Noordhoff Uitgevers Winschoterdiep 70A 9723 AB Groningen Postbus 58 9700 MB Groningen t + 31 (0) 50 522 65 22 f + 31 (0) 50 527 75 99 www.noordhoffuitgevers.nl [email protected] Geachte docent, Hartelijk dank voor uw interesse in Inleiding Techniek. Dit proefkatern geeft u een eerste indruk van deze nieuwe uitgave van Noordhoff Uitgevers. Benieuwd naar de inhoud en opzet van dit boek? Lees het in dit proefkatern! Het proefkatern geeft u een goed beeld van wat u kunt verwachten. Zodra Inleiding Techniek daadwerkelijk beschikbaar is (juni 2014), krijgt u deze uitgave uiteraard ook per post toegestuurd. Dan zal ook de ondersteunende website www.inleidingtechniek.noordhoff.nl beschikbaar zijn. Hier vindt u te zijner tijd extra materiaal dat u kunt inzetten tijdens de colleges of als naslagwerk kunt gebruiken. Ook voor studenten is er aanvullend digitaal materiaal zoals oefenmateriaal en een begrippentrainer. De perfecte manier voor studenten om zich voor te bereiden op hun tentamen! Wellicht dat u naar aanleiding van het proefkatern nog vragen heeft. Neem in dat geval contact op met uw accountmanager. Hij of zij komt graag langs om deze uitgave of andere methoden van Noordhoff Uitgevers persoonlijk toe te lichten. Ook als u vragen heeft over Toets-op-maat – de toetsenbank voor docenten van Noordhoff Uitgevers – of ons overige digitale aanbod, kunt u altijd uw accountmanager benaderen. Veel succes gewenst met het maken van de juiste keuze! Met vriendelijke groet, Noordhoff Uitgevers Vragen? Neem contact op met uw accountmanager Regio Noord Oost Zuid West 246586_Marketing.indd 1 Accountmanager Alice Fähner Hans Sips Nino Adamo Karen van de Reep Telefoon 06-519 97 706 06-533 60 194 06-819 12 293 06-516 01 951 E-mail [email protected] [email protected] [email protected] [email protected] 27/03/14 7:37 PM 246586_Marketing.indd 2 27/03/14 7:37 PM © Noordhoff Uitgevers bv Inleiding Techniek Een eerste kennismaking met het technisch domein door middel van reverse engineering Dirk Sijbesma Matthijs de Jong Menja Mollema-Reitsema Eerste druk Noordhoff Uitgevers Groningen/Houten 24_246586_TECHNOLOGY_FM.indd 1 3/28/14 2:32 PM © Noordhoff Uitgevers bv Ontwerp omslag: Rocket Industries, Groningen Omslagillustratie: Getty Images Eventuele op- en aanmerkingen over deze of andere uitgaven kunt u richten aan: Noordhoff Uitgevers bv, Afdeling Hoger Onderwijs, Antwoordnummer 13, 9700 VB Groningen, e-mail: [email protected] Aan de totstandkoming van deze uitgave is de uiterste zorg besteed. Voor informatie die desondanks onvolledig of onjuist is opgenomen, aanvaarden auteur(s), redactie en uitgever geen aansprakelijkheid. Voor eventuele verbeteringen van de opgenomen gegevens houden zij zich aanbevolen. 0 / 14 © 2014 Noordhoff Uitgevers bv Groningen/Houten, The Netherlands. Behoudens de in of krachtens de Auteurswet van 1912 gestelde uitzonderingen mag niets uit deze uitgave worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen of enige andere manier, zonder voorafgaande schriftelijke toestemming van de uitgever. Voor zover het maken van reprografische verveelvoudigingen uit deze uitgave is toegestaan op grond van artikel 16h Auteurswet 1912 dient men de daarvoor verschuldigde vergoedingen te voldoen aan Stichting Reprorecht (postbus 3060, 2130 KB Hoofddorp, www.reprorecht.nl). Voor het overnemen van gedeelte(n) uit deze uitgave in bloemlezingen, readers en andere compilatiewerken (artikel 16 Auteurswet 1912) kan men zich wenden tot Stichting PRO (Stichting Publicatie- en Reproductierechten Organisatie, postbus 3060, 2130 KB Hoofddorp, www.stichting-pro.nl). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. ISBN 978-90-01-81861-6 NUR 173 en 950 24_246586_TECHNOLOGY_FM.indd 2 3/28/14 2:32 PM © Noordhoff Uitgevers bv Woord vooraf In ons dagelijks leven spelen technische apparaten en producten een belangrijke rol. Je gebruikt deze apparaten en producten, maar je vraagt je zelden af wat er nodig is geweest voor de realisatie hiervan. Een scheerapparaat scheert, een broodrooster roostert en een kitspuit zorgt voor een gelijkmatige en vooral waterdichte voeg langs de rand van de douchebak. Populaire televisieprogramma’s als ‘How it’s made’, ‘How do they do it’, ‘Extreme engineering’ en ‘Megafactories’ geven een kijkje in de fabricage- en productieprocessen. Het proces van het genereren van een idee, het ontwikkelen, het ontwerpen en het construeren, dat voorafgaat aan het realiseren van deze producten, is minder makkelijk inzichtelijk te krijgen. Inleiding Techniekk is een eerste kennismaking met het domein engineering. Het is bedoeld voor studenten van technische studies, leerlingen van het VO en iedereen die nieuwsgierig is naar de vakkennis van ontwerpers en technische specialisten binnen dit domein. Engineering is een breed vakgebied met complexe specialismen, die in onderlinge samenhang goed werkende producten kunnen opleveren. Dit boek laat deze samenhang zien op basisniveau. Daarmee wordt affiniteit met de professionals uit dit domein ontwikkeld en een basis gelegd voor eventuele verdere verdieping. Het is een praktisch boek met een centrale casus waarin een bestaand technisch product door middel van reverse engineering wordt onderzocht. Je analyseert de werking van het product, je beoordeelt de kwaliteit en je doet mogelijke verbetervoorstellen. Door de casus leer je de samenhang tussen verschillende specialismen ontdekken. De casus wordt ondersteund door drie delen waarin de benodigde kennis wordt behandeld: Technisch tekenen, Materiaalkunde en bewerkingsmethoden, en Toegepaste mechanica. Dit boek is samengesteld door ir. M.A. de Jong (HvA), ing. M. Mollema (HG) en ing. D. Sijbesma MeD (HG), alle drie docent Technische Bedrijfskunde. Bij het samenstellen van dit boek hebben de volgende overwegingen een belangrijke rol gespeeld: • De aangeboden kennis moet een niveau hebben dat geschikt is voor studenten die geen voorkennis van het vakgebied hebben. • Een beroepsgerelateerde casus wordt aangeboden die de samenhang en de toepassing van de aangeboden kennis duidelijk maakt. • Affiniteit met techniek en motivatie voor verdere verdieping moeten worden ontwikkeld. 24_246586_TECHNOLOGY_FM.indd 3 3/28/14 2:32 PM © Noordhoff Uitgevers bv De auteurs stellen het zeer op prijs kritiek en suggesties te ontvangen die kunnen leiden tot verbetering. Groningen, juni 2013 Dirk Sijbesma Matthijs de Jong Menja Mollema-Reitsema 24_246586_TECHNOLOGY_FM.indd 4 3/28/14 2:32 PM © Noordhoff Uitgevers bv Inhoud Inleiding 7 De casus Reverse engineering 9 DEEL 1 Technisch tekenen 23 1 Projectiemethoden 25 2 Lijnsoorten 37 3 Maataanduidingen 47 4 Doorsneden 63 5 Bijzondere doorsneden 75 6 Schroefdraadaanduidingen 83 7 Aanduiding staalprofielen, gaten, klinknagels en bouten 93 8 Maattoleranties 101 9 Ruwheidsaanduidingen 107 10 Vorm- en plaatstoleranties 115 11 Lasaanduidingen 125 12 Veren 137 13 Tandwielen 143 14 Stuklijst 149 24_246586_TECHNOLOGY_FM.indd 5 3/28/14 2:32 PM © Noordhoff Uitgevers bv DEEL 2 Materiaalkunde en Bewerkingsmethoden 155 15 Materialen: opbouw en eigenschappen 157 16 Bepaling van materiaaleigenschappen 179 17 Metalen 203 18 Niet-metalen 239 DEEL 3 Toegepaste mechanica 265 19 Statica 267 20 De wetten van Newton toegepast 289 21 Sterkteleer 297 22 Het stramien van aanpak toegepast 337 Bijlage 1 Overzicht van gebruikte grootheden, eenheden en symbolen 356 Bijlage 2 Tabellen 358 Literatuurlijst 361 Illustratieverantwoording 362 Register 363 Over de auteurs 367 24_246586_TECHNOLOGY_FM.indd 6 3/28/14 2:32 PM © Noordhoff Uitgevers bv 7 Inleiding Ontwerpers en technische specialisten binnen het domein engineering g