Chapter 3 Transport Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!) If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Computer Networking: A Top Down Approach Featuring the Internet, 3rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. Thanks and enjoy! JFK/KWR All material copyright 1996-2004 J.F Kurose and K.W. Ross, All Rights Reserved Transport Layer 3-1 邦訳版 インターネット技術のすべて:ト ップダウンアプローチによる実 践ネットワーク技法 第2版 ジェームズ・F・クロセ (著), キ ース・W・ロス (著), 岡田 博美 (翻訳) 出版社: ピアソン・エデュケーシ ョン (2003/12/25) ASIN: 4894714949 Transport Layer 3-2 トランスポート層 Chapter 3: Transport Layer Our goals: 目標 understand principles behind transport layer services: トランスポート層サービスの 背後にある原理の理解: multiplexing/demultipl exing reliable data transfer flow control congestion control learn about transport layer protocols in the Internet: インターネットにおけるトランスポー ト層について学習: UDP: connectionless transport TCP: connection-oriented transport TCP congestion control Transport Layer 3-3 Chapter 3 outline 3.1 Transport-layer services トランスポート層サービス 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-4 Transport services and protocols トランスポートサービスとプロトコル logical communication (論理的な通信) between app provide processes running on different hosts transport protocols run in end systems send side: breaks app messages into segments, passes to network layer rcv side: reassembles segments into messages, passes to app layer more than one transport protocol available to apps Internet: TCP and UDP application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical Transport Layer 3-5 Transport vs. network layer トランスポート層とネットワーク層 network layer: logical Household analogy: communication between hosts 12 kids sending letters to 12 kids ネットワーク層: ホスト間の論 processes = kids 理的通信 transport layer: logical communication between processes トランスポート層: プロセス間 の論理的通信 relies on, enhances, network layer services app messages = letters in envelopes hosts = houses transport protocol = Ann and Bill network-layer protocol = postal service Transport Layer 3-6 Internet transport-layer protocols インターネットトランスポート層プロトコル reliable, in-order delivery (TCP) 高信頼,順序保証配送: TCP congestion control flow control connection setup unreliable, unordered delivery: UDP 低信頼,順序非保証配送: UDP no-frills extension of “best-effort” IP services not available: delay guarantees bandwidth guarantees application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical Transport Layer 3-7 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 多重化と逆多重化 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-8 Multiplexing/demultiplexing 多重化/逆多重化 始点ホストにおける多重化: 終点ホストにおける逆多重化: Multiplexing at send host: gathering data from multiple sockets, enveloping data with header (later used for demultiplexing) Demultiplexing at rcv host: delivering received segments to correct socket = socket application transport network link = process P3 P1 P1 application transport network P2 P4 application transport network link link physical host 1 physical host 2 physical host 3 Transport Layer 3-9 How demultiplexing works 逆多重化はどのように機能するか host receives IP datagrams ホストはIPデータグラムを受信 each datagram has source IP address, destination IP address each datagram carries 1 transport-layer segment each segment has source, destination port number host uses IP addresses & port numbers to direct segment to appropriate socket ホストは,適切なソケットにセグメ ントを向けるためにIPアドレスとポ ート番号を使う 32 bits source port # dest port # other header fields application data (message) TCP/UDP segment format Transport Layer 3-10 Connectionless demultiplexing コネクションレス型の逆多重化 Create sockets with port numbers: ポート番号を付与してソケットを生成: DatagramSocket mySocket1 = new DatagramSocket(99111); DatagramSocket mySocket2 = new DatagramSocket(99222); UDP socket identified by two-tuple: (dest IP address, dest port number) UDP ソケットは (終点IPアドレス,終点ポート番号) で識別される When host receives UDP segment: ホストがUDPセグメントを受信す ると: checks destination port number in segment directs UDP segment to socket with that port number IP datagrams with different source IP addresses and/or source port numbers directed to same socket 同一ソケットにむけられた異なる 始点IPアドレスあるいはまた異な る始点ポート番号をもつIPデータ グラム Transport Layer 3-11 Connectionless demux (cont) コネクションレス型の逆多重化(続き) DatagramSocket serverSocket = new DatagramSocket(6428); P2 SP: 6428 SP: 6428 DP: 9157 DP: 5775 SP: 9157 client IP: A P1 P1 P3 DP: 6428 SP: 5775 server IP: C DP: 6428 Client IP:B SP provides “return address” Transport Layer 3-12 Connection-oriented demux コネクション指向型の逆多重化 TCP socket identified by 4-tuple: TCP ソケットは次の4つの値に よって識別される: source IP address source port number dest IP address dest port number recv host uses all four values to direct segment to appropriate socket 終点ホストは,4つの値を使って セグメントをアプリケーションソケ ットに向ける Server host may support many simultaneous TCP sockets: サーバホストは同時に多数の TCPソケットをサポートするかもし れない: each socket identified by its own 4-tuple Web servers have different sockets for each connecting client Webサーバは各クライアントに対 して異なるソケットを持つ non-persistent HTTP will have different socket for each requestTransport Layer 3-13 Connection-oriented demux (cont) コネクション指向型の逆多重化(続き) P1 P4 P5 P2 P6 P1P3 SP: 5775 DP: 80 S-IP: B D-IP:C SP: 9157 client IP: A DP: 80 S-IP: A D-IP:C SP: 9157 server IP: C DP: 80 S-IP: B D-IP:C Client IP:B Transport