4 – Breuken met letters 4.3 – Vermenigvuldigen 7 Bij het vermenigvuldigen van breuken doe je teller keer teller en noemer keer noemer. a x y x ⋅ y yx x ⋅ = = = y z y ⋅ z yz z b x x x⋅ x x2 is niet te vereenvoudigen ⋅ = = x + 1 x + 1 ( x + 1) ⋅ ( x + 1) ( x + 1)2 c x x − 1 x ⋅ ( x − 1) x − 1 ⋅ = = x +1 x ( x + 1) ⋅ x x + 1 d e f x⋅ x x⋅x x2 = = x +1 x +1 x +1 x⋅ x + 1 x ⋅ ( x + 1) = = x +1 x x ( x + 1) ⋅ x − 1 ( x + 1) ⋅ ( x − 1) x 2 − 1 = = x x x g a b c a ⋅ b ⋅ c abc ⋅ ⋅ = = x y z x ⋅ y ⋅ z xyz h x2 ⋅ yz 2 i xy x 2 ⋅ xy x 3 y x3 = 2 = 3 = 3 z yz ⋅ z z y z ( ) 2 2 x + xy y + 1 ( x + xy ) ⋅ ( y + 1) xy + x + xy 2 + xy x ⋅ y + 2 y + 1 y 2 + 2 y + 1 ( y + 1) ⋅ = = = = = x x +1 x ⋅ ( x + 1) x ( x + 1) x ( x + 1) x +1 x +1 j x x +1 2 ( ) yz ⋅ 2 x ( x + 1) ⋅ y 2 z 2 y2 z x −1 = ( ) yz ⋅ x 2 − 1 = xy 2 z ( x + 1)( x + 1) yz ( x + 1)( x − 1) = xy ( x + 1) x −1 k ab2 ax a 2b 2 x a 2 b ⋅ = = 2 xy by bxy 2 y l x2 + x y 2 ⋅ y 2 x −1 = ( x2 + x) y 2 2 y ( x − 1) = x ( x + 1) y ( x + 1)( x − 1) y 2 = x x of ( x − 1) y xy − y m ( p − 1) 2 q 2 − 1 ( p − 1) 2 ( q 2 − 1) ( p − 1) 2 ( q − 1)(q + 1) ⋅ = = = ( p − 1)( q + 1) ( p − 1)( q − 1) ( p − 1)(q − 1) q −1 p −1 n ( x + 1) 2 ( y + 1) x2 y3 ⋅ xy xy ( x + 1)2 ( y + 1) ( x + 1) 2 = = y +1 x 2 y 3 ( y + 1) xy 2 o x3 − 4 x 1 − 4 y 2 ( x3 − 4 x )(1 − 4 y 2 ) x ( x 2 − 4)(1 − 4 y 2 ) x ( x + 2)( x − 2)(1 + 2 y )(1 − 2 y ) ⋅ 2 = = = = 2y 2 yx( x + 2) 2 xy ( x + 2) x + 2x 2 y ( x 2 + 2 x) ( x − 2)(1 + 2 y )(1 − 2 y ) ( x − 2)(1 − 4 y 2 ) of 2y 2y © Noordhoff Uitgevers Uitwerkingen 1 4 – Breuken met letters 8 Bedenk dat delen door een breuk hetzelfde is als vermenigvuldigen met het omgekeerde. a x: x y x⋅ y = x⋅ = =y y x x b x x x x 1 x ⋅1 x 1 :x = : = ⋅ = = = y y 1 y x y ⋅ x xy y c x2 : y x x 2 ⋅ x x3 = x2 ⋅ = = x y y y d x y x z x ⋅ z xz : = ⋅ = = y z y y y ⋅ y y2 e x + 1 x − 1 x + 1 x + 1 ( x + 1) ⋅ ( x + 1) ( x + 1) : = ⋅ = = x x +1 x x −1 x ⋅ ( x − 1) x ( x − 1) 2 f a 2 bc ac a 2 bc x a 2bc ⋅ x ab : = ⋅ = = xy x xy ac xy ⋅ ac y g x x + 1 ( x + 1) ⋅ ( x + 1) ( x + 1) = ( x + 1) ⋅ = = ( x + 1) : x +1 x x x 2 h 2a + 3 2a + 3 ( 4a + 12 ) 2a + 3 1 2a + 3 2a + 3 : ( 4 ( a + 3) ) = : = ⋅ = = 4a 4a 1 4a 4a + 12 4a ⋅ ( 4a + 12 ) 16a ( a + 3) i p+q p+q p+q ( p + q) ⋅ q = q q : = ⋅ = p q p p + q p ⋅ ( p + q) p j a−2 b 2c : a2 + 4 a − 2 b ( a + 2 ) ( a − 2 ) ⋅ b ( a + 2 ) b ( a − 2 )( a + 2 ) ( a − 2 )( a + 2 ) = 2 ⋅ = = = b ( a + 2) b c a2 + 4 b2 c ⋅ a 2 + 4 b2 c a 2 + 4 bc a 2 + 4 ( ) ( ) ( ) ( ) k