ontwikkelen producten vanaf het eerste idee tot de realisatie van het werkelijke product. Daarbij gaan ze uit van een voor de markt innovatief productidee (een nieuwe functie), via ontwikkeling (kan het wel?), naar het ontwerp (zo zou het moeten werken en er ongeveer uit gaan zien) en de constructie (dit onderdeel met deze functie moet volgens tekening precies zo gemaakt worden van dit materiaal), naar de uiteindelijke realisatie (fabricage en productie). Dit is een moeilijke weg, waar regelmatig stappen terug worden gezet als blijkt dat er bijvoorbeeld beperkingen zijn aan het gebruikte materiaal of dat de fabricage niet mogelijk is. Ten slotte zal het gedrag van de consument (de markt), die in de winkel misschien niet tevreden is over het uiterlijk of de prijs of later in het dagelijkse gebruik de werking vindt tegenvallen, het uiteindelijke succes van het idee bepalen. Om de samenhang tussen de verschillende specialismen waarmee een product tot stand komt te ontdekken, ga je uit van een bestaand product. Aan de hand van een gegeven plan van aanpak wordt deze samenhang stap voor stap onderzocht. Dit onderzoek wordt reverse engineering g genoemd en heeft als doel de precieze werking te achterhalen en de eisen waaraan het product probeert te voldoen af te leiden. Je stapt daarmee de denkwereld van de ontwerpers en technische specialisten binnen. De kennis en vaardigheden uit de delen Technisch tekenen, Materiaalkunde en bewerkingsmethoden, en Toegepaste mechanica pas je toe bij de uitvoering van het plan van aanpak. Bij engineering g is de technische tekening een essentieel communicatiemiddel. Met een technische tekening definieer je exact de vorm van ieder onderdeel. Materialenkennis gebruik je om een materiaal te identificeren en daarmee de chemische, fysische, mechanische en fabricage eigenschappen te bepalen. Toegepaste mechanica gebruik je om controleberekeningen te maken over de sterkte en stijfheid van een onderdeel. Daarmee kun je uitspraken doen over het kwalitatief functioneren van het onderdeel. 24_246586_TECHNOLOGY_FM.indd 7 3/28/14 2:32 PM © Noordhoff Uitgevers bv 8 Vertel het me en ik zal het vergeten, laat het me zien en ik zal het onthouden, laat het me ervaren en ik zal het me eigen maken. — Confucius 24_246586_TECHNOLOGY_FM.indd 8 3/28/14 2:32 PM © Noordhoff Uitgevers bv 9 De casus Reverse engineering Voor de casus maken we gebruik van reverse engineering. Bij reverse engineering begin je met het kant-en-klare product en probeer je door onderzoek de overwegingen en keuzes van de ontwerpers van het product te achterhalen. Daarbij volg je in de omgekeerde richting de fasen van productontwikkeling waarmee het product tot stand is gekomen. Figuur 1 laat deze fasen zien: een bedrijf begint met het bepalen van de strategische koers en de doelen voor de toekomst, waarna innovatieve productideeën worden gegenereerd, ontwikkeld en via de distributiekanalen de markt ingevoerd en uiteindelijk, na aanschaf door de klant, gebruikt. Deze cyclus wordt de productinnovatiecyclus (Buys & Valkenburg, 2005) genoemd. FIGUUR 1 Productinnovatiecyclus (Buys & Valkenburg, 2005) Productgebruik Gebruik Invoeren Koers bepalen Evaluatie product Evaluatie gebruik Strategische productpositie Ontwikkelen Doel bepalen Evaluatie Reverse engineering begint met de fase ‘Gebruik’. Wanneer we deze fase nader bekijken, zien we in figuur 1 dat ‘Evaluatie product’ en ‘Evaluatie gebruik’ centraal staan. Door deze evaluaties keren we via ‘Invoeren’ terug naar de fase ‘Ontwikkelen’ en krijgen we inzicht in de overwegingen en keuzes van de ontwerpers en technisch specialisten. 24_246586_TECHNOLOGY_FM.indd 9 3/28/14 2:32 PM © Noordhoff Uitgevers bv 10 Het bedrijfsleven gebruikt reverse engineering om eigen producten met behulp van gebruikersfeedback te verbeteren. Ook een nieuw product van de concurrent wordt met reverse engineering onderzocht om bijvoorbeeld de precieze interne werking te achterhalen of inzicht te krijgen in de toegepaste materialen en fabricagetechnieken. Altijd met als achterliggende gedachte: van de concurrent kan je leren. Octrooien en eigendomsrechten spelen in dit proces natuurlijk een belangrijke rol. VOORBEELD Het handvat van een zaklamp (prijs €1,10) is gemaakt van de kunststof PVC, zie figuur 2. Het heeft, volgens een tekening, bepaalde afmetingen. Het is door spuitgieten gefabriceerd en moet in een worstcase-gebruikssituatie een handkracht van maximaal 100 N over kunnen brengen naar de lamp- en batterijhouder. Uit berekeningen van sterkte blijkt dat dit onderdeel niet sterk genoeg is. Reverse engineering is hiermee een feitelijke vaststelling van de producteigenschappen. De conclusie is dat het onderdeel kwalitatief onvoldoende is om tijdens gebruik goed te functioneren (vanwege de kans op buiging en breuk). FIGUUR 2 Handvat van PVC Reverse engineering kan eindigen met een verbeteradvies aan de ontwerpers. Voor het handvat kan een grotere wanddikte of een sterker materiaal worden geadviseerd. 24_246586_TECHNOLOGY_FM.indd 10 3/28/14 2:33 PM © Noordhoff Uitgevers bv 11 Met dit verbeteradvies wordt de onderlinge samenhang tussen de verschillende producteigenschappen duidelijk. Deze samenhang is in figuur 3 weergegeven: de prijs-kwaliteitverhouding van het handvat (functie) wordt bepaald door lengte, breedte en dikte (vorm), de eigenschappen van PVC (materiaal) en de toegepaste spuitgietbewerkingen (fabricage). FIGUUR 3 Samenhang tussen de producteigenschappen vorm prijs & kwaliteit materiaal functie fabricage Wanneer wordt besloten het advies over te nemen en bijvoorbeeld aluminium als materiaal voor een sterker handvat toe te passen, heeft dat consequenties voor de fabricagemethode, de vormgeving en uiteindelijk de prijs-kwaliteitverhouding. Plan van aanpak Dit plan van aanpak helpt je stap voor stap reverse engineering toe te passen. Door de analyse van een product wordt de interne werking duidelijk, kun je verklaren welke materialen zijn toegepast en waarom, kun je beschrijven hoe de onderdelen zijn gefabriceerd en kun je door berekening de kwaliteit van het product vaststellen. De stappen worden aan de hand van het voorbeeld van een kitspuit steeds toegelicht. 24_246586_TECHNOLOGY_FM.indd 11 3/28/14 2:33 PM © Noordhoff Uitgevers bv 12 Deelopdracht 1 1.1 Bepaal de producteigenschappen Beschrijf de algemene toepassing van het product VOORBEELD Een kitspuit is een gereedschap dat wordt gebruikt voor het kitten van naden en het aanbrengen van lijm, zie figuur 4. In de kitspuit wordt een patroon geplaatst dat door knijpende bewegingen op de handvatten wordt leeggedrukt. Het kitpatroon heeft een tuit, waarmee de kit gecontroleerd uitgespoten wordt. FIGUUR 4 1.2 Kitspuit Beschrijf de algemene werking VOORBEELD Door met de hand in beide handvatten te knijpen zal het scharnierende handvat door de knijpkracht naar het vaste handvat bewegen, zie figuur 5. Door de hefboomwerking van het scharnierende handvat wordt de handkracht versterkt en via het kantelplaatje op de drukstang doorgegeven aan de zuiger in het kitpatroon. Door deze kracht ontstaat in de kit een overdruk, waardoor deze door de tuit naar buiten stroomt. 24_246586_TECHNOLOGY_FM.indd 12 3/28/14 2:33 PM 13 © Noordhoff Uitgevers bv FIGUUR 5 Gevolg van knijpen in beide handvatten drukstang kantelplaatje scharnierend handvat 1.3 Beschrijf een realistische worstcase-gebruikssituatie Een realistische worstcase-gebruikssituatie beschrijft wat de gebruiker bij normaal gebruik met het product als slechtst denkbare situatie kan overkomen. Een kwalitatief goed product moet ook dan blijven functioneren. VOORBEELD Door uitdroging van de kit in de spuitmond raakt deze verstopt. Wanneer dan door de gebruiker hard wordt geknepen in de handvatten ontstaat een realistische worstcase-gebruikssituatie. De maximale knijpkracht van een volwassen man bedraagt 450 N (bron: Webb, Londen, 1989). 