Quantum Hall transition in graphene with correlated bond disorder -- Unconventional Hall transition at n=0 Landau level -- Outlines 1. 2. 3. 4. 5. T. Kawarabayshi (Toho University) Y. Hatsugai (University of Tsukuba) H. Aoki (University of Tokyo) ArXiv:0904.1927 Landau levels in graphene Roles of disorder and Numerical model Density of states Hall conductivity Summary Characteristic band structure and Landau levels of graphene Dirac cones (K and K’) at E=0 (Fermi energy) K’ K 2D Honeycomb Lattice n=0 (E=0) Landau level Landau levels around K and K’ E n 2 eB v F | n | 2 -3,-2,-1 n=0 n=1,2,3,… n=0 Landau level Novoselov et al. Nature 2005 Essential to anomalous quantum Hall effect xy e 2 h ( 2 m 1) , m 0 , 1, 2 , (per spin) Zheng & Ando (2002) Robustness the index theorem for Dirac fermions Criticality: Dirac fermions + random potential (long-range) Sensitivity mixing of two valleys (K and K’) Koshino, Ando (2007) Schweitzer, Markos(2008) Ostrovsky et al. (2008) Nomura et al. (2008) Roles of Disorder Key concepts (A) Chiral symmetry (UHU-1 = -H) (B) Mixing of two valleys (K and K’) Random bonds Yes Random magnetic fields Yes Random potential No Short-range disorder Long-range disorder Yes No How these properties show up in the Landau level structure ? 2D Honeycomb Lattice Model + Spatially Correlated Disorder To control (B) the mixing between K and K’ t f Systematic study on the correlation dependence Chiral symmetric , n=0 (E=0) a ~1.42Å An intrinsic disorder in graphene Ripples Disorder in transfer integrals A.H. Castro Neto et al. Rev. Mod. Phys. (2009) A model with disordered transfer integrals t (r ) t t (r ) Chiral symmetry P ( t ) exp( ( t ) / 2 ) / 2 t ( r1 ) t ( r2 ) exp( | r1 r2 | / 4 ) 2 2 2 2 2 2 Gaussian with Correlation length A typical landscape (/a=5) e2 e1 t (r ) / Ly=Ny|2e2-e1| Region with large t(r) Region with Small t(r) Lx=Nx|e1| Density of states: correlation dependence n=0 /a >1 n=-2 n=-1 n=1 n=2 (E ) 1 Im G r , r ( E i ) r Anomaly for n=0 Landau level /t = 0.115 f/f0=1/50 /t = 0.000625 Nx=5000, Ny=100 The Green function Method Schweitzer, Kramer, MacKinnon (1984) Hall conductivity xy in terms of Chern number CE xy ( E F ) e 2 h C EF e 2 h M C l 1 EF CM Thouless, Hohmoto, Nightingale, den Nijs (1982) Aoki, Ando (1986), Niu, Thouless, Wu (1985) l Sum over many filled Landau bands E ~ 0, weak fields Contributions mostly cancel out Accurate numerical method for Cl C1 Hatsugai (2004,2005) Fukui, Hatsugai, Suzuki (2005) /a=1.5 n=1 Nx=Ny=10 300 samples n=0 Unconventional n=0 Hall transition for /a >1 /a=0 T.K., Y. Hatsugai, H.Aoki, ArXiv:0904.1927 n=-1 E/t Hall conductance xy (Chern Number CE ) as a function of E f/f0=1/50 n=1 /a=1.5 n=0 /a=0 E/t Transition at E=0 is sensitive to the range of bond disorder Nx=5000, Ny=100 n=-1 /t = 0.000625 Nx=Ny=10, 300 samples /t = 0.115 Size-independent /a=1.5 Nx=Ny=5 Nx=Ny=10 n=1 n=0 n=-1 E/t Additional potential disorder [-w/2, w/2] n=0 n=-1 w=0 w=0.4 insensitive Breakdown of chiral symmetry sensitive Other disorder with chiral symmetry Disordered magnetic fields P (f ) exp( (f ) / 2 f ) / 2 2 ff(r) 2 f 2 f ( r1 )f ( r2 ) f exp( | r1 r2 | / 4 f ) 2 /a 2 2 Anomaly at the n=0 level f/f = 0.237 < 1 small disorder large disorder f/f = 2.37 > 1 f/f0=1/41 /t = 0.000625 Nx=5000, Ny=82 /a Summary The n=0 Landau level : anomalously robust against long-range bond disorder Chiral symmetry, Absence of scattering between K and K’ No broadening for /a > 1 Consistent with the index theorem Scale of ripples in graphene : 10 ~ 15 nm >> a No broadening of n=0 level by bond disorder by ripples (Meyer, Geim et al, Nature 2007) Other disorder (ex. potential disorder) should be responsible for the broadening of n=0 level Possibility to observe this anomaly at n=0 in clean graphene without potential disorder from substrates Classical Hall transition ? Ostrovsky et al. (2008) Other disorder without chiral symmery Potential disorder V(r) P (V ) exp( V / 2 S ) / 2 2 2 S 2 V ( r1 )V ( r2 ) S exp( | r1 r2 | / 4 S ) 2 S/t = 0.288 f/f0=1/41 /t = 0.000625 Nx=5000, Ny=82 No anomaly 2 2
© Copyright 2024 ExpyDoc