46 ใบความรทู ี่ 1.7 (ภาคตัดกรวย) ⌫ ⌫ ⌫ ⌦ µ¦Á¨ºÉ°Âµ µ (Translation of Axes) µ¦Á¨ºÉ°Âµ µ ®¤µ¥¹µ¦Á¨¸É¥Â¨Â¡·´Á·¤°¥nµo°¥®¹É ( X ®¦º°Â Y) åĮo¡·´Ä®¤n µ´Â¡·´Á·¤ µ¦Á¨ºÉ°Âµ µ´Á}¡ºÊµ¸Éε´¸É³nª¥Äµ¦«¹¬µÁ¸É¥ª´£µ´¦ª¥Äo³ª¥·É ¹Ê Ħ³Â¡·´µ Á¦µÄo X ¨³ Y 宦´°oµ°·¡·´®¦º°ÎµÂ®n °»Ä¦³µ Y » P(x, y) Á}»¸É°¥¼n®nµµÂ Y ŵ ªµ¤º°Á}¦³¥³ x ®nª¥ X P(x, y) ¨³°¥¼n®nµµÂ X ¹É°¥¼nÁ®º°Â X Á}¦³¥³ y ®nª¥ y X O Á¤ºÉ°Á¨ºÉ°Â » P(x, y) ¥´¸É Ân¡·´ °» P ³Á¨¸É¥ÅÁ¤ºÉ°Á¸¥´Â¡·´Ä®¤n ´¦¼ Yc x P(x, y) xc y Pc(xc, yc) yc Oc (h, k) X h k X O µ¦¼ ¡·´Ä®¤n Xc ¨³ Yc µ´Â¡·´Á·¤ X ¨³ Y µ¤¨Îµ´ ¡·´ °»ÎµÁ·Ä®¤nÁ¤ºÉ°Á¸¥´Â¡·´Á·¤ º°» Oc(h, k) ´Éº°Â¡·´Ä®¤nÁ·µµ¦Á¨ºÉ°Âµ¤Âª° h ®nª¥ ¨³µ¤Âª´Ê k ®nª¥ Ä®o (x, y) Á}¡·´ °» P Á¤ºÉ°Á¸¥´Â¡·´Á·¤ (xc, yc) Á}¡·´ °» P Á¤ºÉ°Á¸¥´Â¡·´Ä®¤n ¨³ h, k Á}媦· ´´Ê ³Åo x = xc + h xc = x - h ®¦º° y = yc + k yc = y - k ´ª°¥nµ¸É 1 oµÁ¨ºÉ°ÂÅÃ¥Äo» (-2, 3) Á}»ÎµÁ·Ä®¤n ¹É A(0, 2), B(-5, 4), C(4, -1) ¨³ D(-3, -5) Á}¡·´ °»Á¤ºÉ°Á¸¥´Â¡·´Á·¤ ®µ¡·´ °»Á®¨nµ¸ÊÁ¤ºÉ°Á¸¥´Â¡·´Ä®¤n Yc Y ª·¸Îµ Ä®o (x, y) Á}¡·´ °»Á¤ºÉ°Á¸¥´Â¡·´Á·¤ B ¨³ (xc, yc) Á}¡·´ °»Á¤ºÉ°Á¸¥´Â¡·´Ä®¤n A (-2, 3) Ä¸É¸Ê (h, k) = (-2, 3) ´Éº° h = -2 ¨³ k = 3 µ xc = x - h ¨³ yc = y - k ³Åo xc = x + 2 ¨³ yc = y - 3 O C (1) A(0, 2) ¹É x = 0 , y = 2 ³Åo xc = 0 + 2 = 2 ¨³ yc = 2 - 3 = -1 D ´´Ê ¡·´ °» A(0, 2) Á¤ºÉ°Á¸¥´Â¡·´Ä®¤n º° » (2, -1) (2) B(-5, 4) ¹É x = -5 , y = 4 ³Åo xc = -5 + 2 = -3 ¨³ yc = 4 - 3 = 1 ´´Ê ¡·´ °» B(-5, 4) Á¤ºÉ°Á¸¥´Â¡·´Ä®¤n º° » (-3, 1) Xc X sm.tm 47 ¹É x = 4 ¨³ y = -1 ³Åo xc = 4 + 2 = 6 ¨³ yc = -1 - 3 = -4 ´´Ê ¡·´ °» C(4, -1) Á¤ºÉ°Á¸¥´Â¡·´Ä®¤n º° » (6, -4) (4) D(-3, -5) ¹É x = -3 ¨³ y = -5 ³Åo