1.4 Test en meet de werking VOORBEELD Het scharnierende handvat draait om de klinknagel die verbonden is met het vaste handvat, zie figuur 6. Uit de verhouding tussen de afstanden a en b van het handvat kan worden afgeleid dat de versterking van de handkracht door de hefboomwerking ongeveer een factor 4 bedraagt. Dit betekent dat met een knijpkracht van 450 N een kracht van 4 × 450 = 1800 N wordt uitgeoefend op het kantelplaatje en via de drukstang wordt doorgegeven op de zuiger in het kitpatroon. Uit proefneming blijkt dat door stevig knijpen bij een door een krachtopnemer geblokkeerde drukstang, de krachtopnemer een kracht van plusminus 1600 N registreert. 24_246586_TECHNOLOGY_FM.indd 13 3/28/14 2:33 PM © Noordhoff Uitgevers bv 14 FIGUUR 6 Draaipunt draaipunt a b Fha De realistische worstcase-gebruikssituatie wordt vastgesteld op 450 N knijpkracht. Deelopdracht 2 Demonteer het product 2.1 Demonteer het product tot enkelvoudige onderdelen De sterkte van een ketting wordt bepaald door de zwakste schakel. Dit geldt ook voor andere producten: het product faalt wanneer een onderdeel bezwijkt als gevolg van de worstcase-gebruikssituatie. Daarom is het noodzakelijk alle enkelvoudige onderdelen te analyseren. VOORBEELD Om de kitspuit te demonteren is het nodig een uiteinde van de klinknagel waarmee het scharnierende handvat is gemonteerd te verwijderen. Dat kan door te boren of te vijlen. Vervolgens kan de klinknagel worden uitgenomen. Ook het frame van de kitspuit bestaat uit een aantal geklonken en gelaste verbindingen die moeten worden losgemaakt. Zo wordt de kitspuit uit elkaar gehaald totdat de enkelvoudige onderdelen overblijven. 2.2 Stel de stuklijst samen met naam en stuknummer VOORBEELD Hoewel veel bedrijven een eigen standaard voor de stuklijst van een technische tekening hanteren, bestaan er ook NEN-ISO normen voor. In figuur 7 zie je een voorbeeld van een stuklijst voor de kitspuit. 24_246586_TECHNOLOGY_FM.indd 14 3/28/14 2:33 PM 24_246586_TECHNOLOGY_FM.indd 15 1 1 AANTAL 02 01 STUK-NR FORMAAT A4 GEZIEN: DATUM: NUMMER 001 AFDELING: MAATEENHEID: MM BENAMING: KITSPUIT OPMERKINGEN GETEKEND: OPMERKING SCHAAL 1:2 NORMAANDUIDING OF AFMETING DIKTE 2 mm ROND 8 mm DIKTE 1,2 mm VORM- EN PLAATSTOLERANTIE VOLGENS NEN 3311 MATERIAAL EN/OF HALFFABRIKAAT S185 S185 S185 MAATTOLERANTIES VOLGENS NEN 2365 BENAMING TREKSTANG DRUKSTANG SCHARN. HANDVAT Opmerking: bij een voorwerp dat uit een groot aantal onderdelen bestaat, kan vanaf deelopdracht 3 een verdeling worden gemaakt tussen verschillende groepsleden van het projectteam. RUWHEID VOLGENS NEN 630 1 ENZOVOORT Voorbeeld van een stuklijst voor de kitspuit 03 FIGUUR 7 © Noordhoff Uitgevers bv 15 3/28/14 2:33 PM © Noordhoff Uitgevers bv 16 Deelopdracht 3 Analyseer de onderdelen 3.1 Beschrijf de functie van elk onderdeel (figuur 8) FIGUUR 8 Kitspuit met toelichting eindring drukschijf duwstang KNIJPKRACHT trekstang KNIJPKRACHT VOORBEELD: DE TREKSTANG (STUK NR. 01) Wanneer de drukschijf aan het uiteinde van de drukstang het kitpatroon naar voren duwt, wordt het kitpatroon tegengehouden door de eindring. De twee trekstangen verbinden de eindring met het hoofdframe. De functie van deze twee trekstangen is de eindring positioneren en de kracht op de eindring verbinden met het hoofdframe. Deze kracht werkt als een trekkracht op elke trekstang. 24_246586_TECHNOLOGY_FM.indd 16 3/28/14 2:33 PM AAN-TAL STUK-NR RUWHEID VOLGENS NEN 630 1 AFDELING: GEZIEN: MAATEENHEID: MM DATUM: BENAMING: TREKSTANG GETEKEND: MATERIAAL EN/OF HALFFABRIKAAT S185 SCHAAL 1:2 MAATTOLERANTIES VOLGENS NEN 2365 BENAMING TREKSTANG φ 5 (2×) 15 10 Technische tekening trekstang 01 8 FIGUUR 9 12,5 24_246586_TECHNOLOGY_FM.indd 17 In figuur 9 is de trekstang in een technische tekening vastgelegd. VOORBEELD 3.2. Maak van elk onderdeel een technische tekening in Amerikaanse projectie NORMAANDUIDING OF AFMETING DIKTE 2 mm NUMMER 001 OPMERKINGEN FORMAAT A4 VORM- EN PLAATSTOLERANTIE VOLGENS NEN 3311 OPMERKING © Noordhoff Uitgevers bv 17 3/28/14 2:33 PM © Noordhoff Uitgevers bv 18 3.3 Identificeer de materiaalsoort van elk onderdeel en de ingekochte leveringsvorm VOORBEELD In het materialenlaboratorium is de trekstang met een trekbank beproefd. De resultaten zie je in figuur 10. De trekstang begint plastisch te vervormen bij een trekkracht van 4 700 N en breekt na het bereiken van de maximale kracht van 8 100 N. Resultaten trekbank Kracht (N) FIGUUR 10 8100 N 4700 N Rek (mm) Uit de tekening blijkt dat de afmetingen van de trekstang 12,5 × 2 mm (volle strip) bedragen. Daarmee bedraagt het totale oppervlak van doorsnede van de trekstang 2 × 12,5 = 25 mm2. De trekspanning (σ t) als gevolg van de trekkracht van 4700 N in de trekstang wordt berekend met de formule F (N/mm2 ). De elasticiteitsgrens van het materiaal bedraagt dan A 4700 = 188 N/mm2 . De maximale treksterkte bedraagt. 25 8100 = 324 N/mm2 . De trekstang heeft magnetische eigenschappen en 25 σt = voldoet daarmee aan de criteria van staal S185 (Fe310-0). 3.4 Bepaal de relevante mechanische eigenschappen en bewerkingseigenschappen VOORBEELD Staal S185 is voor algemene toepassingen en heeft de volgende specificaties: Maximale treksterkte Rm ≥ 290 N/mm2 , Elasticiteitsgrens Re ≥ 185 N/mm2 , rek bij breuk ≥ 10% , goed verspanend bewerkbaar, buigbaar en lasbaar. 24_246586_TECHNOLOGY_FM.indd 18 3/28/14 2:33 PM 19 © Noordhoff Uitgevers bv 3.5 Stel de worstcase-situatie voor elk onderdeel vast vanuit de realistische worstcase-gebruikssituatie uit opdracht 1.4 VOORBEELD De functie van de twee trekstangen is de kracht van 1800 N op de eindring verbinden met het hoofdframe. De trekstangen worden dan elk door een 1800 = 900 N . trekkracht belast van 2 3.6 Controleer de sterkte van elk onderdeel VOORBEELD Wanneer de trekstang nader wordt bekeken, blijkt de kritische doorsnede zich bij het eerste gat te bevinden waar een nagel de trekstang aan het hoofdframe verbindt (eventuele breuk van de trekstang zal hier plaatsvinden). In de trekstang bevindt zich in deze kritische doorsnede A–A een gat van 5 mm, zoals in figuur 11 te zien is. FIGUUR 11 Kritische doorsnede A-A Kritische Doorsnede A-A De kritische doorsnede A–A is getekend in figuur 12. Het oppervlak (gearceerd) dat de kracht overdraagt bedraagt 12,5 × 2 (volle strip) minus 5 × 2 (het gat). In totaal bedraagt dit oppervlak A = 15 mm2. De trekspanning ( σ t ) als gevolg van de trekkracht van 900 N op het oppervlak A van de doorsnede is berekend met de formule σt = F 900 (N/mm2 ) . Ingevuld blijkt dat σ t = = 60 (N/mm2 ) . A 15 Deze optredende trekspanning van 60 N/mm2 blijkt veel lager te zijn dan de elasticiteitsgrens van 185 N/mm2 (zie opdracht 3.4). FIGUUR 12 Doorsnede A-A Doorsnede A-A 12,5 2 Ø5 Conclusie: dit onderdeel is voldoende sterk. 