Layer 3-14 Connection-oriented demux: Threaded Web Server コネクション指向型の逆多重化: スレッド化されたWebサーバ P1 P2 P4 P1P3 SP: 5775 DP: 80 S-IP: B D-IP:C SP: 9157 client IP: A DP: 80 S-IP: A D-IP:C SP: 9157 server IP: C DP: 80 S-IP: B D-IP:C Client IP:B Transport Layer 3-15 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP コネクションレス型トラン スポート: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-16 UDP: User Datagram Protocol [RFC 768] “no frills,” “bare bones” Internet transport protocol “余計な機能のない,” “余計な部分を 削った” インターネットトランスポートプ ロトコル “best effort” service, UDP segments may be: lost delivered out of order to app connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others Why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small segment header no congestion control: UDP can blast away as fast as desired Transport Layer 3-17 UDP: more often used for streaming 32 bits multimedia apps ストリーミングマルチメディアアプリ Length, in ケーションによく利用される bytes of UDP loss tolerant segment, rate sensitive including other UDP uses header DNS SNMP reliable transfer over UDP: add reliability at application layer application-specific error recovery! source port # dest port # length checksum Application data (message) UDP segment format Transport Layer 3-18 UDP checksum UDPチェックサム Goal: detect “errors” (e.g., flipped bits) in transmitted segment 目的: 転送セグメント中の“誤り”を検出する(例えば,ビット反転など) Sender: 始点ホスト treat segment contents as sequence of 16-bit integers checksum: addition (1’s complement sum) of segment contents sender puts checksum value into UDP checksum field Receiver: 終点ホスト compute checksum of received segment check if computed checksum equals checksum field value: NO - error detected YES - no error detected. But maybe errors nonetheless? More later …. Transport Layer 3-19 Internet Checksum Example インターネットチェックサムの例 Note 注意 When adding numbers, a carryout from the most significant bit needs to be added to the result 加算結果の最上位のキャリーアウトは結果に加算されなければ ならない Example: add two 16-bit integers 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 wraparound 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 sum 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 checksum 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 Transport Layer 3-20 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 高信頼データ転送の原理 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-21 Principles of Reliable data transfer 高信頼データ転送の原理 important in app., transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Transport Layer 3-22 Reliable data transfer: getting started 高信頼データ転送:はじめに rdt_send(): called from above, (e.g., by app.). Passed data to deliver to receiver upper layer send side udt_send(): called by rdt, to transfer packet over unreliable channel to receiver deliver_data(): called by rdt to deliver data to upper receive side rdt_rcv(): called when packet arrives on rcv-side of channel Transport Layer 3-23 Reliable data transfer: getting started 高信頼データ転送:はじめに We’ll:以後 incrementally develop sender, receiver sides of reliable data transfer protocol (rdt) 高信頼転送プロトコル(rdt)の始点ホスト,終点ホストを順に発 展させる consider only unidirectional data transfer but control info will flow on both directions! use finite state machines (FSM) to specify sender, receiver state: when in this “state” next state uniquely determined by next event state 1 event causing state transition actions taken on state transition event actions state 2 Transport Layer 3-24 Rdt1.0: reliable transfer over a reliable channel 高信頼チャネルを介した高信頼転送 underlying channel perfectly reliable 下層チャネルは完全に信頼できる no bit errors no loss of packets separate FSMs for sender, receiver: 始点ホストと終点ホストは分離: sender sends data into underlying channel receiver read data from underlying channel Wait for call from above rdt_send(data) packet = make_pkt(data) udt_send(packet) sender Wait for call from below rdt_rcv(packet) extract (packet,data) deliver_data(data) receiver Transport Layer 3-25 Rdt2.0: channel with bit errors ビットエラーのあるチャンネル underlying channel may flip bits in packet 下層チャネルでパケット内のビット反転が発生しうる checksum to detect bit errors the question: how to recover from errors: 誤りからどのように回復するか: acknowledgements (ACKs): receiver explicitly tells sender negative acknowledgements (NAKs): receiver explicitly that pkt received OK tells sender that pkt had errors sender retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): error detection receiver feedback: control msgs (ACK,NAK) rcvr->sender Transport Layer 3-26 rdt2.0: FSM specification FSMの記述 rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for Wait for call from ACK or udt_send(sndpkt) above NAK rdt_rcv(rcvpkt) && isACK(rcvpkt) L sender receiver rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) Transport Layer 3-27 rdt2.0: operation with no errors rdt2.0: 誤りがない場合 rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for Wait for call from ACK or udt_send(sndpkt) above NAK rdt_rcv(rcvpkt) && isACK(rcvpkt) L rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) Transport Layer 3-28 rdt2.0: error scenario rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for Wait for call from ACK or udt_send(sndpkt) above NAK rdt_rcv(rcvpkt) && isACK(rcvpkt) L エラーがある場合 rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) Transport