xc = -3 + 2 = -1 ¨³ yc = -5 - 3 = -8 ´´Ê ¡·´ °» D(-3, -5) Á¤ºÉ°Á¸¥´Â¡·´Ä®¤n º° » (-1, -8) ´ª°¥nµ¸É 2 oµÁ¨ºÉ°ÂÅÃ¥Äo» (3, -4) Á}»ÎµÁ·Ä®¤n ¹É P(-4, 3), Q(-5, -2) ¨³ R(2, 7) Á}¡·´ °» Á¤ºÉ°Á¸¥´Â¡·´Ä®¤n ®µ¡·´ °»Á®¨nµ¸ÊÁ¤ºÉ°Á¸¥´Â¡·´Á·¤ ª·¸µÎ Ä®o (x, y) Á}¡·´ °»Á¤ºÉ°Á¸¥´Â¡·´Á·¤ ¨³(xc, yc) Á}¡·´ °»Á¤ºÉ°Á¸¥´Â¡·´Ä®¤n Ä¸É¸Ê (h, k) = (3, -4) ´Éº° h = 3 ¨³ k = -4 µ x = xc+ h ¨³ y = yc + k ³Åo x = xc+ 3 ¨³ y = yc - 4 Y Yc (1) P(-4, 3) ¹É xc = -4 ¨³ yc = 3 R ³Åo x = -4 + 3 = -1 ¨³ y = 3 - 4 = -1 ´´Ê ¡·´ °» P(-4, 3) Á¤ºÉ°Á¸¥´Â¡·´ Á·¤ º° » (-1, -1) O (2) Q(-5, -2) ¹É xc = -5 ¨³ yc = -2 P ³Åo x = -5 + 3 = -2 ¨³ y = -2 - 4 = -6 ´´Ê ¡·´ °» Q(-5, -2) Á¤ºÉ°Á¸¥´Â¡·´Á·¤ º° » (-2, -6) (3, -4) Q (3) R(2, 7) ¹É xc = 2 ¨³ yc = 7 ³Åo x = 2 + 3 = 5 ¨³ y = 7 - 4 = 3 ´´Ê ¡·´ °» R(2, 7) Á¤ºÉ°Á¸¥´Â¡·´ Á·¤ º° » (5, 3) ⌦ ⌦ (3) C(4, -1) X Xc o°¨ "µ¦Á¨ºÉ°Âµ µÃ¥¤¸» (h, k) Á}»ÎµÁ·Ä®¤n" Á¦¸¥´ÊÇ ªnµ "µ¦Á¨ºÉ°ÂŸɻ (h, k)" ´ª°¥nµ¸É 3 oµÁ¨ºÉ°ÂŸɻ (-3, 4) ¦µ¢ °¤µ¦ y = | x + 3 | + 4 ³¤¸¤µ¦Á¸¥´ÂÄ®¤n ¹ÉÄo¡·´ (xc, yc) ¡·´ (x, y) Á}°¥nµÅ¦ ª·¸Îµ µÃ¥r Á¨ºÉ°ÂŸɻ (-3, 4) ³Åo (h, k) = (-3, 4) ´Éº° h = -3, k = 4 ÁºÉ°µ x = xc + h ¨³ y = yc + k ³Åo x = xc - 3 ¨³ y = yc + 4 µ¤µ¦ y = | x + 3 | + 4 Ânµ x oª¥ xc - 3 ¨³Ânµ y oª¥ yc + 4 ³Åo yc + 4 = | xc - 3 + 3 | + 4 yc + 4 - 4 = | xc - 3 + 3 | ³Åo yc = | xc| ³Á}¤µ¦Á¸¥´ÂÄ®¤n °¦µ¢¦¼¸Ê ´ª°¥nµ¸É 4 oµÁ¨ºÉ°ÂŸɻ (3, -7) ¦µ¢ °¤µ¦ x2 - 6x + y2 + 14y - 2 = 0 ³¤¸¤µ¦Á¸¥´ÂÄ®¤n ¹ÉÄo¡·´ (xc, yc) ¡·´ (x, y) Á}°¥nµÅ¦ ª·¸Îµ µÃ¥r Á¨ºÉ°ÂŸɻ (3, -7) ³Åo (h, k) = (3, -7) ´Éº° h = 3, k = -7 ÁºÉ°µ x = xc + h ¨³ y = yc + k ³Åo x = xc+ 3 ¨³ y = yc - 7 µ¤µ¦ x2 - 6x + y2 + 14y - 2 = 0 Ânµ x oª¥ xc+ 3 ¨³Ânµ y oª¥ yc - 7 ³Åo (xc+ 3)2 - 6(xc+ 3) + (yc - 7)2 + 14(yc - 7) - 2 = 0 (xc)2 + 6xc + 9 - 6xc- 18 + (yc)2 - 14 yc + 49 + 14yc - 98 - 2 = 0 (xc)2 + (yc)2 = 60 ³Åo (xc)2 + (yc)2 = 60 ³Á}¤µ¦Á¸¥´ÂÄ®¤n °¦µ¢¦¼¸Ê sm.tm 48 ⌫ ⌫ ⌫ ⌦ ´ª°¥nµ¸É 5 µ¤µ¦ÄÂn¨³ o°n°Å¸Ê oµo°µ¦Á¨ºÉ°Â°oµ°·Ä®oÅo¤µ¦Ä¦¼¸Éε®Ä®o¨oª ³Á¨º°»ÄÁ}»ÎµÁ· (1) 2x - 3y + 12 = 0 o°µ¦Ä®o°¥¼nĦ¼ 2xc = 3yc ª·¸Îµ µ¤µ¦ 2x - 3y + 12 = 0 ³Åo 2x = 3y - 12 2x = 3(y - 4) ..............................(1) Ä®o xc = x ¨³ yc = y - 4  x oª¥ xc ¨³  y - 4 oª¥ yc ¨Ä¤µ¦ (1) ³Åo ¤µ¦ 2xc = 3yc °¥¼nĦ¼¸Éo°µ¦ ¨³»ÎµÁ·Ä®¤nº°» (0, 4) ®¦º° µ¤µ¦ 2x - 3y + 12 = 0 ³Åo 2x + 6 = 3y - 6 2(x + 3) = 3(y - 2) ...............................(2) Ä®o xc = x + 3 ¨³ yc = y - 2  x + 3 oª¥ xc ¨³  y - 2 oª¥ yc ¨Ä¤µ¦ (2) ³Åo ¤µ¦ 2xc = 3yc °¥¼nĦ¼¸Éo°µ¦ ¨³»ÎµÁ·Ä®¤nº°» (-3, 2) o°´Á ³Á®Èªnµ 2x - 3y + 12 = 0 Á}¤µ¦Áo¦ ³Á¨º°»ÎµÁ·Ä®¤nÄÇ ÈÅo¸ÉÁ}»°¥¼nÁo¦¸Ê (2) y(x - 5) = 3 o°µ¦Ä®o°¥¼Än ¦¼ ycxc = 3 ª·¸Îµ µ¤µ¦ y(x - 5) = 3 ...........................................(1) Ä®o xc = x - 5 ¨³ yc = y  x - 5 oª¥ xc ¨³  y oª¥ yc ¨Ä¤µ¦ (1) ³Åo ¤µ¦ ycxc = 3 °¥¼nĦ¼¸Éo°µ¦ ¨³»ÎµÁ·Ä®¤nº°» (5, 0) (3) x2 + y2 - 8x + 6y + 24 = 0 o°µ¦Ä®o°¥¼nĦ¼ (xc)2 + (yc)2 = 1 ª·¸Îµ µ¤µ¦ x2 + y2 - 8x + 6y + 24 = 0 ³Åo (x2 - 8x + 16) + (y2 + 6y + 9) = -24 + 16 + 9 (x - 4)2 + (y + 3)2 = 1 ...............................