視覚の幾何学3 呉海元@和歌山大学 参考書 佐藤 淳: 「コンピュータビジョン -視覚の幾何学-」 コロナ社 特徴に基づいた立体視 x1 corner fB Z x1 x2 x2 2枚の画像から 3次元情報を復元 差(disparity) ボールの3D軌跡の計測 平行ステレビデオオカメラ 立体視の原理 P カメラキャリブレーション済みなら 光軸は平行になるように変換 (R,tが既知) 2D⇒3D p Yl Pl p l Xl Zl X’l Ol 問題: 対応点の探索をどう絞るか? Pr Yr Zr t Xl’ = T, r Or R, t Yl’ = Xl’xZl, Xr Z’l = Xl’xYl’ 2眼視の幾何: Two-View Geometry x3 x2 x’3 x1 x’2 x’1 courtesy of F. Dellaert 画像間の点(xi to x’i )の対応関係は ・カメラ間の剛体変換(カメラ行列) ・シーンの構造 により決定 エピボーラ幾何(Epipolar geometry) 複数の視点における相対的なカメラの位置や姿勢 の情報をエピポーラ幾何(Epipolar geometry)と 呼ばれる画像特有の幾何によって記述できる もう一方のカメラでは、 画像上のどこに投影されるのか? ? O O エピボーラ幾何(Epipolar Geometry) Baseline: カメラ中心C, C’を繋がる直線 Epipolar plane p: baselineとシーンの中の点 Xより 決定された平面 エピボラ平面 baseline from Hartley & Zisserman エピボーラライン(Epipolar Lines) Epipolar lines l, l’: epipolar plane p と画像面 との交線 Epipoles e, e’: baselineと画像面との交点 エピボラ平面 Epipolar line エピボラライン C Epipolar line Epipole エピホール Epipole C’ ベースライン from Hartley & Zisserman Epipolar Pencil X の位置を変化すると、epipolar planes はbaseline の周りに“rotate” • このような平面集合を epipolar pencilと呼ぶ Epipolar lines はepipole から“radiate” • これは pencil of epipolar linesと呼ぶ epipolar pencil エピボラペンシール pencil of epipolar line from Hartley & Zisserman エピポーラ拘束 エピポーラ拘束 エピポーラ線 O O エピポール エピポール エピボーラ拘束(Epipolar Constraint) エピボラ幾何より、片方の画像内の一点は必ず もう一方の画像内のエピボラ直線(1D)上存在 エピボラ直線 一点 x’ C C’ from Hartley & Zisserman 例:Epipolar Lines for Converging Cameras Left view epipolar linesの交線 = Epipole ! 他方のカメラ中心の位置を表す ロボット・カメラの移動軌跡の推定 Right view from Hartley & Zisserman 特例: Translation Parallel to Image Plane カメラの運動が画像面と平行する場合、 ・epipolar linesは平行(エピホールは無限遠) ・対応点は対応 epipolar line上に存在 (全種類のカメラ運動) 特例: Translation along Optical Axis カメラの運動が画像平面と垂直: Epipolesはfocus延長線上に一致 一般的に、無限遠点と異なる e’ e ステレオから3眼視へ エピボラ幾何より、片方の画像内の一点はかならずも う一方の画像内のエピボラ直線(1D)上存在 対応付け: 点直線 左側の画像上の1点 右側の画像上の一本の直線 曖昧性が残っている x’ C C’ Transfer: epipolar transfer 点直線 点直線 点点 Using more cameras to remove match ambiguity 3眼視 透視カメラのエピポーラ幾何 複数のカメラの関係や対象物との関係を考えるた めに、何か基準となる座標系を考えなければなら ない(各カメラの座標系を元に考えるのではない) すべてのカメラや対象物に対して共通に決められ た座標のことをワールド座標(world coordinates) と呼ぶ(ワールド座標を一つ決める) ワールド座標を基準に考えなければならない Coordinate Transformations 座標変換 If we want to measure something (size of an object, depth of image points, distance between features……), we need to understand