24_246586_TECHNOLOGY_FM.indd 19 3/28/14 2:33 PM © Noordhoff Uitgevers bv 20 3.7 Evalueer de kwaliteit per onderdeel (conclusies en aanbevelingen per onderdeel) VOORBEELD Uit de berekening van opdracht 3.6 blijkt dat het onderdeel ongeveer drie maal sterker is dan noodzakelijk. Om redenen van stijfheid en robuustheid wordt aanbevolen het onderdeel niet te wijzigen. Opmerking: deelopdracht 3 wordt voor alle onderdelen uit de stuklijst herhaald. Deelopdracht 4 Evaluatie van het product Evalueer het gehele product aan de hand van een samenstellingstekening door kwalitatieve conclusies te trekken en eventuele aanbevelingen te doen. VOORBEELD Alle onderdelen zijn in staat de worstcase-gebruikssituatie aan te kunnen. Wel is geconstateerd dat het beweegbare handvat met veel speling scharniert in het hoofdframe. Als enig verbeterpunt wordt dan ook geadviseerd het gat in het hoofdframe en het gat in het beweegbare handvat een kleinere tolerantie te geven ten opzichte van de verbindende aluminium klinknagel; zie figuur 13. FIGUUR 13 Gaten in hoofdframe en beweegbaar handvat gat klinknagel 24_246586_TECHNOLOGY_FM.indd 20 3/28/14 2:33 PM © Noordhoff Uitgevers bv Deelopdracht 5 21 Eindrapportage Stel de eindrapportage samen. VOORBEELD Hieronder zie je het voorbeeld van een inhoudsopgave. Voorwoord Samenvatting Inhoudsopgave Hoofdstuk 1 Inleiding Hoofdstuk 2 Producteigenschappen van de kitspuit Inleiding 2.1 Toepassing 2.2 Algemene werking 2.3 Realistische worstcase-gebruikssituatie 2.4 Krachtenwerking in de worstcase-gebruikssituatie 2.5 De stuklijst Hoofdstuk 3 Analyse per onderdeel Inleiding en opzet onderstaande hoofdstukken 3.1 Trekstang. Stuknummer 01 3.1.1 Functie van de trekstang 3.1.2 Werktekening de trekstang 3.1.3 Materiaalsoort en relevante mechanische eigenschappen 3.1.4 Worstcase-gebruikssituatie voor de trekstang 3.1.5 Sterkte-analyse de trekstang 3.1.6 Conclusies en aanbevelingen de trekstang 3.2 Drukstang. Stuknummer 02 3.3 Scharnierend handvat. Stuknummer 03 Enzovoort Hoofdstuk 4 Evaluatie kitspuit 4.1 Inleiding 4.2 Samenstellingstekening 4.3 Conclusies en aanbevelingen 24_246586_TECHNOLOGY_FM.indd 21 3/28/14 2:33 PM © Noordhoff Uitgevers bv 22 Een technische tekening zegt meer dan duizend ingenieurs kunnen vertellen. – Dirks Leerdoelen Na bestudering van deel 1 kun je: • aan de hand van een technische tekening volgens Amerikaanse projectie je een duidelijk beeld vormen van het getekende onderdeel; • aanduidingen van schroefdraad, gaten, nagels, bouten, lassen, veren en tandwielen herkennen; • de maten, toleranties, materiaalaanduidingen en eventuele bijschriften interpreteren; • een technische tekening van een eenvoudig onderdeel opzetten. 01_246586_TECHNOLOGY_DEEL 1_CH01.indd 22 27/03/14 2:32 PM © Noordhoff Uitgevers bv 23 DEEL 1 Technisch tekenen 1 2 3 4 5 6 7 Projectiemethoden 25 Lijnsoorten 37 Maataanduidingen 47 Doorsneden 63 Bijzondere doorsneden 75 Schroefdraadaanduidingen 83 Aanduidinggaten, klinknagels en bouten 93 8 9 10 11 12 13 14 Maattoleranties 101 Ruwheidsaanduidingen Vorm- en plaatstoleranties 115 Lasaanduidingen 125 Veren 137 Tandwielen 143 Stuklijst 149 107 Het deel Technisch tekenen is bedoeld om je de normalisatie van de technische tekening eigen te maken. In het dagelijks leven maak je regelmatig gebruik van voorwerpen die in of om een ander voorwerp moeten passen. Denk bijvoorbeeld aan de schroefdraad van spaar- of ledlampen of een fietsband die precies om de velg van het wiel moet passen. Om dit mogelijk te maken is de normalisatie ingevoerd, waardoor fabrikanten de precieze vorm en afmetingen kennen van de te produceren artikelen. In vrijwel alle apparaten zijn genormaliseerde onderdelen verwerkt. Deze onderdelen kunnen dus altijd worden vervangen, ook door onderdelen die door een andere fabrikant zijn gemaakt. Bij reverse engineering wordt een onderdeel van een bestaand product opgemeten, het materiaal bepaald en onderzocht hoe het is gefabriceerd. Met deze gegevens kan het onderdeel in een werktekening worden vastgelegd en een kopie ervan in de werkplaats vervaardigd. 01_246586_TECHNOLOGY_DEEL 1_CH01.indd 23 27/03/14 2:32 PM 36 02_246586_TECHNOLOGY_CH02.indd 36 © Noordhoff Uitgevers bv 27/03/14 3:43 PM © Noordhoff Uitgevers bv 37 2 Lijnsoorten 2 Begrenzingslijn 38 Maatlijnen 38 Streeplijn 38 Hartlijn 38 Hulplijnen 38 Symmetrielijn 38 02_246586_TECHNOLOGY_CH02.indd 37 27/03/14 3:43 PM 38 DEEL 1 TECHNISCH TEKENEN © Noordhoff Uitgevers bv In technische tekeningen worden verschillende soorten lijnen gebruikt, zoals streeplijnen, hulplijnen en maatlijnen. In dit hoofdstuk maak je kennis met de diverse lijnsoorten. In een technische tekening heeft elke lijnsoort een bepaalde betekenis. In figuur 2.1 zie je een aantal van deze lijnen. Met begrenzingslijnen geven we de begrenzingen van de zichtbare delen van een voorwerp aan. Zij worden dik getrokken en steken dus goed af ten opzichte van alle andere lijnsoorten. 2 FIGUUR 2.1 Enkele lijnsoorten De streeplijn, die uit korte streepjes bestaat, wordt uitsluitend gebruikt voor het aangeven van niet-zichtbare begrenzingen van het voorwerp. Zij worden dunner getekend dan de begrenzingslijnen. Voor het aangeven van de maten gebruik je hulplijnen en maatlijnen. Deze worden dun getekend. Je ziet direct dat deze lijnen geen begrenzingslijnen zijn. Aan de uiteinden van een maatlijn worden twee pijltjes of twee schuine streepjes geplaatst. Daartussen wordt boven of naast de maatlijn de maat ingeschreven. In de techniek zijn veel onderdelen of gedeelten daarvan symmetrisch. Een voorwerp is symmetrisch als het zo doormidden gesneden kan worden dat er twee delen overblijven die elkaars spiegelbeeld zijn. De plaats waar je het voorwerp moet doorsnijden om de delen symmetrisch te doen zijn, geeft je in een tekening aan met een zogenaamde hartlijn of symmetrielijn. Om deze hartlijn te onderscheiden van de andere soorten lijnen is hij getekend als een dunne gemengde streeplijn (figuur 2.2). Om het midden van een cirkelvormig vlak aan te geven trek je twee hartlijnen loodrecht op elkaar. Het snijpunt van deze hartlijnen is het middelpunt van de cirkel (figuur 2.3). Het is vaak nodig dat een voorwerp in doorsnede wordt getekend om te kunnen zien hoe het er vanbinnen uitziet. De plaats waar het voorwerp is doorgesneden wordt in een van de aanzichten aangegeven met een dunne gemengde streeplijn, die aan beide einden verdikt is getekend (figuur 2.4). 02_246586_TECHNOLOGY_CH02.indd 38 27/03/14 3:43 PM © Noordhoff Uitgevers bv FIGUUR 2.2 Hartlijn LIJNSOORTEN FIGUUR 2.3 39 Middelpunt 2 FIGUUR 2.4 Plaats van de doorsnede Door de doorsnijding is het voorwerp verdeeld in twee delen, die eventueel verschillend van vorm kunnen zijn. Tegen welke doorgesneden kant je aankijkt, wordt aangegeven door de richting van de pijltjes die tegen de doorsnedelijn zijn getekend. Bij de pijltjes worden letters geplaatst, bijvoorbeeld A-A. Dezelfde letters worden herhaald bij de doorsnede. In de tekening wordt het doorgesneden materiaal gearceerd (voorzien van dunne schuine lijntjes onder een hoek van 45°). 02_246586_TECHNOLOGY_CH02.indd 39 27/03/14 3:43 PM 40 2 DEEL 1 TECHNISCH TEKENEN © Noordhoff Uitgevers bv Lange werkstukken die over het grootste gedeelte gelijk van vorm zijn, worden doorgaans niet in hun geheel getekend. Je tekent dan alleen het begin en het einde ervan en laat het tussenliggende gedeelte weg. Je geeft dit aan door de beide einden met een dunne golflijn te begrenzen (figuur 2.5) of met een dunne lijn met zigzags (figuur 2.6). De dunne gemengde streeplijn met dubbele onderbreking wordt bijvoorbeeld gebruikt om uiterste standen van bewegende delen aan te geven (figuur 2.7). Tabel 2.1 geeft een overzicht van de lijnsoorten en hun toepassingen. FIGUUR 2.5 Dunne golflijn FIGUUR 2.6 Dunne lijn met zigzags FIGUUR 2.7 Uiterste standen 02_246586_TECHNOLOGY_CH02.indd 40 27/03/14 3:43 PM © Noordhoff Uitgevers bv TABEL 2.1 LIJNSOORTEN 41 Overzicht lijnsoorten BENAMING GETEKENDE LIJN VOORBEELDEN VAN TOEPASSING dikke lijn zichtbare begrenzingslijnen dunne lijn denkbeeldige snijlijnen, maatlijnen, hulplijnen, aanhaallijnen, arceringen, begrenzingslijnen van gekantelde aanzichten en van gekantelde doorsneden, korte hartlijnen, vouw- of zijlijnen dunne gegolfde lijne of dunne lijn met zigzags afbreeklijnen van gedeeltelijke aanzichten en van gedeeltelijke doorsneden dikke streeplijn of dunne streeplijn niet-zichtbare begrenzingslijnen dunne gemengde streeplijn hartlijnen, symmetrielijnen, banen van bewegende punten dunne, plaatselijk verdikte gemengde streeplijn doorsnijdingsvlakken opmerking: de lijn moet aan de uiteinden en bij verandering van richting worden verdikt dikke gemengde streeplijn aanduiding van gedeelten van oppervlakten: met een aanvullende of een afwijkende behandelinjg of bewerking dunne gemengde streeplijn met dubbele onderbreking begrenzingslijnen van aangrenzende delen, uiterste en tussenliggende standen van bewegende delen, zwaartelijnen, begrenzingslijnen van gedeelten van werkstukken vóór vervorming begrenzingslijnen die vóór de doorsnede liggen. 