References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Sullivan RJ, Hagen EH. Psychotropic substance-seeking: evolutionary pathology or adaptation? Addiction 2002; 97(4): 389-400. Russo P, Nastrucci C, Alzetta G, Szalai C. Tobacco habit: historical, cultural, neurobiological, and genetic features of people’s relationship with an addictive drug. Perspectives in biology and medicine 2011; 54(4): 557-577. Crocq MA. Historical and cultural aspects of man’s relationship with addictive drugs. Dialogues in clinical neuroscience 2007; 9(4): 355-361. Brain PF, Coward GA. A review of the history, actions, and legitimate uses of cocaine. J Subst Abuse 1989; 1(4): 431-451. Zuardi AW. History of cannabis as a medicine: a review. Revista brasileira de psiquiatria (Sao Paulo, Brazil : 1999) 2006; 28(2): 153-157. Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 2010; 11(9): 642-651. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35(1): 217-238. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci 2005; 8(11): 1445-1449. Nesse RM, Berridge KC. Psychoactive drug use in evolutionary perspective. Science 1997; 278(5335): 63-66. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain research Brain research reviews 1993; 18(3): 247-291. Swendsen J, Le Moal M. Individual vulnerability to addiction. Ann N Y Acad Sci 2011; 1216: 73-85. Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes. Nat Rev Genet 2005; 6(7): 521-532. Nutt D, King LA, Saulsbury W, Blakemore C. Development of a rational scale to assess the harm of drugs of potential misuse. Lancet 2007; 369(9566): 1047-1053. WHO. Tobacco Fact sheet No. 339. 2014; http://www.who.int/mediacentre/factsheets/fs339/en/ Van Laar MW, Cruts AAN, Van Ooyen-Houben MMJ, Meijer RF, Croes EA, Ketelaars APM, Verdurmen JEE, Brunt T. Nationale Drug Monitor 2012. Trimbos-instituut: Utrecht, 2013. NIDA. Trends & Statistics: Costs of Substance Abuse. 2012; http://www.drugabuse.gov/related-topics/trends-statistics#costs Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 2009; 373(9682): 2223-2233. CDC. Smoking-Attributable Mortality, Years of Potential Life Lost, and Productivity Losses --United States, 2000--2004. Morbidity and Mortality Weekly Report 2008; 57(45): 1226-1228. NDIC. The Economic Impact of Illicit Drug Use on American Society. 2011; http://www.justice. gov/archive/ndic/pubs44/44731/44731p.pdf Laar MW, Harbers MM. Afhankelijkheid van drugs: Hoeveel zorg gebruiken patiënten en wat zijn de kosten? Volksgezondheid Toekomst Verkenning, Nationaal Kompas Volksgezondheid. RIVM: Bilthoven, 2014. Kreek MJ, LaForge KS, Butelman E. Pharmacotherapy of addictions. Nature reviews Drug discovery 2002; 1(9): 710-726. Ross S, Peselow E. Pharmacotherapy of Addictive Disorders. Clin Neuropharmacol 2009; 32(5): 277-289. D’Souza MS, Markou A. Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract 2011; 6(1): 4-16. Pierce RC, O’Brien CP, Kenny PJ, Vanderschuren LJ. Rational development of addiction pharmacotherapies: successes, failures, and prospects. Cold Spring Harbor perspectives in medicine 117 References 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 118 2012; 2(6): a012880. Volkow ND, Wang GJ, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annual review of pharmacology and toxicology 2012; 52: 321-336. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. The American journal of psychiatry 2002; 159(10): 1642-1652. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 2011; 12(11): 652-669. Risinger RC, Salmeron BJ, Ross TJ, Amen SL, Sanfilipo M, Hoffmann RG, Bloom AS, Garavan H, Stein EA. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. NeuroImage 2005; 26(4): 1097-1108. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006; 29: 565-598. Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y. Factors modulating neural reactivity to drug cues in addiction: A survey of human neuroimaging studies. Neurosci Biobehav Rev 2014; 38: 1-16. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005; 8(11): 1481-1489. Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 2003; 26(4): 184-192. Naqvi NH, Bechara A. The hidden island of addiction: the insula. Trends Neurosci 2009; 32(1): 56-67. Craig AD. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 2003; 13(4): 500-505. Lingford-Hughes A. Human brain imaging and substance abuse. Curr Opin Pharmacol 2005; 5(1): 42-46. Uylings HB, Groenewegen HJ, Kolb B. Do rats have a prefrontal cortex? Behav Brain Res 2003; 146(1-2): 3-17. Hogarth L, Balleine BW, Corbit LH, Killcross S. Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Ann N Y Acad Sci 2013; 1282: 12-24. Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 2008; 363(1507): 3137-3146. Bardo MT, Bevins RA. Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 2000; 153(1): 31-43. Aguilar MA, Rodriguez-Arias M, Minarro J. Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain research reviews 2009; 59(2): 253-277. Tzschentke TM. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Progress in neurobiology 1998; 56(6): 613-672. Tsuji M, Nakagawa Y, Ishibashi Y, Yoshii T, Takashima T, Shimada M, Suzuki T. Activation of ventral tegmental GABAB receptors inhibits morphine-induced place preference in rats. European journal of pharmacology 1996; 313(3): 169-173. Isaac WL, Nonneman AJ, Neisewander J, Landers T, Bardo MT. Prefrontal cortex lesions differentially disrupt cocaine-reinforced conditioned place preference but not conditioned taste aversion. Behavioral neuroscience 1989; 103(2): 345-355. Esmaeili MH, Sahraei H, Ali-Beig H, Ardehari-Ghaleh M, Mohammadian Z, Zardooz H, Salimi SH, Shams J, Noroozzadeh A. Transient inactivation of the nucleus accumbens reduces both the expression and acquisition of morphine-induced conditioned place preference in rats. Pharmacology, biochemistry, and behavior 2012; 102(2): 249-256. Contreras M, Ceric F, Torrealba F. Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 2007; 318(5850): 655-658. Zavala AR, Weber SM, Rice HJ, Alleweireldt AT, Neisewander JL. Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain Res 2003; 990(1-2): 157-164. References 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. Tzschentke TM, Schmidt WJ. Discrete quinolinic acid lesions of the rat prelimbic medial prefrontal cortex affect cocaine- and MK-801-, but not morphine- and amphetamine-induced reward and psychomotor activation as measured with the place preference conditioning paradigm. Behav Brain Res 1998; 97(1-2): 115-127. Jacobs EH, Smit AB, de Vries TJ, Schoffelmeer AN. Neuroadaptive effects of active versus passive drug administration in addiction research. Trends in pharmacological sciences 2003; 24(11): 566-573. Katz JL, Higgins ST. The validity of the reinstatement model of craving and relapse to drug use. Psychopharmacology (Berl) 2003; 168(1-2): 21-30. O’Connor EC, Chapman K, Butler P, Mead AN. The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev 2011; 35(3): 912-938. Haney M, Spealman R. Controversies in translational research: drug self-administration. Psychopharmacology (Berl) 2008; 199(3): 403-419. Grimm JW, Hope BT, Wise RA, Shaham Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 2001; 412(6843): 141-142. Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. Neurobiology of the incubation of drug craving. Trends Neurosci 2011; 34(8): 411-420. Luscher C. Drug-evoked synaptic plasticity causing addictive behavior. J Neurosci 2013; 33(45): 17641-17646. Saal D, Dong Y, Bonci A, Malenka RC. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 2003; 37(4): 577-582. Kourrich S, Rothwell PE, Klug JR, Thomas MJ. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci 2007; 27(30): 7921-7928. Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 2004; 47 Suppl 1: 33-46. Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R, Luscher C. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 2009; 12(8): 1036-1041. Kasanetz F, Deroche-Gamonet V, Berson N, Balado E, Lafourcade M, Manzoni O, Piazza PV. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 2010; 328(5986): 1709-1712. Kasanetz F, Lafourcade M, Deroche-Gamonet V, Revest JM, Berson N, Balado E, Fiancette JF, Renault P, Piazza PV, Manzoni OJ. Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Mol Psychiatry 2013; 18(6): 729-737. Kalivas PW, O’Brien C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 2008; 33(1): 166-180. Deroche-Gamonet V, Piazza PV. Psychobiology of cocaine addiction: Contribution of a multi-symptomatic animal model of loss of control. Neuropharmacology 2014; 76 Pt B: 437449. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2001; 2(2): 119-128. Feldman DE. Synaptic mechanisms for plasticity in neocortex. Annu Rev Neurosci 2009; 32: 3355. Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 2013; 14(6): 417-428. McKernan MG, Shinnick-Gallagher P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 1997; 390(6660): 607-611. Rogan MT, Staubli UV, LeDoux JE. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 1997; 390(6660): 604-607. Yu SY, Wu DC, Liu L, Ge Y, Wang YT. