The 21st Century COE International Symposium 2007.11.05~07 Linear Response Theory in Commemoration of its 50th Anniversary Intrinsic Hall Effects of Electrons and Photons – Geometrical Phenomena in Linear Response Theory Masaru Onoda (CERC-AIST) • Collaborators – S. Murakami (TIT) N. Nagaosa (Univ. of Tokyo) • Special thanks to – Y. Tokura (Univ. of Tokyo) H. Aoki (Univ. of Tokyo) Outline • • • • • Motivation Intrinsic mechanism of Hall effects Semiclassical Interpretation Optical Hall Effect Summary Mission of the theory team of CERC New functionalities based on geometrical phase of electron systems • Anomalous Hall effect (AHE) Quantum AHE • Spin Hall effect (SHE) Quantum SHE • Optical Hall effect (OHE) • AHE high-sensitive Hall element • QAHE resistance standard without external magnetic field • Edge states of QSHE spin filter, control of nuclear spin • OHE + tunable photonic crystal (PX) optical switch • Beam with internal rotation in PX optical mixer without fin Anomalous Hall Effect B M V H R0 B Rs M Current M Quantization Our contribution not presented today Disorder induced quantization of AHE : M. Onoda and N. Nagaosa, PRL 90, 206601 (2003) Spin Hall effect Current Quantization Our contributions not presented today Real space simulation: M. Onoda and N. Nagaosa, PRB 72, 081301(R) (2005);PRL 95, 106601 (2005) Disorder effect: M. Onoda, Y.Avishai, N. Nagaosa, PRL 98, 076802 (2007) Optical Hall effect Mission of the theory team of CERC New functionalities based on geometrical phase of electron systems • Anomalous Hall effect (AHE) Quantum AHE • Spin Hall effect (SHE) Quantum SHE • Optical Hall effect (OHE) • AHE high-sensitive Hall element • QAHE resistance standard without external magnetic field • Edge states of QSHE spin filter, control of nuclear spin • OHE + tunable photonic crystal (PX) optical switch • Beam with internal rotation in PX optical mixer without fin Conventional mechanisms of AHE and SHE sxy in Kubo formalism + diagrammatic technique Spin dependent scattering Skew scattering Side jump J.Smith, Physica 24, 39 (1958) L.Berger, PRB 2, 4559 (1970) Extrinsic spin Hall effect • • • M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971) J. E. Hirsch, PRL 83, 1834 (1999) S. Zhang, PRL 85, 393 (2000) VH H d I R0 B Rs M I d H H B R0 B Rs M Conventional HE Hall element Semiconductor with high resistivity and high mobility B R0 B Rs M AHE high sensitive Hall element (patent No. 2005-19894) Material search and design are needed for optimization. Research on intrinsic mechanism Intrinsic Mechanism Multi-band effect R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954) J. M. Luttinger, Phys. Rev. 112, 739 (1958) Quantum Hall effect K. v. Klitzing, G. Dorda, M. Pepper, PRL 45, 494 (1980) TKNN, PRL 49, 405 (1982) H. Aoki and T. Ando, PRL 57, 3039 (1987) s xy e2 V f ( nk ) nz k n,k Berry curvat ure: Ωnk i u nk u nk Intrinsic anomalous Hall effect due to chiral spin order K. Ohgushi, S. Murakami, N. Ngaosa, PRB 62, R6065 (2000) Y. Taguchi et al., Science 291, 2573 (2001) Intrinsic spin Hall effect S. Murakami, N. Nagaosa., S.-C. Zhang, Science 301, 1348 (2003) J. Sinova et al., Phys. Rev. Lett. 92, 126603 (2004) 1 3 F 2 2 e s xy V f ( nk ) z nk n,k Berry curvature ~ magnetic field in k-space Geometrical aspect only in special situations? EF ky kx t2g model px py l s Umz s z dxy dyz dzx M.Onoda and N. Nagaosa, JPSJ 71, 19 (2002) Topological/Geometrical and Resonant aspects n 1 n n 1 n Topological transition in QHE • • • • J. E. Avron, R. Seiler, B. Simon, PRL 51, 51 (1983) B. Simon, PRL 51, 2167 (1983) Y. Hatsugai and M. Kohmoto, PRB 42, 8282 (1990) M. Oshikawa, PRB 50, 17357 (1994) Small change of a parameter, e.g., Mz Drastic change of Drastic change of sxy Nearly degenerate (resonant) point Large SrRuO3, Sr0.8Ca0.2RuO3 Berry curvature of a t2g band Sr1-xCaxRuO3 R. Mathieu et al., PRL 93, 16602 (2004) Z. Fang et al., Science 302, 92 (2003) Intrinsic spin Hall effect in p-type GaAs 2 1 5 2 H 1 2 k 2 2 k S 2m 2 x: electric field y: spin current z: spin direction y x z E GaAs j yS z eE x 1 H L 3 k k s s Ex F F 2 12 2e S. Murakami, N. Nagaosa., S.