02_246586_TECHNOLOGY_CH02.indd 41 2 27/03/14 3:43 PM © Noordhoff Uitgevers bv 42 Oefenopgaven 2 2.1 02_246586_TECHNOLOGY_CH02.indd 42 27/03/14 3:43 PM © Noordhoff Uitgevers bv LIJNSOORTEN 43 2.2 2 02_246586_TECHNOLOGY_CH02.indd 43 27/03/14 3:43 PM 44 DEEL 1 TECHNISCH TEKENEN © Noordhoff Uitgevers bv 2.3 2 02_246586_TECHNOLOGY_CH02.indd 44 27/03/14 3:43 PM © Noordhoff Uitgevers bv LIJNSOORTEN 45 2.4 2 02_246586_TECHNOLOGY_CH02.indd 45 27/03/14 3:43 PM © Noordhoff Uitgevers bv 154 Men kan geen ijzer met handen breken – Nederlands spreekwoord Betekenis: niemand is in staat het onmogelijke te doen 15 Leerdoelen: Na bestudering van deel 2 kun je: • aangeven hoe materialen zijn opgebouwd en waarom ze verschillen; • van enkele materiaaleigenschappen aangeven hoe ze bepaald worden en waarom ze belangrijk zijn voor het fabriceren en functioneren van producten; • een verantwoorde materiaalkeuze maken; • data in grafieken en tabellen interpreteren; • eenvoudige berekeningen uitvoeren; • communiceren met specialisten in het vakgebied. 15_246586_TECHNOLOGY_DEEL 2_CH15.indd 154 27/03/14 2:54 PM © Noordhoff Uitgevers bv 155 DEEL 2 15 Materiaalkunde en Bewerkingsmethoden 15 16 17 18 Materialen: opbouw en eigenschappen Bepaling van materiaaleigenschappen Metalen 203 Niet-metalen 239 157 179 De bedoeling van dit deel is om je inzicht te geven in de verschillen tussen een aantal materialen en de toepassingen ervan. De verschillen tussen materialen komen tot uiting in hun eigenschappen. Daarom wordt in dit deel nader ingegaan op welke eigenschappen materialen kunnen hebben, waardoor die ontstaan, hoe je ze kunt bepalen en vooral wat je ermee kunt doen. Dit deel begint met de opbouw van de materie. Er zijn eigenlijk maar 90 bouwstenen waarmee je alles kunt maken wat bestaat op deze wereld en wat je kunt aanraken. Afhankelijk van hoe die bouwstenen aan elkaar zitten, gedragen de materialen zich verschillend. In hoofdstuk 16 wordt beschreven welke eigenschappen materialen kunnen hebben. Het blijkt dat als je een stukje materiaal kapot trekt en tijdens die proef meet hoe lang het stukje wordt en hoeveel kracht je daarvoor moet zetten, je heel goed belangrijke eigenschappen van dat materiaal kunt bepalen. In hoofdstuk 17 worden de metalen behandeld. Het bekendste metaal is ijzer, dus daar wordt een gedeelte van de theorie aan opgehangen. Tot slot worden in hoofdstuk 18 de kunststoffen en technische keramieken behandeld. Hoe zijn ze opgebouwd, hoe maak je ze, wat zijn de verschillen en wat kun je ermee doen? 15_246586_TECHNOLOGY_DEEL 2_CH15.indd 155 27/03/14 2:54 PM 156 15_246586_TECHNOLOGY_DEEL 2_CH15.indd 156 © Noordhoff Uitgevers bv 27/03/14 2:54 PM © Noordhoff Uitgevers bv 157 15 15 Materialen: opbouw en eigenschappen 15.1 15.2 15.3 15.4 Atomen en hun bindingen Indeling van materialen Materiaaleigenschappen Grootheden, eenheden en symbolen Atoom 158 Edelgasconfiguratie 163 Element 158 Ionbinding 163 Periodiek systeem 160 Vanderwaalskracht 165 Edelgas 161 Aggregatietoestand 165 Valentie-elektron 161 Corrosie 171 Ion 161 Grootheid 173 Kristalrooster 161 Eenheid 173 Metaalbinding 161 Symbool 173 Covalente binding 162 Dimensieanalyse 173 Molecuul 162 Conversiefactor 174 15_246586_TECHNOLOGY_DEEL 2_CH15.indd 157 27/03/14 2:54 PM 178 16_246586_TECHNOLOGY_CH16.indd 178 © Noordhoff Uitgevers bv 27/03/14 1:37 PM © Noordhoff Uitgevers bv 179 16 Bepaling van materiaaleigenschappen 16.1 16.2 16.3 16.4 16 Trekkromme Eigenschappen af te lezen uit de trekkromme Hardheid en kerfslagwaarde NDO: non-destructief onderzoek Kracht-uitrekkingdiagram 181 Wet van Hooke 186 Elastische vervorming 182 Vloeisterkte 187 Plastische vervorming 182 Vloeigrens 187 Faalgrens 182 Elasticiteitsgrens 187 Spanning 184 Reksterkte 187 Rek 184 Rekgrens 187 Spanning-rekdiagram 184 Treksterkte 187 Trekkromme 184 Breekrek 188 Elasticiteitsmodulus 185 Hardheid 190 Youngs’ modulus 186 Kerfslagwaarde 190 16_246586_TECHNOLOGY_CH16.indd 179 27/03/14 1:37 PM © Noordhoff Uitgevers bv FIGUUR 16.7 BEPALING VAN MATERIAALEIGENSCHAPPEN Van het kracht-uitrekkingdiagram naar het spanning-rekdiagram Kracht-uitrekkingdiagram Afhankelijk j van de afmetingen van de proefstaaf (N) F 185 l − l0 N mm2 (mm) F A0 Spanning-rekdiagram Onafhankelijk j van de afmetingen van de proefstaaf l − l0 l0 16 (−) TOEPASSING 16.1 Op een ronde proefstaaf met een begindiameter d0 = 8 mm wordt een trekkracht uitgeoefend van 18 kN. Bereken de nominale spanning. De oppervlakte of doorsnede van de proefstaaf is: A0 = π ⋅ (d0 )2 π ⋅ 82 = ≈ 50, 3 mm2 . 4 4 De nominale spanning wordt dan: σ0 = § F 18.000 N = ≈ 358 . A0 50, 3 mm2 Eigenschappen af te lezen uit de trekkromme Uit de trekkromme kun je onder andere aflezen hoe elastisch het onderzochte materiaal is, of hoe sterk of hoe taai. Ook is eruit af te lezen hoeveel kracht er moet worden gezet om het materiaal definitief te vervormen. In deze paragraaf worden vijf verschillende materiaaleigenschappen besproken die kunnen worden bepaald met behulp van de trekkromme van een materiaal. 16.2.1 Elasticiteitsmodulus E De elasticiteitsmodulus E is een grootheid die aangeeft hoe elastisch het materiaal is. Als op een materiaal een kracht wordt uitgeoefend, dan noem je de vervorming elastisch als het materiaal, nadat er geen kracht meer op wordt uitgeoefend, terugkeert naar zijn beginafmetingen. Zoals uitgelegd in paragraaf 16.1 geldt dit alleen in het begin van de trekkromme, dus alleen in dat stuk waar de trekkromme een rechte lijn is. Als je maar weinig kracht (en dus een lage spanning σ0) nodig hebt om het materiaal ver uit te rekken, dan loopt het begin van de trekkromme vrij vlak. Heb je daarentegen veel kracht (en dus een hoge spanning σ0) nodig om het materiaal maar een klein stukje uit te rekken, dan loopt het begin van de trekkromme vrij steil. Kennelijk is de hellingshoek van de lijn een maat voor hoe elastisch het materiaal is. 16_246586_TECHNOLOGY_CH16_1.indd 185 27/03/14 4:02 PM 186 DEEL 2 MATERIAALKUNDE EN BEWERKINGSMETHODEN © Noordhoff Uitgevers bv De hellingshoek van een rechte lijn tussen twee punten wordt ook wel de richtingscoëfficiënt genoemd. Uit de wiskunde weet je dat je die kunt berekenen door in de grafiek het verschil van de yy-coördinaten van die twee punten te delen door het verschil van de x-coördinaten. Er geldt dus: Δy . In de trekkromme staat langs de yy-as de spanning Δx σ0 en langs de x-as de rek ε. Dus geldt hier: richtingscoëfficiënt Δσ 0 Δε en die verhouding wordt de elasticiteitsmodulus genoemd. Het symbool voor deze grootheid is E. Deze wordt ook wel Young’s modulus genoemd, Δσ0 bekendstaat als de wet van Hooke. terwijl de formule E = Δε Deze wet van Hooke kom je ook wel tegen als E = tan α, waarbij α de hellingshoek van het eerste stuk van de trekkromme is. Uit de wiskunde weet je dat de tangens van een hoek in een driehoek wordt gegeven door de lengte van de