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J Neurochem 2008; 106(2): 889899. Zelikowsky M, Hersman S, Chawla MK, Barnes CA, Fanselow MS. Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of contextual fear. 119 References 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 120 J Neurosci 2014; 34(25): 8462-8466. Rumpel S, LeDoux J, Zador A, Malinow R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 2005; 308(5718): 83-88. Rao-Ruiz P, Rotaru DC, van der Loo RJ, Mansvelder HD, Stiedl O, Smit AB, Spijker S. Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear. Nat Neurosci 2011; 14(10): 1302-1308. Clem RL, Huganir RL. Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 2010; 330(6007): 1108-1112. Van den Oever MC, Spijker S, Smit AB. The synaptic pathology of drug addiction. Adv Exp Med Biol 2012; 970: 469-491. Rogers JL, See RE. Selective inactivation of the ventral hippocampus attenuates cue-induced and cocaine-primed reinstatement of drug-seeking in rats. Neurobiology of learning and memory 2007; 87(4): 688-692. Caffino L, Frankowska MG, Giannotti G, Miszkiel J, Sadakierska-Chudy A, Racagni G, Filip MG, Fumagalli F. Cocaine-induced glutamate receptor trafficking is abrogated by extinction training in the rat hippocampus. Pharmacological reports : PR 2014; 66(2): 198-204. Van den Oever MC, Spijker S, Smit AB, De Vries TJ. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 2010; 35(2): 276-284. Wright JW, Harding JW. Contributions of matrix metalloproteinases to neural plasticity, habituation, associative learning and drug addiction. Neural plasticity 2009; 2009: 579382. Frischknecht R, Gundelfinger ED. The brain’s extracellular matrix and its role in synaptic plasticity. Adv Exp Med Biol 2012; 970: 153-171. Wlodarczyk J, Mukhina I, Kaczmarek L, Dityatev A. Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Developmental neurobiology 2011; 71(11): 1040-1053. Heimel JA, van Versendaal D, Levelt CN. The role of GABAergic inhibition in ocular dominance plasticity. Neural plasticity 2011; 2011: 391763. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 2002; 298(5596): 1248-1251. Dityatev A, Rusakov DA. Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 2011; 21(2): 353-359. Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 2009; 12(7): 897-904. Mizoguchi H, Yamada K, Niwa M, Mouri A, Mizuno T, Noda Y, Nitta A, Itohara S, Banno Y, Nabeshima T. Reduction of methamphetamine-induced sensitization and reward in matrix metalloproteinase-2 and -9-deficient mice. J Neurochem 2007; 100(6): 1579-1588. Van den Oever MC, Lubbers BR, Goriounova NA, Li KW, Van der Schors RC, Loos M, Riga D, Wiskerke J, Binnekade R, Stegeman M, Schoffelmeer AN, Mansvelder HD, Smit AB, De Vries TJ, Spijker S. Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking. Neuropsychopharmacology 2010; 35(10): 2120-2133. Smith AW, Nealey KA, Wright JW, Walker BM. Plasticity associated with escalated operant ethanol self-administration during acute withdrawal in ethanol-dependent rats requires intact matrix metalloproteinase systems. Neurobiology of learning and memory 2011; 96(2): 199-206. Sillanaukee P, Kalela A, Seppa K, Hoyhtya M, Nikkari ST. Matrix metalloproteinase-9 is elevated in serum of alcohol abusers. European journal of clinical investigation 2002; 32(4): 225-229. Castillo PE, Chiu CQ, Carroll RC. Long-term plasticity at inhibitory synapses. Curr Opin Neurobiol 2011; 21(2): 328-338. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013; 14(6): 383-400. Hagen EH, Sullivan RJ, Schmidt R, Morris G, Kempter R, Hammerstein P. Ecology and neurobiology of toxin avoidance and the paradox of drug reward. Neuroscience 2009; 160(1): 69-84. Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. Nicotine’s defensive function in nature. References 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. PLoS biology 2004; 2(8): E217. Barik J, Wonnacott S. Molecular and cellular mechanisms of action of nicotine in the CNS. Handb Exp Pharmacol 2009; (192): 173-207. Esse K, Fossati-Bellani M, Traylor A, Martin-Schild S. Epidemic of illicit drug use, mechanisms of action/addiction and stroke as a health hazard. Brain and behavior 2011; 1(1): 44-54. Benowitz NL. Clinical pharmacology and toxicology of cocaine. Pharmacology & toxicology 1993; 72(1): 3-12. Vanderschuren LJ, Everitt BJ. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 2004; 305(5686): 1017-1019. Deroche-Gamonet V, Belin D, Piazza PV. Evidence for addiction-like behavior in the rat. Science 2004; 305(5686): 1014-1017. O’Brien CP, Ehrman RN, Ternes JW. Classical conditioning in human opioid dependence. Academic Press: Orlando, 1986, 329-356pp. Wikler A. Dynamics of drug dependence. Implications of a conditioning theory for research and treatment. Archives of general psychiatry 1973; 28(5): 611-616. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. The American journal of psychiatry 2005; 162(8): 1403-1413. Jacobs EH, Spijker S, Verhoog CW, Kamprath K, de Vries TJ, Smit AB, Schoffelmeer AN. Active heroin administration induces specific genomic responses in the nucleus accumbens shell. Faseb J 2002; 16(14): 1961-1963. Hammer RP, Jr., Ricalde AA, Seatriz JV. Effects of opiates on brain development. Neurotoxicology 1989; 10(3): 475-483. Robinson TE, Kolb B. Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse (New York, NY) 1999; 33(2): 160-162. Robinson TE, Gorny G, Savage VR, Kolb B. Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats. Synapse (New York, NY) 2002; 46(4): 271-279. Pu L, Bao GB, Xu NJ, Ma L, Pei G. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci 2002; 22(5): 19141921. Dong Z, Cao J, Xu L. Opiate withdrawal modifies synaptic plasticity in subicular-nucleus accumbens pathway in vivo. Neuroscience 2007; 144(3): 845-854. Vanderschuren LJ, De Vries TJ, Wardeh G, Hogenboom FA, Schoffelmeer AN. A single exposure to morphine induces long-lasting behavioural and neurochemical sensitization in rats. Eur J Neurosci 2001; 14(9): 1533-1538. Tjon Tien Ril HK, De Vries TJ, Wardeh G, Hogenboom F, Mulder AH, Schoffelmeer AN. Long-lasting reciprocal changes in striatal dopamine and acetylcholine release upon morphine withdrawal. European journal of pharmacology 1993; 235(2-3): 321-322. Tjon GH, De Vries TJ, Ronken E, Hogenboom F, Wardeh G, Mulder AH, Schoffelmeer AN. Repeated and chronic morphine administration causes differential long-lasting changes in dopaminergic neurotransmission in rat striatum without changing its delta- and kappa-opioid receptor regulation. European journal of pharmacology 1994; 252(2): 205-212. Van den Oever MC, Goriounova NA, Li KW, Van der Schors RC, Binnekade R, Schoffelmeer AN, Mansvelder HD, Smit AB, Spijker S, De Vries TJ. Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat Neurosci 2008; 11(9): 1053-1058. Nestler EJ. Common molecular and cellular substrates of addiction and memory. Neurobiology of learning and memory 2002; 78(3): 637-647. Kelley AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 2004; 44(1): 161-179. Hyman SE. Addiction: a disease of learning and memory. The American journal of psychiatry 2005; 162(8): 1414-1422. Schmidt ED, Voorn P, Binnekade R, Schoffelmeer AN, De Vries TJ. Differential involvement of the prelimbic cortex and striatum in conditioned heroin and sucrose seeking following longterm extinction. Eur J Neurosci 2005; 22(9): 2347-2356. 121 References 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 122 Koya E, Spijker S, Voorn P, Binnekade R, Schmidt ED, Schoffelmeer AN, De Vries TJ, Smit AB. Enhanced cortical and accumbal molecular reactivity associated with conditioned heroin, but not sucrose-seeking behaviour. J Neurochem 2006; 98(3): 905-915. Rogers JL, Ghee S, See RE. The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience 2008; 151(2): 579-588. Dityatev A, Schachner M. Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 2003; 4(6): 456-468. Pizzorusso T, Medini P, Landi S, Baldini S, Berardi N, Maffei L. Structural and functional recovery from early monocular deprivation in adult rats. Proc Natl Acad Sci U S A 2006; 103(22): 8517-8522. Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem 2006; 96(5): 1227-1241. Brown TE, Forquer MR, Cocking DL, Jansen HT, Harding JW, Sorg BA. Role of matrix metalloproteinases in the acquisition and reconsolidation of cocaine-induced conditioned place preference. Learning & memory (Cold Spring Harbor, NY) 2007; 14(3): 214-223. Epstein DH, Preston KL, Stewart J, Shaham Y. Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 2006; 189(1): 1-16. Van den Oever MC, Spijker S, Li KW, Jimenez CR, Koya E, Van der Schors RC, Gouwenberg Y, Binnekade R, De Vries TJ, Schoffelmeer AN, Smit AB. A proteomics approach to identify longterm molecular changes in rat medial prefrontal cortex resulting from sucrose self-administration. J Proteome Res 2006; 5(1): 147-154. Hu J, Qian J, Borisov O, Pan S, Li Y, Liu T, Deng L, Wannemacher K, Kurnellas M, Patterson C, Elkabes S, Li H. Optimized proteomic analysis of a mouse model of cerebellar dysfunction using amine-specific isobaric tags. Proteomics 2006; 6(15): 4321-4334. Li KW, Miller S, Klychnikov O, Loos M, Stahl-Zeng J, Spijker S, Mayford M, Smit AB. Quantitative proteomics and protein network analysis of hippocampal synapses of CaMKIIalpha mutant mice. J Proteome Res 2007; 6(8): 3127-3133. Seidenbecher CI, Richter K, Rauch U, Fassler R, Garner CC, Gundelfinger ED. Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms. The Journal of biological chemistry 1995; 270(45): 2720627212. Kalivas PW, Volkow N, Seamans J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 2005; 45(5): 647-650. Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learning & memory (Cold Spring Harbor, NY) 2009; 16(5): 279-288. LaLumiere RT, Kalivas PW. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 2008; 28(12): 3170-3177. Aspberg A, Miura R, Bourdoulous S, Shimonaka M, Heinegard D, Schachner M, Ruoslahti E, Yamaguchi Y. The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci U S A 1997; 94(19): 10116-10121. Hagihara K, Miura R, Kosaki R, Berglund E, Ranscht B, Yamaguchi Y. Immunohistochemical evidence for the brevican-tenascin-R interaction: colocalization in perineuronal nets suggests a physiological role for the interaction in the adult rat brain. J Comp Neurol 1999; 410(2): 256264. Bruckner G, Grosche J. Perineuronal nets show intrinsic patterns of extracellular matrix differentiation in organotypic slice cultures. Experimental brain research 2001; 137(1): 83-93. Hartig W, Brauer K, Bruckner G. Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport 1992; 3(10): 869-872. Wegner F, Hartig W, Bringmann A, Grosche J, Wohlfarth K, Zuschratter W, Bruckner G. Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Experimental neurology 2003; 184(2): 705-714. References 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. Alpar A, Gartner U, Hartig W, Bruckner G. Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Res 2006; 1120(1): 13-22. Couey JJ, Meredith RM, Spijker S, Poorthuis RB, Smit AB, Brussaard AB, Mansvelder HD. Distributed Network Actions by Nicotine Increase the Threshold for Spike-Timing-Dependent Plasticity in Prefrontal Cortex. Neuron 2007; 54(1): 73-87. Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 2006; 11: 1696-1701. Odake S, Morita Y, Morikawa T, Yoshida N, Hori H, Nagai Y. Inhibition of matrix metalloproteinases by peptidyl hydroxamic acids. Biochemical and biophysical research communications 1994; 199(3): 1442-1446. Yamaguchi Y. Lecticans: organizers of the brain extracellular matrix. Cellular and molecular life sciences : CMLS 2000; 57(2): 276-289. Berardi N, Pizzorusso T, Maffei L. Extracellular matrix and visual cortical plasticity: freeing the synapse. Neuron 2004; 44(6): 905-908. Bandtlow CE, Zimmermann DR. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiological reviews 2000; 80(4): 1267-1290. Murakami T, Ohtsuka A. Perisynaptic barrier of proteoglycans in the mature brain and spinal cord. Arch Histol Cytol 2003; 66(3): 195-207. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002; 416(6881): 636-640. Peters J, Vallone J, Laurendi K, Kalivas PW. Opposing roles for the ventral prefrontal cortex and the basolateral amygdala on the spontaneous recovery of cocaine-seeking in rats. Psychopharmacology (Berl) 2008; 197(2): 319-326. Van den Oever MC, Spijker S, Smit AB, De Vries TJ. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 2009; 35(2): 276-284. McFarland K, Kalivas PW. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 2001; 21(21): 8655-8663. Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, Krug M, Bockers TM, Zhou X, Kreutz MR, Montag D, Gundelfinger ED, Fassler R. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Molecular and cellular biology 2002; 22(21): 7417-7427. Saghatelyan AK, Dityatev A, Schmidt S, Schuster T, Bartsch U, Schachner M. Reduced perisomatic inhibition, increased excitatory transmission, and impaired long-term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R. Molecular and cellular neurosciences 2001; 17(1): 226-240. Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ, Oliver K, Strata P, Fawcett JW. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 2006; 494(4): 559-577. Kawaguchi Y, Kondo S. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 2002; 31(3-5): 277-287. Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, Hestrin S, Rossier J. Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 1997; 17(10): 38943906. Cowan RL, Sesack SR, Van Bockstaele EJ, Branchereau P, Chain J, Pickel VM. Analysis of synaptic inputs and targets of physiologically characterized neurons in rat frontal cortex: combined in vivo intracellular recording and immunolabeling. Synapse (New York, NY) 1994; 17(2): 101114. Constantinidis C, Williams GV, Goldman-Rakic PS. A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 2002; 5(2): 175-180. McFarland K, Lapish CC, Kalivas PW. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 2003; 23(8): 3531-3537. 123 References 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 124 Steketee JD. Cortical mechanisms of cocaine sensitization. Crit Rev Neurobiol 2005; 17(2): 6986. Miller CA, Marshall JF. Altered prelimbic cortex output during cue-elicited drug seeking. J Neurosci 2004; 24(31): 6889-6897. Peters J, LaLumiere RT, Kalivas PW. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 2008; 28(23): 6046-6053. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009; 10(8): 561-572. Nestler EJ. Genes and addiction. Nature genetics 2000; 26(3): 277-281. Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 2010; 11(11): 735-746. Gundelfinger ED, Frischknecht R, Choquet D, Heine M. Converting juvenile into adult plasticity: a role for the brain’s extracellular matrix. Eur J Neurosci 2010; 31(12): 2156-2165. Zimmermann DR, Dours-Zimmermann MT. Extracellular matrix of the central nervous system: from neglect to challenge. Histochemistry and cell biology 2008; 130(4): 635-653. Dityatev A, Seidenbecher CI, Schachner M. Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 2010; 33(11): 503-512. Faissner A, Pyka M, Geissler M, Sobik T, Frischknecht R, Gundelfinger ED, Seidenbecher C. Contributions of astrocytes to synapse formation and maturation - Potential functions of the perisynaptic extracellular matrix. Brain research reviews 2010; 63(1-2): 26-38. Luscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011; 69(4): 650-663. Nagai T, Yamada K, Yoshimura M, Ishikawa K, Miyamoto Y, Hashimoto K, Noda Y, Nitta A, Nabeshima T. The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci U S A 2004; 101(10): 3650-3655. Nagai T, Noda Y, Ishikawa K, Miyamoto Y, Yoshimura M, Ito M, Takayanagi M, Takuma K, Yamada K, Nabeshima T. The role of tissue plasminogen activator in methamphetamine-related reward and sensitization. J Neurochem 2005; 92(3): 660-667. Bahi A, Kusnecov A, Dreyer JL. The role of tissue-type plasminogen activator system in amphetamine-induced conditional place preference extinction and reinstatement. Neuropsychopharmacology 2008; 33(11): 2726-2734. Mash DC, ffrench-Mullen J, Adi N, Qin Y, Buck A, Pablo J. Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PloS one 2007; 2(11): e1187. Bahi A, Dreyer JL. Overexpression of plasminogen activators in the nucleus accumbens enhances cocaine-, amphetamine- and morphine-induced reward and behavioral sensitization. Genes, brain, and behavior 2008; 7(2): 244-256. Bahi A, Dreyer JL. Involvement of tissue plasminogen activator “tPA” in ethanol-induced locomotor sensitization and conditioned-place preference. Behav Brain Res 2012; 226(1): 250-258. Lubbers BR, Van Mourik Y, Schetters D, Smit AB, De Vries TJ, Spijker S. Prefrontal gamma-aminobutyric Acid type a receptor insertion controls cue-induced relapse to nicotine seeking. Biol Psychiatry 2014; 76(9): 750-758. Van den Oever MC, Rotaru DC, Heinsbroek JA, Gouwenberg Y, Deisseroth K, Stuber GD, Mansvelder HD, Smit AB. Ventromedial prefrontal cortex pyramidal cells have a temporal dynamic role in recall and extinction of cocaine-associated memory. J Neurosci 2013; 33(46): 18225-18233. Loos M, Mueller T, Gouwenberg Y, Wijnands R, van der Loo RJ, Birchmeier C, Smit AB, Spijker S. Neuregulin-3 in the mouse medial prefrontal cortex regulates impulsive action. Biol Psychiatry 2014; 76(8): 648-655. Loos M, van der Sluis S, Bochdanovits Z, van Zutphen IJ, Pattij T, Stiedl O, Smit AB, Spijker S. Activity and impulsive action are controlled by different genetic and environmental factors. Genes, brain, and behavior 2009; 8(8): 817-828. References 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. Hall FS, Drgonova J, Jain S, Uhl GR. Implications of genome wide association studies for addiction: are our a priori assumptions all wrong? Pharmacology & therapeutics 2013; 140(3): 267-279. McRae PA, Porter BE. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochemistry international 2012; 61(7): 963-972. Bruckner G, Brauer K, Hartig W, Wolff JR, Rickmann MJ, Derouiche A, Delpech B, Girard N, Oertel WH, Reichenbach A. Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 1993; 8(3): 183200. Mucha RF, van der Kooy D, O’Shaughnessy M, Bucenieks P. Drug reinforcement studied by the use of place conditioning in rat. Brain Res 1982; 243(1): 91-105. Lawley SI, Kantak KM. Postconditioning effects of magnesium on cocaine conditioned place preference in mice. Pharmacology, biochemistry, and behavior 1990; 36(3): 531-538. Sellings LH, McQuade LE, Clarke PB. Evidence for multiple sites within rat ventral striatum mediating cocaine-conditioned place preference and locomotor activation. J Pharmacol Exp Ther 2006; 317(3): 1178-1187. Baker DA, Fuchs RA, Specio SE, Khroyan TV, Neisewander JL. Effects of intraaccumbens administration of SCH-23390 on cocaine-induced locomotion and conditioned place preference. Synapse (New York, NY) 1998; 30(2): 181-193. Anagnostaras SG, Gale GD, Fanselow MS. Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 2001; 11(1): 8-17. Raybuck JD, Lattal KM. Differential effects of dorsal hippocampal inactivation on expression of recent and remote drug and fear memory. Neuroscience letters 2014; 569: 1-5. Meyers RA, Zavala AR, Neisewander JL. Dorsal, but not ventral, hippocampal lesions disrupt cocaine place conditioning. Neuroreport 2003; 14(16): 2127-2131. Meyers RA, Zavala AR, Speer CM, Neisewander JL. Dorsal hippocampus inhibition disrupts acquisition and expression, but not consolidation, of cocaine conditioned place preference. Behavioral neuroscience 2006; 120(2): 401-412. Steiner RC, Hsiung HM, Picciotto MR. Cocaine self-administration and locomotor sensitization are not altered in CART knockout mice. Behav Brain Res 2006; 171(1): 56-62. Eisener-Dorman AF, Grabowski-Boase L, Tarantino LM. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice. Behavioral and brain functions : BBF 2011; 7: 29. Wright JW, Masino AJ, Reichert JR, Turner GD, Meighan SE, Meighan PC, Harding JW. Ethanol-induced impairment of spatial memory and brain matrix metalloproteinases. Brain Res 2003; 963(1-2): 252-261. Nagai T, Ito M, Nakamichi N, Mizoguchi H, Kamei H, Fukakusa A, Nabeshima T, Takuma K, Yamada K. The rewards of nicotine: regulation by tissue plasminogen activator-plasmin system through protease activated receptor-1. J Neurosci 2006; 26(47): 12374-12383. Peters J, Pattij T, De Vries TJ. Targeting cocaine versus heroin memories: divergent roles within ventromedial prefrontal cortex. Trends in pharmacological sciences 2013; 34(12): 689-695. Badiani A, Belin D, Epstein D, Calu D, Shaham Y. Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 2011; 12(11): 685-700. Ruitenberg MJ, Eggers R, Boer GJ, Verhaagen J. Adeno-associated viral vectors as agents for gene delivery: application in disorders and trauma of the central nervous system. Methods (San Diego, Calif) 2002; 28(2): 182-194. Mason MR, Ehlert EM, Eggers R, Pool CW, Hermening S, Huseinovic A, Timmermans E, Blits B, Verhaagen J. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Molecular therapy : the journal of the American Society of Gene Therapy 2010; 18(4): 715724. Bontempi B, Laurent-Demir C, Destrade C, Jaffard R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 1999; 400(6745): 671-675. Takehara K, Kawahara S, Kirino Y. Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning. J Neurosci 2003; 23(30): 9897- 125 References 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214. 126 9905. Bruckner G, Grosche J, Schmidt S, Hartig W, Margolis RU, Delpech B, Seidenbecher CI, Czaniera R, Schachner M. Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol 2000; 428(4): 616-629. Seidenbecher CI, Smalla KH, Fischer N, Gundelfinger ED, Kreutz MR. Brevican isoforms associate with neural membranes. J Neurochem 2002; 83(3): 738-746. Niederost BP, Zimmermann DR, Schwab ME, Bandtlow CE. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J Neurosci 1999; 19(20): 8979-8989. Frischknecht R, Seidenbecher CI. Brevican: a key proteoglycan in the perisynaptic extracellular matrix of the brain. The international journal of biochemistry & cell biology 2012; 44(7): 10511054. Anthony JC, Warner LA, Kessler RC. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Exp Clin Psychopharmacol 1994; 2(3): 244–268. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997; 349(9064): 1498-1504. Knackstedt LA, Kalivas PW. Glutamate and reinstatement. Curr Opin Pharmacol 2009; 9(1): 59-64. Schmidt HD, Pierce RC. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann N Y Acad Sci 2010; 1187: 35-75. Wonnacott S, Sidhpura N, Balfour DJ. Nicotine: from molecular mechanisms to behaviour. Curr Opin Pharmacol 2005; 5(1): 53-59. Picciotto MR, Mineur YS. Molecules and circuits involved in nicotine addiction: The many faces of smoking. Neuropharmacology 2013; 76 Pt B: 545-553. Lee JH, Lim Y, Wiederhold BK, Graham SJ. A functional magnetic resonance imaging (FMRI) study of cue-induced smoking craving in virtual environments. Appl Psychophysiol Biofeedback 2005; 30(3): 195-204. Wang Z, Faith M, Patterson F, Tang K, Kerrin K, Wileyto EP, Detre JA, Lerman C. Neural substrates of abstinence-induced cigarette cravings in chronic smokers. J Neurosci 2007; 27(51): 14035-14040. Goudriaan AE, de Ruiter MB, van den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol 2010; 15(4): 491-503. Azizian A, Monterosso J, O’Neill J, London ED. Magnetic resonance imaging studies of cigarette smoking. Handb Exp Pharmacol 2009; (192): 113-143. Shaham Y, Shalev U, Lu L, de Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 2003; 168(1-2): 3-20. Paterson NE, Froestl W, Markou A. Repeated administration of the GABAB receptor agonist CGP44532 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine-seeking in rats. Neuropsychopharmacology 2005; 30(1): 119128. Le Foll B, Goldberg SR. Effects of nicotine in experimental animals and humans: an update on addictive properties. Handb Exp Pharmacol 2009; (192): 335-367. Park WK, Bari AA, Jey AR, Anderson SM, Spealman RD, Rowlett JK, Pierce RC. Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci 2002; 22(7): 2916-2925. Pagliusi SR, Tessari M, DeVevey S, Chiamulera C, Pich EM. The reinforcing properties of nicotine are associated with a specific patterning of c-fos expression in the rat brain. Eur J Neurosci 1996; 8(11): 2247-2256. Pich EM, Pagliusi SR, Tessari M, Talabot-Ayer D, Hooft van Huijsduijnen R, Chiamulera C. Common neural substrates for the addictive properties of nicotine and cocaine. Science 1997; 275(5296): 83-86. References 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. Pascual MM, Pastor V, Bernabeu RO. Nicotine-conditioned place preference induced CREB phosphorylation and Fos expression in the adult rat brain. Psychopharmacology (Berl) 2009; 207(1): 57-71. Schroeder BE, Binzak JM, Kelley AE. A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience 2001; 105(3): 535-545. Shaham Y, Hope BT. The role of neuroadaptations in relapse to drug seeking. Nat Neurosci 2005; 8(11): 1437-1439. Kalivas PW, Volkow ND. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry 2011; 16(10): 974-986. Hemby SE, Horman B, Tang W. Differential regulation of ionotropic glutamate receptor subunits following cocaine self-administration. Brain Res 2005; 1064(1-2): 75-82. Wang F, Chen H, Steketee JD, Sharp BM. Upregulation of ionotropic glutamate receptor subunits within specific mesocorticolimbic regions during chronic nicotine self-administration. Neuropsychopharmacology 2007; 32(1): 103-109. Shen H, Moussawi K, Zhou W, Toda S, Kalivas PW. Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci U S A 2011; 108(48): 19407-19412. Reichel CM, Moussawi K, Do PH, Kalivas PW, See RE. Chronic N-acetylcysteine during abstinence or extinction after cocaine self-administration produces enduring reductions in drug seeking. J Pharmacol Exp Ther 2011; 337(2): 487-493. Zhou W, Kalivas PW. N-acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biol Psychiatry 2008; 63(3): 338-340. Ramirez-Nino AM, D’Souza MS, Markou A. N-acetylcysteine decreased nicotine self-administration and cue-induced reinstatement of nicotine seeking in rats: comparison with the effects of N-acetylcysteine on food responding and food seeking. Psychopharmacology (Berl) 2013; 225(2): 473-482. Liechti ME, Lhuillier L, Kaupmann K, Markou A. Metabotropic glutamate 2/3 receptors in the ventral tegmental area and the nucleus accumbens shell are involved in behaviors relating to nicotine dependence. J Neurosci 2007; 27(34): 9077-9085. Markou A. Review. Neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci 2008; 363(1507): 3159-3168. Pickering C, Bergenheim V, Schioth HB, Ericson M. Sensitization to nicotine significantly decreases expression of GABA transporter GAT-1 in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(6): 1521-1526. Bespalov AY, Dravolina OA, Sukhanov I, Zakharova E, Blokhina E, Zvartau E, Danysz W, van Heeke G, Markou A. Metabotropic glutamate receptor (mGluR5) antagonist MPEP attenuated cue- and schedule-induced reinstatement of nicotine self-administration behavior in rats. Neuropharmacology 2005; 49 Suppl 1: 167-178. Dravolina OA, Zakharova ES, Shekunova EV, Zvartau EE, Danysz W, Bespalov AY. mGlu1 receptor blockade attenuates cue- and nicotine-induced reinstatement of extinguished nicotine self-administration behavior in rats. Neuropharmacology 2007; 52(2): 263-269. Marsden KC, Beattie JB, Friedenthal J, Carroll RC. NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABA(A) receptors. J Neurosci 2007; 27(52): 14326-14337. De Vries TJ, de Vries W, Janssen MC, Schoffelmeer AN. Suppression of conditioned nicotine and sucrose seeking by the cannabinoid-1 receptor antagonist SR141716A. Behav Brain Res 2005; 161(1): 164-168. Paxinos G, Watson C. The rat brain in stereotaxic coordinates, Ed. 5. Academic Press: San Diego, CA, USA, 2004. Counotte DS, Li KW, Wortel J, Gouwenberg Y, Van Der Schors RC, Smit AB, Spijker S. Changes in molecular composition of rat medial prefrontal cortex synapses during adolescent development. Eur J Neurosci 2010; 32(9): 1452-1460. Gaiarsa JL, Caillard O, Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: 127 References 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 128 mechanisms and functional significance. Trends Neurosci 2002; 25(11): 564-570. Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002; 25: 103-126. Kullmann DM, Lamsa KP. LTP and LTD in cortical GABAergic interneurons: emerging rules and roles. Neuropharmacology 2011; 60(5): 712-719. Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 70(3): 385-409. Bachtell RK, Choi KH, Simmons DL, Falcon E, Monteggia LM, Neve RL, Self DW. Role of GluR1 expression in nucleus accumbens neurons in cocaine sensitization and cocaine-seeking behavior. Eur J Neurosci 2008; 27(9): 2229-2240. Bogdanov Y, Michels G, Armstrong-Gold C, Haydon PG, Lindstrom J, Pangalos M, Moss SJ. Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. EMBO J 2006; 25(18): 4381-4389. Chen ZW, Chang CS, Leil TA, Olcese R, Olsen RW. GABAA receptor-associated protein regulates GABAA receptor cell-surface number in Xenopus laevis oocytes. Mol Pharmacol 2005; 68(1): 152-159. Leil TA, Chen ZW, Chang CS, Olsen RW. GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci 2004; 24(50): 11429-11438. Nymann-Andersen J, Wang H, Chen L, Kittler JT, Moss SJ, Olsen RW. Subunit specificity and interaction domain between GABA(A) receptor-associated protein (GABARAP) and GABA(A) receptors. J Neurochem 2002; 80(5): 815-823. Lin HC, Mao SC, Gean PW. Block of gamma-aminobutyric acid-A receptor insertion in the amygdala impairs extinction of conditioned fear. Biol Psychiatry 2009; 66(7): 665-673. Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27(6): 555-579. Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, See RE. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 2005; 30(2): 296-309. Bossert JM, Stern AL, Theberge FR, Cifani C, Koya E, Hope BT, Shaham Y. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nat Neurosci 2011; 14(4): 420-422. Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009; 61(3): 340-350. Gipson CD, Reissner KJ, Kupchik YM, Smith AC, Stankeviciute N, Hensley-Simon ME, Kalivas PW. Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proc Natl Acad Sci U S A 2013; 110(22): 9124-9129. Tyagarajan SK, Fritschy JM. GABA(A) receptors, gephyrin and homeostatic synaptic plasticity. J Physiol 2010; 588(Pt 1): 101-106. Sadri-Vakili G, Kumaresan V, Schmidt HD, Famous KR, Chawla P, Vassoler FM, Overland RP, Xia E, Bass CE, Terwilliger EF, Pierce RC, Cha JHJ. Cocaine-Induced Chromatin Remodeling Increases Brain-Derived Neurotrophic Factor Transcription in the Rat Medial Prefrontal Cortex, Which Alters the Reinforcing Efficacy of Cocaine. Journal of Neuroscience 2010; 30(35): 11735-11744. McFarland K, Davidge SB, Lapish CC, Kalivas PW. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 2004; 24(7): 1551-1560. McLaughlin J, See RE. Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology (Berl) 2003; 168(1-2): 57-65. Thierry AM, Stinus L, Blanc G, Glowinski J. Some evidence for the existence of dopaminergic neurons in the rat cortex. Brain Res 1973; 50(1): 230-234. McDonald AJ. Organization of amygdaloid projections to the mediodorsal thalamus and prefrontal cortex: a fluorescence retrograde transport study in the rat. J Comp Neurol 1987; 262(1): 46-58. References 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. 274. 275. 276. 277. Carter BL, Tiffany ST. Meta-analysis of cue-reactivity in addiction research. Addiction 1999; 94(3): 327-340. Hogarth L, Dickinson A, Duka T. The associative basis of cue-elicited drug taking in humans. Psychopharmacology (Berl) 2010; 208(3): 337-351. Tiffany ST, Warthen MW, Goedeker KC. The functional significance of craving in nicotine dependence. Nebraska Symposium on Motivation Nebraska Symposium on Motivation 2009; 55: 171-197. Garavan H. Insula and drug cravings. Brain structure & function 2010; 214(5-6): 593-601. Janes AC, Pizzagalli DA, Richardt S, de BFB, Chuzi S, Pachas G, Culhane MA, Holmes AJ, Fava M, Evins AE, Kaufman MJ. Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry 2010; 67(8): 722-729. Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science 2007; 315(5811): 531-534. Scott D, Hiroi N. Deconstructing craving: dissociable cortical control of cue reactivity in nicotine addiction. Biol Psychiatry 2011; 69(11): 1052-1059. Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ. Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci U S A 2008; 105(49): 19480-19485. Forget B, Pushparaj A, Le Foll B. Granular insular cortex inactivation as a novel therapeutic strategy for nicotine addiction. Biol Psychiatry 2010; 68(3): 265-271. Lull ME, Freeman WM, VanGuilder HD, Vrana KE. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend 2010; 107(1): 11-22. Williams K, Wu T, Colangelo C, Nairn AC. Recent advances in neuroproteomics and potential application to studies of drug addiction. Neuropharmacology 2004; 47 Suppl 1: 148-166. Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron 2013; 77(5): 867-872. Klemmer P, Meredith RM, Holmgren CD, Klychnikov OI, Stahl-Zeng J, Loos M, van der Schors RC, Wortel J, de Wit H, Spijker S, Rotaru DC, Mansvelder HD, Smit AB, Li KW. Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype. The Journal of biological chemistry 2011; 286(29): 25495-25504. Van Nierop P, Loos M. Bioinformatics Procedures for Analysis of Quantitative Proteomics Experiments. In: Li KW (ed). Neuroproteomics, vol. 57. Springer: New York, 2011. Meyer-Arendt K, Old WM, Houel S, Renganathan K, Eichelberger B, Resing KA, Ahn NG. IsoformResolver: A peptide-centric algorithm for protein inference. J Proteome Res 2011; 10(7): 3060-3075. Reiter L, Claassen M, Schrimpf SP, Jovanovic M, Schmidt A, Buhmann JM, Hengartner MO, Aebersold R. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Molecular & cellular proteomics : MCP 2009; 8(11): 24052417. Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS. Addressing accuracy and precision issues in iTRAQ quantitation. Molecular & cellular proteomics : MCP 2010; 9(9): 1885-1897. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98(9): 5116-5121. Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic acids research 2005; 33(Web Server issue): W741-748. Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic acids research 2013; 41(Web Server issue): W77-83. Reichel CM, Bevins RA. Forced abstinence model of relapse to study pharmacological treatments of substance use disorder. Current drug abuse reviews 2009; 2(2): 184-194. Fuchs RA, Branham RK, See RE. Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci 2006; 26(13): 3584-3588. Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the 129 References 278. 279. 280. 281. 282. 283. 284. 285. 286. 287. 288. 289. 290. 291. 292. 293. 294. 295. 296. 297. 298. 130 CD47-SIRPalpha signalling pathway. Trends in cell biology 2009; 19(2): 72-80. Jiang P, Lagenaur CF, Narayanan V. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. The Journal of biological chemistry 1999; 274(2): 559-562. Mi ZP, Jiang P, Weng WL, Lindberg FP, Narayanan V, Lagenaur CF. Expression of a synapse-associated membrane protein, P84/SHPS-1, and its ligand, IAP/CD47, in mouse retina. J Comp Neurol 2000; 416(3): 335-344. Inagaki K, Yamao T, Noguchi T, Matozaki T, Fukunaga K, Takada T, Hosooka T, Akira S, Kasuga M. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J 2000; 19(24): 6721-6731. Brown E, Hooper L, Ho T, Gresham H. Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. The Journal of cell biology 1990; 111(6 Pt 1): 2785-2794. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain structure & function 2010; 214(5-6): 519-534. Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain research Brain research reviews 1996; 22(3): 229-244. Xue YX, Luo YX, Wu P, Shi HS, Xue LF, Chen C, Zhu WL, Ding ZB, Bao YP, Shi J, Epstein DH, Shaham Y, Lu L. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science 2012; 336(6078): 241-245. Sartor GC, Aston-Jones G. Post-Retrieval Extinction Attenuates Cocaine Memories. Neuropsychopharmacology 2013; 39(5): 1059-1065. Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. The Journal of biological chemistry 2006; 281(26): 17789-17800. Stranahan AM, Erion JR, Wosiski-Kuhn M. Reelin signaling in development, maintenance, and plasticity of neural networks. Ageing research reviews 2013; 12(3): 815-822. Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L. Perineuronal nets: past and present. Trends Neurosci 1998; 21(12): 510-515. Ethell IM, Ethell DW. Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res 2007; 85(13): 2813-2823. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 1997; 91(4): 439-442. Tamura H, Ishikawa Y, Shiosaka S. Does extracellular proteolysis control mammalian cognition? Reviews in the neurosciences 2013; 24(4): 365-374. Xue YX, Xue LF, Liu JF, He J, Deng JH, Sun SC, Han HB, Luo YX, Xu LZ, Wu P, Lu L. Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J Neurosci 2014; 34(19): 6647-6658. Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology. Thrombosis and haemostasis 2005; 93(4): 655-660. Yan Y, Yamada K, Mizoguchi H, Noda Y, Nagai T, Nitta A, Nabeshima T. Reinforcing effects of morphine are reduced in tissue plasminogen activator-knockout mice. Neuroscience 2007; 146(1): 50-59. Nagai T, Kamei H, Ito M, Hashimoto K, Takuma K, Nabeshima T, Yamada K. Modification by the tissue plasminogen activator-plasmin system of morphine-induced dopamine release and hyperlocomotion, but not anti-nociceptive effect in mice. J Neurochem 2005; 93(5): 1272-1279. Nakamoto K, Kawasaki S, Kobori T, Fujita-Hamabe W, Mizoguchi H, Yamada K, Nabeshima T, Tokuyama S. Involvement of matrix metalloproteinase-9 in the development of morphine tolerance. European journal of pharmacology 2012; 683(1-3): 86-92. Wang X, Lee SR, Arai K, Lee SR, Tsuji K, Rebeck GW, Lo EH. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nature medicine 2003; 9(10): 1313-1317. Hashimoto T, Kajii Y, Nishikawa T. Psychotomimetic-induction of tissue plasminogen activator mRNA in corticostriatal neurons in rat brain. Eur J Neurosci 1998; 10(11): 3387-3399. References 299. 300. 301. 302. 303. 304. 305. 306. 307. 308. 309. 310. 311. 312. 313. 314. 315. 316. Fukakusa A, Nagai T, Mizoguchi H, Otsuka N, Kimura H, Kamei H, Kim HC, Nabeshima T, Takuma K, Yamada K. Role of tissue plasminogen activator in the sensitization of methamphetamine-induced dopamine release in the nucleus accumbens. J Neurochem 2008; 105(2): 436-444. Brown TE, Forquer MR, Harding JW, Wright JW, Sorg BA. Increase in matrix metalloproteinase-9 levels in the rat medial prefrontal cortex after cocaine reinstatement of conditioned place preference. Synapse (New York, NY) 2008; 62(12): 886-889. Nakamura H, Fujii Y, Inoki I, Sugimoto K, Tanzawa K, Matsuki H, Miura R, Yamaguchi Y, Okada Y. Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. The Journal of biological chemistry 2000; 275(49): 38885-38890. Numachi Y, Yoshida S, Yamashita M, Fujiyama K, Naka M, Matsuoka H, Sato M, Sora I. Psychostimulant alters expression of DNA methyltransferase mRNA in the rat brain. Ann N Y Acad Sci 2004; 1025: 102-109. Host L, Anglard P, Romieu P, Thibault C, Dembele D, Aunis D, Zwiller J. Inhibition of histone deacetylases in rats self-administering cocaine regulates lissencephaly gene-1 and reelin gene expression, as revealed by microarray technique. J Neurochem 2010; 113(1): 236-247. Teixeira CM, Martin ED, Sahun I, Masachs N, Pujadas L, Corvelo A, Bosch C, Rossi D, Martinez A, Maldonado R, Dierssen M, Soriano E. Overexpression of Reelin prevents the manifestation of behavioral phenotypes related to schizophrenia and bipolar disorder. Neuropsychopharmacology 2011; 36(12): 2395-2405. Chen J, Repunte-Canonigo V, Kawamura T, Lefebvre C, Shin W, Howell LL, Hemby SE, Harvey BK, Califano A, Morales M, Koob GF, Sanna PP. Hypothalamic proteoglycan syndecan-3 is a novel cocaine addiction resilience factor. Nature communications 2013; 4: 1955. Maiya R, Zhou Y, Norris EH, Kreek MJ, Strickland S. Tissue plasminogen activator modulates the cellular and behavioral response to cocaine. Proc Natl Acad Sci U S A 2009; 106(6): 19831988. Gualandris A, Jones TE, Strickland S, Tsirka SE. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J Neurosci 1996; 16(7): 2220-2225. Wu YP, Siao CJ, Lu W, Sung TC, Frohman MA, Milev P, Bugge TH, Degen JL, Levine JM, Margolis RU, Tsirka SE. The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. The Journal of cell biology 2000; 148(6): 1295-1304. Calabresi P, Napolitano M, Centonze D, Marfia GA, Gubellini P, Teule MA, Berretta N, Bernardi G, Frati L, Tolu M, Gulino A. Tissue plasminogen activator controls multiple forms of synaptic plasticity and memory. Eur J Neurosci 2000; 12(3): 1002-1012. Belcheva MM, Tan Y, Heaton VM, Clark AL, Coscia CJ. Mu opioid transactivation and down-regulation of the epidermal growth factor receptor in astrocytes: implications for mitogen-activated protein kinase signaling. Mol Pharmacol 2003; 64(6): 1391-1401. Ikeda H, Miyatake M, Koshikawa N, Ochiai K, Yamada K, Kiss A, Donlin MJ, Panneton WM, Churchill JD, Green M, Siddiqui AM, Leinweber AL, Crews NR, Ezerskiy LA, Rendell VR, Belcheva MM, Coscia CJ. Morphine modulation of thrombospondin levels in astrocytes and its implications for neurite outgrowth and synapse formation. The Journal of biological chemistry 2010; 285(49): 38415-38427. Conant K, Lonskaya I, Szklarczyk A, Krall C, Steiner J, Maguire-Zeiss K, Lim ST. Methamphetamine-associated cleavage of the synaptic adhesion molecule intercellular adhesion molecule-5. J Neurochem 2011; 118(4): 521-532. Wiggins A, Smith RJ, Shen HW, Kalivas PW. Integrins modulate relapse to cocaine-seeking. J Neurosci 2011; 31(45): 16177-16184. Warren MS, Bradley WD, Gourley SL, Lin YC, Simpson MA, Reichardt LF, Greer CA, Taylor JR, Koleske AJ. Integrin beta1 signals through Arg to regulate postnatal dendritic arborization, synapse density, and behavior. J Neurosci 2012; 32(8): 2824-2834. Cox BM, Goldstein A, Nelson WT. Nicotine self-administration in rats. British journal of pharmacology 1984; 83(1): 49-55. Chiamulera C, Borgo C, Falchetto S, Valerio E, Tessari M. Nicotine reinstatement of nicotine self-administration after long-term extinction. Psychopharmacology (Berl) 1996; 127(2): 102- 131 References 317. 318. 319. 320. 321. 322. 323. 324. 325. 326. 327. 328. 329. 330. 331. 332. 333. 334. 335. 336. 337. 132 107. Shaham Y, Adamson LK, Grocki S, Corrigall WA. Reinstatement and spontaneous recovery of nicotine seeking in rats. Psychopharmacology (Berl) 1997; 130(4): 396-403. Buczek Y, Le AD, Wang A, Stewart J, Shaham Y. Stress reinstates nicotine seeking but not sucrose solution seeking in rats. Psychopharmacology (Berl) 1999; 144(2): 183-188. Andreoli M, Tessari M, Pilla M, Valerio E, Hagan JJ, Heidbreder CA. Selective antagonism at dopamine D3 receptors prevents nicotine-triggered relapse to nicotine-seeking behavior. Neuropsychopharmacology 2003; 28(7): 1272-1280. Liu X, Caggiula AR, Yee SK, Nobuta H, Sved AF, Pechnick RN, Poland RE. Mecamylamine attenuates cue-induced reinstatement of nicotine-seeking behavior in rats. Neuropsychopharmacology 2007; 32(3): 710-718. Diergaarde L, de Vries W, Raaso H, Schoffelmeer AN, De Vries TJ. Contextual renewal of nicotine seeking in rats and its suppression by the cannabinoid-1 receptor antagonist Rimonabant (SR141716A). Neuropharmacology 2008; 55(5): 712-716. Abdolahi A, Acosta G, Breslin FJ, Hemby SE, Lynch WJ. Incubation of nicotine seeking is associated with enhanced protein kinase A-regulated signaling of dopamine- and cAMP-regulated phosphoprotein of 32 kDa in the insular cortex. Eur J Neurosci 2010; 31(4): 733-741. Svenningsson P, Nairn AC, Greengard P. DARPP-32 mediates the actions of multiple drugs of abuse. The AAPS journal 2005; 7(2): E353-360. Plaza-Zabala A, Flores A, Martin-Garcia E, Saravia R, Maldonado R, Berrendero F. A role for hypocretin/orexin receptor-1 in cue-induced reinstatement of nicotine-seeking behavior. Neuropsychopharmacology 2013; 38(9): 1724-1736. Sanderson JL, Dell’Acqua ML. AKAP signaling complexes in regulation of excitatory synaptic plasticity. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 2011; 17(3): 321-336. Saddoris MP, Sugam JA, Cacciapaglia F, Carelli RM. Rapid dopamine dynamics in the accumbens core and shell: learning and action. Frontiers in bioscience (Elite edition) 2013; 5: 273288. D’Souza MS, Markou A. Differential role of N-methyl-D-aspartate receptor-mediated glutamate transmission in the nucleus accumbens shell and core in nicotine seeking in rats. Eur J Neurosci 2014; 39(8): 1314-1322. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004; 5(10): 793-807. Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 2004; 27(8): 468-474. Shi CJ, Cassell MD. Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 1998; 399(4): 440-468. Bossert JM, Ghitza UE, Lu L, Epstein DH, Shaham Y. Neurobiology of relapse to heroin and cocaine seeking: an update and clinical implications. European journal of pharmacology 2005; 526(1-3): 36-50. Shalev U, Grimm JW, Shaham Y. Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacological reviews 2002; 54(1): 1-42. Di Pietro NC, Black YD, Kantak KM. Context-dependent prefrontal cortex regulation of cocaine self-administration and reinstatement behaviors in rats. Eur J Neurosci 2006; 24(11): 3285-3298. Zhou L, Nazarian A, Sun WL, Jenab S, Quinones-Jenab V. Basal and cocaine-induced sex differences in the DARPP-32-mediated signaling pathway. Psychopharmacology (Berl) 2009; 203(1): 175-183. Zachariou V, Sgambato-Faure V, Sasaki T, Svenningsson P, Berton O, Fienberg AA, Nairn AC, Greengard P, Nestler EJ. Phosphorylation of DARPP-32 at Threonine-34 is required for cocaine action. Neuropsychopharmacology 2006; 31(3): 555-562. Smith RJ, Aston-Jones G. Orexin / hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur J Neurosci 2012; 35(5): 798-804. Smith RJ, See RE, Aston-Jones G. Orexin/hypocretin signaling at the orexin 1 receptor regulates References 338. 339. 340. 341. 342. 343. 344. 345. 346. cue-elicited cocaine-seeking. Eur J Neurosci 2009; 30(3): 493-503. Shen HW, Scofield MD, Boger H, Hensley M, Kalivas PW. Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J Neurosci 2014; 34(16): 5649-5657. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, Marinelli M, Wolf ME. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008; 454(7200): 118-121. Knackstedt LA, Moussawi K, Lalumiere R, Schwendt M, Klugmann M, Kalivas PW. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J Neurosci 2010; 30(23): 7984-7992. Knackstedt LA, Melendez RI, Kalivas PW. Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry 2010; 67(1): 81-84. Backstrom P, Hyytia P. Involvement of AMPA/kainate, NMDA, and mGlu5 receptors in the nucleus accumbens core in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2007; 192(4): 571-580. Famous KR, Kumaresan V, Sadri-Vakili G, Schmidt HD, Mierke DF, Cha JH, Pierce RC. Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking. J Neurosci 2008; 28(43): 11061-11070. Schmidt HD, Schassburger RL, Guercio LA, Pierce RC. Stimulation of mGluR5 in the accumbens shell promotes cocaine seeking by activating PKC gamma. J Neurosci 2013; 33(35): 14160-14169. Schmidt HD, Kimmey BA, Arreola AC, Pierce RC. Group I metabotropic glutamate receptor-mediated activation of PKC gamma in the nucleus accumbens core promotes the reinstatement of cocaine seeking. Addict Biol 2014. Mello NK, Negus SS. Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology 1996; 14(6): 375-424. 133 134 English summary Molecular mechanisms controlling relapse to drug seeking in rodent models of addiction Drug addiction is a psychiatric disorder that is associated with the loss of control over the intake of drugs of abuse. This disorder is a major source of personal suffering and societal problems. Currently, a limited number of addiction therapies are available, but these only have minor preventive effects on relapse to the use of drugs of abuse. During the last decades, brain imaging studies in humans have provided insight into the brain circuitry that is involved in the development of addiction and drug craving. In parallel, animal models have been developed to study the neurobiology of addiction in more detail and to test potential therapies. Repeated exposure to drugs induces adaptations in the brain that persist even after extended abstinence. These neuroadaptations are thought to underlie the chronically relapsing nature of drug addiction. It follows that a better understanding of the molecular mechanisms controlling relapse might contribute to the development of more efficient addiction therapies. The research described in this thesis makes use of different animal models of addiction to increase our knowledge of these mechanisms. Chapter 2 describes the role of the extracellular matrix (ECM) in relapse to heroin seeking in rats. After heroin self-administration and a subsequent period of extinction or abstinence, the synaptic levels of the matrix proteins brevican and tenascin-R were reduced in the medial prefrontal cortex (mPFC), a brain area executing higher cognitive functions, of which the involvement in relapse has been demonstrated in humans and animals. Also in the nucleus accumbens, a brain area with an important role in reward and motivated behavior, these protein levels were reduced after extinction. Subsequently, relapse was induced by presenting the audiovisual stimuli that were paired with injections of heroin during the self-administration phase (“cue-induced relapse”). During relapse, ECM protein levels were partially normalized. Furthermore, heroin seeking could be attenuated by normalizing these protein levels before the relapse test. This indicates that reduced ECM levels might underlie a higher vulnerability for addictive behavior. The role of the ECM component brevican is further explored in chapter 3. To do this, the formation of an appetitive cocaine memory was investigated in a mouse that expresses reduced levels of brevican (the Bcan+/- mouse) using the conditioned place preference paradigm. Bcan+/- mice showed a stronger preference for the compartment that was paired with injections of cocaine than wild-type mice. Increasing the expression level of brevican in the dorsal hippocampus, by local infusion of a viral vector with the Bcan gene, reduced the conditioned cocaine memory. The dorsal hippocampus is a brain area that is important for contextual memory. These findings indicate that reduced brevican levels in the dorsal hippocampus underlie a higher sensitivity for the rewarding effects of cocaine. These studies show an important role of the ECM, and specifically brevican, in regu lating addictive behavior. This is consistent with available literature that shows that drugs affect the expression or activity of ECM components, as well as the proteases that mediate their de 135 English summary gradation. Lower levels of ECM might result in increased plasticity in the brain circuitry that is involved in addiction, and by this contribute to the formation of drug-induced neuroadaptations and the persistent vulnerability to relapse. Compounds that can modulate ECM dynamics might therefore be employed to prevent relapse in the future. Whereas our knowledge of the neurobiology of relapse to cocaine and heroin seeking is increasing, little is currently known about relapse to nicotine, the neuro-active component in tobacco. To gain insight into the acute changes that take place in the mPFC during relapse to nicotine seeking in rats, the relapse-associated regulation of proteins that are known to have an important role in synaptic plasticity was explored in chapter 4. Cue-induced relapse, after nicotine self-administration and extinction, was associated with an increase in the levels of the α1 and γ2 subunits of the GABAA receptor, but not of subunits of glutamate receptors. Blocking membrane insertion of GABAA receptors in the dorsal, but not the ventral, mPFC, resulted in augmented responding during relapse. In contrast, nicotine seeking was attenuated after infusion of the GABAA receptor agonist muscimol in the dorsal or ventral mPFC. This study shows that cue-induced relapse to nicotine seeking is paralleled by acute GABAergic plasticity in the mPFC. From the observation that relapse in rats can be modulated by intervening at the level of GABAA receptors, it can be concluded that these receptors are potential targets for the development of new, more effective therapies to support smoking cessation. Chapter 5 describes a proteomics study that explores nicotine relapse-associated acute protein regulation in synaptic membranes of the mPFC and the insular cortex. The insula is a brain area that is involved in the monitoring of interoceptive states and is activated during nicotine cravings in humans. Whereas relapse was not paralleled by molecular changes in the insula, respectively 3 and 51 proteins were regulated during relapse in the mPFC of rats that underwent a period of extinction or abstinence after nicotine self-administration, respectively. A reduced level of the protein Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1), a transmembrane protein involved in intercellular communication, was validated in an independent group of animals that relapsed after extinction training. These experiments show that the mPFC is subject to acute plasticity during relapse to nicotine seeking, and that SHPS-1 is an interesting candidate for future investigations of the molecular mechanisms that regulate relapse to nicotine seeking. From the literature and the research described in this thesis it follows that relapse to different drugs of abuse, such as nicotine, heroin and cocaine, is partially regulated by overlapping neural substrates. For example, the activity of and plasticity in the glutamatergic projections from the mPFC to the nucleus accumbens have a central role in regulating relapse to these drugs. However, it can also be concluded from this thesis that relapse is regulated by molecular mechanisms that are specific for different drugs of abuse. This indicates that, with the know ledge of the molecular mechanisms that regulate relapse to drug seeking, it should be possible to develop general, as well as drug-specific, addiction therapies. 