +0− ) . ,1 # √ = √ (0 ⊗ 1 ) + (1 ⊗ (5.37) H l H H l l ˆ ¯ ˆ ˆ ˆ = 1 1 H l [b b] , [¯ q q] 1/2 1/2 2 2 1 ⎪ ⎪ ⎪ ⎪ H,l ⎩H ⎭ l 1 3 S ), their spin configurations are given ¯ ∗ (12 f the structure of Zb ’s is dominated by B (∗) B ! " 1 ! " H l Zbのスピン構造 A. Bondar, et al, ! PRD84 054010 (2011) Zbスピン構造は次のように与えられる Component Zb : Zb : 1 ¯ (B B 2 ¯ S1 ) B B)( 3 ¯ (3 S1 ) B B Zbは0Hと1Hの混合状態! (0H (1H ➜ 1 (0H 2 ➜ 1 (0H 2 1l) の崩壊先はhbπ, ηbγ , ... 0l) の崩壊先はΥπ, χbJγ , ... 13 SH Sl 1l ) + 1 (1H 2 0l ) 1l ) 1 (1H 2 0l ) Zb ➜ χbJ γ S. Ohkoda, Y. Yamaguchi, S. Yasui and A. Hosaka, ! Phys.Rev. D86, 117502 (2012). χb0 + γ(P-wave) | b0 (M 1) > |J=1 = (1H 1l )|J=0 (0+ H 1+ l ) 1 1 5 (1H 0l ) (1H 1l )|J=1 + (1H 2l )|J=1 3 3 3 χb1 + γ(P-wave) 1 1 15 | b1 (M 1) > |J=1 = (1H 0l ) + (1H 1l )|J=1 + (1H 2l )|J=1 2 6 3 = χb2 + γ(P-wave) | b2 (M 1) > |J=1 = (Zb0 1 5 (1H 3 b0 ) : : 0l ) + (Zb0 3 14 15 (1H 6 b1 ) 1 1l )|J=1 + (1H 6 : : (Zb0 5 b2 ) 2l )|J=1 Decays of Zb ➜ Υ(nS)π via triangle diagrams in heavy meson molecules S. Ohkoda, S. Yasui and A. Hosaka, ! arXiv: 1310.3029 (2013) 15 ( )の分岐比 Z b Branching fractions (B) of Zb (10610) and Zb (10650) assuming that the observed so far Belle Collaboration, arXiv:1206.6450 heir decays. Channel ϒ(1S)π + ϒ(2S)π + ϒ(3S)π + hb (1P)π + hb (2P)π + B+ B∗0 + B0 B∗+ B∗+ B∗0 B of Zb (10610), % 0.32 ± 0.09 4.38 ± 1.21 2.15 ± 0.56 2.81 ± 1.10 2.15 ± 0.56 86.0 ± 3.6 – B of Zb (10650), % 0.24 ± 0.07 2.40 ± 0.63 1.64 ± 0.40 7.43 ± 2.70 14.8 ± 6.22 – 73.4 ± 7.0 オープンフレーバーチャンネルへの崩壊が占有的 dence for neutral isotriplet member Zb (10610)0 hbπ抑制されていない h Zb (10610) and Zb (10650) are isotriplets with only charged components observ 16 0 0 ( )の分岐比 Z b Branching fractions (B) of Zb (10610) and Zb (10650) assuming that the observed so far Belle Collaboration, arXiv:1206.6450 heir decays. dence for Channel ϒ(1S)π + ϒ(2S)π + ϒ(3S)π + hb (1P)π + hb (2P)π + B+ B∗0 + B0 B∗+ B∗+ B∗0 B of Zb (10610), % 0.32 ± 0.09 4.38 ± 1.21 2.15 ± 0.56 2.81 ± 1.10 2.15 ± 0.56 86.0 ± 3.6 – B of Zb (10650), % 0.24 ± 0.07 10 2.40 ± 0.63 0.5 1.64 ± 0.40 7.43 ± 2.70 14.8 ± 6.22 – 73.4 ± 7.0 分岐比に位相空間の違いが反映されていない? neutral isotriplet member Zb (10610)0 h Zb (10610) and Zb (10650) are isotriplets with only charged components observ 17 0 0 ダイアグラム : Zb( )+ ➜ Υ(nS)π+ ′ b( )をメソン分子状態であると仮定する Z ¯ ¯ ∗ molecule, we define the wavefunction of them as and B B, Zb is B ∗ B ∗ 1 ¯ ∗ − B ∗ B⟩ ¯ , |Zb ⟩ = √ |B B 2 ¯ ∗⟩ . |Zb′ ⟩ = |B ∗ B (1 (2 (′)+ dronic molecular picture, the diagrams contributing to the decay Zb → Υ(nS)π + e discribed with the intermediate BB ∗ meson loops at lowest order. To calculat メソンループを介したZb崩壊のダイアグラム mplitude, we need to set the effective Lagrangians for the couplings. We set th B Υ menological