overstaande zijde te delen door de richtingscoëfficiënt = 16 aanliggende zijde. Uit figuur 16.8 wordt duidelijk dat E = tan α = Δσ0 . Δε Een hoge waarde van E betekent dat het materiaal weinig elastisch is. Het materiaal wordt dan ‘stijf’ genoemd. Een materiaal met een lage waarde van E is wel elastisch en wordt ‘slap’ genoemd, zie figuur 16.9. In subparagraaf 15.3.2 is aangegeven dat een heel hoge waarde van E betekent dat het materiaal vrijwel niet elastisch (en dus heel ‘stijf’) is. Δσ Wet van Hooke: E = 0 Δε maar ook: E = tan α FIGUUR 16.8 (Mpa) σ0 Δσσ0 α ε Δε FIGUUR 16.9 (–) Stijf of slap materiaal (Mpa) Stijf σ Δσσstijf Slap Δσσslap Δεεstijf Δεεslap 16_246586_TECHNOLOGY_CH16_1.indd 186 ε (–) 27/03/14 4:02 PM © Noordhoff Uitgevers bv 16.2.2 BEPALING VAN MATERIAALEIGENSCHAPPEN 187 Vloeisterkte Re De vloeisterkte is de grootheid die aangeeft bij welke spanning het einde van de elastische vervorming is bereikt en dus de plastische vervorming begint. De Re wordt ook wel vloeigrens of elasticiteitsgrens genoemd. Als op de vloeigrens de kracht wordt weggenomen, veert het materiaal nog net terug tot zijn oorspronkelijke afmetingen. Het is een theoretische waarde. Precies op dat punt begint het eerste atoom zich te herschikken ten opzichte van zijn buuratoom. In figuur 16.4 is het de overgang tussen gedeelte I en gedeelte II. 16 In de trekkromme geeft de Re daarmee het punt aan waar de rechte lijn stopt en begint af te buigen, zie figuur 16.10. Je leest de waarde van de vloeisterkte af op de verticale as van de trekkromme, waar de spanning in N/mm2 is uitgezet. De eenheid van Re is daarom ook N/mm2 of, zoals is uitgelegd in Toepassing 16.1, MPa. In berekeningen vind je Re door Fe – de kracht die nodig is voor het bereiken van het einde van elastisch gebied – te delen door A0, de oorspronkelijke oppervlakte: Re = Fe . Ook hieruit blijkt A0 de eenheid van kracht per oppervlak: N/mm2. Als Re een hoge waarde heeft, dan wordt het materiaal ‘stug’ genoemd. Een lage waarde van Re is kenmerkend voor een ‘week’ materiaal. 16.2.3 Reksterkte R0,2 De reksterkte of rekgrens is de grootheid die aangeeft bij welke spanning de plastische vervorming 0,2% is. De hierboven beschreven vloeisterkte is een theoretische waarde, de reksterkte is eenvoudiger te bepalen. Als de kracht op de proefstaaf wordt gestopt, veert het materiaal nog wel een stukje terug, maar niet meer tot zijn oorspronkelijke afmetingen: het is definitief plastisch vervormd en wel 0,2% ten opzichte van de beginsituatie. In de trekkromme wordt de R0,2 dus niet meer op het rechte stuk afgelezen, maar op het minder stijgende stuk, zie figuur 16.11. Let erop dat het stukje terugveren na het wegnemen van de kracht (voorgesteld door de stippellijn evenwijdig aan het rechte stuk) de rek 0,2% is. In berekeningen vind je Re door F0,2 – de kracht nodig voor het bereiken van 0,2% plastische F vervorming – te delen door A0, de oorspronkelijke oppervlakte: R0,2 = 0,2 . A0 Net als Re heeft de R0,2 de eenheid N/mm2 of MPa. Het zal duidelijk zijn dat in waarde de R0,2 en de Re niet veel van elkaar verschillen. Wel is de R0,2 altijd groter dan de Re. Beide grootheden worden naast elkaar en soms ook door elkaar gebruikt. Om dezelfde reden worden de begrippen ‘rekgrens’ en ‘vloeigrens’ ook door elkaar gebruikt. 16.2.4 Treksterkte Rm De treksterkte is de grootheid die aangeeft bij welke spanning de inscheuring van de proefstaaf begint. Het is dus niet het punt waarop de proefstaaf uiteindelijk breekt! De treksterkte vind je op het hoogste punt van de trekkromme, zie figuur 16.12. In figuur 16.4 is het de overgang tussen gedeelte II en gedeelte III. De treksterkte is een maat voor hoe sterk een materiaal is. Een hoge waarde voor de treksterkte is kenmerkend voor een ‘sterk’ materiaal, een materiaal met een lage treksterkte wordt ‘zwak’ genoemd. In berekeningen vind 16_246586_TECHNOLOGY_CH16_1.indd 187 27/03/14 4:02 PM 188 DEEL 2 MATERIAALKUNDE EN BEWERKINGSMETHODEN © Noordhoff Uitgevers bv je Rm door Fm, de kracht nodig voor het laten beginnen van de inscheuring, F te delen door A0, de oorspronkelijke oppervlakte: Rm = m . Net als Re en A0 2 R0,2 heeft Rm de eenheid N/mm of MPa. FIGUUR 16.10 16 Aflezen vloeisterkte Re (Mpa) σ0 σ0 Re ε FIGUUR 16.11 (–) Aflezen reksterkte R0,2 (Mpa) p σ0 ε FIGUUR 16.12 (–) Aflezen treksterkte Rm (Mpa) σ0 ε 16.2.5 (–) Breekrek δ De breekrek is de grootheid die aangeeft hoe taai een materiaal is. Op het moment dat de proefstaaf breekt, veren beide helften nog een stukje terug. Als je ze vervolgens tegen elkaar legt (dat past altijd precies), kun je de lengte na breuk (lmax) opmeten, zie figuur 16.13. De breekrek is de procentuele verlenging ten opzichte van de beginlengte l0. Die bereken je dan volgens: δ= lmax l0 ⋅ 100% l0 In de trekkromme teken je de terugvering na breuk door vanaf het breekpunt een stippellijn evenwijdig aan het rechte stuk te tekenen. Dit is het 16_246586_TECHNOLOGY_CH16_1.indd 188 27/03/14 4:02 PM © Noordhoff Uitgevers bv BEPALING VAN MATERIAALEIGENSCHAPPEN 189 stuk dat de helften nog terugveren nadat ze los van elkaar gekomen zijn. De breukrek lees je dan in procenten af op de horizontale as, zie figuur 16.14. De breekrek wordt ook wel ‘rek na breuk’ genoemd. Als symbool zie je naast de δ ook wel de hoofdletter A, soms ook A5. Dat is verwarrend, want de A wordt ook al gebruikt als symbool voor de oppervlakte. Opletten dus! Een materiaal met een grote breekrek wordt ‘taai’ genoemd. Heeft het materiaal een kleine breekrek, dan is het ‘bros’. 16 FIGUUR 16.13 Bepaling beginlengte en maximale lengte lo lmax FIGUUR 16.14 Aflezen breekrek δ (Mpa) σ0 δ ε (–) TOEPASSING 16.2 Een massieve ronde koperen proefstaaf heeft een begindiameter van 12 mm en een beginlengte van 120 mm. Bij een uitgeoefende trekkracht van 7,9 kN wordt de vloeigrens bereikt en is de proefstaaf 120,066 mm lang. De maximale trekkracht is 22,6 kN. Bereken: • de vloeigrens; • de rek op de vloeigrens; • de elasticiteitsmodulus; • de treksterkte. Voor de berekening van de vloeigrens is eerst de beginoppervlakte van de proefstaaf nodig: A0 = π ⋅ d02 π ⋅ 122 = ≈ 113, 1 mm2 . 4 4 De vloeigrens wordt dan: Re = Fe 7.900 N . = ≈ 70 A0 113, 1 mm2 De rek op de vloeigrens is: ε= l − l0 120, 066 − 120 0, 066 mm = = = 0, 55 ⋅ 10−3 . l0 120 120 mm 16_246586_TECHNOLOGY_CH16_1.indd 189 27/03/14 4:02 PM 190 DEEL 2 © Noordhoff Uitgevers bv MATERIAALKUNDE EN BEWERKINGSMETHODEN Voor de berekening van de elasticiteitsmodulus is het handig het laatste punt van de rechte lijn te gebruiken, dat is de vloeigrens. Hier geldt nog net de wet van Hooke. Omdat de trekkromme in de oorsprong begint, geldt 10−3 − 0 = 0,55 ⋅ 10 10−3 . Daarmee Δσ σ0 = 70 − 0 = 70. Ook geldt dat Δε = 0,55 ⋅ 10 wordt de elasticiteitsmodulus: E = 16 Δσ0 70 N = ≈ 127 300 . − 3 Δε 0, 55 ⋅ 10 mm2 De treksterkte wordt ten slotte gevonden door: Rm = § Fm 22600 N . = ≈ 200 A0 113, 1 mm2 Hardheid en kerfslagwaarde Zowel de hardheid als de kerfslagwaarde zijn eigenschappen die van belang zijn voor de verwerking en de toepassing van een materiaal. In deze paragraaf wordt toegelicht hoe je deze kunt bepalen. 