LaVOx(x=3-4)薄膜の内殻光電子分光 発表者 堀田 育志 (Hwang研) 共同研究者の皆様 Hwang研 椋木 康滋、 須崎 友文、 Harold Y. Hwang 藤森研 和達 大樹、 藤森 淳 科研費基盤研究A 「単結晶薄膜化により物性を制御した強相関系遷移金属酸化物の電子構造の研究」研究会 2005年6月17日(金) 13時~18時 東京大学 柏キャンパス 基盤棟2階複雑理工講義室 Crystal structure and energy diagram of LaVO3 Crystal structure Energy diagram Orthorhombic unit cell La V O dn+1 V 3d dn-1 ~4 eV c d002 O 2p d110 b a d1-10 Perovskite unit cell Mott gap Ueff : ~1 eV ⇒λ : ~1240nm (Near-IR) Direct observation of Mott dnL gap by optical spectroscopy using near-IR JPSJ 64, (1995) 2488. Structural phase transition : 141K Orthorhombic a=5.555Å b=5.553Å c=7.849Å → Monoclinic a=5.594Å b=7.760Å c=5.565Å γ=90.125° P. Bordet, et. al., J. Solid State Chem. 106, 253 (1993) 1/18 Motivation of this study Energy diagram of interface between Mott and band insulator ○ × LaVO3/LaAlO3 superlattice hν e- La 5d e- Ti 3d 3.2 eV V 3d 5.6 eV LaAlO3 SrTiO3 LaVO3 LaAlO3 Band insulator Mott insulator Band insulator Absorption intensity (arb. units) O 2p 2e3.2 eV 2e- LaVO3 5.6 eV Thick LVO ? Thin LVO 1 1.05 1.1 Energy (eV) 1.15 The QWs have sub band structures? Quantum confinement? 2/18 SrTiO3/LaTiO3 superlattice A. Ohtomo et al., Nature 419 (2002) 378 3/18 Purpose of XPS measurement To confirm valence state of vanadium in LaVO3 layer X-ray ee- La3+ Al3+ O2-3 La3+ V3+ O2-3 Interface vanadium La3+ Al3+ O2-3 SrTiO3 LaVO3 layer embedded in aAlO3 layers maintains Mott gap? Valence state of vanadium ion is modulated at the interface? 4/18 Experimental condition Growth condition Tg : 500~900℃ PO2 : 5×10-8~1×10-2 Torr Target : LaVO4 polycrystals Growth rate : ~1.5 nm/min Thickness : 40 nm (100 u.c.) Fluence : ~3 J/cm2 (4 Hz) Pulsed Laser Deposition system Lamp Heater RHEED Substrate CCD Camera e- Characterization RHEED XRD AFM XPS Pulse Laser Lens Target O2 TMP RP 5/18 RHEED, XRD, and AFM measurement 0 5 10 15 20 30 ▲ LaVO 3 STO(002) (-222) (-213) (040) (031) STO(002) 40 <10-5 Torr 10-6 Torr □ □ 20 60 ▲ ▲ 10 10-6 Torr 10-4 Torr 50 (040) 20 40 50 60 50 60 STO(002) 15 □ (220) 10 ▲ LaVO 3 □ LaVO 4 30 □ (031) 5 20 □ >10-5 Torr □ (220) 10 10-5 Torr 0 10-3 Torr 20 STO(001) 15 (110) 10 (110) 5 Torr Intensity (arb. unit) Intensity (arb. units) 0 □ LaVO 4 STO(001) 10-4 STO(001) Sample structure : LaVO3(100ML)/SrTiO3 (100) Growth temperature : Tg = 600℃ Oxygen partial pressure : PO2 ▲ ▲ 10-7 Torr 0 5 10 15 Number of unit cells 20 10 20 30 40 2θ(deg.) 5μm 6/18 Growth phase diagram of LaVOx on SrTiO3 PO2 > Torr → LaVO4 (x=4) PO2 = 10-5 ~ 10-4 Torr → Competing phase PO2 < 10-6 Torr → LaVO3 (x=3) 10-3 No structural phases corresponding to V4+ (x=3.5) The optimal condition for atomically flat epitaxial LaVO3 films were obtained. 10-1 Oxygen partial pressure (Torr) We mapped out the growth phase diagram of LaVOx (x=3-4) film. Phase diagram of LaVOx 10-2 LaVO4 (V5+ phase) 10-3 10-4 Competing phase -5 10 10-6 LaVO3 (V3+ phase) -7 10 10-8 500 600 700 800 900 Growth temperature (℃) Optimal condition for 2D growth 7/18 Sample structure Thick LaVO3 with cap Quantum-well (QW) structure LaAlO3 (3ML) LaAlO3 (3ML) LaVO3 (3ML?) LaAlO3 (3ML) LaVO3 (1ML?) LaAlO3 (30ML) LaAlO3 (30ML) SrTiO3 (5ML) SrTiO3 (5ML) SrTiO3 (5ML) SrTiO3 (100) SrTiO3 (100) SrTiO3 (100) LaVO3 (50ML) RHEED oscillation data LVO LAO LAO