Layer 3-29 rdt2.0 has a fatal flaw! rdt2.0 の致命的欠陥! What happens if ACK/NAK corrupted? ACK/NAK が壊れたらどうする? sender doesn’t know what happened at receiver! can’t just retransmit: possible duplicate Handling duplicates: 重複の取り扱い: sender retransmits current pkt if ACK/NAK garbled sender adds sequence number to each pkt receiver discards (doesn’t deliver up) duplicate pkt stop and wait Sender sends one packet, then waits for receiver response Transport Layer 3-30 rdt2.1: sender, handles garbled ACK/NAKs rdt2.1: 始点ホストでの ACK/NAKs 誤りの扱い rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || Wait for Wait for isNAK(rcvpkt) ) ACK or call 0 from udt_send(sndpkt) NAK 0 above rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt) L rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isNAK(rcvpkt) ) udt_send(sndpkt) L Wait for ACK or NAK 1 Wait for call 1 from above rdt_send(data) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) Transport Layer 3-31 rdt2.1: receiver, handles garbled ACK/NAKs rdt2.1: 始点ホストでの ACK/NAKs 誤りの扱い rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) rdt_rcv(rcvpkt) && (corrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && (corrupt(rcvpkt) sndpkt = make_pkt(NAK, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq1(rcvpkt) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) sndpkt = make_pkt(NAK, chksum) udt_send(sndpkt) Wait for 0 from below Wait for 1 from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq0(rcvpkt) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) Transport Layer 3-32 rdt2.1: discussion Sender: 始点ホスト seq # added to pkt パケットにシーケンス番号を付与 two seq. #’s (0,1) will suffice. Why? 二つのシーケンス番号(0,1) で十 分.なぜか? must check if received ACK/NAK corrupted twice as many states state must “remember” whether “current” pkt has 0 or 1 seq. # Receiver: 終点ホスト must check if received packet is duplicate state indicates whether 0 or 1 is expected pkt seq # note: receiver can not know if its last ACK/NAK received OK at sender Transport Layer 3-33 rdt2.2: a NAK-free protocol rdt2.2: NAK フリープロトコル same functionality as rdt2.1, using ACKs only ACKのみを使って rdt2.1 と同一機能を実現 instead of NAK, receiver sends ACK for last pkt received OK NAKの代わりに,終点ホストは最後に正しく受信されたパケットに対す る ACK を送信 receiver must explicitly include seq # of pkt being ACKed duplicate ACK at sender results in same action as NAK: retransmit current pkt 始点ホストは,重複ACKに対して NAK と同様に対処する:パケットの 再送 Transport Layer 3-34 rdt2.2: sender, receiver fragments rdt2.2: 始点ホスト,終点ホストの FSM(一部) rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || Wait for Wait for isACK(rcvpkt,1) ) ACK call 0 from 0 udt_send(sndpkt) above sender FSM fragment rdt_rcv(rcvpkt) && (corrupt(rcvpkt) || has_seq1(rcvpkt)) udt_send(sndpkt) Wait for 0 from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0) receiver FSM fragment L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK1, chksum) udt_send(sndpkt) Transport Layer 3-35 rdt3.0: channels with errors and loss rdt3.0: 誤りとロスがあるチャネル New assumption: 新しい仮定: underlying channel can also lose packets (data or ACKs) 下層チャネルはパケット(data, ACK)を損失する可能性がある checksum, seq. #, ACKs, retransmissions will be of help, but not enough Approach: sender waits “reasonable” amount of time for ACK アプローチ: 始点ホストは,“適切な” 時間 ACK を待つ retransmits if no ACK received in this time if pkt (or ACK) just delayed (not lost): retransmission will be duplicate, but use of seq. #’s already handles this receiver must specify seq # of pkt being ACKed requires countdown timer Transport Layer 3-36 rdt3.0 sender 始点ホスト rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,1) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,0) ) timeout udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0) stop_timer stop_timer timeout udt_send(sndpkt) start_timer L Wait for ACK0 Wait for call 0from above L rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,1) ) Wait for ACK1 Wait for call 1 from above rdt_send(data) rdt_rcv(rcvpkt) L sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) start_timer Transport Layer 3-37 rdt3.0 in action 動作 Transport Layer 3-38 rdt3.0 in action 動作 Transport Layer 3-39 Performance of rdt3.0 rdt3.0 の性能 rdt3.0 works, but performance stinks rdt3.0 は動作するが,性能は悪い example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet: Ttransmit = U L (packet length in bits) 8kb/pkt = = 8 microsec R (transmission rate, bps) 10**9 b/sec sender = L/R RTT + L / R = .008 30.008 = 0.00027 microsec onds U sender: utilization – fraction of time sender busy sending 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link network protocol limits use of physical resources! Transport Layer 3-40 rdt3.0: stop-and-wait operation rdt3.0: stop-and-wait の動作 sender receiver first packet bit transmitted, t = 0 last packet bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK RTT ACK arrives, send next packet, t = RTT + L / R U sender = L/R RTT + L / R = .008 30.008 = 0.00027 microsec onds Transport Layer 3-41 Pipelined protocols パイプラインプロトコル Pipelining: sender allows multiple, “in-flight”, yet-tobe-acknowledged pkts パイプライン: 始点ホストは,ACK を待つことなく複数のパケットを送 信できる range of sequence numbers must be increased buffering at sender and/or