x x −3 x x +2 ( ) ( ) x ( x − 3) 2 x − 6 x ( x − 3) ⋅ ( 2 x − 6 ) 2 x ( x − 3)( x − 3) 2 ( x − 3)2 : = ⋅ = = = ( x + 2 ) 2 x − 6 ( x + 2 ) x ( x + 2 ) ( x + 2 ) ⋅ x ( x + 2 ) x ( x + 2 )( x + 2 ) ( x + 2 )2 l p p p 2q p 2q p + 2q p − 2 q p + 2 q ( p + 2q ) ⋅ q = p + 2q q = ⋅ = : + 2 : − 2 = + : − = q q q p − 2 q q ⋅ ( p − 2 q ) p − 2q q q q q q q Het kan korter door direct teller en noemer met q te vermenigvuldigen. m 2 2 x 2 x 2 x − 2 x + 2 x − 2 x x ( x − 2) x − 2 ⋅ = = 1 − : 1 + = − : + = : = x x x x x x x x x x + 2 x( x + 2) x + 2 Het kan korter door direct teller en noemer met x te vermenigvuldigen. n x2 + 2 x xy x 2 + 2 x ( x + 2) z x ( x + 2)( x + 2) z ( x + 2) 2 : = ⋅ = = ( x + 2) z yz yz xy xy 2 z y2 o p 2 − p − 12 p 2 − p − 12 1 p 2 − p − 12 ( p − 4)( p + 3) p − 4 : ( p + 3) = ⋅ = = = p −3 p−3 p + 3 ( p − 3)( p + 3) ( p − 3)( p + 3) p − 3 © Noordhoff Uitgevers Uitwerkingen 2 4 – Breuken met letters p y2 − 2 y − 8 y−4 y 2 − 2 y − 8 x( y 2 + 6 y − 7) x ( y 2 − 2 y − 8)( y 2 + 6 y − 7) : = ⋅ = = x( y + 7) x ( y 2 + 6 y − 7) x ( y + 7) y−4 x( y + 7)( y − 4) x( y + 2)( y − 4)( y + 7)( y − 1) = ( y + 2)( y − 1) x ( y + 7)( y − 4) q x x x xy x y 2 x + xy x + y 2 x + xy y yx (1 + y ) x (1 + y ) + x : + y : = ⋅ = = = = + : + 2 y y y x+ y y( x + y 2 ) x + y 2 y y y y y y Het kan korter door direct teller en noemer met y te vermenigvuldigen. r x x x xy x xy x + xy x − xy x + xy y y ( x + xy ) x + xy = ⋅ = = = : + x : − x = + : − = y y y x − xy y ( x − xy ) x − xy y y y y y y x (1 + y ) 1 + y = x (1 − y ) 1 − y Het kan korter door direct teller en noemer met y te vermenigvuldigen. 9 a x 2 xy x x 2 ⋅ xy x x3 y y 2 z x3 y ⋅ y 2 z x 3 y 3 z x 2 y 2 ⋅ : 2 = = = = : 2 = 2⋅ yz z y z yz ⋅ z y z yz x z yz 2 ⋅ x xyz 2 b 2a − 4 a ( b − 1) a ( 2a − 4 ) ⋅ a ( b − 1) a ( 2a − 4 ) ⋅ a ( b − 1) ⋅ b + 1 ⋅ = = : : a − 2 b + 1 ( b + 1) ⋅ ( a − 2 ) b + 1 ( b + 1) ⋅ ( a − 2 ) a b +1 = ( 2a − 4 ) ⋅ a ( b − 1) ⋅ ( b + 1) = ( 2a − 4 )( b − 1) = 2 ( a − 2 )(b − 1) = 2 b − 1 = 2b − 2 ( ) (b + 1) ⋅ ( a − 2 ) ⋅ a ( a − 2) ( a − 2) c x 2 xy x x 2 xy ⋅ x x 2 x 2 y x 2 y 2 z 2 x 2 ⋅ y 2 z 2 x 2 y 2 z 2 : ⋅ : : = ⋅ = = 2 2 =z = = yz z y 2 z yz z ⋅ y 2 z yz y 2 z 2 yz x 2 y yz ⋅ x 2 y x y z d a −1 a − 1 b ( a + 1) ( a − 1) ⋅ b ( a + 1) ⋅ c c c c : = ⋅ = ⋅ 2 ⋅ 2 c bc ⋅ c a2 + 1 a +1 bc b ( a + 1) a + 1 bc ( a − 1) ⋅ b ( a + 1) ⋅ c ( a − 1)( a + 1) = = bc ⋅ c ⋅ a 2 + 1 c a2 + 1 ( © Noordhoff Uitgevers ) ( ) Uitwerkingen 3
© Copyright 2025 ExpyDoc