理研スパコン研究会 2010/Sep./24 有限温度QCDにおける 励起モード 北沢正清 (阪大) Lattice Study of QCD @T>0 static macro (bulk) EoS susceptibilities (fluctuations) order parameters … micro screening mass potential wave func. … dynamical Lattice Study of QCD @T>0 spectral function static dynamical macro (bulk) EoS susceptibilities (fluctuations) order parameters … transport coefficients (viscosity) dynamic critical phenomena? micro screening mass potential wave func. … excitation modes (quasi-particles; hadrons, quarks, gluons, etc.) mass, decay rates Spectral Functions at T>0 ( , p) Im FT O( x), O(0) ( x0 ) T>0 (,p) (,p=0) T=0 Difficulties at T>0: continuous spectrum fixed temporal extent: T=1/aNt D( ) e(1/ 2T ) d / 2T ( ) / 2T e e Extracting Spectral Functions D( ) dK (, ) () D( ) T O( )O(0) lattice observable discrete and noisy e( / 2 ) K ( , ) / 2 / 2 e e spectral function continuous Ill-posed problem MEM analysis of () most probable image estimated by lattice data + prior knowledge Asakawa, Hatsuda, Nakahara, 1999 qualitative structure of (). errors only for average for finite range Dilepton (Photon) Production Rate Direct probes in heavy ion collisions. Emissions from all stages are superposed PHENIX, PRC,2010 dRee 1 R Im 4 4 2 q0 / T d q 12 Q e 1 R FT j ( x), j (0) ( x0 ) g vector channel propagator e+ e- Quark Number Scaling at RHIC v2 >0 Quark number scaling indicates the existence of quasi-particles having quark quantum number at early stage. Excitation Modes in Hot Medium How do quarks and gluons disappear? perturbatively, decay width ~g2T •Is quasi-particle picture for quarks and gluons irrelevant in sQGP? How do hadrons cease to exist? Are there hadronic modes above Tc? •fate of charmonia: signal of realization of QGP phase Matsui, Satz, ’86 •soft modes of chiral transition in and s channels. Hatsuda, Kunihiro, ’85 and other excitation modes? glueballs, diquarks, … Hydrodynamical Models at RHIC Viscous hydrodynamics contains transport coefficients: •shear viscosity h •bulk viscosity z •relaxation times , … Is the ratio h/s close to the conjectured lower bound 1/4 ? Schenke, et al. 1009.3244 (,p) Spectral Functions at T>0 peak slope at the origin transport coefficients Kubo formulae h ~ lim 0 ( ) •shear viscosity : T12 •bulk viscosity : T •electric conductivity : Jii quasi-particle excitation width ~ decay rate Approximation So far, almost all studies on spectral functions are performed in quenched approximation. Because we need larger Nt (finer a) to increase number of data points larger L > 4/T to eliminate finite volume effects higher statistics The largest lattice thus far: Nt ~ 48, Nx~128 Quenched QCD is not the QCD. However, some nonperturbative features would be revealed in the quenched analysis. Charmonium Spectra Asakawa, Hatsuda, 2004 Asakawa, Hatsuda, 2004 Datta, et al., 2004 Umeda, et al., 2002 Aarts, et al., 2006 Jakovac, et al., 2007 … MEM analysis: All calculation concludes that J/y survives up to ~1.5Tc Only a few studies on light quarks Recent progress: subtract the constant mode Umeda,2007 default model dependence Ding, et al.,2009 Transport Coefficients shear: Karsch, Wyld, 1987 Nakamura, Sakai, 2005 Meyer, 2007 bulk: Meyer, 2008 electric conductivity: Gupta, 2004 Aarts, et al., 2007 Several approaches: fitting with Lorentz-type ansatz, ansatz from hydrodynamics at low energy Electric Conductivity: Spectrum in vector channel Aarts, et al., 2007 1 6 0 s lim i ii ( ) 0.4(1) Cut-off Dependence in Vector Channel Kaczmarek, et al., xQCD2010 Correlator for vector channel for T=1.5Tc with different a GV ( ) yg y ( , x)yg y (0,0) x, G ( ) : free & continuum free V strong a dependence Spatial Volume Dependence of mT mT/T 643x16 483x16 T=3Tc 1283x16 N3 / Ns3 ~ 1/ V •Strong spatial volume dependence of mT. mT/T=0.725(14) Spatial Volume Dependence of mT mT/T 643x16 483x16 T=3Tc 1283x16 •Strong spatial volume dependence of mT. mT/T=0.725(14) N3 / Ns3 ~ 1/ V pmin N 2 2 T Lx Nx •Nx/N=4 pmin~1.57T •Nx/N=8 pmin~0.79T k2nB(Ek) Discretization of p m=0 m=T Nx/N=4 k/T Exploiting Sum Rules Kharzeev, Tuchin, 2008 Romatschke, Son, 2009 Ellis, Kapusta, Tang, 1998 Spectral function can be constrained by sum-rules. For bulk sector: 2 0 d ( ) T 0 ( ) 3s 4 ( 3 p) s QCD thermodynamics serves as an additional information for the spectrum! Some difficulties: ()T=0() is not positive semi-definite. MEM is not applicable. We must know T=0 spectrum. Summary 有限温度QCDの動的な性質を格子QCDの数値解析により 理解することは、極めて重要かつ興味深い課題である。 スペクトル関数の評価には注意深い解析が必要である。 •相関関数の格子間隔および体積依存性 •解析の結果得られたスペクトル関数の誤差評価 解析接続をより確実に行うための手法の開発や、信頼性の 正しい評価等において、更なる理論的進展が望まれる。 既存の解析の更新、および新しい物理量の解析のため、 より大きな計算機資源が必要である。 •より大きな格子、高統計 •フルQCDにおける解析 Spectral Function at T>0 nonzero T 1 ( ) e En / T (1 e / T ) ( En Em ) n Oˆ m Z m,n T=0 ( ) ( Em ) 0 Oˆ m m 2 2
© Copyright 2025 ExpyDoc