16.3.1 Hardheid De hardheid van een materiaal is de weerstand die dat materiaal biedt tegen het indringen van een voorwerp. Als je met een hard stalen kogeltje gedurende een bepaalde tijd met een bepaalde kracht op het oppervlak van een materiaal drukt, dan blijft er na afloop een kuiltje achter, zie figuur 16.15. In een zacht materiaal zal een dieper kuiltje achterblijven dan in een hard materiaal. FIGUUR 16.15 D Kuiltje ten gevolge van indrukking met een kogel F d Bron: Quak, 2009 De diepte van het kuiltje is daarmee een maat voor de hardheid. Afhankelijk van de methode zijn er verschillende indruklichamen die gebruikt worden om de hardheid van een materiaal te bepalen, zie figuur 16.16. De hardheidsmeting volgens Brinell maakt gebruik van een rond kogeltje van gehard staal of wolfraamcarbide. Standaard wordt een kogeltje met een diameter van 10 mm gedurende 15 seconden met 3000 N in het te onderzoeken materiaal gedrukt. Het resultaat wordt aangegeven met bijvoorbeeld 245HB10/3000/15. In de laatste drie getallen herken je 10 mm, 3000 N en 15 seconden. Vaak wordt deze toevoeging weggelaten. HB staat voor ‘Hardheid Brinell’ en de eerste drie cijfers geven de gemeten waarde aan. 16_246586_TECHNOLOGY_CH16_1.indd 190 27/03/14 4:02 PM 202 17_246586_TECHNOLOGY_CH17.indd 202 © Noordhoff Uitgevers bv 27/03/14 1:36 PM © Noordhoff Uitgevers bv 203 17 Metalen 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 Zuiver ijzer Fe-C-diagram Hoogovenproces Ferrometalen Non-ferrometalen Verbetering van eigenschappen van metalen Vormgeving van metalen Curiepunt 205 Perliet 211 Elementaircel 206 Ductiliteit 217 Ferriet 208 Grafietcluster 219 Krg-rooster 209 Lamellen 220 Austeniet 209 Nodulen 220 Cementiet 209 Magnalium 223 Kvg-rooster 209 Ontlaten 225 Eutecticum 209 Carboneren 226 Eutectoïde 210 Nitreren 226 Dislocatie 210 Carbonitreren 226 17_246586_TECHNOLOGY_CH17.indd 203 27/03/14 1:36 PM 238 18_246586_TECHNOLOGY_CH18.indd 238 © Noordhoff Uitgevers bv 27/03/14 1:36 PM © Noordhoff Uitgevers bv 239 18 Niet-metalen 18 18.1 18.2 18.3 18.4 18.5 18.6 Kunststoffen Thermoplasten Thermoharders Elastomeren Composieten Keramieken Monomeer 240 Vulkaniseren 242 Polymeer 240 Compounderen 244 Macromolecuul 240 Glasovergangstemperatuur 246 Homopolymeer 240 Kristallijn 246 Copolymeer 240 Amorf 246 Thermoplast 242 Composiet 256 Thermoharder 242 Sinteren 258 Elastomeer 242 Hardmetaal 259 18_246586_TECHNOLOGY_CH18.indd 239 27/03/14 1:36 PM © Noordhoff Uitgevers bv 266 Niets is zo praktisch als een goede theorie. — Kurt Lewin Leerdoelen Na bestudering van deel 3 kun je: • gebruikmaken van de formules voor sterkte en stijfheid en daarmee de vorm, functie, materiaal, fabricage en kwaliteit van een eenvoudig product of voorwerp analyseren; • het stramien van aanpak toepassen en aan de hand daarvan realistische en kwalitatieve uitspraken doen over de sterkte en stijfheid van een product of voorwerp; • kwalitatieve verbetervoorstellen doen voor wat betreft vorm, functie, materiaal en fabricage van een product of voorwerp. 19_246586_TECHNOLOGY_DEEL 3_CH19.indd 266 27/03/14 1:35 PM © Noordhoff Uitgevers bv 267 DEEL 3 Toegepaste mechanica 19 20 21 22 Statica 269 De wetten van Newton toegepast 291 Sterkteleer 299 Het stramien van aanpak toegepast 341 Met kennis van toegepaste mechanica maak je controleberekeningen voor sterkte en stijfheid en kun je uitspraken doen over het kwalitatief functioneren van een onderdeel. Bij de analyse van een onderdeel wordt ervan uitgegaan dat alle krachten die op het onderdeel werken met elkaar in evenwicht zijn. Statica vormt daarom ook een belangrijke basis. Om te testen of de basiskennis van statica ook aanwezig is, worden de staticawetten toegepast in hoofdstuk 20. In hoofdstuk 21 wordt verder ingegaan op de sterkteleer. Daarbij zijn twee vragen belangrijk: is het onderdeel sterk genoeg, zodat het niet zijn functie verliest doordat er vervorming of breuk optreedt, en is het belaste onderdeel stijf genoeg, zodat het niet zijn functie verliest doordat het onderdeel te ver doorbuigt? Deze twee vragen kunnen beantwoord worden door controleberekeningen uit te voeren. Deze controleberekeningen kunnen zeer complex zijn. Daarom sluit hoofdstuk 21 af met een stramien van aanpak van vraagstukken over sterkte en stijfheid. Hoofdstuk 22 geeft vervolgens uitgewerkte voorbeelden waarin het stramien van aanpak wordt toegepast. 19_246586_TECHNOLOGY_DEEL 3_CH19.indd 267 27/03/14 1:35 PM © Noordhoff Uitgevers bv STERKTELEER 331 Stramien van aanpak van vraagstukken over sterkte en stijfheid In de voorgaande hoofdstukken heb je gezien dat een uitwendige belasting op een voorwerp ervoor zorgt dat er inwendig spanningen optreden die vormverandering veroorzaken. Wat je niet wilt, is dat deze vormverandering ertoe leidt dat het voorwerp zijn functie niet meer kan vervullen. Anders gezegd: de inwendige spanning in het voorwerp mag de toelaatbare spanning niet overschrijden: σ ≤ σ . Om dit te controleren kun je binnen de sterkteleer controleberekeningen doen. Deze controleberekeningen kunnen zeer complex zijn. Het stramien van aanpak geeft een systematische methode om specifieke vraagstukken van sterkte en stijfheid aan te pakken en op te lossen. Door het stramien te volgen is de kans klein om de weg kwijt te raken tijdens de controleberekeningen. Een bijkomend voordeel is dat de controleberekeningen ook inzichtelijk zijn voor anderen en voldoen aan de eisen van zorgvuldigheid en vakbekwaamheid (dit met het oog op productaansprakelijkheid). Het stramien van aanpak bestaat uit 6 stappen: Stap 1 Schematisering Stap 2 De uitwendige belastingen Stap 3 De inwendige belastingen Stap 4 De zwaarst belaste doorsnede Stap 5 De uitspraak over de sterkte Stap 6 De vervorming 21 Stap 1 Schematisering a Analyse van het belaste voorwerp. Welke krachten werken op het voorwerp en in welke richting werken deze krachten? b Teken op schaal een vereenvoudigde voorstelling van het belaste voorwerp. Stap 2 De uitwendige belastingen a Hoe wordt het voorwerp ondersteund? Roloplegging, scharnierpunt of inklemming? Bepaal de actie- en reactiekrachten. b Teken op schaal het VLS (vrijlichaamsschema). Let hierbij op de tekenafspraak. + c Stel de evenwichtsvergelijkingen op. De som van de horizontale krachten is nul: ∑ x = 0. De som van de verticale krachten is nul: ∑ y = 0. De som van de momenten is nul: ∑ = 0. d Bereken de uitwendige belastingen. e Teken de uitwendige belastingen in de VLS met maten voor de plaatsbepaling. f Controleer of er sprake is van evenwicht. Stap 3 De inwendige belastingen Houd je aan de tekenafspraak. Teken op schaal voor zover aanwezig: a de normaalkrachtenlijn; b de dwarskrachtenlijn; c de buigendemomentenlijn. 21_246586_TECHNOLOGY_CH21.indd 331 27/03/14 4:24 PM 332 DEEL 3 © Noordhoff Uitgevers bv TOEGEPASTE MECHANICA Stap 4 De zwaarst belaste doorsnede Vaak kan aan de hand van de N-, D- of M-lijn een uitspraak gedaan worden over de plaats van de zwaarst belaste doorsnede. a Teken de zwaarst belaste doorsnede met bijbehorende maten. Zoek of bereken: b het oppervlak van de doorsnede; c het oppervlaktetraagheidsmoment van de doorsnede; d de uiterste vezelafstand; e de elasticiteitsmodules E f de grootste normaalspanning σ, schuifspanning τ; buigspanning σb, wringspanning τ w; g de ideële spanning: σ e = σ b2 + 3 ⋅ τ D2 (Huber & Hencky). 