References Aan, A., Hallik, L. E. A., & Kull, O. (2006). Photon flux partitioning among species along a productivity gradient of an herbaceous plant community. Journal of Ecology, 94(6), 1143– 1155. Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 36–42. Ackerly, D., & Cornwell, W. (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10(2), 135–145. Aptroot, A., Natuurmonumenten, & Landschap, N. &. (2009). Flora- en vegetatiekartering van Kampina in 2009. Natuurmonumenten reports (p. 41). ’s-Graveland, NL: Natuurmonumenten. Asner, G. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64(3), 234–253. Asner, G., & Heidebrecht, K. B. (2002). Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. International Journal of Remote Sensing, 23(19), 3939–3958. Asner, G., & Martin, R. E. (2008). Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sensing of Environment, 112(10), 3958–3970. Asner, G., & Martin, R. E. (2009). Airborne spectranomics: Mapping canopy chemical and taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment, 7(5), 269–276. Asner, G., & Martin, R. E. (2011). Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest. New Phytologist, 189(4), 999–1012. Asner, G., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C., Carranza, L., Martinez, P., Houcheime, M., Sinca, F., & Weiss, P. (2011). Spectroscopy of canopy chemicals in humid tropical forests. Remote Sensing of Environment, 115(12), 3587–3598. Asner, G., & Vitousek, P. (2005). Remote analysis of biological invasion and biogeochemical change. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4383–4386. Baraloto, C., Timothy Paine, C. E., Poorter, L., Beauchene, J., Bonal, D., Domenach, A., Hérault, B., Patiño, S., Roggy, J., & Chave, J. (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13(11), 1338–1347. Baret, F., & Vanderbilt, V. (1994). Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical properties. Remote Sensing of Environment, 48, 253–260. Bartholomeus, H., Epema, G., & Schaepman, M. E. (2007). Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 9(2), 194–203. 141 Bartholomeus, H., Kooistra, L., Stevens, A., van Leeuwen, M., van Wesemael, B., Ben-Dor, E., & Tychon, B. (2011). Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 13(1), 81–88. Bartholomeus, R. (2010). Moisture Matters: Climate-proof and process-based relationships between water, oxygen and vegetation. VU University. Bartholomeus, R., Witte, J., van Bodegom, P. M., Dam, J., Becker, P., & Aerts, R. (2012). Process-based proxy of oxygen stress surpasses indirect ones in predicting vegetation characteristics. Ecohydrology, 5(6), 746–758. Bartholomeus, R., Witte, J., van Bodegom, P. M., van Dam, J., & Aerts, R. (2008). Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model. Journal of Hydrology, 360(1), 147–165. Bastiaanssen, W., Noordman, E., Pelgrum, H., Davids, G., Thoreson, B., & Allen, R. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1), 85–93. Bell, D., Menges, C., Ahmad, W., & Van Zyl, J. J. (2001). The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR. Remote Sensing of Environment, 75(3), 375–384. Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., & Marani, M. (2006). Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sensing of Environment, 105(1), 54–67. Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., & Hanssen, R. F. (2012). ESA’s sentinel missions in support of Earth system science. Remote Sensing of Environment, 120, 84–90. Biesemans, J., Horsten, W., Verbeke, B., Vanderstraete, T., van der Linden, S., van Camp, N., & VITO. (2010). Image orthorectification and image mosaicing: algorithm theoretical base and validation. VITO reports (p. 30). Mol, BE: VITO. Biesemans, J., Sterckx, S., Knaeps, E., Vreys, K., Adriaensen, S., Hooyberghs, J., Meuleman, K., Kempeneers, P., Deronde, B., & Everaerts, J. (2007). Image processing workflows for airborne remote sensing. In Proceedings of the 5 th EARSeL Workshop on Imaging Spectroscopy. Brugge, BE. Buringh, P., Steur, G., & Vink, A. (1962). Some techniques and methods of soil survey in the Netherlands. Netherlands Journal of Agricultural Science, 10, 157–178. Cho, M. A., Debba, P., Mathieu, R., Naidoo, L., van Aardt, J. A. N., & Asner, G. (2010). Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: Canopy-level analysis. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 4133–4142. Cho, M. A., & Skidmore, A. K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101(2), 181–193. 142 Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., Vilar, L., Martínez, J., Martín, S., & Ibarra, P. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46–58. Cirkel, D., Witte, J., Nijp, J., van Bodegom, P. M., & van der Zee, S. E. (2012). The influence of spatiotemporal variability and adaptations to hypoxia on empirical relationships between soil acidity and vegetation. Ecohydrology. Clark, M. L., Roberts, D., & Clark, D. B. (2005). Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment, 96(3), 375–398. Clevers, J. G. P. W., & Kooistra, L. (2012). Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 574–583. Clevers, J. G. P. W., Kooistra, L., & Schaepman, M. E. (2010). Estimating canopy water content using hyperspectral remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 12(2), 119–125. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. Cornelissen, J., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D., Reich, P., ter Steege, H., Morgan, H., van der Heijden, M., Pausas, J., & Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335–380. Cornwell, W., Schwilk, D., & Ackerly, D. (2006). A trait-based test for habitat filtering: convex hull volume. Ecology, 87(6), 1465–1471. Cousins, S. A. O., & Lindborg, R. (2004). Assessing changes in plant distribution patterns indicator species versus plant functional types. Ecological Indicators, 4(1), 17–27. Curran, P. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30, 271– 287. Curran, P., Dungan, J., & Macler, B. (1992). Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sensing of Environment, 39, 153–166. Damgaard, C., Strandberg, M., Kristiansen, S. M., Nielsen, K. E., & Bak, J. L. (2014). Is Erica tetralix abundance on wet heathlands controlled by nitrogen deposition or soil acidification? Environmental Pollution, 184, 1–8. Damoiseaux, J. H., & Teunissen van Manen, T. C. (1984). Bodemkaart van Nederland, 1 : 50 000 51 West EINDHOVEN. (H. L. Kanters, Ed.)Bodemkaart van Nederland 1 : 50 000. Wageningen, the Netherlands: Stichting voor Bodemkartering. Darvishzadeh, R., Skidmore, A., Schlerf, M., & Atzberger, C. (2007). Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment, 112(5), 2592–2604. Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., & Cho, M. (2008). LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4), 409–426. 143 Daughtry, C., Biehl, L., & Ranson, K. (1989). A new technique to measure the spectral properties of conifer needles. Remote Sensing of Environment, 27(1), 81–91. Daughtry, C. S. T., Walthall, C. L., Kim, M. S., De Colstoun, E. B., & McMurtrey Iii, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239. De Bello, F., Lepš, J., & Sebastià, M. (2006). Variations in species and functional plant diversity along climatic and grazing gradients. Ecography, 29(6), 801–810. De Bello, F., Thuiller, W., Leps, J., Choler, P., Clement, J., Macek, P., Sebastia, M., & Lavorel, S. (2009). Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science, 20(3), 475–486. De Haan, J., Hovenier, J., Kokke, J., & Van Stokkom, H. (1991). Removal of atmospheric influences on satellite-borne imagery: a radiative transfer approach. Remote Sensing of Environment, 37(1), 1–21. De Lange, W., Prinsen, G., Hoogewoud, J., Veldhuizen, A., Verkaik, J., Oude Essink, G., van Walsum, P., Delsman, J., Hunink, J., Massop, Ht., & Kroon, T. (n.d.). The Netherlands Hydrological Instrument: An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis. Environmental Modelling & Software. De Vries, F. (1999). Karakterisering van Nederlandse gronden naar fysisch-chemische kenmerken (p. 41). Wageningen, the Netherlands: DLO-Staring Centrum. Dengler, J., Chytrý, M., & Ewald, J. (2008). Phytosociology. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of ecology (Vol. 4, pp. 2767–2779). Oxford: Elsevier B.V. Dennison, P. E., & Roberts, D. (2003). The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral. Remote Sensing of Environment, 87(2), 295–309. Dı́az, S., & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16(11), 646–655. Diekmann, M. (2002). Species indicator values as an important tool in applied plant ecology - A review. Basic and Applied Ecology, 4(6), 493–506. Dirkse, G., & Kruijsen, B. (1993). Indeling in ecologische groepen van Nederlandse blad-en levermossen. Gorteria, 19, 1–29. Dobben, H., & Slim, P. (2012). Past and future plant diversity of a coastal wetland driven by soil subsidence and climate change. Climatic Change, 110(3), 597–618. Dorigo, W., Richter, R., Baret, F., Bamler, R., & Wagner, W. (2009). Enhanced automated canopy characterization from hyperspectral data by a novel two step radiative transfer model inversion approach. Remote Sensing, 1(4), 1139–1170. Doughty, C., Asner, G., & Martin, R. E. (2011). Predicting tropical plant physiology from leaf and canopy spectroscopy. Oecologia, 165(2), 289–299. Douma, J., Aerts, R., Witte, J., Bekker, R., Kunzmann, D., Metselaar, K., & van Bodegom, P. M. (2012). A combination of functionally different plant traits provides a means to 144 quantitatively predict a broad range of species assemblages in NW Europe. Ecography, 35(4), 364–373. Douma, J., Bardin, V., Bartholomeus, R., & van Bodegom, P. M. (2012). Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems. Functional Ecology, 26, 1355–1365. Douma, J., Witte, J., Aerts, R., Bartholomeus, R., Ordoñez, J. C., Olde Venterink, H., Wassen, M. J., & van Bodegom, P. M. (2012). Towards a functional basis for predicting vegetation patterns; incorporating plant traits in habitat distribution models. Ecography, 35(4), 294–305. Ecker, K., Waser, L. T., & Küchler, M. (2010). Contribution of multi-source remote sensing data to predictive mapping of plant-indicator gradients within Swiss mire habitats. Botanica Helvetica, 120(1), 29–42. Ellenberg, H. (1950). Ackerunkraut-Gemeinschaften als Bodenzeiger. (pp. 1–14). StuttgartHohenheim. Ellenberg, H. (1974). Zeigerwerte der Gefäβpflanzen Mitteleuropas. Scripta Geobotanica, 9, 1– 97. Ellenberg, H. (1992). Zeigerwerte der Gefäßpflanzen (ohne Rubus). Zeigerwerte von Pflanzen in Mitteleuropa, 18, 9–166. Ellenberg, H., Weber, H. E., Düll, R., Witrth, V., Werner, W., & Paulißen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–97. Elser, J., Fagan, W., Kerkhoff, A., Swenson, N., & Enquist, B. (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186(3), 593–608. Ertsen, A., Alkemade, J., & Wassen, M. J. (1998). Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecology, 135(1), 113–124. Evans, J. R., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24(8), 755–767. Falster, D. S., & Westoby, M. (2005). Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. Journal of Ecology, 93(3), 521–535. Fava, F., Colombo, R., Bocchi, S., Meroni, M., Sitzia, M., Fois, N., & Zucca, C. (2009). Identification of hyperspectral vegetation indices for Mediterranean pasture characterization. International Journal of Applied Earth Observation and Geoinformation, 11(4), 233–243. Feilhauer, H., Asner, G., Martin, R. E., & Schmidtlein, S. (2010). Brightness-normalized partial least squares regression for hyperspectral data. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(12), 1947–1957. Feilhauer, H., Faude, U., & Schmidtlein, S. (2011). Combining Isomap ordination and imaging spectroscopy to map continuous floristic gradients in a heterogeneous landscape. Remote Sensing of Environment, 115(10), 2513–2524. 145 Feilhauer, H., & Schmidtlein, S. (2009). Mapping continuous fields of forest alpha and beta diversity. Applied Vegetation Science, 12(4), 429–439. Feilhauer, H., & Schmidtlein, S. (2011). On variable relations between vegetation patterns and canopy reflectance. Ecological Informatics, 6(2), 83–92. Feldmeyer-Christe, E., Klaus, E., Kuchler, M., Graf, U., & Waser, L. T. (2007). Improving predictive mapping in Swiss mire ecosystems through re-calibration of indicator values. Applied Vegetation Science, 10(2), 183–192. Ferwerda, J. G., & Skidmore, A. K. (2007). Can nutrient status of four woody plant species be predicted using field spectrometry? ISPRS Journal of Photogrammetry and Remote Sensing, 62(6), 406–414. Fliervoet, L. M., & Werger, M. J. A. (1984). Canopy structure and microclimate of two wet grassland communities. New Phytologist, 96(1), 115–130. Freschet, G., Cornelissen, J. H. C., Van Logtestijn, R. S. P., & Aerts, R. (2010). Evidence of the “plant economics spectrum”in a subarctic flora. Journal of Ecology, 98(2), 362–373. Freschet, G., & Dias, A. (2011). Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecology and Biogeography, 20, 755–765. Fujita, Y., & van Bodegom, P. M. (2013). Towards a proper integration of hydrology in predicting soil nitrogen mineralization rates along natural moisture gradients. Soil Biology and Biochemistry, 58, 302–312. Fujita, Y., van Bodegom, P. M., & Witte, J. (2013). Relationships between Nutrient-Related Plant Traits and Combinations of Soil N and P Fertility Measures. PloS One, 8(12), e83735. Fukami, T., & Wardle, D. A. (2005). Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society B: Biological Sciences, 272(1577), 2105–2115. Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., & Golodets, C. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany, 99(5), 967–985. Goetz, A. (2009). Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 113, S5–S16. Gómez, J. A., de Miguel, E., Gutiérrez de la Cámara, Ó., & Fernández-Renau, A. (2007). STATUS OF THE INTA AHS SENSOR. In 5th EARSeL Workshop on Imaging Spectroscopy. Brugge, BE. Grootjans, A., & van Wirdum, G. (1996). Ecohydrology in The Netherlands: principles of an application‐driven interdiscipline §. Acta Botanica Neerlandica, 45(4), 419–516. Grossman, Y., Ustin, S. L., Jacquemoud, S., Sanderson, E., Schmuck, G., & Verdebout, J. (1996). Critique of stepwise multiple linear regression for the extraction of leaf 146 biochemistry information from leaf reflectance data. Remote Sensing of Environment, 56(3), 182–193. Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. Güsewell, S. (2004). N: P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164(2), 243–266. Haaland, D. M., & Thomas, E. V. (1988). Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry, 60(11), 1193–1202. Hannerz, M., & Hånell, B. (1997). Effects on the flora in Norway spruce forests following clearcutting and shelterwood cutting. Forest Ecology and Management, 90(1), 29–49. Hansen, P., & Schjoerring, J. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86, 542–553. Hantson, W., Kooistra, L., & Slim, P. (2012). Mapping invasive woody species in coastal dunes in the Netherlands: a remote sensing approach using LIDAR and high resolution aerial photographs. Applied Vegetation Science, 15(4), 536–547. Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). MODFLOW 2000, The U.S. geological survey modular ground water model user guide to modularization concepts and the ground water flow process. Reston, Virginia: US Geological Survey. Harrison, M. T., Edwards, E. J., Farquhar, G. D., Nicotra, A. B., & Evans, J. R. (2009). Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen‐use efficiency. Plant, Cell & Environment, 32(3), 259–270. Hikosaka, K., & Shigeno, A. (2009). The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia, 160(3), 443–451. Hirose, T., & Werger, M. J. A. (1995). Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology, 76(2), 466–474. Hoffmann, W. A., Schroeder, W., & Jackson, R. B. (2002). Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna. Geophysical Research Letters, 29(22), 2052. Homolová, L., Malenovský, Z., Clevers, J., García-Santos, G., & Schaepman, M. E. (2013). Review of optical-based remote sensing for plant trait mapping. Ecological Complexity, 15, 1–16. Hunt Jr, E. R., & Rock, B. N. (1989). Detection of changes in leaf water content using nearand middle-infrared reflectances. Remote Sensing of Environment, 30(1), 43–54. Im, J., Jensen, J. R., Jensen, R. R., Gladden, J., Waugh, J., & Serrato, M. (2012). Vegetation cover analysis of hazardous waste sites in utah and arizona using hyperspectral remote sensing. Remote Sensing, 4(2), 327–353. Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75–91. 147 Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner, G., François, C., & Ustin, S. L. (2009). PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment, 113(SUPPL. 1). Jager, T. D. (2010). Toelichting bij de vegetatiekartering Ameland 2008. Op basis van false-colour luchtfoto’s 1:5.000. RWS reports. Delft, NL: Rijkswaterstaat - DID - Afdeling GSMH. Jager, T. D. (2012). Assessment of predicted association occurrence. (H. D. Roelofsen, Ed.). Nieuwegein, NL: KWR Watercycle Research Institute. Janssen, J. (2004). The use of sequential vegetation maps for monitoring in coastal areas. Community Ecology, 5(1), 31–43. Käfer, J., & Witte, J. (2004). Cover-weighted averaging of indicator values in vegetation analyses. Journal of Vegetation Science, 15(5), 647–652. Kaiser, T., Wehrhan, M., Werner, A., & Sommer, M. (2012). Regionalizing ecological moisture levels and groundwater levels in grassland areas using thermal remote sensing. Grassland Science, 58(1), 42–52. Kalliola, R., & Syrjänen, K. (1991). To what extent are vegetation types visible in satellite imagery? Annales Botanici Fennici, 28(1), 45–57. Kattge, J., Díaz, S., & Lavorel, S. (2011). TRY–a global database of plant traits. Global Change Biology, 17(9), 2905–2935. Keddy, P. (1992). Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science, 3, 157–164. Klapp, E. (1965). Grünlandvegetation und Standort nach Beispiel aus West-, Mittel-, und Süddeutschland. … Beispielen aus West-, Mittel-, und Süddeutschland.- …. Berlin/Hamburg: Paul Parey. Klaus, V. H., Kleinebecker, T., Boch, S., Müller, J., Socher, S. A., Prati, D., Fischer, M., & Hölzel, N. (2012). NIRS meets Ellenberg’s indicator values: Prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics. Ecological Indicators, 14(1), 82–86. Kleinebecker, T., Klaus, V. H., & Hlzel, N. (2012). Reducing sample quantity and maintaining high-prediction quality of grassland biomass properties with near infrared reflectance spectroscopy. Journal of Near Infrared Spectroscopy, 19(6), 495. Knapp, A. K., Beier, C., Briske, D. D., Classen, A. T., Luo, Y., Reichstein, M., Smith, M. D., Smith, S. D., Bell, J. E., Fay, P. A., Heisler, J. L., Leavitt, S. W., Sherry, R., Smith, B., & Weng, E. (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58(9), 811–821. Knox, N. M., Skidmore, A. K., Prins, H. H. T., Asner, G. P., van der Werff, H., de Boer, W. F., van der Waal, C., de Knegt, H. J., Kohi, E. M., & Slotow, R. (2011). Dry season mapping of savanna forage quality, using the hyperspectral Carnegie Airborne Observatory sensor. Remote Sensing of Environment, 115(6), 1478–1488. Knyazikhin, Y., Schull, M. A., Stenberg, P., Mõttus, M., Rautiainen, M., Yang, Y., Marshak, A., Carmona, P. L., Kaufmann, R. K., Lewis, P., Disney, M. I., Vanderbilt, V., Davis, A. B., Baret, F., Jacquemoud, S., Lyapustin, A., & Myneni, R. B. (2013). Hyperspectral 148 remote sensing of foliar nitrogen content. Proceedings of the National Academy of Sciences, 110(3), E185–E192. Koerselman, W., & Meuleman, A. F. (1996). The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33(6), 1441–1450. Kokaly, R. F., Despain, D. G., Clark, R. N., & Livo, K. E. (2003). Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sensing of Environment, 84(3), 437–456. Kraft, N., Valencia, R., & Ackerly, D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322(5901), 580–582. Küchler, A. (1984). Ecological vegetation maps. Vegetatio, 55(1), 3–10. Küchler, A., & Zonneveld, I. (1988). Vegetation mapping. (H. Lieth, Ed.)Handbook of vegetation science (Vol. 10). Dordrecht, NL: Kluwer Academic Publishers. Kull, O., & Aan, A. (1997). The relative share of graminoid and forb life‐forms in a natural gradient of herb layer productivity. Ecography, 20(2), 146–154. Kumar, L., Schmidt, K., Dury, S., & Skidmore, A. (2001). Imaging spectrometry and vegetation science. In F. D. van der Meer & S. M. de Jong (Eds.), Imaging Spectroscopy: Basic Principles and Prospective Applications (pp. 111–155). Dordrecht, NL: Kluwer Academic Publishers. Landolt, E. (1977). Okologische Zeigerwerte zur Schweizer Flora. Veröffentlichungen Des Geobotanischen Institutes Der Eidgenössischen Technischen Hochschule, Stiftung Rübel, Zürich, 64, 1–208. Laughlin, D. C., Joshi, C., van Bodegom, P. M., Bastow, Z. A., & Fulé, P. Z. (2012). A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15(11), 1291–1299. Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16(5), 545–556. Lavorel, S., Grigulis, K., Lamarque, P., Colace, M., Garden, D., Girel, J., Pellet, G., & Douzet, R. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99(1), 135–147. Lee, D. W., & Graham, R. (1986). Leaf optical properties of rainforest sun and extreme shade plants. American Journal of Botany, 73(8), 1100–1108. Lloyd, J., Bloomfield, K., & Domingues, T. F. (2013). relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytologist, 199(2), 311–321. Maarel, E., & Sykes, M. T. (1993). Small scale plant species turnover in a limestone grassland: the carousel model and some comments on the niche concept. Journal of Vegetation Science, 4(2), 179–188. Makkar, H. P. S. (2003). Quantification of tannins in tree and shrub foliage: a laboratory manual. Dordrecht, NL: Kluwer Academic Publishers. 149 Martin, M. E., Plourde, L. C., Ollinger, S. V, Smith, M.-L., & McNeil, B. E. (2008). A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems. Remote Sensing of Environment, 112(9), 3511–3519. Meinzer, O. E. (1927). Plants as indicators of ground water (Google eBoek). Washington: U.S. Geological Survey - Department of the Interior. Mercado, L. M., Patiño, S., Domingues, T. F., Fyllas, N. M., Weedon, G. P., Sitch, S., Quesada, C. A., Phillips, O. L., Aragão, L. E., & Malhi, Y. (2011). Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1582), 3316–3329. Mesarch, M. A., Walter-Shea, E. A., Asner, G., Middleton, E. M., & Chan, S. S. (1999). A revised measurement methodology for conifer needles spectral optical properties: evaluating the influence of gaps between elements. Remote Sensing of Environment, 68(2), 177–192. Mevik, B.-H., & Wehrens, R. (2007). The pls package: principal component and partial least squares regression in R. Journal of Statistical Software, 18(2), 1–24. Mirik, M., Norland, J. E., Crabtree, R. L., & Biondini, M. E. (2005). Hyperspectral one-meterresolution remote sensing in Yellowstone National Park, Wyoming: I. Forage nutritional values. Rangeland Ecology & Management, 58(5), 452–458. Morisette, J. T., Baret, F., Privette, J. L., Myneni, R. B., Nickeson, J. E., Garrigues, S., Shabanov, N. V, Weiss, M., Fernandes, R. A., & Leblanc, S. G. (2006). Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1804–1817. Mulder, V., De Bruin, S., Schaepman, M. E., & Mayr, T. (2011). The use of remote sensing in soil and terrain mapping—A review. Geoderma, 162(1), 1–19. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. Mutanga, O., Skidmore, A. K., & Prins, H. H. T. (2004). Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sensing of Environment, 89(3), 393–408. Nash, J., & Sutcliffe, J. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology. Niinemets, Ü. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82(2), 453–469. Niinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25(4), 693–714. Niinemets, Ü., & Tenhunen, J. D. (1997). A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade‐tolerant species Acer saccharum. Plant, Cell & Environment, 20(7), 845–866. 150 Noble, S. D., & Crowe, T. G. (2007). Sample holder and methodology for measuring the reflectance and transmittance of narrow-leaf samples. Applied Optics, 46(22), 4968–4976. Noda, H. M., Motohka, T., Murakami, K., Muraoka, H., & Nasahara, K. N. (2013). Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectroradiometer. Plant, Cell & Environment. Olde Venterink, H., & Wassen, M. J. (1997). A comparison of six models predicting vegetation response to hydrological habitat change. Ecological Modelling, 101(2), 347–361. Oldeland, J., Dorigo, W., Lieckfeld, L., Lucieer, A., & Jürgens, N. (2010). Combining vegetation indices, constrained ordination and fuzzy classification for mapping seminatural vegetation units from hyperspectral imagery. Remote Sensing of Environment, 114(6), 1155–1166. Ordoñez, J. C., van Bodegom, P. M., Witte, J., Wright, I., Reich, P., & Aerts, R. (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18(2), 137–149. Osnas, J., Lichstein, J., Reich, P., & Pacala, S. (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science, 340(6133), 741–744. Ozinga, W., Schaminée, J., Bekker, R., Bonn, S., Poschlod, P., Tackenberg, O., Bakker, J., & Groenendael, J. (2005). Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos, 108(3), 555–561. Panciera, R., Walker, J. P., Kalma, J. D., Kim, E. J., Saleh, K., & Wigneron, J. (2009). Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm. Remote Sensing of Environment, 113(2), 435–444. Pasolli, L., Melgani, F., & Blanzieri, E. (2010). Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data. IEEE Geoscience and Remote Sensing Letters, 7(3), 464–468. Peduzzi, A., Wynne, R. H., Thomas, V. A., Nelson, R. F., Reis, J. J., & Sanford, M. (2012). Combined use of airborne lidar and DBInSAR data to estimate LAI in temperate mixed forests. Remote Sensing, 4(6), 1758–1780. Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M., Cornwell, W., Craine, J., Gurvich, D., Urcelay, C., Veneklaas, E., Reich, P., Poorter, L., Wright, I., Ray, P., Enrico, L., … Cornelissen, J. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167. Pimstein, A., Karnieli, A., Bansal, S. K., & Bonfil, D. J. (2011). Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field Crops Research, 121(1), 125–135. Poorter, H., Lambers, H., & Evans, J. R. (2013). Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytologist. Poorter, H., & Villar, R. (1997). The fate of acquired carbon in plants: chemical composition and construction costs. In Plant resource allocation (pp. 39–72). San Diego, USA: Academic Press. 151 Poorter, L., Oberbauer, S. F., & Clark, D. B. (1995). Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. American Journal of Botany, 82(10), 1257–1263. Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73(1), 149–156. Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)Bioenergetics, 975(3), 384–394. Prentice, I., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., & Solomon, A. M. (1992). Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19(2), 117–134. R Core Team. (2013). R: a language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing. Ramoelo, A., Skidmore, A., Cho, M., Mathieu, R., Heitkönig, I., Dudeni-Tlhone, N., Schlerf, M., & Prins, H. (2013). Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 27–40. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Adaptative computation and machine learning series (pp. 63–71). MIT Press. Reich, P., Wright, I., & Lusk, C. (2007). Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecological Applications, 17(7), 1982–1988. Rivera, J. P., Verrelst, J., Leonenko, G., & Moreno, J. (2013). Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model. Remote Sensing, 5(7), 3280–3304. Rocchini, D., Foody, G. M., Nagendra, H., Ricotta, C., Anand, M., He, K. S., Amici, V., Kleinschmit, B., Förster, M., & Schmidtlein, S. (2012). Uncertainty in ecosystem mapping by remote sensing. Computers & Geosciences, 50, 128–135. Röder, A., Kuemmerle, T., Hill, J., Papanastasis, V. P., & Tsiourlis, G. M. (2007). Adaptation of a grazing gradient concept to heterogeneous Mediterranean rangelands using cost surface modelling. Ecological Modelling, 204(3), 387–398. Roelofsen, H. D., Kooistra, L., van Bodegom, P. M., Verrelst, J., Krol, J., & Witte, J. (2014). Mapping a priori defined plant associations using remotely sensed vegetation characteristics. Remote Sensing of Environment, 140, 639–651. Roelofsen, H. D., van Bodegom, P. M., Kooistra, L., & Witte, J. (2013). Trait estimation in herbaceous plant assemblages from in situ canopy spectra. Remote Sensing, 5(12), 6323– 6345. 152 Roth, K. L., Dennison, P. E., & Roberts, D. (2012). Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data. Remote Sensing of Environment, 127, 139–152. Runhaar, J., Jalink, M., Hunneman, H., Witte, J., & Hennekens, S. (2009). Ecologische vereisten habitattypen. Nieuwegein, NL. Runhaar, J., Landuyt, W. Van, & Groen, C. (2004). Herziening van de indeling in ecologische soortengroepen voor Nederland en Vlaanderen. Gorteria, 30, 12–26. Runhaar, J., Witte, J., & Verburg, P. (1997). Ground-water level, moisture supply, and vegetation in the Netherlands. Wetlands, 17(4), 528–538. Sanders, M., Dirkse, G., & Slim, P. (2004). Objectifying thematic, spatial and temporal aspects of vegetation mapping for monitoring. Community Ecology, 5(1), 81–91. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639. Schaffers, A. P., & Sykora, K. V. (2000). Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: A comparison with field measurements. Journal of Vegetation Science, 11(2), 225–244. Schaminée, J., Hennekens, S., & Ozinga, W. (2012). The Dutch national vegetation database. In J. Dengler (Ed.), Vegetation databases for the 21st century (Vol. 4, pp. 201–209). BEE, Biocentre Klein Flottbek and Botanical Garden. Schaminée, J., Stortelder, A., & Weeda, E. (1996). De Vegetatie van Nederland. Deel 3. Plantengemeenschappen van grasslanden, zomen en droge heiden. Uppsala, SE: Opulus Press. Schaminée, J., Stortelder, A., & Westhoff, V. (1995). De Vegetatie van Nederland. Deel 1. inleiding tot de plantensociologie–grondslagen, methoden en toepassingen. Uppsala, SE: Opulus Press. Schaminée, J., Weeda, E., & Westhoff, V. (1995a). De Vegetatie van Nederland. Deel 2. Plantengemeenschappen van wateren, moerassen en natte heiden. Uppsala, SE: Opulus Press. Schaminée, J., Weeda, E., & Westhoff, V. (1995b). De Vegetatie van Nederland. Deel 4. Plantengemeenschappen van de kust en van binnenlandse pioniermilieus. Uppsala, SE: Opulus Press. Scherrer, D., & Körner, C. (2011). Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography, 38(2), 406–416. Schimper, A. F. W. (1898). Pflanzen-geographie auf physiologischer Grundlage (p. 876). G. Fischer. Schmidt, K., & Skidmore, A. (2003). Spectral discrimination of vegetation types in a coastal wetland. Remote Sensing of Environment, 85(1), 92–108. Schmidt, K., Skidmore, A., Kloosterman, E., Van Oosten, H., Kumar, L., & Janssen, J. (2004). Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogrammetric Engineering and Remote Sensing, 70(6), 703–715. 153 Schmidtlein, S. (2005). Imaging spectroscopy as a tool for mapping Ellenberg indicator values. Journal of Applied Ecology, 42(5), 966–974. Schmidtlein, S., Feilhauer, H., & Bruelheide, H. (2011). Mapping plant strategy types using remote sensing. Journal of Vegetation Science, 23(3), 395–405. Schmidtlein, S., & Sassin, J. (2004). Mapping of continuous floristic gradients in grasslands using hyperspectral imagery. Remote Sensing of Environment, 92(1), 126–138. Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2), 337–354. Skidmore, A. K., Ferwerda, J. G., Mutanga, O., Van Wieren, S. E., Peel, M., Grant, R. C., Prins, H. H. T., Balcik, F. B., & Venus, V. (2010). Forage quality of savannas— simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery. Remote Sensing of Environment, 114(1), 64–72. Slim, P., Heuvelink, G., Kuipers, H., Dirkse, G., & van Dobben, H. (2005). Vegetatiemonitoring en geostatistische vegetatiekartering duinvalleien Ameland-Oost. Monitoring effecten van bodemdaling op Ameland-Oost. Wageningen, NL: Alterra. Soudzilovskaia, N. (2013). Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences, 110(45), 18180–18184. Staatsbosbeheer. (2013). Jaarstukken 2012 (p. 74). Driebergen, the Netherlands. Sterner, R. W., & Elser, J. (2002). Ecological stoichiometry: the biology of elements from molecules to the biosphere (p. 584). Princeton University Press. Steur, G., & Heijink, W. (1991). Bodemkaart van Nederland, schaal 1:50.000 Algemene begrippen en indelingen (4th ed.). Wageningen, the Netherlands: Staring Centrum. Stortelder, A., Schaminée, J., & Hommel, P. (1999). De vegetatie van Nederland. Deel 5. Plantengemeenschappen van ruigten, struwelen en bossen. Uppsala, SE: Opulus Press. Svoray, T., Perevolotsky, A., & Atkinson, P. (2013). Ecological sustainability in rangelands: the contribution of remote sensing. International Journal of Remote Sensing, 1–27. Swenson, N., & Weiser, M. (2010). Plant geography upon the basis of functional traits: an example from eastern North American trees. Ecology, 91(8), 2234–2241. Thomas, V., Treitz, P., Jelinski, D., Miller, J., Lafleur, P., & McCaughey, J. H. (2003). Image classification of a northern peatland complex using spectral and plant community data. Remote Sensing of Environment, 84(1), 83–99. Thuiller, W., Araújo, M., & Lavorel, S. (2004). Do we need land-cover data to model species distributions in Europe? Journal of Biogeography, 31(3), 353–361. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. Tüxen, R. (1954). Pflanzengesellschaften und Grundwasser-Ganglinien. Angewandte Pflanzensoziologie, 8, 64–97. 154 Underwood, E., Ustin, S. L., & DiPietro, D. (2003). Mapping nonnative plants using hyperspectral imagery. Remote Sensing of Environment, 86(2), 150–161. Ustin, S. L. (2013). Remote sensing of canopy chemistry. Proceedings of the National Academy of Sciences, 110(3), 804–805. Ustin, S. L., & Gamon, J. A. (2010). Remote sensing of plant functional types. New Phytologist, 186(4), 795–816. Ustin, S. L., Schaepman, M. E., Gitelson, A., Jacquemoud, S., Asner, G., Gamon, J. A., & Zarco-Tejada, P. J. (2009). Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment, 113, S67–S77. Van Bodegom, P. M., Douma, J., & Verheijen, L. (2013). A fully traits-based approach to modeling global vegetation distribution. Proceedings of the National Academy of Sciences. Van Raam, J., & Maier, E. (1993). Overzicht van de Nederlandse kranswieren. Gorteria, 18, 111–116. Van Walsum, P., & Veldhuizen, A. (2011). Integration of models using shared state variables: Implementation in the regional hydrologic modelling system SIMGRO. Journal of Hydrology, 409(1–2), 363–370. Vermulst, J., Kroon, T., & De Lange, W. (1998). Modelling the hydrology of the Netherlands on a nation wide scale. In H. Wheater & C. Kirby (Eds.), Hydrology in a changing environment (p. 710). John Wiley and Sons Ltd. Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., & Moreno, J. (2012). Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1832–1843. Verrelst, J., Geerling, G. W., Sykora, K. V, & Clevers, J. (2009). Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 11(1), 83–94. Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., & Moreno, J. (2012). Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sensing of Environment, 118, 127–139. Verrelst, J., Romijn, E., & Kooistra, L. (2012). Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data. Remote Sensing, 4(9), 2866–2889. Vervoort, R. W., & Van der Zee, S. E. (2008). Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework. Water Resources Research, 44(8). Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882–892. Von Asmuth, J. R., Maas, K., Knotters, M., Bierkens, M. F., Bakker, M., Olsthoorn, T. N., Cirkel, D., Leunk, I., Schaars, F., & Von Asmuth, D. C. (2012). Software for hydrogeologic time series analysis, interfacing data with physical insight. Environmental Modelling & Software, 38, 178–190. 155 Wallace, O. C., Qi, J., Heilma, P., & Marsett, R. C. (2003). Remote sensing for cover change assessment in southeast Arizona. Journal of Range Management, 56, 402–409. Wamelink, G., Joosten, V., Van Dobben, H., & Berendse, F. (2002). Validity of Ellenberg indicator values judged from physico-chemical field measurements. Journal of Vegetation Science, 13(2), 269–278. Wamelink, G., van Dobben, H., & Berendse, F. (2009). Vegetation succession as affected by decreasing nitrogen deposition, soil characteristics and site management: A modelling approach. Forest Ecology and Management, 258(8), 1762–1773. Weber, H. E., Moravec, J., & Theurillat, J. P. (2000). International code of phytosociological nomenclature. Journal of Vegetation Science, 11(5), 739–768. Welles, J. M., & Norman, J. M. (1991). Instrument for indirect measurement of canopy architecture. Agronomy Journal, 83(5), 818–825. Westhoff, V., & van Oosten, M. F. (1991). De plantengroei van de Waddeneilanden (1st ed., p. 416). Utrecht, NL: Koninklijke Nederlanse Natuurhistorische Vereniging. Westhoff, V., & Westra, R. (1981). Wilde planten. Utrecht, NL: Vereniging tot Behoud van Natuurmonumenten in Nederland. Wigneron, J.-P., Kerr, Y. H., Waldteufel, P., Saleh, K., Escorihuela, M.-J., Richaume, P., Ferrazzoli, P., De Rosnay, P., Gurney, R., & Calvet, J.-C. (2007). L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields. Remote Sensing of Environment, 107(4), 639–655. Witte, J., Bartholomeus, R., Douma, J., Runhaar, J., & van Bodegom, P. M. (2010). De vegetatiemodule van Probe-2. Nieuwegein, NL. Witte, J., Bartholomeus, R., van Bodegom, P. M., Ek, R. Van, Fujita, Y., & Runhaar, J. (n.d.). A probabilistic eco-hydrological model to predict the effects of climate change on natural vegetation at a regional scale. Landscape Ecology. Witte, J., De Haan, M., Raterman, B., & Aggenbach, C. (2006). PROBE - Versie 1: effecten van grondwaterbeheer, atmosferische depositie, maaien en plaggen. Witte, J., Meuleman, A. F., van der Schaaf, S., & Raterman, B. (2004). Eco-hydrology and biodiversity. In R. Feddes, G. de Rooij, & J. van Dam (Eds.), Unsaturated zone modelling: Progress, challenges and applications (pp. 301–329). Springer. Witte, J., Runhaar, J., & Ek, R. Van. (2008). Ecohydrological modelling for managing scarce water resources in a groundwaterdominated temperate system. In D. Harper, J. Zalewski, M., E., & N. Pacini (Eds.), Ecohydrology: Processes, Models and Case Studies (pp. 88–111). CABI Publishing, Oxfordshire, UK. Witte, J., Runhaar, J., Ek, R. Van, van der Hoek, D., Bartholomeus, R., Batelaan, O., van Bodegom, P. M., Wassen, M. J., & van der Zee, S. E. (2012). An ecohydrological sketch of climate change impacts on water and natural ecosystems for the Netherlands: bridging the gap between science and society. Hydrology and Earth System Sciences, 9(5), 6311– 6344. 156 Witte, J., Wójcik, R., Torfs, P., De Haan, M., & Hennekens, S. (2007). Bayesian classification of vegetation types with Gaussian mixture density fitting to indicator values. Journal of Vegetation Science, 18(4), 605–612. Wójcik, R., & Torfs, P. (2003). PARDENS: an experimental program for Parzen density fitting. WUR reports. Wageningen: Wageningen University. Environmental sciences, subdepartment water resources. Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. Wright, I., Reich, P., Westoby, M., Ackerly, D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J., & Diemer, M. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827. Xiao, Q., Ustin, S. L., & McPherson, E. G. (2004). Using AVIRIS data and multiple-masking techniques to map urban forest tree species. International Journal of Remote Sensing, 25(24), 5637–5654. Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., & Schirokauer, D. (2006). Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering and Remote Sensing, 72(7), 799. Zelený, D., & Schaffers, A. P. (2012). Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. Journal of Vegetation Science, 23(3), 419–431. 157
© Copyright 2024 ExpyDoc