the geometry from image to world Coordinate system transformations • Image (i) camera (c) world (w) object (o) yc yi yw zc Oc Oi xc Oo zw Ow xi xw 行列・ベクトルの外積 a2b3 a3b2 0 a b a3b1 a1b3 a3 a1b2 a2b1 a2 a3 0 a1 a2 a1 b 0 aと bは同じ平面に存在すれ ば a (a b) 0 b (a b) 0 a b 幾何変換 Geometric transformation P' RP t p KP with K [I | 0] p' K' P with K' [R | t ] 基本行列 (Essential matrix) ⇒ 2カメラ間の姿勢と位置: • R : 3*3 rotation matrix • t : 3*1 translation vector pとp’が対応点同士なら: p (u, v,1)T p'[t (Rp)] 0 with T p' (u ' , v' ,1) 前提: pとp’は画像座標から計算さ れた物理(カメラ)座標である (カメラの内部パラメータ既知) 即ち:同一平面内の三つのベクトルから二つのベクトルの外積と 残るもう一つのベクトルの内積は0となる p' Ep 0 エピボラ方程式 基本行列(E行列) with E t R ★ Eが求まれば、tとRに分解することができる 基礎行列(Fundamental matrix) 内部パラメータが未知、画像座標xしか分からない • 画像座標xと物理(カメラ)座標pの関係: x=Kp , x’=K’p’ ⇒ p=K-1x, p’=K’-1x’ (K,K’ are the camera calibration matrix) 基本行列から : p’TEp=0 ⇒ x’TK’-TEK-1x=0 ⇒ x’TFx=0 F= K’-TEK-1 基礎行列 (F行列) ●基礎行列はカメラの内部パラメータと外部パラメー タの双方を含んでいる 基礎行列Fの性質1 x’TFx=0 x=eの場合 (e is epipole) : x’TFe=0,∀x’ (∵全てのepipolar linesはepipoleの所に交叉) ⇒ Fe = 0 x’=e’の場合(e’ is epipole) : e’TFx =0,∀x ⇒ e’TF = 0 ⇒ FTe’ = 0 ●F行列が与えられれば、eとe’はそれぞれFTFと FFTの最も小さい固有値に対応する固有ベクト ルとして求められる 基礎行列Fの性質2 片方の画像内の点xがもう一方の画像内epipolar line l’ 上に対応付けることは: line point l’ = Fx このpoint-on-lineの関係は l’TFx れ、l’T Fx = 0より決定さ = (Fx)T l’ = 0の関係も成り立つ F is 3 x 3, rank 2 (逆行列が求められない) ホモグラフィ( Homography ) 空間中の対象点が全て同一平面内に存在する場合 もう一方のカメラでは、 画像上のどこに投影されるのか? ? O O ホモグラフィ( Homography ) H O ホモグラフィー O Homography lx’=Hx 空間内平面と画像間の投影 ホモグラフィ行列Hの自由度: 8 一対の対応点 (x,y,1)⇔(x’,y’,1)より、二つの方程式が得られる x'2 h21 x h22 y h23 x'1 h11 x h12 y h13 y' x' x'3 h31 x h32 y h33 x'3 h31 x h32 y h33 x' h31 x h32 y h33 h11 x h12 y h13 y' h31 x h32 y h33 h21 x h22 y h23 (linear in hij) 4組み以上の対応点(n>=4)が分かれば、Hが唯一に決定できる ホモグラフィ H Homographies for Bird’s-eye Views from Hartley & Zisserman Homographies for Mosaicing from Hartley & Zisserman Homographies for Mosaicing 複数枚の画像より広視野の画像を合成 Applying Homographies to Removing projective distortion select four points in a plane with know coordinates x' x'1 h11 x h12 y h13 x'3 h31 x h32 y h33 y' x'2 h21 x h22 y h23 x'3 h31 x h32 y h33 x' h31 x h32 y h33 h11 x h12 y h13 (linear in hij) y' h31 x h32 y h33 h21 x h22 y h23 出席チェック 1.エピボーラ幾何の原理図を描き、その原理に ついて述べなさい
© Copyright 2025 ExpyDoc