receiver Two generic forms of pipelined protocols: selective repeat go-Back-N, Transport Layer 3-42 Pipelining: increased utilization パイプライン: 利用率の改善 sender receiver first packet bit transmitted, t = 0 last bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK last bit of 2nd packet arrives, send ACK last bit of 3rd packet arrives, send ACK RTT ACK arrives, send next packet, t = RTT + L / R Increase utilization by a factor of 3! U sender = 3*L/R RTT + L / R = .024 30.008 = 0.0008 microsecon ds Transport Layer 3-43 Go-Back-N Sender: 始点ホスト k-bit seq # in pkt header パケットヘッダ内に k ビットのシーケンス番号 “window” of up to N, consecutive unack’ed pkts allowed ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK” may deceive duplicate ACKs (see receiver) timer for each in-flight pkt timeout(n): retransmit pkt n and all higher seq # pkts in window Transport Layer 3-44 GBN: sender extended FSM GBN: 始点ホストの拡張 rdt_send(data) L base=1 nextseqnum=1 if (nextseqnum < base+N) { sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum) udt_send(sndpkt[nextseqnum]) if (base == nextseqnum) start_timer nextseqnum++ } else refuse_data(data) Wait rdt_rcv(rcvpkt) && corrupt(rcvpkt) timeout start_timer udt_send(sndpkt[base]) udt_send(sndpkt[base+1]) … udt_send(sndpkt[nextseqnum-1]) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) base = getacknum(rcvpkt)+1 If (base == nextseqnum) stop_timer else start_timer Transport Layer 3-45 GBN: receiver extended FSM GBN: 終点ホストの拡張 FSM default udt_send(sndpkt) L Wait expectedseqnum=1 sndpkt = make_pkt(expectedseqnum,ACK,chksum) rdt_rcv(rcvpkt) && notcurrupt(rcvpkt) && hasseqnum(rcvpkt,expectedseqnum) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(expectedseqnum,ACK,chksum) udt_send(sndpkt) expectedseqnum++ ACK-only: always send ACK for correctly-received pkt with highest in-order seq # ACKのみ: 正しく受信したパケットに対して,順序どおりに正しく受信された最大シー ケンス番号に対してACK を送信 may generate duplicate ACKs need only remember expectedseqnum out-of-order pkt: discard (don’t buffer) -> no receiver buffering! Re-ACK pkt with highest in-order seq # Transport Layer 3-46 GBN in action 動作 Transport Layer 3-47 Selective Repeat 選択的再送 receiver individually acknowledges all correctly received pkts 終点ホストは,正しく受信された個々のパケットに ACK を送信する buffers pkts, as needed, for eventual in-order delivery to upper layer sender only resends pkts for which ACK not received 始点ホストは,ACK 未受信のパケットのみを再送 sender timer for each unACKed pkt sender window N consecutive seq #’s again limits seq #s of sent, unACKed pkts Transport Layer 3-48 Selective repeat: sender, receiver windows 選択的再送: 始点ホスト,終点ホストのウインドウ Transport Layer 3-49 Selective repeat 選択的再送 sender data from above : receiver pkt n in [rcvbase, rcvbase+N-1] 上位層からのデータ : if next available seq # in window, send pkt out-of-order: buffer timeout(n): resend pkt n, restart timer ACK(n) in [sendbase,sendbase+N]: mark pkt n as received if n smallest unACKed pkt, advance window base to next unACKed seq # send ACK(n) in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt pkt n in [rcvbase-N,rcvbase-1] ACK(n) otherwise: ignore Transport Layer 3-50 Selective repeat in action 選択的再送:動作 Transport Layer 3-51 Selective repeat: dilemma ジレンマ Example: seq #’s: 0, 1, 2, 3 window size=3 receiver sees no difference in two scenarios! incorrectly passes duplicate data as new in (a) Q: what relationship between seq # size and window size? Transport Layer 3-52 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP コネクション指向型トランス ポート: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-53 TCP: Overview point-to-point: one sender, one receiver reliable, in-order steam: byte 高信頼,順序保証,バイトストリーム no “message boundaries” pipelined: TCP congestion and flow control set window size send & receive buffers 送信&受信バッファ socket door application writes data application reads data TCP send buffer TCP receive buffer segment RFCs: 793, 1122, 1323, 2018, 2581 full duplex data: 全二重データ: bi-directional data flow in same connection MSS: maximum segment size connection-oriented: コネクション指向型: handshaking (exchange of control msgs) init’s sender, receiver state before data exchange flow controlled: フロー制御: socket sender will not door overwhelm receiver Transport Layer 3-54 TCP segment structure TCP セグメント構造 URG: urgent data (generally not used) ACK: ACK # valid PSH: push data now (generally not used) RST, SYN, FIN: connection estab (setup, teardown commands) Internet checksum (as in UDP) 32 bits source port # dest port # sequence number acknowledgement number head not UA P R S F len used checksum Receive window Urg data pnter Options (variable length) counting by bytes of data (not segments!) # bytes rcvr willing to accept application data (variable length) Transport Layer 3-55 TCP seq. #’s and ACKs TCP シークエンス番号とACK Seq. #’s: シークエンス番号 byte stream “number” of first byte in segment’s data ACKs: seq # of next byte expected from other side cumulative ACK Q: how receiver handles out-of-order segments A: TCP spec doesn’t say, - up to implementor Host A User types ‘C’ Host B host ACKs receipt of ‘C’, echoes back ‘C’ host ACKs receipt of echoed ‘C’ simple telnet scenario time Transport Layer 3-56 TCP Round Trip Time and Timeout TCP ラウンドトリップ時間とタイムアウト Q: how to set TCP