STO LVO LAO STO 0 50 100 100 200 300 400 500 600 Deposition time (sec.) 700 800 900 1000 LAO LVO LAO RHEED intensity (arb. units) RHEED intensity (arb. units) RHEED intensity (arb. units) STO RHEED oscillation data 0 100 100 200 300 400 Deposition time (sec.) 500 100 200 300 0 50 100 100 200 300 400 50 100 150 Deposition time (sec.) 8/18 Wide scan and core level spectra LaAlO3(3 ML)/LaVO 3(50 ML)/SrTiO 3 h = 1253.6 eV La 3d T = R. T. O 1s O(KVV) 860 La(MNN) 800 600 850 840 830 Binding Energy (eV) LaAlO3(3 ML)/LaVO 3(50 ML)/SrTiO 3 La 4s La 4d C 1s La 4p Al 2p V 2p 1000 La 3d5/2 La 3d3/2 400 Binding Energy (eV) 200 0 Intensity (arb. units) Intensity (arb. units) Intensity (arb. units) LaAlO3(3 ML)/LaVO 3(50 ML)/SrTiO 3 Al 2p 80 78 76 74 72 Binding Energy (eV) 70 The La 3d spectrum in LaAlO3 layer showed a good agreement with its in La2O3. Ref.) Chem. Phys. 253 (2000) 27 The energy position of Al 2p peak was assigned to valence state of 3+. 9/18 Quantum-well structure LaAlO ML)/LaVO (x ML)/SrTiO (100) [LaAlO 3(3 3]3ML/ [LaVO33]xML/ [LaAlO3]330ML/SrTiO3(100) Intensity (arb. units) 50 ML Thick LVO 3 ML 1 ML Well structure LaVO3 (bulk) Bulk : PRB 53, 1161 (1996) V5+ V4+ 520 518 516 V3+ 514 512 510 Escape depth (Å) V 2p3/2 Escape depth for electron This study Energy of electrons (eV) Binding Energy (eV) The curve shape of the V 2p3/2 spectrum in the 3ML-LVO-QW sample showed good agreement with the result for LaVO3 bulk treated by filling in vacuum. 10/18 Core level fitting Core level fittings of the XPS spectra were performed to estimate the component of V3+ state in the capped LaVO3 samples. Fitting parameter Binding energy (B-E) Peak intensity (INT) Lorentzian width (L-W) Gaussian width (G-W) Some parameters should be fixed to obtain a objective fitting result for the spectra. Peak fitting of V5+ spectra LaVO 4/SrTiO3(100) The V 2p3/2 peak from LaVO4 is assigned as single component of V5+ state. Intensity (arb. units) experiment fitting V5+ 523 522 521 520 519 518 Binding Energy (eV) 517 516 L-W 0.60 [Ref.] G-W 1.23 Ref. J. Phys. Chem. Ref. Data, Vol.8, 329 (1979) 11/18 3+ V Core level fitting 4+ V experiment fitting Intensity (arb. units) Intensity (arb. units) experiment fitting 4+ V 3+ V 5+ QW structure (3ML) Thick LaVO5163 film514(50ML) 520 518 512 3+ V 4+ V 4+ V 518 3+ V 4+ V 3+ V 5+ 516 514 520 512 5+ Intensity (arb. units) Binding Energy(eV) (eV) LaAlO3(3 ML)/LaVO Binding energy 3(50 ML)/SrTiO 3(100) experiment fitting 4+ 3+ V 5+ V3+ V4+ B-E 515.13 516.68 518 516 514 512 INT 1.96 0.93 Binding Energy (eV) LaVO3(50 ML)/SrTiO (100) 3 L-W 0.60 0.60 experiment fitting G-W 1.87 1.87 AREA V4+ 0.46 0.22 520 516 514 512 520 518 V5+ 517.53520 0.00 0.60 1.23 0 516 514 512 Binding Energy (eV) Binding energy (eV) experiment fitting 4+ V 3+ V (LAO)3/(LVO)3/(LAO)50/STO V Intensity (arb. units) 518 Binding energy (eV) Table : Fitting parameter V V Binding Energy (eV) LaVO3(50 ML)/SrTiO 3(100) Intensity (arb. units) 518 512 experiment fitting V 520 No cap514 516 Binding Energy (eV) LaVO ML)/SrTiO (100) LaVO3(50 3(50ML)/SrTiO33(100) experiment fitting Intensity (arb. units) experiment fitting Binding Energy (eV) LaAlO3(3 ML)/LaVO 3(50 ML)/SrTiO3(100) 520 Intensity (arb. units) LaAlO3(3 ML)/LaVO3(3 