The Computational Astrophysics group at Leiden University

Computational Astrophysics Group
at Leiden Observatory
&
AMUSE
Lucie Jílková
2nd annual CHARM meeting, January 30, 2014, Ghent
CASTLE
Computational ASTrophysics LEiden
head of the group Simon Portegies Zwart
postdocs Arjen van Elteren, Lucie Jílková, Inti Pelupessy, Silvia Toonen,
Nathan de Vries + Niels Drost (eScience center, Amsterdam),
Nora Lützgendorf (ESA, ESTEC Noordwijk)
PhD students Jeroen Bédorf, Tjarda Boekholt, Dan Caputo, Guilherme Ferrari,
Adrian Hamers, Edwin van der Helm, Carmen Martinez Barbosa,
Alex Rimoldi + Tjibaria Pijloo, Thomas Wijnen (Radboud University
Nijmegen)
+ MSc students
+ computers
20 people + computers
I
codes for computational astrophysics
I
astrophysical software development
I
research applications
CASTLE
Computational ASTrophysics LEiden
abstracts of ~20 refereed papers, 2011 – Jan 2014
www.wordle.net
CASTLE
Computational ASTrophysics LEiden
abstracts of ~20 refereed papers, 2011 – Jan 2014
www.wordle.net
AMUSE
Astrophysical MUltipurpose Software Environment
I
uniform framework to existing codes
I
user scripts — python
I
unit handling
I
coupling (input–output, serial, hierarchical,
interaction)
I
distributed computing
I
independent community codes for various
physical domains
I
flexibility and support (tutorials, examples, active team, growing user community)
I
references — Portegies Zwart et al. (2013), Pelupessy et al. (2013)
www.amusecode.org
AMUSE
community codes
code
Hermite0
PhiGRAPE
ph4
BHTree
Octgrav
Bonsai
Twobody
Huayno
SmallN
Mercury
Mikkola
MI6
Pikachu
Brutus
HiGPUs
Tupan
MMC
SSE
Evtwin
MESA
BSE
SeBa
Fi
Gadget-2
Capreole
Athena3D
MPIAMRVAC
Simplex
SPHRAY
Mocassin
MMAMS
Hop
FractalCluster
Halogen
GalactICS
language
C++
Fortran, MPI/GPU
C++, MPI/GPU
C++
C++, CUDA
C++, CUDA
Python
C, OpenMP/OpenCL
C++
Fortran
Fortran
C++, MPI/GPU
C++, CUDA
C++, MPI
C++, CUDA
Python, OpenCL
Fortran
Fortran
Fortran
Fortran, OpenMP
Fortran
C++
Fortran, OpenMP
C, MPI
Fortran, MPI
C, MPI
Fortran, MPI
C++, MPI
Fortran
Fortran
C++
C++
Fortran
C
C
short description
Hermite N-body
Hermite N-body
Hermite N-body
Barnes-Hut treecode
Barnes-Hut treecode
Barnes-Hut treecode
Kepler solver
Hamiltonian splitting
regularized solver
symplectic planetary integrator
relativistic regularization
Hermite with Post-Newtonian terms
Hybrid Barnes-Hut/Hermite
arbitrary precision Bulirsch-Stoer
Hermite N-body
Symplectic N-body, Post-Newtonian
Monte-Carlo gravitational dynamics
stellar evolution fits
Henyey stellar evolution
Henyey stellar evolution
binary evolution
stellar and binary evolution
TreeSPH
TreeSPH
Finite volume grid hydrodynamics
Finite volume grid hydrodynamics
AMR code for conservation laws
Rad. transport on Delaunay grid
Monte Carlo on SPH particles
Monte Carlo, steady state
stellar mergers by entropy sorting
particle group finder
Fractal cluster generator
Halo distribution functions
Galaxy model generator
main reference
Hut et al. (1995)
Harfst et al. (2007)
McMillan, in prep.
Barnes & Hut (1986)
Gaburov et al. (2010)
Bédorf et al. (2012)
Bate et al. (1971)
Pelupessy et al. (2012)
Portegies Zwart et al. (1999)
Chambers (1999)
Mikkola & Merrit (2008)
Iwasawa et al. (2011)
Iwasawa et al., in prep.
Boekholt & Portegies Zwart, in prep.
apuzzo-Dolcetta et al. (2013)
Ferrari, in prep.
Giersz (2006)
Hurley et al. (2000)
Glebbeek et al. (2008)
Paxton et al. (2011)
Hurley et al. (2000)
Portegies Zwart et al. (2001)
Pelupessy (2005)
Springel (2005)
Mellema et al. (1991)
Stone et al. (2008)
Keppens et al. (2011)
Paardekooper et al. (2010)
Altay et al. (2008)
Ercolano et al. (2003)
Gaburov et al. (2008)
Eisenstein & Hut (1998)
Goodwin & Whitworth (2004)
Zemp et al. (2008)
Widrow et al. (2008)
Pelupessy et al. (2013)
AMUSE
examples
evolution of stars and gas in embedded cluster — gravitational dynamics + gas hydrodynamics +
stellar evolution — Pelupessy & Portegies Zwart (2012)
evolve
star_to_sph.py
check
v kicks
evolve
v kicks
sink
v kicks
evolve
v kicks
sink
base grid type: "fcc"
core mass: ~1/3 M*
(R*<Rroche)
v kicks
0.4
evolve
v kicks
adjust
x, v
.4
0.2
.2
0.0
.0
0.2
0.2
.5
0.4
.4
.0
Temperature
Density
0
50
radius [ R⊙]
.0
100
triple with Roche lobe overflow — stellar evolution + gas hydrodynamics + gravitational
dynamics — de Vries et al. (2014)
AMUSE
examples — work in progress
Roche lobe overflow of high-mass star on BH — E. van der Helm
stars with wind around BH — N. Lützgendorf
Bondi–Hoyle accretion — T. Wijnen
binary star-formation (Boss & Bodenheimer, 1979) — L. Jílková
references
I
www.amusecode.org
I
Pelupessy & Portegies Zwart, MNRAS 429, p895, 2012
I
Pelupessy et al., A&A 557, p84, 2013
I
Portegies Zwart et al., CoPhC 184, p456, 2013
I
de Vries et al., MNRAS, 2014