timeout value? TCPはどのようにタイムア ウト時間を設定するのか longer than RTT but RTT varies too short: premature timeout unnecessary retransmissions too long: slow reaction to segment loss Q: how to estimate RTT? RTTをどのように見積もるか? SampleRTT: measured time from segment transmission until ACK receipt ignore retransmissions SampleRTT will vary, want estimated RTT “smoother” average several recent measurements, not just current SampleRTT Transport Layer 3-57 TCP Round Trip Time and Timeout TCP ラウンドトリップ時間とタイムアウト EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT Exponential weighted moving average 指数加重移動平均 influence of past sample decreases exponentially fast 過去のサンプルの影響は指数的に減少 typical value: = 0.125 典型的な値: = 0.125 Transport Layer 3-58 Example RTT estimation: RTTの推定の例 RTT: gaia.cs.umass.edu to fantasia.eurecom.fr 350 RTT (milliseconds) 300 250 200 150 100 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 time (seconnds) SampleRTT Estimated RTT Transport Layer 3-59 TCP Round Trip Time and Timeout TCP ラウンドトリップ時間とタイムアウト Setting the timeout タイムアウトの設定 EstimtedRTT plus “safety margin” large variation in EstimatedRTT -> larger safety margin first estimate of how much SampleRTT deviates from EstimatedRTT: DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT| (typically, = 0.25) Then set timeout interval: TimeoutInterval = EstimatedRTT + 4*DevRTT Transport Layer 3-60 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer 高信頼データ転送 flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-61 TCP reliable data transfer TCP高信頼データ転送 TCP creates rdt service on top of IP’s unreliable service TCPはIPの低信頼サービスの 上に高信頼のサービスを作る Pipelined segments パイプラインで繋がれたセグメント Cumulative acks 累積的なAck(認証) TCP uses single retransmission timer TCPは1つの再送タイマーを使 用 Retransmissions are triggered by: 再送は以下の場合に引き起こ される: timeout events duplicate acks Initially consider simplified TCP sender: まず単純化されたTCP送信者 を考える ignore duplicate acks ignore flow control, congestion control Transport Layer 3-62 TCP sender events: TCP送信者イベント: data rcvd from app: アプリから届いたデータ: Create segment with seq # seq # is byte-stream number of first data byte in segment start timer if not already running (think of timer as for oldest unacked segment) expiration interval: TimeOutInterval timeout: タイムアウト retransmit segment that caused timeout restart timer Ack rcvd: 届いたAck If acknowledges previously unacked segments update what is known to be acked start timer if there are outstanding segments Transport Layer 3-63 NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data) event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number start timer event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } } /* end of loop forever */ TCP sender (simplified) Comment: • SendBase-1: last cumulatively ack’ed byte Example: • SendBase-1 = 71; y= 73, so the rcvr wants 73+ ; y > SendBase, so that new data is acked Transport Layer 3-64 TCP: retransmission scenarios TCP: 再送シナリオ Host A X loss Sendbase = 100 SendBase = 120 SendBase = 100 time SendBase = 120 lost ACK scenario Host B Seq=92 timeout Host B Seq=92 timeout timeout Host A time premature timeout Transport Layer 3-65 TCP retransmission scenarios (more) TCP再送シナリオ(続き) timeout Host A Host B X loss SendBase = 120 time Cumulative ACK scenario Transport Layer 3-66 TCP ACK generation TCP ACK生成 [RFC 1122, RFC 2581] Event at Receiver TCP Receiver action Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK Arrival of in-order segment with expected seq #. One other segment has ACK pending Immediately send single cumulative ACK, ACKing both in-order segments Arrival of out-of-order segment higher-than-expect seq. # . Gap detected Immediately send duplicate ACK, indicating seq. # of next expected byte Arrival of segment that partially or completely fills gap Immediate send ACK, provided that segment startsat lower end of gap Transport Layer 3-67 Fast Retransmit 高速再送 Time-out period often relatively long: タイムアウト間隔は,相対的に 長い: long delay before resending lost packet Detect lost segments via duplicate ACKs. 重複ACKによるセグメントロス の検出 Sender often sends many segments back-toback If segment is lost, there will likely be many duplicate ACKs. If sender receives 3 ACKs for the same data, it supposes that segment after ACKed data was lost: 始点ホストが同一データに対す る ACK を3つ受信した場合, ACKが対象とするセグメントが 失われた後のセグメントに対す るものと推定する: fast retransmit: resend segment before timer expires Transport Layer 3-68 Fast retransmit algorithm: 高速再送アルゴリズム: event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } else { increment count of dup ACKs received for y if (count of dup ACKs received for y = 3) { resend segment with sequence number y } a duplicate ACK for already ACKed segment fast retransmit Transport Layer 3-69 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control フロー制御 connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-70 TCP Flow Control TCPフロー制御 receive side of TCP connection has a receive buffer: TCPコネクションの終点ホストは受 信バッファをもつ: flow control sender won’t overflow receiver’s buffer by transmitting too much, too fast speed-matching service: app process may be slow at matching the send rate to the receiving app’s drain rate スピード制御サービス:アプリ ケーション読み出し速度に送 信速度を調整する reading from buffer