ML)/LaAlO3(50 ML)/SrTiO3(100) Intensity (arb. units) V (LAO)3/(LVO)50/STO V3+ 5+ V V4+ 515.13 516.68 518 516 514 Binding Energy (eV) 1.77 1.23 0.60 0.60 1.87 1.87 0.36 0.25 (LVO)50/STO V5+ V3+ V4+ V5+ 517.53 512 0.36 0.60 1.23 0.07 515.13 0.98 0.60 1.87 0.28 516.68 1.82 0.60 1.87 0.53 517.53 0.11 0.60 1.23 0.03 3+ V 12/18 Vanadium core level spectra QW structure (3ML) 1.0 V V 3+ 4+ +V 5+ 0.8 AREA V3+ V4+ V5+ 0.68 0.32 0 Area ratio 0.32 0.6 Thick LaVO3 film (50ML) 0.4 AREA V3+ V4+ V5+ 0.53 0.37 0.10 0.47 0.2 No cap 0 3 ML 50 ML no cap The role of capping layer to preserve V3+ is obviously shown. AREA V3+ V4+ V5+ 0.33 0.63 0.04 0.67 The vanadium ion could access valence state of 3+ in the structure. 13/18 LaVO3 layer-thickness dependence To change LVO thickness : [LaAlO3]3ML/ [LaVO3]xML/ [LaAlO3]30ML/SrTiO3(100) RHEED intensity data Surface morphology 5ML 0 1 0° X-ray 4ML e30° 0 1 e- 55° 3ML 70° 0 1 0 200 Deposition time (sec.) 300 90° 400 LA O3 LV M L Ox ML Sample structure ep 100 ed 0 th :1 0Å 1ML e- Es ca p Normalized RHEED intensity 1 LA O1 0M L STO (100) LAO 30ML LVO 5ML LAO LVO 10ML 5ML LAO LVO LAO 10ML xML 3ML 14/18 ML dependence LaAlO3(3 ML)/LaVO3(x ML)/LaAlO3 O1s Intensity (arb. units) A systematic variation was shown. The V2p peak intensity increases with increasing the LVO layer thickness 1 ML 2 ML 3 ML 4 ML 5 ML The spectral shapes from 1M to 5ML show a good agreement with each other. LaAlO3(3 ML)/LaVO 3(50 ML)/SrTiO 3 V2p3/2 V2p1/2 540 535 530 525 520 515 /SrTiO3(100) 510 505 The 50ML sample shows more broad peak, indicating the existence of V4+ and V5+. Binding Energy (eV) Normalized by the O1s peaks LaAlO3(3 ML)/LaVO3(x ML)/LaAlO3 1 ML 2 ML 3 ML 4 ML 5 ML 1 ML 2 ML 3 ML 4 ML 5 ML Intensity (arb. units) Intensity (arb. units) LaAlO3(3 ML)/LaVO3(x ML)/LaAlO3 Normalized by the spectral area LaAlO3(3 ML)/LaVO 3(50 ML)/SrTiO 3 LaVO3(50ML)/ SrTiO3 (100) V5+ V4+ 518 V3+ 516 514 Binding Energy (eV) LaAlO3(3 ML)/LaVO 3(50 ML)/SrT /SrTiO3(100) V5+ V4+ 512 510 518 516 V3+ Satellite (Kα5) 514 Binding Energy (eV) 512 510 15/18 Angular dependence LaAlO3(3 ML)/LaVO3(3 ML)/LaAlO3 LaAlO3(3 ML)/LaVO3(5 ML)/LaAlO3 Intensity (arb. units) 55 70 518 516 514 o o Intensity (arb. units) 30 o 512 510 70 Binding Energy (eV) 516 514 512 o o o 512 30 Intensity (arb. units) Intensity (arb. units) 55 514 70 o 510 LaAlO3(3 ML)/LaVO Binding Energy (eV) 3(1 ML)/LaAlO 3 30 516 55 518 Binding Energy (eV) LaAlO3(3 ML)/LaVO 3(2 ML)/LaAlO3 518 30 o o 510 55 70 518 516 514 Binding Energy (eV) 512 o o o 510 16/18 Angular dependence VO2 V2O5 LaVO4 XPS results indicate that it comes from the capping layer region. 5 0 When LaVO3 growth was interrupted, high-oxidized V phases could appear at the surface. → However, no evidence! Å Ex.) TEM image of LVO/STO superlattice STO LaVO3 LVO STO Growth direction VO2LaO+ AlO2- Where did V4+ (or V5+) come from? Observed by L. Fitting and D. A. Muller in Cornell Univ. 17/18 Conclusion LaVO3の成膜条件の最適化 2次元結晶成長条件 : Tg = 600℃, PO2 = 10-6 Torr LaAlO3/LaVO3(5~1ML)/LaAlO3 超格子のXPS測定 LaVO3 の膜厚に対してV 2p3/2ピーク形状の変化なし → LaVO3 1MLの場合でもV3+が主な価数 角度分解XPS測定 LaVO3 5~1MLの試料で同様の傾向 → 上部の界面近傍により価数の高いバナジウムイオンが存在 → LaVO3 1MLの場合にも角度依存性あり ※上部の界面でより酸化されたバナジウム相が混在? 18/18
© Copyright 2025 ExpyDoc