Lagrangians at vertices of Zb B(*) (′) Zb and B Zb (∗) B* Υ mesons, which is µ ¯µ∗ + Bµ∗ B) ¯ *, ∗ = gZBB ∗ Z (B B LZBB * π B B ¯β∗ , LZ ′ B ∗ B ∗ = gZ ′ B ∗ B ∗ ϵµναβ ∂µ Zν′ Bα∗ B B(*) π (3 (4 ∗ B ∗ are determined from the experimenta the coupling constants gZBB ∗ and gZ ′ B18 " bed with the intermediate BBof open meson loops at lowest order.represente To calc charmonium states to pairs charm mesons. Here we consider strong interactions of mesons H Q containing a 有効ラグランジアン e, we need to setquark thethe effective Lagrangians for thef framecouplings. We Lse$ heavy Q which be described in the with cansingle be related to singlecan quantity Fˆ since ! f Da D* a (′) theory(∗) ZBB*とZB*B*のラグランジアン work of the heavy quark effective #HQET$ %23&, exstates c gical Lagrangians at vertices of Z and B mesons, which is ˆ b !Fploiting / m D athe . heavy quark spin flavor symmetries holding 結合定数はZ B*B*の崩壊幅から決定する b ➜ BB*とZ b'➜and limit. T It alsoforpossible down expression forve-the M# this limit the an heavy quark four in is QCD m Q →'. toIn write µ ∗ ∗ ¯µ + Bµ B) ¯ , ∗ = gZBB ∗ Mz Z (B B L ZBB coincides with that of the hadron and it is conserved locity v strong couplings involving heavy mesons and the kaon. The ) strong interactionsin%24&. Because of ′the µναβ ∗ invariance ∗ can be under ! ¯ D s( *by D (*)K couplings, the soft p →0 limit, related ′ B ∗ B ∗ = gZ ′ B ∗ B ∗ ϵ L K∂µ Zν Bα Bβ , Z P rotations of the heavy quark spin s Q , states differing only for to a single low energy parameter g, as it turns out considerthe orientation of s Q are degenerate in mass and form a douing the effective QCD Lagrangian describing the strong inblet. When the orbital angular momentum of the light deoupling constants gZBB ∗ and gZ ′ B( ∗ B) ∗ (are ) determined from the experim パイオンとB(B*)メソンのラグランジアン teractions between the heavy D ais* !#0, D b* mesons and the octet grees of freedom relative to Q the two states in the + ′ ∗ ¯∗ + P " " uesof forthe Z → B B . The experimental results indicate that Γ(Z → B lighthave pseudoscalar 結合定数gはD*➜Dπ崩壊から決定する(HQS) b ,1 ) and correspond to doublet spin-paritymesons J #(0!26": and f$f/ * ′+ (s) ,BB∗+ * ). ¯ ∗0This (D (s) , DΓ(Z can be represented 5.82 MeV and ) = doublet 8.44 MeV. Then we set the rent, gBB ∗writt (s) ), b (B→ (s)B Zb = $ g = 0.59 %2.7& tives, read by a 4$4 matrix: Ha" LI !ig Tr! H b # $ # 5 A ba ! ! = 1.30 to reproduce the decay widths of the open flavor channels. where, 1% v”by ( with the operator A given corresp the effective Lagrangians reflected on heavy quark and ) "M ) , #2.1$ H a # for the % Mcouplings & a 5 a ( 2 !28". A 6]. Their forms are as follows: 1 † with m † ( with M corresponding A $ ba ! to ( $vector ' "19'(state %2.8& In