アプリプロセスは,バッファからの 読み出しに遅れるかもしれない Transport Layer 3-71 TCP Flow control: how it works TCPフロー制御:どう動作するか Rcvr advertises spare (Suppose TCP receiver discards out-of-order segments) spare room in buffer room by including value of RcvWindow in segments Sender limits unACKed data to RcvWindow guarantees receive buffer doesn’t overflow = RcvWindow = RcvBuffer-[LastByteRcvd LastByteRead] Transport Layer 3-72 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management コネクション管理 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-73 TCP Connection Management コネクション管理 Recall: TCP sender, receiver establish “connection” before exchanging data segments initialize TCP variables: seq. #s buffers, flow control info (e.g. RcvWindow) client: connection initiator Socket clientSocket = new Socket("hostname","port number"); server: contacted by client Socket connectionSocket = welcomeSocket.accept(); Three way handshake: 3ステップでの接続設定 Step 1: client host sends TCP SYN segment to server specifies initial seq # no data Step 2: server host receives SYN, replies with SYNACK segment server allocates buffers specifies server initial seq. # Step 3: client receives SYNACK, replies with ACK segment, which may contain data Transport Layer 3-74 TCP Connection Management (cont.) TCPコネクション管理(続き) Closing a connection: コネクションの終了: client closes socket: clientSocket.close(); client server close Step 1: client end system sends close TCP FIN control segment to server replies with ACK. Closes connection, sends FIN. timed wait Step 2: server receives FIN, closed Transport Layer 3-75 TCP Connection Management (cont.) TCPコネクション管理(続き) Step 3: client receives FIN, replies with ACK. client server closing Enters “timed wait” will respond with ACK to received FINs closing Step 4: server, receives Note: with small modification, can handle simultaneous FINs. timed wait ACK. Connection closed. closed closed Transport Layer 3-76 TCP Connection Management (cont) TCPコネクション管理(続き) TCP server lifecycle TCP client lifecycle Transport Layer 3-77 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 輻輳制御の原理 3.7 TCP congestion control Transport Layer 3-78 Principles of Congestion Control 輻輳制御の原理 Congestion: 輻輳 informally: “too many sources sending too much data too fast for network to handle” 簡単にいうと: “多くのソースが大量のデータをネットワークが扱うこと ができる速度より速く送信している” different from flow control! フロー制御とは異なる! manifestations: lost packets (buffer overflow at routers) long delays (queueing in router buffers) a top-10 problem! Transport Layer 3-79 Causes/costs of congestion: scenario 1 輻輳の原因/コスト:シナリオ1 Host A two senders, two receivers one router, infinite buffers no retransmission Host B lout lin : original data unlimited shared output link buffers large delays when congested maximum achievable throughput Transport Layer 3-80 Causes/costs of congestion: scenario 2 輻輳の原因/コスト:シナリオ2 one router, finite buffers sender retransmission of lost packet Host A Host B lin : original data l'in : original data, plus retransmitted data lout finite shared output link buffers Transport Layer 3-81 Causes/costs of congestion: scenario 2 輻輳の原因/コスト:シナリオ2 always: l = l (goodput) out in “perfect” retransmission only when loss: l > lout in retransmission of delayed (not lost) packet makes (than perfect case) for same R/2 l in lout R/2 larger R/2 lin a. R/2 lout lout lout R/3 lin b. R/2 R/4 lin R/2 c. “costs” of congestion: more work (retrans) for given “goodput” unneeded retransmissions: link carries multiple copies of pkt Transport Layer 3-82 Causes/costs of congestion: scenario 3 輻輳の原因/コスト:シナリオ3 four senders Q: what happens as l in and l increase ? multihop paths timeout/retransmit in Host A lin : original data lout l'in : original data, plus retransmitted data finite shared output link buffers Host B Transport Layer 3-83 Causes/costs of congestion: scenario 3 輻輳の原因/コスト:シナリオ3 H o s t A l o u t H o s t B Another “cost” of congestion: when packet dropped, any “upstream transmission capacity used for that packet was wasted! Transport Layer 3-84 Approaches towards congestion control 輻輳制御へのアプローチ Two broad approaches towards congestion control: 輻輳制御のための2つの基本的アプローチ: Network-assisted congestion End-end congestion control: control: エンド間輻輳制御: no explicit feedback from network congestion inferred from end-system observed loss, delay approach taken by TCP ネットワーク支援型輻輳制御: routers provide feedback to end systems single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM) explicit rate sender should send at Transport Layer 3-85 Case study: ATM ABR congestion control ケーススタディ: ATM ABR 輻輳制御 ABR: available bit rate: “elastic service” if sender’s path “underloaded”: sender should use available bandwidth if sender’s path congested: sender throttled to minimum guaranteed rate RM (resource management) cell: 資源管理 (RM: resource management)セル: sent by sender, interspersed with data cells bits in RM cell set by switches (“network-assisted”) NI bit: no increase in rate (mild congestion) CI bit: congestion indication RM cells returned to sender by receiver, with bits intact Transport Layer 3-86 Case study: ATM ABR congestion control ケーススタディ: ATM ABR 輻輳制御 two-byte ER (explicit rate) field in RM cell congested switch may lower ER value in cell sender’ send rate thus minimum supportable rate on path EFCI bit in data cells: set to 1 in congested switch if data cell preceding RM cell has EFCI set, sender sets CI bit in returned RM cell Transport Layer 3-87 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control TCP 輻輳制御 Transport Layer 3-88 TCP Congestion Control TCP 輻輳制御 end-end control (no network assistance) sender limits transmission: LastByteSent-LastByteAcked CongWin Roughly, rate = CongWin Bytes/sec RTT CongWin is dynamic, function of perceived network congestion How does sender perceive congestion? 