(1) Ä®o xc = x - 4 ¨³ yc = y + 3  x - 4 oª¥ xc ¨³  y + 3 oª¥ yc ¨Ä¤µ¦ (1) ³Åo ¤µ¦ (xc)2 + (yc)2 = 1 °¥¼nĦ¼¸Éo°µ¦ ¨³»ÎµÁ·Ä®¤nº°» (4, -3) c2 c2 (4) 25x2 - 9y2 + 50x + 36y = 236 o°µ¦Ä®o°¥¼Än ¦¼ ( x ) ( y ) 1 9 25 ª·¸Îµ µ¤µ¦ 25x2 - 9y2 + 50x + 36y = 236 ³Åo (25x2 + 50x) - (9y2 - 36y) = 236 25(x2 + 2x) - 9(y2 - 4y ) = 236 25(x2 + 2x + 1) - 9(y2 - 4y + 4) = 236 + 25 -36 25(x + 1)2 - 9(y - 2)2 = 225 ( x 1) 2 ( y 2 ) 2 1 .............................................(1) 9 25 Ä®o xc = x + 1 ¨³ yc = y - 2  x + 1 oª¥ xc ¨³  y - 2 oª¥ yc ¨Ä¤µ¦ (1) ( xc) 2 ( yc) 2 ³Åo ¤µ¦ 9 25 1 °¥¼nĦ¼¸Éo°µ¦ ¨³»ÎµÁ·Ä®¤nº°» (-1, 2) sm.tm µ¦Á¨ºÉ°Âµ µ´µ¦Á ¸¥¦µ¢ µ¦Á ¸¥¦µ¢Ã¥µ¦Á¨ºÉ°Âµ µÅ¸É» (h, k) ¸ÉÁ®¤µ³¤ ³Á ¸¥nµ¥ªnµµ¦Á ¸¥¦µ¢Ä¦³ ¡·´µ¸É¤¸ » εÁ·¸É» (0, 0) Ã¥Á¨¸É¥¡·´» P(x, y) ÄÇ Ä¦³Á·¤ Á} P(xc, yc) Ħ³Ä®¤n Ã¥¸É xc = x - h ¨³ yc = y - k ³ÎµÄ®o¤µ¦Á¸¥´ÂÄ®¤n¤¸¦¼¹É³ªn°µ¦Á ¸¥¦µ¢ ´´ª°¥nµn°Å¸Ê Yc Y ´ª°¥nµ¸É 6 Á ¸¥¦µ¢ °¤µ¦n°Å¸Ê (1) y = | x + 3 | + 4 ª·¸Îµ µ¤µ¦ y = | x + 3 | + 4 Xc (-3, 4) ´ÅoÁ} y - 4 = | x + 3 | ¨³Á¨ºÉ°ÂŸɻ (-3, 4) X O ³Åo ¤µ¦Á¸¥´ÂÄ®¤n º° yc = | xc| (2) ª·¸Îµ y = (x - 5)2 µ¤µ¦ y = (x - 5)2 Á¨ºÉ°ÂŸɻ (5, 0) ³Åo ¤µ¦Á¸¥´ÂÄ®¤n º° yc = (xc)2 Yc Y O (5, 0) (3) ª·¸Îµ (4) ª·¸Îµ (5) ª·¸Îµ y = (x - 5)2 + 3 µ¤µ¦ y = (x - 5)2 + 3 ´ÅoÁ} y - 3 = (x - 5)2 ¨³Á¨ºÉ°ÂŸɻ (5, 3) ³Åo ¤µ¦Á¸¥´ÂÄ®¤n º° yc = (xc)2 y = x3 + 3x2 + 3x + 3 µ¤µ¦ y = x3 + 3x2 + 3x + 3 ´ÅoÁ} y = (x3 + 3x2 + 3x + 1) + 2 y - 2 = x3 + 3x2 + 3x + 1 y - 2 = (x + 1)3 ¨³Á¨ºÉ°ÂŸɻ (-1, 2) ³Åo ¤µ¦Á¸¥´ÂÄ®¤n º° yc = (xc)3 y = x3 + 3x2 + 3x µ¤µ¦ y = x3 + 3x2 + 3x ´ÅoÁ} y + 1 = x3 + 3x2 + 3x + 1 y + 1 = (x + 1)3 ¨³Á¨ºÉ°ÂŸɻ (-1, -1) ³Åo ¤µ¦Á¸¥´ÂÄ®¤n º° yc = (xc)3 Xc X Yc Y Xc (5, 3) X O Yc Y (-1, 2) Xc X O Yc Y O X Xc (-1, -1) sm.tm ⌦ ⌦ 49
© Copyright 2025 ExpyDoc