-C. Zhang, Science 301, 1348 (2003) Intrinsic spin Hall effect in n-type GaAs momentum spin J. Sinova et al., PRL 92, 126603 (2004) Spin Hall Effect in n-type GaAs Intrinsic Spin Hall Effect in p-type GaAs Y. K. Kato et al., Science 306,1910 (2004) Extrinsic (Conventional) J. Wunderlich et al., PRL 94, 047204 (2005) Candidates of QSHE Graphene CdTe/HgTe/CdTe QW C. L. Kane and E. J. Mele, PRL 95, 146802 (2005) Bi bilayer S. Murakami, PRL 97, 236805 (2006) B. A. Bernevig, Science 314, 1757 (2006) HgTe/Hg0.3Cd0.7Te QW M. König, et al., Science 318, 766 (2007) Semiclassical Interpretation h p Equations of motion of a wave-packet F unit cell e q in magnetic flux commensurate with lattice M.-C. Chang and Q. Niu, PRL 75, 1348 (1995). r nk k Ωnk k E er B r r Magnetic Bloch bands Anomalous velocity QHE Effective Lorentz force e2 f J e f i ri 0 nk nk ( nk E ) f 0 nk E Ωnk V n,k i Spin-dependent Intrinsic spin Hall effect Ωk Ωk Berry curvature Internal rotation 1st level 2nd level 3rd level M.-C. Chang, Q. Niu, PRB 53, 7010 (1996) E Multi-band effect Projection due to nk Geometrical/T opological Resonant enhancement Ωnk i unk unk Wave-particle duality Noncommuta tivity [ X ,Y ] 0 Internal Rotation Spin-orbit coupling in a broad sense Wave optics Eikonal Fermat’s principle Geometrical optics Semiclassical interpretation Quantum mechanics Path integral least-action principle Classical mechanics Equations of motion of optical packet Anomalous velocity Speed of light : vr P olarizaton i st at e:| z ) Λk iek e k P olarizaton i vect or: ek Ωk Λk iΛk Λk k s3 3 k k r vr k ( z | Ωk | z ) k k (vr )k | z) ik Λ | z ) Neglecting the spin, i.e., polarization →Conventional equation of geometrical optics M. Onoda, S. Murakami, N. Nagaosa, PRL 93, 083901 (2004) k Solid (transmission) and broken (reflection) lines: conservation of angular momentum per photon ● ■ :Maxwell’s equations Imbert-Fedorov shift Elliptical polarization Linear polarization M. Onoda, S. Murakami, N. Nagaosa, PRE 74, 066610 (2006) Internal Angular momenta of light Spin angular momentum Linear S=0 Right circular S=1 Left circular S=-1 Orbital angular momentum L=0 L=1 L=2 http://www.physics.gla.ac.uk/Optics/projects/singlePhotonOAM/ L=3 Transverse shift of Laguerre-Gaussian beam Theory, V. G. Fedoseyev, Opt. Comm. 193, 9 (2001) Experiment, R. Dasgupta, P. K. Gupta, Opt. Comm. 257, 91 (2006) Experiment, H. Okuda, H. Sasada, Opt. Exp. 14, 8393 (2006) Optical Hall effect in photonic crystals Multi-band Resonant enhancement Berry curvature in PX Trajectory of optical wave-packet in PX Gradation modulation 2 ( x) 1 2 ( x) ε (r ) ε (r ) r ( x) k Enk k Ωk k [ ( x)] E nk Overhead view of the 2D PX. The crystal structure is not shown. Berry curvature and internal rotation (TE mode) z S E z Applications of optical torque (Extensions of the optical tweezer technology) 3m x 1.5m calcite 1m dielectric H. Ukita, 精密工学会誌 72, 977 (2006) (in Japanese) A. T. O’Neil et al., PRL 88, 053601 (2002) S dr (r rc ) E (r ) B(r ) S E dr (r rc ) E (r ) H (r ) E 2 S neff S , neff 1 E S ~ 1 S 1 Beam with large angular momentum by photonic crystal optical mixer without fin Summary • Intrinsic mechanism of Hall effects (IHE) in electron systems – Suitable for material search and design – Multi-band effect – Geometrical/topological – Resonant enhancement – Internal rotation + spin-orbit interaction in a broad sense • Optical Hall effect (OHE) – Counterpart of electronic IHE in optical systems – Imbert-Fedorov shift as a simple example of OHE – Resonant enhancement of OHE in photonic crystals – Optical state with large angular momentum in PX
© Copyright 2024 ExpyDoc