始点ホストはどうやって輻輳を知 覚するのか? loss event = timeout or 3 duplicate acks TCP sender reduces rate (CongWin) after loss event three mechanisms: AIMD slow start conservative after timeout events Transport Layer 3-89 TCP AIMD multiplicative decrease: 乗算的減少: cut CongWin in half after loss event congestion window 24 Kbytes additive increase: 加算的増加: increase CongWin by 1 MSS every RTT in the absence of loss events: probing 16 Kbytes 8 Kbytes time Long-lived TCP connection Transport Layer 3-90 TCP Slow Start TCP スロースタート When connection begins, CongWin = 1 MSS Example: MSS = 500 bytes & RTT = 200 msec initial rate = 20 kbps available bandwidth may be >> MSS/RTT When connection begins, increase rate exponentially fast until first loss event コネクション開始時は,最初のロ スイベントまで,レートを指数関 数的に増加させることが望ましい desirable to quickly ramp up to respectable rate Transport Layer 3-91 TCP Slow Start (more) TCP スロースタート(続き) When connection begins, コネクション開始時,最初のロスイ ベントまでレートを指数関数的に 増加: double CongWin every RTT done by incrementing CongWin for every ACK received Host B RTT increase rate exponentially until first loss event: Host A Summary: initial rate is slow but ramps up exponentially fast まとめると…: 初期レートは小さい が,指数関数的に増加 time Transport Layer 3-92 Refinement 改善点 Philosophy: After 3 dup ACKs: is cut in half window then grows linearly But after timeout event: CongWin instead set to 1 MSS; window then grows exponentially to a threshold, then grows linearly CongWin • 3 dup ACKs indicates network capable of delivering some segments • timeout before 3 dup ACKs is “more alarming” Transport Layer 3-93 Refinement (more) 改善(続き) Q: When should the exponential increase switch to linear? A: When CongWin gets to 1/2 of its value before timeout. Implementation: Variable Threshold At loss event, Threshold is set to 1/2 of CongWin just before loss event Transport Layer 3-94 Summary: TCP Congestion Control まとめ: TCP 輻輳制御 When CongWin is below Threshold, sender in slow-start phase, window grows exponentially. CongWin が Threshold 以下のとき,始点ホストはスロースタートフェー ズに入り,ウインドウを指数的に増加させる When CongWin is above Threshold, sender is in congestion- avoidance phase, window grows linearly. CongWin が Threshold を超えると,始点ホストは,輻輳回避フェーズに 入り,ウインドウを線形的に増加させる When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold. 3重ACK受信後,Threshold を CongWin/2 に設定し,CongWin を閾 値に設定する When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS. タイムアウト発生後は,閾値を CongWin/2 に設定し,CongWin を 1 MSS に設定する Transport Layer 3-95 TCP sender congestion control TCP始点ホスト輻輳管理 State Event TCP Sender Action Commentary Slow Start (SS) ACK receipt for previously unacked data CongWin = CongWin + MSS, If (CongWin > Threshold) set state to “Congestion Avoidance” Resulting in a doubling of CongWin every RTT Congestion Avoidance (CA) ACK receipt for previously unacked data CongWin = CongWin+MSS * (MSS/CongWin) Additive increase, resulting in increase of CongWin by 1 MSS every RTT SS or CA Loss event detected by triple duplicate ACK Threshold = CongWin/2, CongWin = Threshold, Set state to “Congestion Avoidance” Fast recovery, implementing multiplicative decrease. CongWin will not drop below 1 MSS. SS or CA Timeout Threshold = CongWin/2, CongWin = 1 MSS, Set state to “Slow Start” Enter slow start SS or CA Duplicate ACK Increment duplicate ACK count for segment being acked CongWin and Threshold not changed Transport Layer 3-96 TCP throughput TCPスループット What’s the average throughout of TCP as a function of window size and RTT? Ignore slow start Let W be the window size when loss occurs. When window is W, throughput is W/RTT Just after loss, window drops to W/2, throughput to W/2RTT. Average throughout: .75 W/RTT Transport Layer 3-97 TCP Futures TCPの将来 Example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput Requires window size W = 83,333 in-flight segments Throughput in terms of loss rate: 1.22 MSS RTT L ➜ L = 2·10-10 Wow New versions of TCP for high-speed needed! Transport Layer 3-98 TCP Fairness TCPの公平性 Fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K 公平性の目的: K本のTCPセッションが帯域 R の同一ボトルネックリン クを共有している場合,各セッションは平均 R/Kの速度を持つべき である TCP connection 1 TCP connection 2 bottleneck router capacity R Transport Layer 3-99 Why is TCP fair? TCP はなぜ公平? Two competing sessions: 2本の競合セッション: Additive increase gives slope of 1, as throughout increases multiplicative decrease decreases throughput proportionally R equal bandwidth share loss: decrease window by factor of 2 congestion avoidance: additive increase loss: decrease window by factor of 2 congestion avoidance: additive increase Connection 1 throughput R Transport Layer 3-100 Fairness (more) 公平性(続き) Fairness and