grand gauge-Higgs unification 山下 敏史 (名古屋 益川塾) 2011/3/8 @素粒子物理学の進展2011 based on : arXiv:1103.1234 (appeared today) in collaboration with : K. Kojima (Kyushu) & K. Takenaga (Kumamoto Health Science) Introduction Gauge-Higgs Unification 5D theory D.B. Fairlie (1979) N.S. Manton (1979) gauge field compactification 4D theory with KK modes gauge field scalar field Higgs Hosotani mechanism Y.Hosotani (1989-) Introduction Hosotani mechanism Y. Hosotani (1989-) • symmetry breaking by VEVs of Wilson line phase zero-mode of A5 • before orbifold breaking : Y. Kawamura (2000-) applied to GUT breaking (A5 : adjoint) in models w/ no chiral fermions • chiral fermion • fundamental repr. • after : Hosotani’s talk mainly applied to EW breaking GUT breaking in models w/ chiral fermion? K.Kojima & K.Takenaga & T.Y. Introduction difficulty K.Kojima & K.Takenaga & T.Y. • orbifold action projects out adjoint scalars • this difficulty is shared w/ heterotic string Kuwakino’s talk - well studied, classified w/ Kac-Moody level - ``diagonal embedding” method Why can’t we use this in our pheno. models? Plan • • • • • Introduction massless adjoint scalar Fermions Applications Summary massless adjoint scalar Orbifold ex) Fields may not be invariant! ex) symm. transformation massless adjoint scalar Orbifold breaking Y.Kawamura (2000) ex) SU(3) SU(2)*U(1) projected out massless adjoint scalar diagonal embedding diagonal part K.R.Dienes & J.March-Russel (1996) permutation eigenvalues: as orbifold action ex) adjoint scalar zero-modes: Plan • • • • • Introduction massless adjoint scalar Fermions Applications Summary Fermions K.Kojima & K.Takenaga & T.Y. exchange symmetry Z2 partner when R1=R2 : vector-like • when R1=R2 (=R) : ex) SU(5) w/ R=5 : chiral Fermions K.Kojima & K.Takenaga & T.Y. KK spectrum BG: • when R2 is trivial : completely same (basically) same as S1 Fermions K.Kojima & K.Takenaga & T.Y. KK spectrum (basically) same as S1 BG: • when R2 is non-trivial : slightly different as if non-local interaction Fermions K.Kojima & K.Takenaga & T.Y. KK spectrum BG: (basically) same as S1 • when R2 is non-trivial : slightly different the same as R1*R2 fermion in S1, while it behaves as R1*R2 under Gdiag. Plan • • • • • Introduction massless adjoint scalar Fermions Applications Summary Applications K.Kojima & K.Takenaga & T.Y. The results in literatures can be easily reproduced, besides chiral fermions (on the branes). SU(5) • it is not easy to realize vacua where SU(5) is broken down to SM, as global minima. A.T.Davies & A.McLachlan (1989) • it is claimed the desired minimum can be realized w/ fermions : 5, 10 scalars : 5, 3*15, as a local minimum anti-periodic fermion V.B.Svetovoi & N.G.Khariton,(1986) Summary • We propose a novel way to break GUT-symm. via the Hosotani mechanism. • adjoint scalars by diagonal embedding • chiral fermions on branes • It turns out KK spectra are basically the same as in S1 models results in literatures are easily reproduced. • SU(5) GSM is not easy as global minima • model w/ desired vacuum as local minimum. Summary future works • SUSY and/or RS • doublet-triplet splitting • gauge coupling unification • concrete model building …
© Copyright 2024 ExpyDoc