La redazione del resoconto ICAAP alla luce del nuovo

Tecnologie Fotovoltaiche a confronto Prof. L. Gammaitoni Dipar0mento di Fisica Università di Perugia Tecnologie PV Courtesy of: First Genera0on crystalline silicon (mono & mul;) This will be the PV-­‐backbone technology and leader of the BIPV sector. module efficiency: 13%
20% Second Genera0on thin film: a-­‐Si, CdTe, CIGS Viable compe@tor in BIPV and roll-­‐to-­‐roll process for flexible substrates. module efficiency: 9%
15% Disrup0ve/ New Genera0on dye cell and organic Ini@ally niche market oriented, but breakthroughs could push field towards mass power genera@on. module efficiency: 4%
10+% new concepts 2000 $0.30/kWh 2010 2020 2030 $0.05/kWh Produzione di moduli solari nelle diverse tecnologie CIGS emergente CdTe leader a-­‐Si:H: alcuni impian; E’ probabile che il Si rimarrà
la tecnologia dominante nei
prossimi 10/20 anni
3 and Research Sorgente: Swiss Federal Laboratories for Material Tes;ng Si solar module
Si wafer cells batch processed
and later on individually
connected with wires for
module making on rigid
supporting plate
Thin film solar module
Stack of several layers are
uniformly deposited on large area
substrate (glass, metal, polymer)
and module is developed by
monolithic interconnection
Turn-­‐key produc0on plant suppliers: Oerlikon solar, Applied Materials, ULVAC, and others Strong benefit from synergy with flat panel display business Wafer vs Thin Films
Mono/Poly-crystalline
Silicon or
III-V compounds
Thin Film Solar Cells
•  Amorphous Silicon (a-Si)
•  Cadmium Telluride (CdTe)
•  Copper Indium Gallium Diselenide (CIGS)
•  Thickness: > 200 µm
•  Thickness: 2 - 10 µm
•  Area limited by wafer size
•  Large area deposition
•  Rigid
•  Flexible Substrates
•  Complex Modul Integration
•  Monolithical Module Integration
⇒ Costosi
⇒ potenzialmente a basso costo
CdTe Thin film Solar Cells
+ Back Contact
Metal
Buffer Layer Front
Contact •  Cheapest of all PV technologies p + -­‐ Te-rich Layer
p - CdTe absorber
n - CdS window TCO (FTO)
Glass substrate
Irradiation superstrate configuration is used
for high efficiency devices
State of art efficiency 17.3% • Modules 67 cents/ Wp • Lowest payback 0me <2 yrs • First Solar is largest thin film PV manufacturing company Suffers from Cd toxicity issues Limita0on of Te in the earth crust - Module Commercial Modules First Solar (USA) 10.9%
efficiency
ca. 75 Wp
Calixo (Q-cells), AVA Solar,
CTF Solar (former ANTEC),
Arendi, ....
Fast growing production capacity: ~20 MW (2004), 170 in 2007, ~1000 MW by 2010.
First Solar production cost 0.87 $/W reported in 2009 (lowest cost thin film PV)
No environmental & health risks from CdTe PV modules (Sites: NREL, BNL, First solar)
CIGS Solar Cells •  CIGS solar cells are best of all Thin Film PV technologies with Efficiencies > 20% on glass and • 18.7 % on flexible polymer foils making them ideal for space applica0ons •  Complex composi0onal adjustments for good electronic quality of the material •  Scarcity issues with In and Ga materials an0cipated boeleneck for volume produc0on Excitonic Solar Cells: Architecture
Nanocrystalline Sensitizer
TiO2 film dye I- / I2 based electrolyte Platinised TCO
Light TCO
coated
glass coated glass
Light
Glass I- I3
-
ITO Load External circuit Organic semiconductor(BHJ) Metal contact (Al, Ca, Mg) Electrons
Nanocomposites of TiO2/Ru-dyes are formed
based on Photosysnthesis approach
Bulk heterojunctions P3HT:PCBM are formed
using donor/acceptorApproach (Tang 1986)
•  These may be regarded as first successful nanostructured device. •  All processing steps are non-­‐vacuum generally solu0on processed •  TiO2 films from doctor blade, screen prin0ng methods. •  Lowering of cost poten0al further but suffer from stability issues Il dominio del PV Sorgente: Bloomberg New Energy Finance FaT: il dominio del PV •  Solar is the fastest growing renewable energy technology. Global investment in solar was the order of $86bn in 2010, a 52% increase on 2009. In terms of investment, it already dwarfs all other renewable technologies apart from wind, and is indeed likely to overtake wind very shortly. •  Global PV capacity has been increasing at an average annual growth rate of more than 40% •  by 2050, PV will provide around 11% of global electricity produc0on corresponding to 3 000 gigawaes of cumula0ve installed PV capacity and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. •  PV will achieve grid parity – i.e. compe00veness with electricity grid retail prices – by 2020 •  Poten0al of reducing costs further. Sfide da affrontare Cos;: Il costo dell’eleericità da PV è ancora troppo alto confrontata con le fin0 tradizionali. Pianificazione: -­‐ Definire la domanda per singola abitazione, condominio, comunità… -­‐ Definire la tagli dell’intervento -­‐  Definire gli asper tecnici della componen0s0ca impiegata Regolamen;: -­‐ Maggiore chiarezza sui regolamen0 edilizi e sulla legislazione in materia di incen0vi. Necessità di una poli0ca energe0ca nazionale stabile In sintesi •  PV è un’industria oramai affermata con un tesso di crescita superiore al 40% nell’ul0mo decennio. •  Flessibile nella realizzazione per quanto concerne taglia, localizzazione e volume. •  La ricerca è tueora arva e punta al raggiungimento della parità di cos0 con la rete. •  Gli incen0vi del governo sono u0li •  E’ necessario promuovere la diffusione della conoscenza tra l’utenza domes0ca.