UDP 公平性とUDP Multimedia apps often do not use TCP do not want rate throttled by congestion control Instead use UDP: pump audio/video at constant rate, tolerate packet loss Research area: TCP friendly Fairness and parallel TCP connections 公平性と並列TCPコネクション nothing prevents app from opening parallel cnctions between 2 hosts. Web browsers do this Example: link of rate R supporting 9 cnctions; new app asks for 1 TCP, gets rate R/10 new app asks for 11 TCPs, gets R/2 ! Transport Layer 3-101 Delay modeling 遅延モデル Q: How long does it take to receive an object from a Web server after sending a request? Ignoring congestion, delay is influenced by: 輻輳を無視すると,遅延は以下に影響され る: TCP connection establishment data transmission delay slow start Notation, assumptions: 記号と仮定: Assume one link between client and server of rate R S: MSS (bits) O: object size (bits) no retransmissions (no loss, no corruption) Window size: First assume: fixed congestion window, W segments Then dynamic window, modeling slow start Transport Layer 3-102 Fixed congestion window (1) 固定輻輳ウインドウ (1) First case: WS/R > RTT + S/R: ACK for first segment in window returns before window’s worth of data sent ケース1: WS/R > RTT + S/R: ウインドウ内のデ ータを全て送信する前にウインドウ 内の第1セグメントに対する ACK が 返ってくる delay = 2RTT + O/R Transport Layer 3-103 Fixed congestion window (2) Second case: WS/R < RTT + S/R: wait for ACK after sending window’s worth of data sent ケース2: WS/R < RTT + S/R: ウイン ドウ内のデータを送信した後 ,ACKが返ってくるのを待つ delay = 2RTT + O/R + (K-1)[S/R + RTT - WS/R] Transport Layer 3-104 TCP Delay Modeling: Slow Start (1) TCP 遅延モデル: スロースタート (1) Now suppose window grows according to slow start ウインドウがスロースタートに従って増加すると仮定 Will show that the delay for one object is: Latency 2 RTT O S S P RTT (2 P 1) R R R where P is the number of times TCP idles at server: P min{Q, K 1} - where Q is the number of times the server idles if the object were of infinite size. - and K is the number of windows that cover the object. Transport Layer 3-105 TCP Delay Modeling: Slow Start (2) TCP 遅延モデル: スロースタート (2) Delay components: 遅延要素: • 2 RTT for connection estab and request • O/R to transmit object • time server idles due to slow start initiate TCP connection request object first window = S/R RTT third window = 4S/R Server idles: P = min{K-1,Q} times Example: • O/S = 15 segments • K = 4 windows •Q=2 • P = min{K-1,Q} = 2 Server idles P=2 times second window = 2S/R fourth window = 8S/R complete transmission object delivered time at client time at server Transport Layer 3-106 TCP Delay Modeling (3) TCP 遅延モデル (3) S RTT timefrom when server startstosend segment R untilserver receivesacknowledgement initiate TCP connection 2k 1 S time to transmit the kth window R request object S k 1 S RTT 2 R idle timeafter thekth window R first window = S/R RTT second window = 2S/R third window = 4S/R P O delay 2 RTT idleTim ep R p 1 P O S S 2 RTT [ RTT 2 k 1 ] R R k 1 R O S S 2 RTT P[ RTT ] (2 P 1) R R R fourth window = 8S/R complete transmission object delivered time at client time at server Transport Layer 3-107 TCP Delay Modeling (4) TCP 遅延モデル (4) Recall K = number of windows that cover object K = オブジェクト全てを送信するのに必要なウインドウ回数 How do we calculate K ? K min{k : 20 S 21 S 2 k 1 S O} min{k : 20 21 2 k 1 O / S} O min{k : 2 1 } S O min{k : k log2 ( 1)} S O log2 ( 1) S k Calculation of Q, number of idles for infinite-size object, is similar (see HW). Transport Layer 3-108 HTTP Modeling HTTP モデリング Assume Web page consists of: Web ページが以下から構成されると仮定: 1 base HTML page (of size O bits) M images (each of size O bits) Non-persistent HTTP: 非継続型 HTTP: M+1 TCP connections in series Response time = (M+1)O/R + (M+1)2RTT + sum of idle times Persistent HTTP: 継続型 HTTP: 2 RTT to request and receive base HTML file 1 RTT to request and receive M images Response time = (M+1)O/R + 3RTT + sum of idle times Non-persistent HTTP with X parallel connections Suppose M/X integer. 1 TCP connection for base file M/X sets of parallel connections for images. Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times Transport Layer 3-109 HTTP Response time (in seconds) HTTP 応答時間 (秒単位) RTT = 100 msec, O = 5 Kbytes, M=10 and X=5 20 18 16 14 12 10 8 6 4 2 0 non-persistent persistent parallel nonpersistent 28 100 1 10 Kbps Kbps Mbps Mbps For low bandwidth, connection & response time dominated by transmission time. Persistent connections only give minor improvement over parallel connections. Transport Layer 3-110 HTTP Response time (in seconds) HTTP 応答時間 (秒単位) RTT =1 sec, O = 5 Kbytes, M=10 and X=5 70 60 50 non-persistent 40 persistent 30 20 parallel nonpersistent 10 0 28 100 1 10 Kbps Kbps Mbps Mbps For larger RTT, response time dominated by TCP establishment & slow start delays. Persistent connections now give important improvement: particularly in high delaybandwidth networks. Transport Layer 3-111 Chapter 3: Summary まとめ principles behind transport layer services: トランスポート層サービスの背後に ある原理: multiplexing, demultiplexing reliable data transfer flow control congestion control instantiation and implementation in the Internet インターネットにおける事例と実装 UDP TCP Next: leaving the network “edge” (application, transport layers) into the network “core” Transport Layer 3-112
© Copyright 2024 ExpyDoc