this % 'the $ ' &and ba M to the pseu- " # .. ˜ 1 •1 1 . T two heavy quarks Q 1 Q 2 heavy quark flavor symmetry does where g 1 !g not hold any longer, but degeneracy is expected under rotathe two heavy-light m PHYSICAL REVIEW D 69, 054023 "2004# tions of the two heavy quark spins. This allows us to build up state in S wave, and P. Colangelo, et al, heavy meson multiplets for each value of the relative angular depend on their relat PRD64 054023 (2004) ↔ momentum !. For one has a doublet comprehensive of sion is invariant unde g 2 !!0 (Q Q ) 1 2 state, L2 ! 2andTra, Rvector H 2a -”,H ↔Q 2the # heavy quarks, rep . $H.c.$ " Q 1 of and J/ / in case a pseudoscalar c 1a charmonium. The corresponding 4$4 matrix reads as !27" the infinite heavy qua "3.11# considering that unde 1# v” 1" v” tions S 1 "SU(2) Q 1 a which is(Qalso invariant under independent heavy quark spin Q ) $ 1 2 ! , %3.1& R ! L # $ "L # 5 " 2 2 produces a factor formation rotations. The action of the derivative of properties ΥとB(B*)メソンのラグランジアン " # "3.6# s the intertates, hat " # the residual momentum k, i.e. the quantity for which the 054023-4 hadron and the heavy quark four momentum differ: M Hv ! Vector meson dominance(VMD)によって結合定数を決める !m Q v ! $k ! , k being finite in the heavy quark limit. The Bcouplings of heavy-light Bcharmed mesons to J/ / follow from Eq. "3.11#: Υ % D "*s #" p 1 , & 1 # DB"*s #" p 2 , & 2 # ! J/ / " p, & # ' B < 0|b µ¯ b| *1 •q(nS) !g D * D * / ," & • & * #" &m # 2 µ (s) g(s) BB (nS) = >= f ⇥ f gBB (1S) = 13.2 gBB (2S) = 20.1 (nS) δM of gZbBB = 24.1of the decay TABLE I: Coupling constants gn and the mass-shifts . Mth (3S) is the thresholds nd the mass-shifts δM of Zb . Mth is the thresholds of the decay 20 channel. Unit of the values1 is MeV 2 1 2 # " & •q #" & * • & * # $ " & • & * #" & * •q # ] ∗ ∗ (2π) × × = × × = × × ➜ Υ(nS)π の遷移振幅 Z " gB ∗ B ∗ Υ(nS) {(ϵΥ · ϵ+ ) (ϵ · (2q − p)) + (ϵΥ · ϵ1+ ) (ϵ2 · (2q − p)) − (ϵ1 · ϵ3 = 2) (ϵΥ · (2q − p b 2 1 1 1 1 2 ⃗2 F(⃗ q ,k ) (q)2 − m2B ∗ (P − q)2 − m2B (q − p)2 − m2B ∗ 遷移振幅は次のように計算する ! d4 q β 3 µ ν α ′ ϵµναβ P ϵ ϵ ∗+ ϵ ¯ ∗0 ] (i) [ig z q z B B p=P-k (2π)4 [igB ∗ B ∗ Υ(nS) ϵδτ θφ v δ ϵτυ ϵαB ∗+ (2q − P + k)φ ][gBB ∗ π (ϵB¯ ∗0 · k)] q-P+k P 1 1 1 2 ⃗2 F(⃗ q ,k ) 2 2 2 2 2 2 (q) − mB ∗ (P − q) −P-q mB ∗ (q − p) k − mB ! 4 d q 3 µ ν α β τ θ ′ ∗ B ∗ π ϵ0τ θφ MB ∗ ϵ k ϵ2 ] (i) [ig ϵ P ϵ ϵ ϵ ][ig ! z µναβ B 2 z 1 3 4 4 dq (2π) (B) β 3 µ ν α iMB∗ B∗ = (i) [igz′ ϵµναβ P ϵz ϵB ∗+ ϵB¯ ∗0 ] " # 4 (2π) gB ∗ B ∗ Υ(nS) {(ϵΥ · ϵ1 ) (ϵ3 · (2q − p)) + (ϵΥ · ϵ3 ) (ϵ1 · (2q − p)) − (ϵ1 · ϵ3 ) (ϵΥ · (2q − p))} × [igB ∗ B ∗ Υ(nS) ϵδτ θφ v δ ϵτυ ϵαB ∗+ (2q − P + k)φ ][gBB ∗ π (ϵB¯ ∗0 · k)] 1 1 1 2 ⃗2 1 1 F(⃗ q ,k )1 2 2 2 2 2 2 2 2 × F(q , k ) (11) (q) − mB ∗ (P − q) −(q) m2B−∗ m (q2 − p) − m ∗ 2 2 2 B 2 ∗ (P − q) − m ∗ (q − P + k) − m B B B Λ2Z finite Λ2 interaction Λ2 oduce the form factor F(⃗q 2 , ⃗k 2F(q ) to2 , reflect the range, which is given 2 k )= (12) 形状因子を導入する 2 q 2 + Λ2Z k 2 + Λ2 k 2 + Λ2 2 TABLE I: partial ΛThe Λ2 decay widths Λ2 of Zb (10610)+ . ⃗2 F(⃗q , k ) = Z , 2 2 ⃗k 2 + Λ No2Z Cutoff ΛZ2 ⃗ = 1100 , Λ ⃗q 2 + Λ k + Λ = 600 Υ(1S)π + 95.5 21 0.081 exp 0.059 (17) 結果 + for various cutoff parameters S. O, S.Λ A. Hosaka TABLE V: V: The The partial partial decay decay widths widths of of Z Zbb(10610) (10610)+ units of Z TABLE for various cutoff parameters ΛYasui inand units of Z in 部分崩壊幅 : Zb(10610) arXiv:1310.3029 MeV. Λ Λ= = 600 600 MeV MeV is is fixed. fixed. The The left left column column shows shows the the results MeV. results without without the the form form factors. factors. ΛZZ 1000 Exp. Λ -- 1000 Exp. [MeV] + 96.3 0.074 0.059 ± 0.017 Υ(1S)π+ Υ(1S)π 96.3 0.074 0.059 ± 0.017 + 20.0 0.47 Υ(2S)π+ Υ(2S)π 20.0 0.47 + 0.498 0.14 Υ(3S)π+ Υ(3S)π 0.498 0.14 0.81 0.81 ± ± 0.22 0.22 0.40 0.40 ± ± 0.10 0.10 部分崩壊幅 Zb (10650) + . Λ = 600 MeV is fixed. The unit is MeV. TABLE VI: VI: The The partial decay decay: widths widths of Z Zbb (10650) (10650)+ TABLE partial of . Λ = 600 MeV is fixed. The unit is MeV. ΛZZ Λ -- 1000 1000 Exp. Exp. [MeV] + 71.3 0.044 0.028 ± 0.008 Υ(1S)π+ Υ(1S)π 71.3 0.044 0.028 ± 0.008 + 17.6 0.31 Υ(2S)π+ Υ(2S)π 17.6 0.31 + 0.858 0.18 Υ(3S)π+ Υ(3S)π 0.858 0.18 0.28 0.28 ± ± 0.07 0.07 0.19 0.19 ± ± 0.05 0.05 終状態の運動量が結果を大きく左右する (2011), arXiv:1105.4473. arXiv:1105.4473. (2011), 形状因子が重要 [4] J.-R. J.-R. Zhang, Zhang, M. M. Zhong, and and M.-Q. M.-Q. Huang, Huang, Phys.Lett. Phys.Lett. B704, [4] Zhong, B704, 312 312 (2011), (2011), arXiv:1105.5472. arXiv:1105.5472. [5] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh,22 and A. Hosaka, Phys.Rev. D86, 014004 (2012), カットオフ依存性 : Zb(10650) Zb + ➜ Υ(nS) π+ Zb + ➜ Υ(nS) π+ Λ=600 MeV ΛZ = 1000 MeV 23 tion, Z. Liu et al., Phys.Rev.Lett. 110, 252002 (2013), arXiv:1304.0121. + ➜ ψ(nS)π+ Z c ., Phys.Rev. D87, 074006 (2013), arXiv:1301.6461. o, C.-W. Zhao, and Q. Zhao, Phys.Rev. D87, 034020 (2013), arXiv:1212.3 Zc(3900) : M = 3899.0MeV, Γ=46MeV (BESIII) F. De Fazio, and T. Pham, Phys.Rev. D69, M = 3894.5 MeV, Γ=63 MeV054023 (Belle) (2004), arXiv: Zc(3900)はDD*分子状態でZbのフレーバーパートナー? 部分崩壊幅 he partial decay widths: Zofc(3900) Zc+ . Λ = 600 MeV is fixed. The unit is MeV. ΛZ - 1000 Exp. 39.0 0.66 - ψ(2S)π + 0.305 0.18 - J/ψπ + f(Zc+➜J/ψπ+)=1.2-1.3%, f(Zc+➜ψ(2S)π+)=0.31- 0.33% 10 24 まとめ Zbの崩壊特性をメソン分子状態の観点から調べた スピン構造はエキゾチック粒子の生成と崩壊の性質を 調査するのに有効 Zb ➜ Υπ崩壊幅は、メソンループと形状因子によって 説明できる f(Zc+➜J/ψπ+)=1.2-1.3%, f(Zc+➜ψ(2S)π+)=0.31-0.33% 25
© Copyright 2024 ExpyDoc