21 Als niet op voorhand de zwaarst belaste doorsnede te herkennen is, dan zullen enkele doorsneden doorgerekend moeten worden. Daar waar de grootste ideële spanning optreedt, is vanzelfsprekend de zwaarst belaste doorsnede. Stap 5 De uitspraak over de sterkte Vergelijk de optredende ideële spanning met de toelaatbare buigspanning voor het materiaal waarvan het voorwerp gemaakt is. Houd daarbij ook rekening met de gevarenklasse, zie tabel 1, bijlage 2 of de veiligheidsfactor. Stap 6 De uitspraak over de stijfheid (vervorming) Voor trek of druk zijn er eenvoudige verbanden (en voor buiging of wringing iets complexere) waarmee de spanning kan worden omgerekend naar de rek. Daarna kun je de verlenging of verkorting berekenen. Voor buiging en wringing gebruik je de formules die bij de belasting en de ondersteuning passen (de zogenaamde ‘vergeet-me-nietjes’). Vergelijk de optredende verlenging, verkorting of zakking met de klanteisen of tabellen en richtlijnen (ISO- en DIN-normen) voor rek en doorbuiging STROOMSCHEMA STIJFHEID stap IN A: oppervlakte doorsnede (mm2) I: traagheidsmoment (tabel 3, bijlage 2) e: uiterste vezelafstand E: elasticiteitsmodulus, tabel 2, bijlage 2 G: Glijdingsmodulus, tabel 2, bijlage 2 W: Weerstandsmoment (buiging/torsie) uit tabel 3, bijlage 2 ISO–en DIN–normen Klanteisen PROCES UIT Formules tabel 21.5 ∆l - lengteverandering ∆d - dikteverandering ϕ - hoekverdraaing v - zakking Controle op knik stijfheids (controle) berekening is deze Toelaatbaar? nee keur het ontwerp af/maak een herontwerp ja Constructie/ontwerp voldoet 21_246586_TECHNOLOGY_CH21.indd 332 27/03/14 4:24 PM © Noordhoff Uitgevers bv STERKTELEER 333 STROOMSCHEMA STERKTE stap IN Schematisering 1 PROCES 2 UIT Analyse van de situate Teken een vereenvoudigde voorstelling Figuur 20.7 – Ondersteuningssitaties zoals inklemming/scharnier/roloplegging ∑FFx = 0, ∑Fy = 0, ∑M = 0 Uitwendige belastingen 21 Compleet VLS + tekenafspraak 3 VLS 4 5 A: oppervlakte doorsnede (mm2) I: traagheidsmoment (table 3, bijlage 2) e: uiterste vezelafstand E: elasticiteitsmodulus, tabel 2, bijlage 2 G: Glijdingsmodulus, tabel 2, bijlage 2 D–lijnen M–lijnen N–lijnen Formules tabel 21.5 normaalspanning buigspanning schuifspanning wringspanning Inwendige belastingen Zwaarst belaste doorsnede opzoeken* en doorrekenen W: Weerstandsmoment (buiging/torsie) uit table 3, bijlage 2 * is deze niet duidelijk l herkenbaar, dan meerdere doorsnedes e doorrekenen σ toelaatbaar per belastingsoort: yabel 1, bijlage 2 σ toelaatbaar: tabel 2, bijlage 2 Met veiligheidsfactor: σ toelaatbaar = Re/veiligheidsfactor Re – tabel 2, bijlage 2 veiligheidsfactor (afhankelijk van situatie); v = minimaal 1,5 Toetsen van de optredende spanningen aan de toelaatbare spanningen is de constructie voldoende sterk? nee ideële spanning (combi) keur het ontwerp af/maak een herontwerp ja Ga door naar de stijfheids (controle) berekening 21_246586_TECHNOLOGY_CH21.indd 333 27/03/14 4:24 PM © Noordhoff Uitgevers bv 341 22 Het stramien van aanpak toegepast 22 22.1 22.2 22.3 22.4 22.5 22.6 Voorbeeld drukspanning: danseres Voorbeeld samengestelde profielen: vloerconstructie Voorbeeld buigspanning: platbektang Voorbeeld wringing (torsie): schroevendraaier Voorbeeld wringing: aandrijfas auto Voorbeeld knik: schommel Worst-casebelasting 343 Veiligheidsfactor 351 Zwaartepunt 345 Torsiemoment 354 Oppervlaktetraagheidsmoment 345 Weerstandsmoment 357 N-, D- en M-lijn 348 Elasticiteitsmodulus 357 Buigspanning 350 22_246586_TECHNOLOGY_CH22.indd 341 27/03/14 5:28 PM 342 DEEL 3 TOEGEPASTE MECHANICA © Noordhoff Uitgevers bv Het stramien geeft houvast bij het uitvoeren van berekeningen. Wanneer je alle stappen van het stramien volgt, kom je als vanzelf bij een antwoord terecht. Bedenk dat het ook goed helpt om het overzicht van de verschillende formules voor sterkte en stijfheid bij de hand te hebben (tabel 21.5). Oefening baart kunst. Dat geldt ook voor het uitvoeren van sterkte- en stijfheidsberekeningen. Daarom vind je in dit hoofdstuk wat uitgewerkte oefeningen waarbij de stappen van het stramien worden gevolgd. § 22 Voorbeeld drukspanning: danseres Een balletdanseres landt na een sprong op één been, zie figuur 22.1. Metingen hebben uitgewezen dat tijdens de landing een kracht op de balletvloer wordt uitgeoefend van maximaal 20 keer het lichaamsgewicht van de danser. Men is bezorgd over de belastbaarheid van het scheenbeen. Het scheenbeen heeft een variabele doorsnede, met een oppervlakte variërend van 300 tot 500 mm2. De lengte van het scheenbeen is 40 cm. De danseres heeft een gewicht van 550 N. Het botmateriaal heeft een toelaatbare drukspanning van 100 MPa en een elasticiteitsmodulus van 17 GPa. Houd ook rekening met de gevarenklasse. FIGUUR 22.1 Danseres VRAAG Ga na of het botmateriaal sterk genoeg is en wat de vervorming is van het bot. Stap 1 Schematisering Analyse van het belaste voorwerp. Welke krachten werken op het voorwerp en in welke richting werken deze krachten? 22_246586_TECHNOLOGY_CH22.indd 342 27/03/14 5:28 PM © Noordhoff Uitgevers bv HET STRAMIEN VAN AANPAK TOEGEPAST 343 Het onderdeel van interesse is hier natuurlijk het scheenbeen. Ga ervan uit dat het scheenbeen tijdens de grootste belasting verticaal staat. Het scheenbeen is aan de onderzijde scharnierend verbonden met de voet en aan de bovenkant eveneens scharnierend met het kniegewricht. Verder kun je aannemen dat tijdens de landing het zwaartepunt van de danseres zich op de hartlijn van het scheenbeen bevindt. Je hebt dan de geschematiseerde situatie die is afgebeeld in figuur 22.2. Stap 2 De uitwendige belastingen Hoe wordt het voorwerp ondersteund? Roloplegging, scharnierpunt of inklemming? Bepaal de actie- en reactiekrachten. Teken op schaal het VLS (vrijlichaamsschema). FIGUUR 22.2 Schematisering en VLS danseres 22 Gewicht × 20 F VLS −11 kN F 11 kN De grootste optredende belasting is F = 20 ∙ 550 = 11 kN (worst-casebelasting). Als deze belasting opgevangen kan worden, voldoet de hele situatie! Het VLS is naast de schematische situatie getekend, zie figuur 22.2. Je ziet inderdaad dat de vloer een kracht uitoefent (via de voet) op het scheenbeen. Deze kracht is in de worst-casesituatie 11 kN. Stap 3 De inwendige belastingen Teken op schaal voor zover aanwezig de normaalkrachtenlijn, de dwarskrachtenlijn en de buigendemomentenlijn. Er is alleen een normaalkracht ter grootte van 11 kN en die is in elke doorsnede gelijk. Daarmee is voldaan aan alle evenwichtsvergelijkingen. 22_246586_TECHNOLOGY_CH22.indd 343 27/03/14 5:28 PM 344 DEEL 3 TOEGEPASTE MECHANICA © Noordhoff Uitgevers bv Stap 4 De zwaarst belaste doorsnede Vanzelfsprekend is hier de doorsnede met het kleinste oppervlak ook de zwaarst belaste doorsnede, dus A = 300 mm2. Daarmee wordt: • de grootste normaalspanning: σd = F 11000 = = 36,7 ⋅ 106 Pa = 36,7 MPa; A 300 ⋅ 10 −6 • de grootste schuifspanning: τ = 0, want er zijn geen dwarskrachten; • de ideële spanning is de normaalspanning σ id σ d . Stap 5 De uitspraak over de sterkte Houd ook rekening met de gevarenklasse. Het bot wordt belast door een sprongbelasting. In tabel 1 van bijlage 2 komt botmateriaal niet voor. Daarom neem je hier de veiligheidsfactor voor het bepalen van de toelaatbare spanning. 22 σ= Re 100 = = 66, 7 MPa 1,5 1,5 Je ziet dat de ideële spanning van 36,7 MPa nog ver beneden de toelaatbare drukspanning van 66,7 MPa blijft. Het bot is dus voor deze belastingsituatie sterk genoeg σid < σ . Stap 6 De uitspraak over de stijfheid (vervorming) Voor de rek in het bot geldt dat deze varieert met het oppervlak van de doorsnede. De grootste rek vind je in de kleinste doorsnede: ε max = σ max 36,7 = = 2,16 1 ⋅ 10 −3 . E 17 ⋅ 103 De kleinste rek treedt op in de grootste doorsnede. De normaalspanning in F 11000 de grootste doorsnede is σ d = = = 22 MPa. A 500 ⋅ 10 −6 σ 22 De kleinste rek is ε min = min = = 1,29 2 ⋅ 10 −3. E 17 ⋅ 103 Omdat je de vorm van het scheenbeen niet precies kent, neem je aan dat de vervorming wordt bepaald door de gemiddelde rek ε gem = ε max + ε min 2,16 ⋅ 10 −3 + 1,29 ⋅ 10 −3 = = 1,73 7 ⋅ 10 −3. 2 2 Onder de drukbelasting zal het scheenbeen korter worden. Voor de verkorting geldt: Δl ε gem l = 1,73 ⋅ 10 −3 ⋅ 400 = 0,691 mm. § Voorbeeld samengestelde profielen: vloerconstructie De vloerconstructie (CA) is opgebouwd uit een profiel (zie figuur 22.3). De vloerconstructie uit de figuur kan niet zijdelings uitwijken 22_246586_TECHNOLOGY_CH22.indd 344 27/03/14 5:28 PM
© Copyright 2025 ExpyDoc