136 Nederlandse samenvatting Moleculaire mechanismen die terugval naar drug-zoekgedrag reguleren in knaagdiermodellen van verslaving Drugsverslaving is een psychiatrische stoornis die gepaard gaat met het verlies van controle over het gebruik van verslavende middelen. Deze stoornis is een grote bron van persoonlijk leed en maatschappelijke problemen. Op dit moment is een beperkt aantal behandelingen voor verslaving beschikbaar, maar deze hebben slechts een gering effect op terugvallen in het ge bruik van het verslavende middel. In de afgelopen decennia hebben hersenscans inzicht verschaft in het hersencircuit dat betrokken is bij het ontwikkelen van een verslaving en het verlangen naar drugs. Parallel aan deze humane studies zijn diermodellen ontwikkeld om de neurobiologie van versla ving in meer detail te bestuderen en om mogelijke behandelmethoden te testen. Herhaalde blootstelling aan drugs leidt tot adaptaties in de hersenen die, zelfs na een lange periode van onthouding, blijven voortbestaan. Deze neuroadaptaties worden verondersteld ten grondslag te liggen aan het blijvende risico op terugval dat karakteristiek is voor verslaving. Hieruit volgt dat een beter begrip van de moleculaire mechanismen die terugval reguleren op termijn kan bijdragen aan het ontwikkelen van efficiëntere behandelmethoden voor drugsverslaving. Het onderzoek beschreven in dit proefschrift maakt gebruik van diermodellen van verslaving om onze kennis van deze mechanismen te vergroten. Hoofdstuk 2 beschrijft de rol van de extracellulaire matrix (ECM) bij terugval naar heroïne-zoekgedrag in ratten. Na zelftoediening van heroïne en een daaropvolgende periode van extinctie of abstinentie waren de synaptische niveaus van de matrixeiwitten brevican en tenascin-R verlaagd in de mediale prefrontale cortex (mPFC). Dit is een hersengebied met hogere cognitieve functies waarvan de betrokkenheid bij terugval in zowel mensen als dieren is aangetoond. Ook in de nucleus accumbens, een hersengebied met een belangrijke rol in beloning en gedragsmotivatie, waren deze eiwitniveaus verlaagd na extinctie. Vervolgens werd terugval geïnduceerd door audiovisuele stimuli te presenteren die tijdens de zelftoedieningsfase werden gekoppeld aan injecties met heroïne (“cue-geïnduceerde terugval”). Tijdens terugval vond een gedeeltelijke normalisatie plaats van de niveaus van de ECM eiwitten. Door deze eiwitten vóór terugval te normaliseren kon het heroïne-zoekgedrag worden verlaagd. Hieruit volgt dat verlaagde niveaus van de ECM mogelijk gepaard gaan met een hogere kwetsbaarheid voor verslavingsgedrag. In hoofdstuk 3 is de rol van de ECM component brevican verder onderzocht. Hier voor werd het vormen van een cocaïnegeheugen in een muismodel met een verlaagd expressie niveau van brevican (de Bcan+/- muis) onderzocht met behulp van het conditioned place preference paradigma. Bcan+/- muizen lieten een sterkere preferentie zien voor een omgeving die gekoppeld was aan injecties met cocaïne dan wild-type muizen. Het verhogen van de expressie van brevican in de dorsale hippocampus, door middel van het lokaal injecteren van een virale vector met het Bcan gen, resulteerde in een vermindering van dit geconditioneerde 137 Nederlandse samenvatting geheugen aan cocaïne. De dorsale hippocampus is een hersengebied dat belangrijk is voor het contextuele geheugen. Deze bevindingen wijzen op een verhoogde gevoeligheid voor het belonende effect van cocaïne als gevolg van verlaagde expressieniveaus van brevican in de dorsale hippocampus. Deze studies onderschrijven de belangrijke rol van de ECM, en in het bijzonder bre vican, in het reguleren van verslavingsgedrag. Ook is dit consistent met eerdere publicaties die laten zien dat drugs een effect hebben op de expressie of activiteit van zowel componenten van de ECM als van de proteases die de ECM afbreken. Mogelijk leiden lagere niveaus van de ECM tot een verhoogde plasticiteit in het hersencircuit dat betrokken is bij verslaving en dragen ze zo bij aan de vorming van drug-geïnduceerde neuroadaptaties en de langdurige gevoeligheid voor terugval. Mogelijk kunnen stoffen die de dynamiek van de ECM beïnvloeden in de toekomst gebruikt worden om terugval te voorkomen. Terwijl onze kennis van de neurobiologie van terugval naar cocaïne- en heroïne-zoekgedrag toeneemt, is er nog weinig bekend over terugval naar nicotine, de neuro-actieve component in tabak. Om inzicht te krijgen in de acute veranderingen in de mPFC tijdens terugval naar nicotine-zoekgedrag in ratten, is in hoofdstuk 4 gekeken naar de regulatie van eiwitten die een belangrijke rol spelen in synaptische plasticiteit. Cue-geïnduceerde terugval, na zelftoediening van nicotine en extinctie, ging gepaard met een verhoging van het niveau van α1- en γ2-subunits van de GABAA receptor, maar niet van glutamaatreceptoren. Het blokkeren van membraaninsertie van GABAA receptoren in de dorsale mPFC, maar niet in de ventrale mPFC, leidde tot een hoger aantal responsen tijdens terugval. Daarentegen lieten ratten minder nicotine-zoekgedrag zien na infusie van de GABAA receptor agonist muscimol in de dorsale of ventrale mPFC. Deze studie laat zien dat cue-geïnduceerde terugval naar nicotine-zoekgedrag gepaard gaat met acute GABAerge plasticiteit in de mPFC. Uit de observatie dat terugval in ratten beïnvloed kan worden door in te grijpen op het niveau van GABAA receptoren volgt dat deze receptoren mogelijke targets zijn voor de ontwikkeling van nieuwe, effectievere behandelingen om het stoppen met roken te ondersteunen. Hoofdstuk 5 beschrijft een proteomics studie die terugval-geassocieerde acute eiwitregulatie in synaptische membranen van de mPFC en de insula in kaart brengt. De insula is een hersengebied dat betrokken is bij het verwerken van zintuiglijke waarnemingen en wordt geactiveerd tijdens hunkering naar nicotine in mensen. Terugval ging niet gepaard met moleculaire veranderingen in de insula. Daarentegen werden in de mPFC van ratten die na nicotine zelftoediening een periode van extinctie en abstinentie doorliepen respectievelijk 3 en 51 eiwitten geïdentificeerd die gereguleerd werden tijdens terugval. De verlaagde niveaus van het eiwit Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1), een transmembraaneiwit dat betrokken is bij intercellulaire communicatie, werden opnieuw gevonden in een onafhankelijke groep ratten waarin terugval werd geïnduceerd na extinctie. Deze experi menten laten zien dat, parallel aan terugval naar nicotine-zoekgedrag, acute plasticiteit plaatsvindt in de mPFC en dat SHPS-1 een interessante kandidaat is voor vervolgonderzoek naar de moleculaire mechanismen die terugval naar nicotine-zoekgedrag reguleren. Uit de literatuur en het onderzoek beschreven in dit proefschrift volgt dat terugval 138 Nederlandse samenvatting naar verschillende drugs, zoals nicotine, heroïne en cocaïne, deels gereguleerd wordt door overlappende neurale substraten. Zo spelen de activatie van en plasticiteit in de glutamaterge projecties van de mPFC naar de nucleus accumbens een centrale rol in het reguleren van terug val naar deze drugs. Echter, uit het hier beschreven onderzoek volgt dat terugval ook gere guleerd wordt door moleculaire mechanismen die specifiek zijn voor de drug die aan de basis staat van de verslaving. Hieruit volgt dat met de kennis van de moleculaire mechanismen die terugval naar drug-zoekgedrag reguleren, het mogelijk zou moeten zijn zowel algemene als drug-specifieke behandelingen te ontwikkelen. 139 140 Acknowledgements The little book about molecular mechanisms of addictive behavior is finally here. It proved to be highly rewarding to be dependent on so many people to get to this point and I would like to thank everyone that was involved in one way or the other. 141 Acknowledgements 142 Curriculum vitae Bart Lubbers was born on the 25th of May, 1982. He grew up in Lonneker, where he atten ded the St. Liduinaschool. After graduating from the Twentsch Carmel Lyceum in Oldenzaal in 2000, he studied Molecular Sciences at Wageningen Universiteit en Researchcentrum. He was an active member of several committees and the board of the study organization, MSV Alchimica. During internships in Wageningen and at the University of California in Davis, he worked on the biochemical characterization of ligand-activated transcription factors. In 2006, he received his master’s degree cum laude and enrolled in the research master Behavioural and Cognitive Neuroscience at Rijksuniversiteit Groningen. After completing the curriculum, including internships in Groningen (cortical plasticity) and Amsterdam (neuronal regeneration), he graduated cum laude. From 2008 to 2013 he performed his doctoral research on the molecular mechanisms of relapse to drug seeking at the department of Molecular and Cellular Neurobiology of the Vrije Universiteit in Amsterdam, under supervision of prof.dr. Guus Smit, prof.dr. Sabine Spijker, prof.dr. Taco de Vries and dr. Michel van den Oever. In the second half of 2013, Bart participated in the Nationale DenkTank 2013, a multidisciplinary group of young academics that aimed to contribute to a sustainable healthcare system with novel initiatives. In 2014, he was one of the founders and board members of one of these initiatives, de Advieswinkel, which aims to normalize mental problems and increase the accessibility of mental healthcare. He currently works as business developer and project manager at Sylics. 143
© Copyright 2024 ExpyDoc